The Partition Function for Semiclassical Gravity and Cosmic Strings SESAPS 79. Tallahassee

Christopher Duston (Florida State University)

November 2012

Path Integrals in Quantum Gravity

- In relativistic quantum theory, path integrals give us a direct connection between the classical actions $S[\phi]$ and the quantum amplitudes Z.
- In quantum field theory, path integrals

$$Z = \int \mathcal{D}\phi \exp\left(rac{i}{\hbar}S[\phi]
ight)$$

are taken over the entire history of the particles.

• In (Euclidean) quantum gravity, one would expect something like:

$$Z = \int \mathcal{D}g \exp\left(-rac{1}{\hbar}S[g_{\mu
u}]
ight), \qquad S[g_{\mu
u}] = rac{1}{\kappa}\int R[g_{\mu
u}]dV$$

- In the standard model, the symmetry group of $S[\phi]$ is a Lie group G; for gravity, the symmetries of $S[g_{\mu\nu}]$ are related to the geometry of the underlying manifold.
- Goal: Formulate a path integral in terms of geometry rather then the metric.

- What are the degrees of freedom that correspond to the geometry?
- The gauge symmetries of general relativity are diffeomorphisms invertible smooth functions

$$f: M_i \to M_i$$

for smooth 4-manifolds M_i , M_i .

• The dominant terms in the path integral would be the classical solutions $g^i_{\mu\nu}$ corresponding to diffeomorphism-inequivalent geometries M_i :

$$Z = \sum_{i} \exp\left(-rac{1}{\hbar}S[g_{\mu
u}^{i}]
ight).$$

This is called the Semiclassical Partition Function.

Specifying Diffeomorphism Classes

- A complete specification of diffeomorphism classes (smooth structures) is an unsolved problem in dimension 4 (Fields and Abel medals for Milnor, Freedman, Donaldson, Witten, ...)
- We can sidestep this problem by reparametrizing any 4-manifold as a branched cover¹:

The Alexander-Piergallini Theorem

Any compact oriented 4-manifold can be described as a branched covering of \mathbb{S}^4 , branched along an embedded surface.

- This works for dimension n > 2 smooth manifolds branched over a n 2 subcomplex of \mathbb{S}^n ;
- We actually get complete topological information from this theorem too, not just geometric.

 $^{^1\}mathrm{Alexander},$ Bull. Amer. Math. Soc. 26 (1920), Piergallini, Topology 34 (1995) no. 3, 497-508

Illustrating the Alexander-Piergallini Theorem

Illustrating the Alexander-Piergallini Theorem

Representing the Surfaces Σ

• To perform the action integral, we can construct a codimension 2 foliation of \mathbb{S}^4 via the surfaces $\Sigma_{(t,s)}$ (a la ADM), now parametrized by $(t,s) \in \mathbb{R} \times \mathbb{R}$:

^aKonopelchenko and Landolfi, J. Geom. Phys. 29 (1999) no. 4, 319-333.

Representing the Surfaces Σ

- To perform the action integral, we can construct a codimension 2 foliation of \mathbb{S}^4 via the surfaces $\Sigma_{(t,s)}$ (a la ADM), now parametrized by $(t,s) \in \mathbb{R} \times \mathbb{R}$:
- We can explicitly write the embedding $\Sigma_{(t,s)} \hookrightarrow \mathbb{S}^4$ for each (t,s) in local coordinates (X^1,X^2,X^3,X^4) :

$$X^{1} = \frac{1}{2} \int (\bar{\psi}_{1}\bar{\psi}_{2} - \phi_{1}\phi_{2})dz + c.c \qquad X^{3} = \frac{1}{2} \int (\phi_{1}\bar{\psi}_{2} + \bar{\psi}_{1}\phi_{2})dz + c.c.$$

$$X^{2} = \frac{i}{2} \int (\bar{\psi}_{1}\bar{\psi}_{2} + \phi_{1}\phi_{2})dz + c.c \qquad X^{4} = \frac{i}{2} \int (\bar{\psi}_{1}\phi_{2} - \phi_{1}\bar{\psi}_{2})dz + c.c$$

 These coordinates are functions of spinors which satisfy a set of Dirac equations:

$$\begin{array}{ll} \partial_z \psi_1 = p \phi_1 & \partial_z \psi_2 = \bar{p} \phi_2 \\ \partial_{\bar{z}} \phi_1 = -\bar{p} \psi_1 & \partial_{\bar{z}} \phi_2 = -p \psi_2. \end{array}$$

This is called the generalized Weierstrass representation^a

^aKonopelchenko and Landolfi, J. Geom. Phys. 29 (1999) no. 4, 319-333.

