18.600: Lecture 3
What is probability?

Scott Sheffield

MIT
Outline

- Formalizing probability
- Sample space
- DeMorgan’s laws
- Axioms of probability
Outline

Formalizing probability

Sample space

DeMorgan’s laws

Axioms of probability
What does “I’d say there’s a thirty percent chance it will rain tomorrow” mean?

Neurological: When I think “it will rain tomorrow” the “truth-sensing” part of my brain exhibits 30 percent of its maximum electrical activity.

Frequentist: Of the last 1000 days that meteorological measurements looked this way, rain occurred on the subsequent day 300 times.

Market preference (“risk neutral probability”): The market price of a contract that pays 100 if it rains tomorrow agrees with the price of a contract that pays 30 tomorrow no matter what.

Personal belief: If you offered me a choice of these contracts, I’d be indifferent. (If need for money is different in two scenarios, I can replace dollars with “units of utility.”)
What does “I’d say there’s a thirty percent chance it will rain tomorrow” mean?

▶ **Neurological:** When I think “it will rain tomorrow” the “truth-sensing” part of my brain exhibits 30 percent of its maximum electrical activity.
What does “I’d say there’s a thirty percent chance it will rain tomorrow” mean?

▶ **Neurological:** When I think “it will rain tomorrow” the “truth-sensing” part of my brain exhibits 30 percent of its maximum electrical activity.

▶ **Frequentist:** Of the last 1000 days that meteorological measurements looked this way, rain occurred on the subsequent day 300 times.
What does “I’d say there’s a thirty percent chance it will rain tomorrow” mean?

▶ **Neurological:** When I think “it will rain tomorrow” the “truth-sensing” part of my brain exhibits 30 percent of its maximum electrical activity.

▶ **Frequentist:** Of the last 1000 days that meteorological measurements looked this way, rain occurred on the subsequent day 300 times.

▶ **Market preference (“risk neutral probability”):** The market price of a contract that pays 100 if it rains tomorrow agrees with the price of a contract that pays 30 tomorrow no matter what.
What does “I’d say there’s a thirty percent chance it will rain tomorrow” mean?

- **Neurological:** When I think “it will rain tomorrow” the “truth-sensing” part of my brain exhibits 30 percent of its maximum electrical activity.

- **Frequentist:** Of the last 1000 days that meteorological measurements looked this way, rain occurred on the subsequent day 300 times.

- **Market preference (“risk neutral probability”):** The market price of a contract that pays 100 if it rains tomorrow agrees with the price of a contract that pays 30 tomorrow no matter what.

- **Personal belief:** If you offered *me* a choice of these contracts, I’d be indifferent. (If need for money is different in two scenarios, I can replace dollars with “units of utility.”)
Outline

Formalizing probability

Sample space

DeMorgan’s laws

Axioms of probability
Outline

Formalizing probability

Sample space

DeMorgan’s laws

Axioms of probability
Even more fundamental question: defining a set of possible outcomes.

- Roll a die n times. Define a sample space to be $\{1, 2, 3, 4, 5, 6\}^n$, i.e., the set of a_1, \ldots, a_n with each $a_j \in \{1, 2, 3, 4, 5, 6\}$.

- Shuffle a standard deck of cards. Sample space is the set of $52!$ permutations.

- Will it rain tomorrow? Sample space is $\{R, N\}$, which stand for “rain” and “no rain.”

- Randomly throw a dart at a board. Sample space is the set of points on the board.
Even more fundamental question: defining a set of possible outcomes

- Roll a die n times. Define a **sample space** to be $\{1, 2, 3, 4, 5, 6\}^n$, i.e., the set of a_1, \ldots, a_n with each $a_j \in \{1, 2, 3, 4, 5, 6\}$.
Even more fundamental question: defining a set of possible outcomes

- Roll a die n times. Define a **sample space** to be
 \[\{1, 2, 3, 4, 5, 6\}^n, \text{ i.e., the set of } a_1, \ldots, a_n \text{ with each } a_j \in \{1, 2, 3, 4, 5, 6\}. \]

