18.600: Lecture 36
Risk Neutral Probability and Black-Scholes

Scott Sheffield

MIT
Black-Scholes

Call quotes and risk neutral probability
Black-Scholes

Call quotes and risk neutral probability
The mathematics of today’s lecture will not go far beyond things we know.
The mathematics of today’s lecture will not go far beyond things we know.

Main mathematical tasks will be to compute expectations of functions of log-normal random variables (to get the Black-Scholes formula) and differentiate under an integral (to compute risk neutral density functions from option prices).
The mathematics of today’s lecture will not go far beyond things we know.

Main mathematical tasks will be to compute expectations of functions of log-normal random variables (to get the Black-Scholes formula) and differentiate under an integral (to compute risk neutral density functions from option prices).

Will spend time giving financial interpretations of the math.
The mathematics of today’s lecture will not go far beyond things we know.

Main mathematical tasks will be to compute expectations of functions of log-normal random variables (to get the Black-Scholes formula) and differentiate under an integral (to compute risk neutral density functions from option prices).

Will spend time giving financial *interpretations* of the math.

Can interpret this lecture as a sophisticated story problem, illustrating an important application of the probability we have learned in this course (involving probability axioms, expectations, cumulative distribution functions, risk neutral probability, etc.)
If \(r \) is risk free interest rate, then by definition, price of a contract paying dollar at time \(T \) if \(A \) occurs is \(P_{RN}(A)e^{-rT} \).
Interest discounted asset prices as martingales

- If r is risk free interest rate, then by definition, price of a contract paying dollar at time T if A occurs is $P_{RN}(A)e^{-rT}$.
- If A and B are disjoint, what is the price of a contract that pays 2 dollars if A occurs, 3 if B occurs, 0 otherwise?

Answer: $(2P_{RN}(A) + 3P_{RN}(B))e^{-rT}$.
Interest discounted asset prices as martingales

- If r is risk free interest rate, then by definition, price of a contract paying dollar at time T if A occurs is $P_{RN}(A)e^{-rT}$.
- If A and B are disjoint, what is the price of a contract that pays 2 dollars if A occurs, 3 if B occurs, 0 otherwise?
- Answer: $(2P_{RN}(A) + 3P_{RN}(B))e^{-rT}$.

- Generally, in absence of arbitrage, price of contract that pays X at time T should be $E_{RN}(X)e^{-rT}$ where E_{RN} denotes expectation with respect to the risk neutral probability.
- Example: if a non-divided paying stock will be worth X at time T, then its price today should be $E_{RN}(X)e^{-rT}$.
- Risk neutral probability basically defined so price of asset today is e^{-rT} times risk neutral expectation of time T price.
- In particular, the risk neutral expectation of tomorrow’s (interest discounted) stock price is today’s stock price.
- Implies fundamental theorem of asset pricing, which says discounted price $X(n)A(n)$ (where A is a risk-free asset) is a martingale with respected to risk neutral probability.
If r is risk free interest rate, then by definition, price of a contract paying dollar at time T if A occurs is $P_{RN}(A)e^{-rT}$.

If A and B are disjoint, what is the price of a contract that pays 2 dollars if A occurs, 3 if B occurs, 0 otherwise?

Answer: $(2P_{RN}(A) + 3P_{RN}(B))e^{-rT}$.

Generally, in absence of arbitrage, price of contract that pays X at time T should be $E_{RN}(X)e^{-rT}$ where E_{RN} denotes expectation with respect to the risk neutral probability.
Interest discounted asset prices as martingales

- If r is risk free interest rate, then by definition, price of a contract paying dollar at time T if A occurs is $P_{RN}(A)e^{-rT}$.
- If A and B are disjoint, what is the price of a contract that pays 2 dollars if A occurs, 3 if B occurs, 0 otherwise?
- Answer: $(2P_{RN}(A) + 3P_{RN}(B))e^{-rT}$.
- Generally, in absence of arbitrage, price of contract that pays X at time T should be $E_{RN}(X)e^{-rT}$ where E_{RN} denotes expectation with respect to the risk neutral probability.
- Example: if a non-divided paying stock will be worth X at time T, then its price today should be $E_{RN}(X)e^{-rT}$.
If r is risk free interest rate, then by definition, price of a contract paying dollar at time T if A occurs is $P_{RN}(A)e^{-rT}$.

