Finite-state Rate Distortion

Dharmendra S. Modha† and Daniela P. de Farias‡

†IBM Almaden Research Center
‡MIT

ISIT 2004, Chicago, IL, July 2, 2004
Finite-state Compressibility

Given an individual sequence \(x \in B^\infty \), Lempel and Ziv (1978) defined

\[
\rho(x) \equiv \rho(x, B) = \lim_{s \to \infty} \limsup_{n \to \infty} \min_{\mu \in \mathbb{M}^i(s, B)} \frac{L(x^n_1, \mu)}{n},
\]
Finite-state Compressibility

Given an individual sequence $x \in B^\infty$, Lempel and Ziv (1978) defined

$$\rho(x) \equiv \rho(x, B) = \lim_{s \to \infty} \limsup_{n \to \infty} \min_{\mu \in \mathcal{M}^i(s, B)} \frac{L(x_1^n, \mu)}{n},$$

where

- $\mathcal{M}^i(s, B)$ is set of information lossless machines with at most s states that map sequences in B^∞ to $\{0, 1\}^\infty$.
Finite-state Compressibility

Given an individual sequence \(x \in B^\infty \), Lempel and Ziv (1978) defined

\[
\rho(x) \equiv \rho(x, B) = \lim_{s \to \infty} \lim_{n \to \infty} \min_{\mu \in M^i(s, B)} L(x^n_1, \mu),
\]

where

- \(M^i(s, B) \) is set of information lossless machines with at most \(s \) states that map sequences in \(B^\infty \) to \(\{0, 1\}^\infty \)
- \(L(x^n_1, \mu) \) is the number of bits output by the machine \(\mu \) upon seeing the first \(n \) bits of the input sequence.
Notation

- source alphabet: B
Notation

- source alphabet: B
- reproduction alphabet: \hat{B}
Notation

- source alphabet: B
- reproduction alphabet: \hat{B}
- distortion measure $d : B \times \hat{B} \rightarrow [0, \infty)$

$$\max_{b \in B} \min_{\hat{b} \in \hat{B}} d(b, \hat{b}) = 0;$$
Notation

- source alphabet: B
- reproduction alphabet: \hat{B}
- distortion measure $d : B \times \hat{B} \rightarrow [0, \infty)$

\[
\max_{b \in B} \min_{\hat{b} \in \hat{B}} d(b, \hat{b}) = 0;
\]

Desired average per-letter distortion D;
Prior Work

Prior Work

- Essence of the definition:

\[R(D|x) = \inf \{ \rho(y, \hat{B}) : y \in \hat{B}^\infty, d^\infty(x, y) \leq D \} \]

where \(d^\infty(x, y) = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} d(x_i, y_i) \)
Prior Work

- Essence of the definition:

\[
R(D|x) = \inf \left\{ \rho(y, \hat{B}) : y \in \hat{B}^\infty, d_\infty(x, y) \leq D \right\}
\]

where \(d_\infty(x, y) = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} d(x_i, y_i) \)

- \(R(D|x) \) is an asymptotically attainable lower bound
Prior Work

- Essence of the definition:

\[R(D|x) = \inf \{ \rho(y, \hat{B}) : y \in \hat{B}^\infty, d^\infty(x, y) \leq D \} \]

where \(d^\infty(x, y) = \lim \sup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} d(x_i, y_i) \)

- \(R(D|x) \) is an asymptotically attainable lower bound

- If \(x \) is drawn from a stationary, ergodic process, then \(R(D|x) \) becomes the rate-distortion
A class of D-Lossy Machines

A deterministic machine $\hat{E} : B^\infty \to \hat{B}^\infty$ is D-lossy if

$$\sup_{x \in B^\infty} d_{\infty}(x, \hat{E}x) \leq D.$$
A class of D-Lossy Machines

A deterministic machine $\hat{E} : B^\infty \rightarrow \hat{B}^\infty$ is D-lossy if

$$\sup_{x \in B^\infty} d_\infty(x, \hat{E}x) \leq D.$$

Let $\hat{M}(s, D, B, \hat{B})$, $s \in \mathbb{N}$, denote the class of D-lossy machines with at most s states.
A class of D-Lossy Machines

A deterministic machine $\hat{E} : B^\infty \rightarrow \hat{B}^\infty$ is D-lossy if

$$\sup_{x \in B^\infty} d_\infty(x, \hat{E}x) \leq D.$$

Let $\hat{M}(s, D, B, \hat{B})$, $s \in \mathbb{N}$, denote the class of D-lossy machines with at most s states.

Lemma 1: Let \hat{E} be in $\bigcup_{D \geq 0} \bigcup_{s = 0}^{\infty} \hat{M}(s, D, B, \hat{B})$, then

$$\rho(x) = \rho(\hat{E}x) + \rho(x|\hat{E}x),$$

where $\rho(x|\hat{E}x)$ is as in Merhav (2000).
For a fixed source sequence $x \in B^\infty$, define

$$\pi(x, D) = \lim_{s \to \infty} \min_{\hat{E} \in \hat{M}(s, D, B, \hat{B})} \rho(\hat{E}x, \hat{B}).$$
For a fixed source sequence $x \in B^\infty$, define

$$\pi(x, D) = \lim_{s \to \infty} \min_{\hat{E} \in \hat{M}(s, D, B, \hat{B})} \rho(\hat{E}x, \hat{B}).$$

Lemma 2: $\pi(x, D) = R(D|x)$.
If $B = \hat{B} = \{0, 1\}$ and d is Hamming distortion, then

$$\pi(x, D) \geq \rho(x, B) - h(D).$$
Main Theorem

If $\mathcal{B} = \hat{\mathcal{B}} = \{0, 1\}$ and d is Hamming distortion, then

$$\pi(x, D) \geq \rho(x, B) - h(D).$$

Proof:

$$\pi(x, D) = \rho(x) - \lim_{s \to \infty} \max_{\hat{E} \in \hat{M}(s, D, B, \hat{B})} \rho(x | \hat{E}x)$$

$$\geq \rho(x) - \lim_{s \to \infty} \max_{\hat{E} \in \hat{M}(s, D, B, \hat{B})} \rho(x \oplus \hat{E}x | \hat{E}x)$$

$$\geq \rho(x) - \lim_{s \to \infty} \max_{\hat{E} \in \hat{M}(s, D, B, \hat{B})} \rho(x \oplus \hat{E}x)$$

$$\geq \rho(x) - h(D).$$