18.600: Lecture 37
Review: practice problems

Scott Sheffield

MIT
Eight athletic teams are ranked 1 through 8 after season one, and ranked 1 through 8 again after season two. Assume that each set of rankings is chosen uniformly from the set of 8! possible rankings and that the two rankings are independent. Let N be the number of teams whose rank does not change from season one to season two. Let N_+ the number of teams whose rank improves by exactly two spots. Let N_- be the number whose rank declines by exactly two spots. Compute the following:

$$E[N], E[N_+], E[N_-]$$

$$\text{Var}[N], \text{Var}[N_+]$$
Eight athletic teams are ranked 1 through 8 after season one, and ranked 1 through 8 again after season two. Assume that each set of rankings is chosen uniformly from the set of $8!$ possible rankings and that the two rankings are independent. Let N be the number of teams whose rank does not change from season one to season two. Let N_+ the number of teams whose rank improves by exactly two spots. Let N_- be the number whose rank declines by exactly two spots. Compute the following:

$E[N]$, $E[N_+]$, and $E[N_-]$
Expectation and variance

Eight athletic teams are ranked 1 through 8 after season one, and ranked 1 through 8 again after season two. Assume that each set of rankings is chosen uniformly from the set of 8! possible rankings and that the two rankings are independent. Let N be the number of teams whose rank does not change from season one to season two. Let N_+ the number of teams whose rank improves by exactly two spots. Let N_- be the number whose rank declines by exactly two spots. Compute the following:

- $E[N]$, $E[N_+]$, and $E[N_-]$
- $\text{Var}[N]$
Eight athletic teams are ranked 1 through 8 after season one, and ranked 1 through 8 again after season two. Assume that each set of rankings is chosen uniformly from the set of 8! possible rankings and that the two rankings are independent. Let N be the number of teams whose rank does not change from season one to season two. Let N_+ the number of teams whose rank improves by exactly two spots. Let N_- be the number whose rank declines by exactly two spots. Compute the following:

- $E[N]$, $E[N_+]$, and $E[N_-]$
- $Var[N]$
- $Var[N_+]$
Let N_i be 1 if team ranked ith first season remains ith second seasons. Then $E[N] = E[\sum_{i=1}^{8} N_i] = 8 \cdot \frac{1}{8} = 1$. Similarly, $E[N_+] = E[N_-] = 6 \cdot \frac{1}{8} = 3/4$.
Let \(N_i \) be 1 if team ranked \(i \)th first season remains \(i \)th second season. Then \(E[N] = E[\sum_{i=1}^{8} N_i] = 8 \cdot \frac{1}{8} = 1 \). Similarly, \(E[N_+] = E[N_-] = 6 \cdot \frac{1}{8} = 3/4 \).

\[
\text{Var}[N] = E[N^2] - E[N]^2 \quad \text{and} \quad E[N^2] = E[\sum_{i=1}^{8} \sum_{j=1}^{8} N_i N_j] = 8 \cdot \frac{1}{8} + 56 \cdot \frac{1}{56} = 2.
\]
Let N_i be 1 if team ranked ith first season remains ith second seasons. Then $E[N] = E[\sum_{i=1}^{8} N_i] = 8 \cdot \frac{1}{8} = 1$. Similarly, $E[N_+] = E[N_-] = 6 \cdot \frac{1}{8} = 3/4$.

$\text{Var}[N] = E[N^2] - E[N]^2$ and $E[N^2] = E[\sum_{i=1}^{8} \sum_{j=1}^{8} N_i N_j] = 8 \cdot \frac{1}{8} + 56 \cdot \frac{1}{56} = 2$.

N_i^j be 1 if team ranked ith has rank improve to $(i - 2)$th for second seasons. Then $E[(N_+)^2] = E[\sum_{3=1}^{8} \sum_{3=1}^{8} N_i^i N_+^j] = 6 \cdot \frac{1}{8} + 30 \cdot \frac{1}{56} = 9/7$, so $\text{Var}[N_+] = 9/7 - (3/4)^2$.
Roll ten dice. Find the conditional probability that there are exactly 4 ones, given that there are exactly 4 sixes.
Conditional distributions — answers

- Straightforward approach: \(P(A|B) = \frac{P(AB)}{P(B)} \).
Straightforward approach: \(P(A|B) = \frac{P(AB)}{P(B)} \).