If A and B are disjoint, what is the price of a contract that pays 2 dollars if A occurs, 3 if B occurs, 0 otherwise?

Answer: $(2P_{RN}(A) + 3P_{RN}(B))e^{-rT}$.

Generally, in absence of arbitrage, price of contract that pays X at time T should be $E_{RN}(X)e^{-rT}$ where E_{RN} denotes expectation with respect to the risk neutral probability.

Example: if a non-divided paying stock will be worth X at time T, then its price today should be $E_{RN}(X)e^{-rT}$.

Risk neutral probability basically defined so price of asset today is e^{-rT} times risk neutral expectation of time T price.

In particular, the risk neutral expectation of tomorrow’s (interest discounted) stock price is today’s stock price.
If r is risk free interest rate, then by definition, price of a contract paying dollar at time T if A occurs is $P_{RN}(A)e^{-rT}$.

If A and B are disjoint, what is the price of a contract that pays 2 dollars if A occurs, 3 if B occurs, 0 otherwise?

Answer: $(2P_{RN}(A) + 3P_{RN}(B))e^{-rT}$.

Generally, in absence of arbitrage, price of contract that pays X at time T should be $E_{RN}(X)e^{-rT}$ where E_{RN} denotes expectation with respect to the risk neutral probability.

Example: if a non-divided paying stock will be worth X at time T, then its price today should be $E_{RN}(X)e^{-rT}$.

Risk neutral probability basically defined so price of asset today is e^{-rT} times risk neutral expectation of time T price.

In particular, the risk neutral expectation of tomorrow’s (interest discounted) stock price is today’s stock price.

Implies **fundamental theorem of asset pricing**, which says discounted price $\frac{X(n)}{A(n)}$ (where A is a risk-free asset) is a martingale with respected to risk neutral probability.
Black-Scholes: main assumption and conclusion

- More famous MIT professors: Black, Scholes, Merton.
Black-Scholes: main assumption and conclusion

- More famous MIT professors: Black, Scholes, Merton.
- 1997 Nobel Prize.

Assumption:
the log of an asset price \(X \) at fixed future time \(T \) is a normal random variable (call it \(N \)) with some known variance (call it \(T\sigma^2 \)) and some mean (call it \(\mu \)) with respect to risk neutral probability.

Observation:
\[N \text{ normal (} \mu, T\sigma^2 \text{)} \text{ implies } E[e^{N}] = e^{\mu + T\sigma^2/2}. \]

Observation:
If \(X_0 \) is the current price then
\[X_0 = E[RN\{X\}e^{-rT}] = E[RN\{e^{N}\}e^{-rT}] = e^{\mu + (\sigma^2/2 - r)T}. \]

Observation:
This implies \(\mu = \log X_0 + (r - \sigma^2/2)T. \)

General Black-Scholes conclusion:
If \(g \) is any function then the price of a contract that pays \(g(X) \) at time \(T \) is
\[E[RN\{g(X)\}e^{-rT}] = E[RN\{g(e^{N})\}e^{-rT}] \text{ where } N \text{ is normal with mean } \mu \text{ and variance } T\sigma^2. \]
More famous MIT professors: Black, Scholes, Merton.

1997 Nobel Prize.

Assumption: the log of an asset price X at fixed future time T is a normal random variable (call it N) with some known variance (call it $T\sigma^2$) and some mean (call it μ) with respect to risk neutral probability.
More famous MIT professors: Black, Scholes, Merton.

1997 Nobel Prize.

Assumption: the log of an asset price X at fixed future time T is a normal random variable (call it N) with some known variance (call it $T\sigma^2$) and some mean (call it μ) with respect to risk neutral probability.

Observation: N normal $(\mu, T\sigma^2)$ implies $E[e^N] = e^{\mu + T\sigma^2/2}$.

More famous MIT professors: Black, Scholes, Merton.

1997 Nobel Prize.

Assumption: the log of an asset price X at fixed future time T is a normal random variable (call it N) with some known variance (call it $T\sigma^2$) and some mean (call it μ) with respect to risk neutral probability.

