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ABSTRACT. — We consider the following problem: estimate the Lipschitz continuous diffusion
coefficiento? from the path of a 1-dimensional diffusion process sampled at tinves i =
0,...,n, when we believe that? actually belongs to a smaller regular parametricsgt By
introducing random normalizing factors in the risk function, we obtain confidence sets which
can be essentially better than the minimax raté’3 of estimation for Lipschitz functions in
diffusion models. With a prescribed confidence leyglwe show that the best possible attainable

(random) rate is{\/logan‘l/n)z/? We construct an optimal estimator and an optimal random
normalizing factor in the sense of Lepski (1999).

This has some consequences for classical estimation: our procedure is adaptivee)\snd.
enables us to test the hypothesis thdtis parametric against a family of local alternatives
with prescribed 1st and 2nd-type error probabilitie001 Editions scientifiques et médicales
Elsevier SAS

AMS classification62G05; 62M05

1. Introduction

In this paper, we study the statistical estimation of the diffusion coefficient, when one
observes a 1-dimensional diffusion process at tiffies i =0, ..., n, and asymptotics
are taken am — oco. The sample size increases not because of a longer observatior
period but, rather, because of more frequent observations. This setting has bee
addressed by several authors, both from a parametric or a nonparametric point of viev
A brief summary of the state of the art yields the following conclusions:

(1) In regular parametric models, the LAMN property holds with ratg/A (see
Donhal [1], or more recently Gobet [3]), but the MLE is not tractable in general.
Computationnally fast methods based on contrasts are known and possess go«
optimality properties as far as rates of convergence are concerned (Genon-Catal
and Jacod [2]).
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(2) For nonparametric models, if the diffusion coefficient has smoothness of order
s (in a Sobolev or Holder sense for instance but this can easily be embedded ir
a Besov space framework), estimators based on kernels (see Jacod [8]) or lines
wavelets techniques (see [6]) achieve the rat&+29), This, of course, under
some restriction which are specific to diffusion processes. Moreover, the rate
n—/+2) has been proved to be optimal in the minimax sense when the diffusion
coefficient possesses at least bounded derivatives up to order 2 (see [6]). Howeve
from a practical point of view, the methods proposed have drawbacks and are no
always easily implementable on numerical data.

(3) But, for nonparametric models with low order of smoothness (precisely: with
diffusion coefficient no more regular than Lipschitz continuous), the Nadaraya—
Watson estimator, introduced in this context by Florens in [4] — which historically
is the first nonparametric estimator of the diffusion coefficient — has good
convergence properties and is easy to implement in practice. (In this paper, we
also complete Florens’ results by showing that the Nadaraya—Watson estimato
achieves the rate~1/2 if the diffusion coefficient is Lipschitz continuous and that
this rate is optimal in the minimax sense.)

A caricatural synthesis could be the following: theoretically optimal and computation-
nally fast methods are known when the underlying model is either parametric and regula
(take then the contrast estimators of Genon-Catalot and Jacod and the — optimal — ra
1/+/n is achievable) or nonparametric but the diffusion coefficient is Lipschitz contin-
uous (take the Nadaraya—Watson estimator of Florens and the — optimalr=t&tés
achievable).

In this paper, we address the following problem: how can we combine both
technologies and what precise mathematical consequences can we derive? We belie
that such a question has some importance in practice: given two different methods,
practitioner — motivated by a specific experiment in e.g. finance, biology or physics,
say — would legitimately ask which one to choose. Of courseriar knowledge
intuition, suspicion or guess about the underlying structure of the model (parametric)
usually exists, and this should be taken into account, even at a mathematical level. Alsc
the answer we want to give must be numerically feasible and must quantify precisely
the consequences of the choice (parametric versus nonparametric), especially when t
initial suspicion turns out to be wrong. Our angle is thus the following: we believe that
the diffusion coefficient has a given regular parametric structure, but we wish to take
into account the possibility that this prior intuition is wrong, in which case the diffusion
coefficient could be any Lipschitz continuous function within a certain nonparametric
class.

To formulate and solve this problem mathematically, we use the notionirimax
risk with random normalizing factorswhich is based oradaptive estimatiorand
nonparametric testingTheorems 1 and 2 below). The method is easily tractable on
numerical data. The ideas developed here heavily rely on the work of Lepski [11].
However, Lepski considers in [11] a slightly different problem in the white noise model
context. Therefore, both techniques and answers given here differ a bit from his pape
and we borrow his formalism and mathematical devices rather than complete his theon
Note also that our approach is different from robustness, where misspecified model



M. HOFFMANN / Ann. I. H. Poincaré — PR 37 (2001) 339-372 341

are allowed. In general, such models are defined around tubular neighbourhoods of tt
original parametric model, at a distance vanishing as oo, an assumption we do not
have to make here.

A by-product of our approach is that we complete Florens’ paper [4] (and also [6]) by
showing that her estimator is optimal in the minimax sense under squared-error loss fc
Lipschitz continuous diffusion coefficients (Proposition 2), but we know from [9] that
this is no longer true for a diffusion coefficient with a higher degree of smoothness.