- Shuffle a standard deck of cards. Sample space is the set of 52! permutations.
Even more fundamental question: defining a set of possible outcomes

- Roll a die n times. Define a **sample space** to be $\{1, 2, 3, 4, 5, 6\}^n$, i.e., the set of a_1, \ldots, a_n with each $a_j \in \{1, 2, 3, 4, 5, 6\}$.
- Shuffle a standard deck of cards. Sample space is the set of $52!$ permutations.
- Will it rain tomorrow? Sample space is $\{R, N\}$, which stand for “rain” and “no rain.”
Even more fundamental question: defining a set of possible outcomes

- Roll a die n times. Define a **sample space** to be $\{1, 2, 3, 4, 5, 6\}^n$, i.e., the set of a_1, \ldots, a_n with each $a_j \in \{1, 2, 3, 4, 5, 6\}$.
- Shuffle a standard deck of cards. Sample space is the set of $52!$ permutations.
- Will it rain tomorrow? Sample space is $\{R, N\}$, which stand for “rain” and “no rain.”
- Randomly throw a dart at a board. Sample space is the set of points on the board.
Event: subset of the sample space

If a set \(A \) is comprised of some of the elements of \(B \), say \(A \) is a subset of \(B \) and write \(A \subset B \).

Similarly, \(B \supset A \) means \(A \) is a subset of \(B \) (or \(B \) is a superset of \(A \)).

If \(S \) is a finite sample space with \(n \) elements, then there are \(2^n \) subsets of \(S \).

Denote by \(\emptyset \) the set with no elements.
If a set A is comprised of some of the elements of B, say A is a **subset** of B and write $A \subset B$.
Event: subset of the sample space

- If a set A is comprised of some of the elements of B, say A is a **subset** of B and write $A \subset B$.
- Similarly, $B \supset A$ means A is a subset of B (or B is a superset of A).
Event: subset of the sample space

- If a set A is comprised of some of the elements of B, say A is a **subset** of B and write $A \subset B$.
- Similarly, $B \supset A$ means A is a subset of B (or B is a superset of A).
- If S is a finite sample space with n elements, then there are 2^n subsets of S.

Denote by \emptyset the set with no elements.
If a set A is comprised of some of the elements of B, say A is a subset of B and write $A \subset B$.

Similarly, $B \supset A$ means A is a subset of B (or B is a superset of A).

If S is a finite sample space with n elements, then there are 2^n subsets of S.

Denote by \emptyset the set with no elements.
Intersections, unions, complements

- $A \cup B$ means the union of A and B, the set of elements contained in at least one of A and B.

- $A \cap B$ means the intersection of A and B, the set of elements contained on both A and B.

- A^c means complement of A, set of points in whole sample space S but not in A.

- $A \setminus B$ means "A minus B" which means the set of points in A but not in B. In symbols, $A \setminus B = A \cap (B^c)$.

- \cup is associative. So $(A \cup B) \cup C = A \cup (B \cup C)$ and can be written $A \cup B \cup C$.

- \cap is also associative. So $(A \cap B) \cap C = A \cap (B \cap C)$ and can be written $A \cap B \cap C$.

Intersections, unions, complements

- $A \cup B$ means the union of A and B, the set of elements contained in at least one of A and B.
- $A \cap B$ means the intersection of A and B, the set of elements contained on both A and B.

A_c means complement of A, set of points in whole sample space S but not in A.

$A \setminus B$ means "A minus B" which means the set of points in A but not in B. In symbols, $A \setminus B = A \cap (B_c)$.

\cup is associative. So $(A \cup B) \cup C = A \cup (B \cup C)$ and can be written $A \cup B \cup C$.

\cap is also associative. So $(A \cap B) \cap C = A \cap (B \cap C)$ and can be written $A \cap B \cap C$.
Intersections, unions, complements

- $A \cup B$ means the union of A and B, the set of elements contained in at least one of A and B.
- $A \cap B$ means the intersection of A and B, the set of elements contained on both A and B.
- A^c means complement of A, set of points in whole sample space S but not in A.

∪ is associative. So $(A \cup B) \cup C = A \cup (B \cup C)$ and can be written $A \cup B \cup C$.