Observation: N normal (μ, $T\sigma^2$) implies $E[e^N] = e^{\mu + T\sigma^2/2}$.

Observation: If X_0 is the current price then

$$X_0 = E_{RN}[X]e^{-rT} = E_{RN}[e^N]e^{-rT} = e^{\mu + (\sigma^2/2 - r)T}.$$
More famous MIT professors: Black, Scholes, Merton.

1997 Nobel Prize.

Assumption: the log of an asset price X at fixed future time T is a normal random variable (call it N) with some known variance (call it $T\sigma^2$) and some mean (call it μ) with respect to risk neutral probability.

Observation: N normal (μ, $T\sigma^2$) implies $E[e^N] = e^{\mu+T\sigma^2/2}$.

Observation: If X_0 is the current price then $X_0 = E_{RN}[X]e^{-rT} = E_{RN}[e^N]e^{-rT} = e^{\mu+(\sigma^2/2-r)T}$.

Observation: This implies $\mu = \log X_0 + (r - \sigma^2/2)T$.
More famous MIT professors: Black, Scholes, Merton.

1997 Nobel Prize.

Assumption: the log of an asset price X at fixed future time T is a normal random variable (call it N) with some known variance (call it $T\sigma^2$) and some mean (call it μ) with respect to risk neutral probability.

Observation: N normal (μ, $T\sigma^2$) implies $E[e^N] = e^{\mu + T\sigma^2/2}$.

Observation: If X_0 is the current price then $X_0 = E_{RN}[X]e^{-rT} = E_{RN}[e^N]e^{-rT} = e^{\mu + (\sigma^2/2 - r)T}$.

Observation: This implies $\mu = \log X_0 + (r - \sigma^2/2)T$.

General Black-Scholes conclusion: If g is any function then the price of a contract that pays $g(X)$ at time T is

$$E_{RN}[g(X)]e^{-rT} = E_{RN}[g(e^N)]e^{-rT}$$

where N is normal with mean μ and variance $T\sigma^2$.
Black-Scholes example: European call option

A **European call option** on a stock at **maturity date** T, **strike price** K, gives the holder the right (but not obligation) to purchase a share of stock for K dollars at time T.

The document gives the bearer the right to purchase one share of MSFT from me on May 31 for 35 dollars. **SS**
A **European call option** on a stock at **maturity date** T, **strike price** K, gives the holder the right (but not obligation) to purchase a share of stock for K dollars at time T.

If X is the value of the stock at T, then the value of the option at time T is given by $g(X) = \max\{0, X - K\}$.
Black-Scholes example: European call option

- A **European call option** on a stock at **maturity date** T, **strike price** K, gives the holder the right (but not obligation) to purchase a share of stock for K dollars at time T.

 The document gives the bearer the right to purchase one share of MSFT from me on May 31 for 35 dollars.

- If X is the value of the stock at T, then the value of the option at time T is given by $g(X) = \max\{0, X - K\}$.

- **Black-Scholes**: price of contract paying $g(X)$ at time T is $E_{RN}[g(X)]e^{-rT} = E_{RN}[g(e^N)]e^{-rT}$ where N is normal with variance $T\sigma^2$, mean $\mu = \log X_0 + (r - \sigma^2/2)T$.

A **European call option** on a stock at **maturity date** T, **strike price** K, gives the holder the right (but not obligation) to purchase a share of stock for K dollars at time T.

If X is the value of the stock at T, then the value of the option at time T is given by $g(X) = \max\{0, X - K\}$.

Black-Scholes: price of contract paying $g(X)$ at time T is $E_{RN}[g(X)]e^{-rT} = E_{RN}[g(e^N)]e^{-rT}$ where N is normal with variance $T \sigma^2$, mean $\mu = \log X_0 + (r - \sigma^2/2) T$.

Write this as

$$e^{-rT} E_{RN}[\max\{0, e^N - K\}] = e^{-rT} E_{RN}[(e^N - K)1_{N \geq \log K}]$$

$$= \frac{e^{-rT}}{\sigma \sqrt{2\pi T}} \int_{\log K}^{\infty} e^{-\frac{(x-\mu)^2}{2T\sigma^2}} (e^x - K) \, dx.$$
The famous formula

Let T be time to maturity, X_0 current price of underlying asset, K strike price, r risk free interest rate, σ the volatility.
Let T be time to maturity, X_0 current price of underlying asset, K strike price, r risk free interest rate, σ the volatility.