Numerator: is \(\frac{10}{4} \cdot \frac{6}{4} \cdot 4^2 \). Denominator is \(\frac{10}{4} \cdot \frac{5}{6} \cdot 6^{10} \).
Conditional distributions — answers

- Straightforward approach: \(P(A|B) = \frac{P(AB)}{P(B)} \).
- Numerator: is \(\binom{10}{4} \binom{6}{4} \frac{4^2}{6^{10}} \). Denominator is \(\binom{10}{4} \binom{5}{6} \frac{6^{10}}{6^{10}} \).
- Ratio is \(\binom{6}{4} \frac{4^2}{5^6} = \binom{6}{4} \left(\frac{1}{5}\right)^4 \left(\frac{4}{5}\right)^2 \).
Conditional distributions — answers

- Straightforward approach: $P(A|B) = P(AB)/P(B)$.
- Numerator: is $\binom{10}{4}\binom{6}{4}4^2$. Denominator is $\binom{10}{4}5^6$.
- Ratio is $\binom{6}{4}4^2/5^6 = \binom{6}{4}(\frac{1}{5})^4(\frac{4}{5})^2$.
- Alternate solution: first condition on location of the 6’s and then use binomial theorem.
Suppose that in a certain town earthquakes are a Poisson point process, with an average of one per decade, and volcano eruptions are an independent Poisson point process, with an average of two per decade. Let V be the length of time (in decades) until the first volcano eruption and E the length of time (in decades) until the first earthquake. Compute the following:

- $\mathbb{E}[E^2]$ and $\text{Cov}[E, V]$.
Suppose that in a certain town earthquakes are a Poisson point process, with an average of one per decade, and volcano eruptions are an independent Poisson point process, with an average of two per decade. The V be length of time (in decades) until the first volcano eruption and E the length of time (in decades) until the first earthquake. Compute the following:

- The expected number of calendar years, in the next decade (ten calendar years), that have no earthquakes and no volcano eruptions.
Suppose that in a certain town earthquakes are a Poisson point process, with an average of one per decade, and volcano eruptions are an independent Poisson point process, with an average of two per decade. Let V be the length of time (in decades) until the first volcano eruption and E the length of time (in decades) until the first earthquake. Compute the following:

- $E[E^2]$ and $\text{Cov}[E, V]$.
- The expected number of calendar years, in the next decade (ten calendar years), that have no earthquakes and no volcano eruptions.
- The probability density function of $\min\{E, V\}$.

Poisson point processes

▶ Suppose that in a certain town earthquakes are a Poisson point process, with an average of one per decade, and volcano eruptions are an independent Poisson point process, with an average of two per decade. The V be length of time (in decades) until the first volcano eruption and E the length of time (in decades) until the first earthquake. Compute the following:

- $E[E^2]$ and $\text{Cov}[E, V]$.
- The expected number of calendar years, in the next decade (ten calendar years), that have no earthquakes and no volcano eruptions.
- The probability density function of $\min\{E, V\}$.

\[E[E^2] = 2 \text{ and } \text{Cov}[E, V] = 0. \]
Poison point processes — answers

- $E[E^2] = 2$ and $\text{Cov}[E, V] = 0$.

- Probability of no earthquake or eruption in first year is $e^{-(2+1)\frac{1}{10}} = e^{-0.3}$ (see next part). Same for any year by memoryless property. Expected number of quake/eruption-free years is $10e^{-0.3} \approx 7.4$.
\(E[E^2] = 2 \) and \(\text{Cov}[E, V] = 0. \)

Probability of no earthquake or eruption in first year is
\[e^{-(2+1)\frac{1}{10}} = e^{-0.3} \] (see next part). Same for any year by memoryless property. Expected number of quake/eruption-free years is \(10e^{-0.3} \approx 7.4. \)

Probability density function of \(\min\{E, V\} \) is \(3e^{-(2+1)x} \) for \(x \geq 0 \), and 0 for \(x < 0. \).