∩ is also associative. So $(A \cap B) \cap C = A \cap (B \cap C)$ and can be written $A \cap B \cap C$.
Intersections, unions, complements

- $A \cup B$ means the union of A and B, the set of elements contained in at least one of A and B.
- $A \cap B$ means the intersection of A and B, the set of elements contained on both A and B.
- A^c means complement of A, set of points in whole sample space S but not in A.
- $A \setminus B$ means “A minus B” which means the set of points in A but not in B. In symbols, $A \setminus B = A \cap (B^c)$.
- \cup is associative. So $(A \cup B) \cup C = A \cup (B \cup C)$ and can be written $A \cup B \cup C$.
- \cap is also associative. So $(A \cap B) \cap C = A \cap (B \cap C)$ and can be written $A \cap B \cap C$.

Intersections, unions, complements

- $A \cup B$ means the union of A and B, the set of elements contained in at least one of A and B.
- $A \cap B$ means the intersection of A and B, the set of elements contained on both A and B.
- A^c means complement of A, set of points in whole sample space S but not in A.
- $A \setminus B$ means “A minus B” which means the set of points in A but not in B. In symbols, $A \setminus B = A \cap (B^c)$.
- \cup is associative. So $(A \cup B) \cup C = A \cup (B \cup C)$ and can be written $A \cup B \cup C$.
Intersections, unions, complements

- $A \cup B$ means the union of A and B, the set of elements contained in at least one of A and B.
- $A \cap B$ means the intersection of A and B, the set of elements contained on both A and B.
- A^c means complement of A, set of points in whole sample space S but not in A.
- $A \setminus B$ means “A minus B” which means the set of points in A but not in B. In symbols, $A \setminus B = A \cap (B^c)$.
- \cup is associative. So $(A \cup B) \cup C = A \cup (B \cup C)$ and can be written $A \cup B \cup C$.
- \cap is also associative. So $(A \cap B) \cap C = A \cap (B \cap C)$ and can be written $A \cap B \cap C$.

Venn diagrams

\[\begin{array}{c}
A \\
B \\
\end{array} \]
Venn diagrams

$A \cap B$

$A^c \cap B$

$A \cap B^c$

$A^c \cap B^c$
Outline

Formalizing probability

Sample space

DeMorgan’s laws

Axioms of probability
Outline

Formalizing probability

Sample space

DeMorgan’s laws

Axioms of probability
DeMorgan’s laws

— “It will not snow or rain” means “It will not snow and it will not rain.”

— \(S \cup R \subseteq S^c \cap R^c \)

— More generally: \(\bigcup_{i=1}^{n} E_i \subseteq \bigcap_{i=1}^{n} (E_i)^c \)

— “It will not both snow and rain” means “Either it will not snow or it will not rain.”

— \(S \cap R \subseteq S^c \cup R^c \)

— \(\bigcap_{i=1}^{n} E_i \subseteq \bigcup_{i=1}^{n} (E_i)^c \)
DeMorgan’s laws

- “It will not snow or rain” means “It will not snow and it will not rain.”
- If S is event that it snows, R is event that it rains, then $(S \cup R)^c = S^c \cap R^c$
DeMorgan’s laws

- “It will not snow or rain” means “It will not snow and it will not rain.”
- If S is event that it snows, R is event that it rains, then $(S \cup R)^c = S^c \cap R^c$
- More generally: $(\bigcup_{i=1}^n E_i)^c = \bigcap_{i=1}^n (E_i)^c$
DeMorgan’s laws

- “It will not snow or rain” means “It will not snow and it will not rain.”
- If S is event that it snows, R is event that it rains, then $(S \cup R)^c = S^c \cap R^c$
- More generally: $(\bigcup_{i=1}^{n} E_i)^c = \bigcap_{i=1}^{n} (E_i)^c$
- “It will not both snow and rain” means “Either it will not snow or it will not rain.”
DeMorgan’s laws