We need to compute $e^{-rT} \int_{\log K}^{\infty} e^{-\frac{(x-\mu)^2}{2T\sigma^2}} (e^x - K) \, dx$ where $\mu = rT + \log X_0 - T\sigma^2/2$.

Can use complete-the-square tricks to compute the two terms explicitly in terms of standard normal cumulative distribution function Φ.

Price of European call is $\Phi(d_1) X_0 - \Phi(d_2) Ke^{-rT}$ where $d_1 = \ln(X_0/K) + (r + \sigma^2/2)T/\sigma\sqrt{T}$ and $d_2 = \ln(X_0/K) + (r - \sigma^2/2)T/\sigma\sqrt{T}$.

The famous formula
Let T be time to maturity, X_0 current price of underlying asset, K strike price, r risk free interest rate, σ the volatility.

We need to compute $e^{-rT} \int_{\log K}^{\infty} e^{-\frac{(x-\mu)^2}{2T\sigma^2}} (e^x - K)\,dx$ where $\mu = rT + \log X_0 - T\sigma^2/2$.

Can use complete-the-square tricks to compute the two terms explicitly in terms of standard normal cumulative distribution function Φ.
Let T be time to maturity, X_0 current price of underlying asset, K strike price, r risk free interest rate, σ the volatility.

We need to compute $e^{-rT} \int_{\log K}^{\infty} e^{-\frac{(x-\mu)^2}{2T\sigma^2}} (e^x - K) \, dx$ where $\mu = rT + \log X_0 - \frac{T \sigma^2}{2}$.

Can use complete-the-square tricks to compute the two terms explicitly in terms of standard normal cumulative distribution function Φ.

Price of European call is $\Phi(d_1)X_0 - \Phi(d_2)Ke^{-rT}$ where $d_1 = \frac{\ln\left(\frac{X_0}{K}\right) + (r + \frac{\sigma^2}{2})(T)}{\sigma \sqrt{T}}$ and $d_2 = \frac{\ln\left(\frac{X_0}{K}\right) + (r - \frac{\sigma^2}{2})(T)}{\sigma \sqrt{T}}$.
Outline

Black-Scholes

Call quotes and risk neutral probability
Black-Scholes

Call quotes and risk neutral probability
If $C(K)$ is price of European call with strike price K and $f = f_X$ is risk neutral probability density function for X at time T, then $C(K) = e^{-rT} \int_{-\infty}^{\infty} f(x) \max\{0, x - K\} \, dx$.

Differentiating under the integral, we find that $e^{rT} C'(K) = \int f(x) (-1) 1_{x > K} \, dx = -P_{RN}\{X > K\} = F_X(K) - 1$, and $e^{rT} C''(K) = f(K)$.

We can look up $C(K)$ for a given stock symbol (say GOOG) and expiration time T at cboe.com and work out approximately what F_X and hence f_X must be.

Try this out for near term option (so e^{rT} is essentially one).
If $C(K)$ is price of European call with strike price K and $f = f_X$ is risk neutral probability density function for X at time T, then $C(K) = e^{-rT} \int_{-\infty}^{\infty} f(x) \max\{0, x - K\} dx$.

Differentiating under the integral, we find that

$$e^{rT} C'(K) = \int f(x)(-1_{x>K}) dx = -P_{RN}\{X > K\} = F_X(K) - 1,$$

$$e^{rT} C''(K) = f(K).$$
Determining risk neutral probability from call quotes

- If $C(K)$ is price of European call with strike price K and $f = f_X$ is risk neutral probability density function for X at time T, then $C(K) = e^{-rT} \int_{-\infty}^{\infty} f(x) \max\{0, x - K\} \, dx$.

