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Path Integrals in Quantum Gravity

@ In relativistic quantum theory, path integrals give us a direct connection
between the classical actions S[¢] and the quantum amplitudes Z.

@ In quantum field theory, path integrals

7 /D¢exp <}’:L5[¢]>

are taken over the entire history of the particles.

o In (Euclidean) quantum gravity, one would expect something like:

2= [prew(~3slen).  Slaal = [ Rlgulov

@ In the standard model, the symmetry group of S[¢] is a Lie group G; for
gravity, the symmetries of S[g,,,] are related to the geometry of the
underlying manifold.

@ Goal: Formulate a path integral in terms of geometry rather then the metric.
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What are the degrees of freedom that correspond to the geometry?

The gauge symmetries of general relativity are diffeomorphisms - invertible
smooth functions
f:M;— M

for smooth 4-manifolds M;, M;.

The dominant terms in the path integral would be the classical solutions g[w
corresponding to diffeomorphism-inequivalent geometries M;:

z=Y e (~3steld) |

This is called the Semiclassical Partition Function.
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Specifying Diffeomorphism Classes

o A complete specification of diffeomorphism classes (smooth
structures) is an unsolved problem in dimension 4 (Fields and
Abel medals for Milnor, Freedman, Donaldson, Witten, ...)

o We can sidestep this problem by reparametrizing any 4-manifold
as a branched cover!:

The Alexander-Piergallini Theorem

Any compact oriented 4-manifold can be described as a branched
covering of S*, branched along an embedded surface.

@ This works for dimension n > 2 smooth manifolds branched over a n — 2
subcomplex of S”;

@ We actually get complete topological information from this theorem too, not
just geometric.

I Alexander, Bull. Amer. Math. Soc. 26 (1920), Piergallini, Topology 34 (1995) no. 3,
497-508
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lllustrating the Alexander-Piergallini Theorem
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lllustrating the Alexander-Piergallini Theorem
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Representing the Surfaces -

@ To perform the action integral, we can construct a codimension 2 foliation of
S* via the surfaces ¥ ; ;) (a la ADM), now parametrized by (t,s) € R x R:

@Konopelchenko and Landolfi, J. Geom. Phys. 29 (1999) no. 4, 319-333.
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Representing the Surfaces -

@ To perform the action integral, we can construct a codimension 2 foliation of
S* via the surfaces ¥ ; ;) (a la ADM), now parametrized by (t,s) € R x R:

@ We can explicitly write the embedding % (;5) — S* for each (t,s) in local
coordinates (X1, X2, X3, X*4):

X = %/(&1@2 —p1dp)dz +cc  XP= %/(fbﬂzz + 1h)dz + c.c.
X% = é/(i/_)ﬂ/:z +¢igp)dz+cc  X*= é/(z/_’lﬁfh — ¢rih)dz + c.c

@ These coordinates are functions of spinors which satisfy a set of Dirac
equations:

0,91 = pp1 0702 = pg2
Oz¢1 = —p1 O0z¢2 = —pi)2.

This is called the generalized Weierstrass representation?

2Konopelchenko and Landolfi, J. Geom. Phys. 29 (1999) no. 4, 319-333.
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Flattening Surfaces and Cosmic Strings

@ It turns out that such surfaces can generally be flattened if one includes a
singular point p (called a conical point) on each?:

RZHR|p-

“Moving all the curvature to a point p”.

2Troyanov, Trans. Amer. Math. Soc. 324 (1991), no. 2, 793-821
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Flattening Surfaces and Cosmic Strings

@ It turns out that such surfaces can generally be flattened if one includes a
singular point p (called a conical point) on each?:

RZHR|p-

“Moving all the curvature to a point p”.

@ The metric near such a point is that of a cone with angular coordinate
0<¢<2r(f+1),
ds? = dr* + (B3 + 1)?r*d¢?.

This is exactly the form of the metric transverse to a cosmic string!

2Troyanov, Trans. Amer. Math. Soc. 324 (1991), no. 2, 793-821
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The Complete Partition Function

@ “Summing over all X" is replaced by integrating over all spinors ¢, v;

™
K
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The Complete Partition Function

@ “Summing over all X" is replaced by integrating over all spinors ¢, v;

Z= Z/Dqspzp
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The Complete Partition Function

@ “Summing over all X" is replaced by integrating over all spinors ¢, v;

@ Adding up the contribution to the action from each string (with worldsheet
metric 7;), assuming the strings do not interact;

X

7- ;/Dqﬂ)wexp [gz":ﬁ;/md/\

Christopher Duston (FSU) Partition Functions in Semiclassical Gravity November 2012 8/9



The Complete Partition Function

@ “Summing over all X" is replaced by integrating over all spinors ¢, v;

@ Adding up the contribution to the action from each string (with worldsheet
metric 7;), assuming the strings do not interact;

@ Adding in the contribution from the extrinsic curvature via the Codazzi
equation.

7= Z/Dqspzpexp [47”2,@,/ “hildA

2 - -
X exp [_Fch /[QlQl + Q@ — (p* + [32)]dV}.
Here the Hopf fields Q; are currents of the spinor fields, i.e.

Q =~ |:¢2az(52 - (52327/12 + Qslazd—)l - 7;162¢1:|
2 [92? + |22 [P1]? + |#1]2
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Summary

@ We have a semiclassical partition function for gravity which includes all
classical solutions (“no exotic smoothness”)

@ This form of the partition function should be explicit enough for calculations
such as expectation values or propagators.

@ In this approach there is a natural connection between semiclassical gravity
and non-interacting cosmic strings.
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@ We have a semiclassical partition function for gravity which includes all
classical solutions (“no exotic smoothness”)

@ This form of the partition function should be explicit enough for calculations
such as expectation values or propagators.

@ In this approach there is a natural connection between semiclassical gravity
and non-interacting cosmic strings.

What Can We Do?

o Treat as a generating functional and study semiclassical
a) gravity through (¢, ) or b) strings through ~;?
o Propagators of the geometry of the string worldsheet?

o Interaction terms between ¢ and 7
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