- “It will not snow or rain” means “It will not snow and it will not rain.”
- If S is event that it snows, R is event that it rains, then $(S \cup R)^c = S^c \cap R^c$
- More generally: $(\bigcup_{i=1}^{n} E_i)^c = \bigcap_{i=1}^{n} (E_i)^c$
- “It will not both snow and rain” means “Either it will not snow or it will not rain.”
- $(S \cap R)^c = S^c \cup R^c$
DeMorgan’s laws

- “It will not snow or rain” means “It will not snow and it will not rain.”
- If S is event that it snows, R is event that it rains, then $(S \cup R)^c = S^c \cap R^c$
- More generally: $(\bigcup_{i=1}^{n} E_i)^c = \bigcap_{i=1}^{n} (E_i)^c$
- “It will not both snow and rain” means “Either it will not snow or it will not rain.”
- $(S \cap R)^c = S^c \cup R^c$
- $(\bigcap_{i=1}^{n} E_i)^c = \bigcup_{i=1}^{n} (E_i)^c$
Outline

Formalizing probability

Sample space

DeMorgan’s laws

Axioms of probability
Outline

Formalizing probability

Sample space

DeMorgan’s laws

Axioms of probability
Axioms of probability

- $P(A) \in [0, 1]$ for all $A \subset S$.
Axioms of probability

- $P(A) \in [0, 1]$ for all $A \subset S$.
- $P(S) = 1$.
Axioms of probability

- $P(A) \in [0, 1]$ for all $A \subset S$.
- $P(S) = 1$.
- Finite additivity: $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$.
Axioms of probability

- $P(A) \in [0, 1]$ for all $A \subseteq S$.
- $P(S) = 1$.
- Finite additivity: $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$.
- Countable additivity: $P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$ if $E_i \cap E_j = \emptyset$ for each pair i and j.

Neurological: When I think “it will rain tomorrow” the “truth-sensing” part of my brain exhibits 30 percent of its maximum electrical activity. Should have $P(A) \in [0,1]$ and presumably $P(S) = 1$ but not necessarily $P(A \cup B) = P(A) + P(B)$ when $A \cap B = \emptyset$.
Neurological: When I think “it will rain tomorrow” the “truth-sensing” part of my brain exhibits 30 percent of its maximum electrical activity. Should have \(P(A) \in [0, 1] \) and presumably \(P(S) = 1 \) but not necessarily \(P(A \cup B) = P(A) + P(B) \) when \(A \cap B = \emptyset \).

Frequentist: \(P(A) \) is the fraction of times \(A \) occurred during the previous (large number of) times we ran the experiment. Seems to satisfy axioms...
- **Neurological:** When I think “it will rain tomorrow” the “truth-sensing” part of my brain exhibits 30 percent of its maximum electrical activity. Should have $P(A) \in [0, 1]$ and presumably $P(S) = 1$ but not necessarily $P(A \cup B) = P(A) + P(B)$ when $A \cap B = \emptyset$.

- **Frequentist:** $P(A)$ is the fraction of times A occurred during the previous (large number of) times we ran the experiment. Seems to satisfy axioms...

- **Market preference ("risk neutral probability"):** $P(A)$ is price of contract paying dollar if A occurs divided by price of contract paying dollar regardless. Seems to satisfy axioms, assuming no arbitrage, no bid-ask spread, complete market...
Neurological: When I think “it will rain tomorrow” the “truth-sensing” part of my brain exhibits 30 percent of its maximum electrical activity. Should have $P(A) \in [0, 1]$ and presumably $P(S) = 1$ but not necessarily $P(A \cup B) = P(A) + P(B)$ when $A \cap B = \emptyset$.

Frequentist: $P(A)$ is the fraction of times A occurred during the previous (large number of) times we ran the experiment. Seems to satisfy axioms...

Market preference (“risk neutral probability”): $P(A)$ is price of contract paying dollar if A occurs divided by price of contract paying dollar regardless. Seems to satisfy axioms, assuming no arbitrage, no bid-ask spread, complete market...

Personal belief: $P(A)$ is amount such that I’d be indifferent between contract paying 1 if A occurs and contract paying $P(A)$ no matter what. Seems to satisfy axioms with some notion of utility units, strong assumption of “rationality”...