- Differentiating under the integral, we find that

$$e^{rT} C'(K) = \int f(x)(-1_{x>K}) \, dx = -P_{RN}\{X > K\} = F_X(K) - 1,$$

$$e^{rT} C''(K) = f(K).$$

- We can look up $C(K)$ for a given stock symbol (say GOOG) and expiration time T at cboe.com and work out approximately what F_X and hence f_X must be.
If $C(K)$ is price of European call with strike price K and $f = f_X$ is risk neutral probability density function for X at time T, then $C(K) = e^{-rT} \int_{-\infty}^{\infty} f(x) \max\{0, x - K\} \, dx$.

Differentiating under the integral, we find that

$$e^{rT} C'(K) = \int f(x)(-1_{x>K}) \, dx = -P_{RN}\{X > K\} = F_X(K) - 1,$$

$$e^{rT} C''(K) = f(K).$$

We can look up $C(K)$ for a given stock symbol (say GOOG) and expiration time T at cboe.com and work out approximately what F_X and hence f_X must be.

Try this out for near term option (so e^{rT} is essentially one).
Risk neutral probability densities derived from call quotes are not quite lognormal in practice. Tails are too fat. Main Black-Scholes assumption is only approximately correct.
Perspective: implied volatility

- Risk neutral probability densities derived from call quotes are not quite lognormal in practice. Tails are too fat. Main Black-Scholes assumption is only approximately correct.
- “Implied volatility” is the value of σ that (when plugged into Black-Scholes formula along with known parameters) predicts the current market price.
Risk neutral probability densities derived from call quotes are not quite lognormal in practice. Tails are too fat. Main Black-Scholes assumption is only approximately correct.

“Implied volatility” is the value of σ that (when plugged into Black-Scholes formula along with known parameters) predicts the current market price.

If Black-Scholes were completely correct, then given a stock and an expiration date, the implied volatility would be the same for all strike prices. In practice, when the implied volatility is viewed as a function of strike price (sometimes called the “volatility smile”), it is not constant.
Main Black-Scholes assumption: risk neutral probability densities are lognormal.
Perspective: why is Black-Scholes not exactly right?

- **Main Black-Scholes assumption:** risk neutral probability densities are lognormal.

- **Heuristic support for this assumption:** If price goes up 1 percent or down 1 percent each day (with no interest) then the risk neutral probability must be .5 for each (independently of previous days). Central limit theorem gives log normality for large T.
Main Black-Scholes assumption: risk neutral probability densities are lognormal.

Heuristic support for this assumption: If price goes up 1 percent or down 1 percent each day (with no interest) then the risk neutral probability must be .5 for each (independently of previous days). Central limit theorem gives log normality for large T.

Replicating portfolio point of view: in the simple binary tree models (or continuum Brownian models), we can transfer money back and forth between the stock and the risk free asset to ensure our wealth at time T equals the option payout. Option price is required initial investment, which is risk neutral expectation of payout. “True probabilities” are irrelevant.
Perspective: why is Black-Scholes not exactly right?

- **Main Black-Scholes assumption:** risk neutral probability densities are lognormal.

- **Heuristic support for this assumption:** If price goes up 1 percent or down 1 percent each day (with no interest) then the risk neutral probability must be .5 for each (independently of previous days). Central limit theorem gives log normality for large T.

- **Replicating portfolio point of view:** in the simple binary tree models (or continuum Brownian models), we can transfer money back and forth between the stock and the risk free asset to ensure our wealth at time T equals the option payout. Option price is required initial investment, which is risk neutral expectation of payout. “True probabilities” are irrelevant.

- **Where arguments for assumption break down:** Fluctuation sizes vary from day to day. Prices can have big jumps.
Perspective: why is Black-Scholes not exactly right?

- **Main Black-Scholes assumption:** risk neutral probability densities are lognormal.

- **Heuristic support for this assumption:** If price goes up 1 percent or down 1 percent each day (with no interest) then the risk neutral probability must be .5 for each (independently of previous days). Central limit theorem gives log normality for large T.

- **Replicating portfolio point of view:** in the simple binary tree models (or continuum Brownian models), we can transfer money back and forth between the stock and the risk free asset to ensure our wealth at time T equals the option payout. Option price is required initial investment, which is risk neutral expectation of payout. “True probabilities” are irrelevant.

- **Where arguments for assumption break down:** Fluctuation sizes vary from day to day. Prices can have big jumps.

- **Fixes:** variable volatility, random interest rates, Lévy jumps....