Flattening Surfaces and Cosmic Strings

 It turns out that such surfaces can generally be flattened if one includes a singular point p (called a conical point) on each²:

$$R_{\Sigma} \to R|_{p}$$
.

"Moving all the curvature to a point p".

²Troyanov, Trans. Amer. Math. Soc. 324 (1991), no. 2, 793-821

Flattening Surfaces and Cosmic Strings

 It turns out that such surfaces can generally be flattened if one includes a singular point p (called a conical point) on each²:

$$R_{\Sigma} \to R|_{p}$$
.

"Moving all the curvature to a point p".

• The metric near such a point is that of a cone with angular coordinate $0 \le \phi \le 2\pi(\beta+1)$,

$$ds^2 = dr^2 + (\beta + 1)^2 r^2 d\phi^2.$$

This is *exactly* the form of the metric transverse to a **cosmic string**!

²Troyanov, Trans. Amer. Math. Soc. 324 (1991), no. 2, 793-821

Flattening Surfaces and Cosmic Strings

 It turns out that such surfaces can generally be flattened if one includes a singular point p (called a conical point) on each²:

$$R_{\Sigma} \to R|_{p}$$
.

"Moving all the curvature to a point p".

• The metric near such a point is that of a cone with angular coordinate $0 \le \phi \le 2\pi(\beta+1)$,

$$ds^2 = dr^2 + (\beta + 1)^2 r^2 d\phi^2.$$

This is *exactly* the form of the metric transverse to a **cosmic string**!

²Troyanov, Trans. Amer. Math. Soc. 324 (1991), no. 2, 793-821

• "Summing over all Σ " is replaced by integrating over all spinors ϕ, ψ ;

$$Z = \sum_{(\Sigma,\sigma)}$$

• "Summing over all Σ " is replaced by integrating over all spinors ϕ, ψ ;

$$Z = \sum_{\sigma} \int \mathcal{D}\phi \mathcal{D}\psi$$

- "Summing over all Σ " is replaced by integrating over all spinors ϕ, ψ ;
- Adding up the contribution to the action from each string (with worldsheet metric γ_i), assuming the strings do not interact;

$$Z = \sum_{\sigma} \int \mathcal{D}\phi \mathcal{D}\psi \exp \left[\frac{4\pi n}{\kappa \hbar} \sum_{i} \beta_{i} \int \sqrt{-|\gamma_{i}|} dA \right] \times$$

- "Summing over all Σ " is replaced by integrating over all spinors ϕ, ψ ;
- Adding up the contribution to the action from each string (with worldsheet metric γ_i), assuming the strings do not interact;
- Adding in the contribution from the extrinsic curvature via the Codazzi equation.

$$Z = \sum_{\sigma} \int \mathcal{D}\phi \mathcal{D}\psi \exp\left[\frac{4\pi n}{\kappa \hbar} \sum_{i} \beta_{i} \int \sqrt{-|\gamma_{i}|} dA\right] \times \\ \times \exp\left[-\frac{2}{\kappa \hbar} \int [Q_{1}\bar{Q}_{1} + Q_{2}\bar{Q}_{2} - (p^{2} + \bar{p}^{2})] dV\right].$$

Here the Hopf fields Q_i are currents of the spinor fields, i.e.

$$Q_1 = \frac{1}{2} \left[\frac{\psi_2 \partial_z \bar{\phi}_2 - \bar{\phi}_2 \partial_z \psi_2}{|\psi_2|^2 + |\phi_2|^2} + \frac{\phi_1 \partial_z \bar{\psi}_1 - \bar{\psi}_1 \partial_z \phi_1}{|\psi_1|^2 + |\phi_1|^2} \right].$$

Summary

- We have a semiclassical partition function for gravity which includes all classical solutions ("no exotic smoothness")
- This form of the partition function should be explicit enough for calculations such as expectation values or propagators.
- In this approach there is a natural connection between semiclassical gravity and non-interacting cosmic strings.

Summary

- We have a semiclassical partition function for gravity which includes all classical solutions ("no exotic smoothness")
- This form of the partition function should be explicit enough for calculations such as expectation values or propagators.
- In this approach there is a natural connection between semiclassical gravity and non-interacting cosmic strings.

What Can We Do?

- Treat as a generating functional and study semiclassical
 - a) gravity through (ϕ, ψ) or b) strings through γ_i ?
- Propagators of the geometry of the string worldsheet?
- Interaction terms between ϕ and ψ ?