1.1. Statistical setting

We observeX” = (X;/,, i =0,...,n) where(X,)c0,1 iS a 1-dimensional diffusion
process of the form

t t
X,:xo—i-/b(s,XS)ds+/J(XS)dWs, t [0, 1] (1.2)
0 0

with xg € R, W a standard Brownian motiom, smooth,o Lipschitz continuous and
nonvanishing. Our aim is to estimate the functiar?(x), x € I), for an arbitrary
compact intervall. In this setting, the drifb cannot be identified from the data and
is a nuisance parameter.

Formally, we takeX as the canonical process on the spare- C([0, 1], R) of
continuous functions equipped with the norm of uniform convergence, endowed with
its Borel o-field 7. We assume that the drift has linear growth, therefore (1.1) has
a unique solution. We further denote By the probability measure off2, F) under
which X solves (1.1).

There are several ways of assessing the quality of an estimation procedure. First, tt
estimation ofo2(x) at a pointx e I is meaningful only if the proces¥ hits the point
x before time 1, or ifL] (X) > 0, whereL; (X) =lim._¢ % fol 1 x,_x<e ds denotes the
local time of X at levelx and time 1. So if

D(x,v)={weQ: L] (X(w)) = v},

we shall restrict our attention to the sBi(x, v) for a givenv > 0, fixed throughout
the paper. However, the s(x, v) is not observable, therefore it is better for practical
purposes to replace — like in Jacod, [8] — the Bék, v) by a setD"(x, v) measurable
w.r.t. the o-field G, generated by the;,,, i =0,...,n, at stagen. To do so, we
introduce the following empirical local time

n 1 .
ﬁﬁ (X ) = W Z lX(,‘,l)E[x—n_l/B, x+n=1/3] (12)
i=1

which converges td.;(X) asn — oo (see, e.g., [9]). The choice of the bandwith/3
will prove to be technically useful. Define

D"(x,v) ={we Q: L;(X"(w)) =2 v}
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accordingly. We will further restrict our attention tB"(x,v). Forc > 1, let &, =
{f:R— R;c < f(x) < ¢} and define the Lipschitz class

E=3L)={fR>R;[f(x) = fOMI<LIx =y} N .

The spacex describes the minimal smoothness properties we require for the unknown
parametetr?.,

An estimator 7, = (T,,(X",x),x € I) of (¢%(x),x € I) is a function which is
G, ® B(I) measurable; we evaluate its performance uniformly avdsy means of its
minimax risk

Ru(Th, 2, ¢y) = SUPEaz{w;Z/(Tn(X”,x) — o%(x))%dx | D’](V)}
o2ex T

where D} (v) = ,¢; D"(x,v) and ¢, > 0 is a normalizing factor. Of course, the

finiteness ofR, will only be meaningful ify, — 0 asn — oo. Here, E,2 means

integration with respect to the probabiliB.. Thus we measure the quality of estimation
in integrated quadratic loss, conditional on the ev@fitv).

1.2. Statement of the problem and objectives
An estimator7’ is said to attain an optimal rate of convergeggeXx) if

limsupR, (T, =, ¢,(X)) < 400 (1.3)

n—oo

and no estimator can attain a better rate:

liminf inf R, (T, £, ¢4(%) > 0 (1.4)

n—oo T,

where the infimum is taken over all estimators. In Section 2, we showjlig) = n /3

is an optimal rate of convergence and prove that the Nadaraya—Watson estimato
introduced in this context by Florens in [4] attains the optimal rate (see also [8]). We
understandp, (X) as anaccuracy of estimatianfor any confidence levak > 0, we
guarantee from (1.3) the existence of (an explicitly computaple} 0 s.t.

SupP;é”{HTn*—ng[ >Va§0n(z)} <a, (1.5)

o2ex

where P'5"(-) = P2{- | D}(v)} and || fll; = (f; f%(x)dx)¥2. Furthermore, in the
optimality sense described by (1.4), this accuracy is the best one achievable uniforml
overx.

However, suppose we suspect to actually lie in a smaller parametric set, namely
0? e 9= %o(I) given by

o) ={feX: f(x)=0i(x,0), €0, xel},

where® c R*, s > 1 is given and the functioag(-, 0) is known up tas.
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Under some regularity assumptions@rando (see Section 2 below), an optimal rate
of convergence oveEqg is ¢, (Zo) = n~Y? and is attained by the least-square estimator
T =&(-,6,), where

6, =arg min}_ ((A"X)? = 0Z(X-1/n, 0))° (1.6)

and where we denotA”X = \/n(X;;, — X -1,) the normalized increments of the
observed process. Based on the hypothesfse ¥3 C =, we can hope to improve
the accuracy of estimation. A traditional way of improvement is the so-caliieghtive
approach

1.2.1. Theadaptive approach

Intuitively, a practitioner would presumably: (1) test the hypothesis g, (2) based
on the acceptance of the test, choose the parametric estirfigtor(3) keep the
nonparametric estimatdf,* otherwise. From a mathematical point of view, such a
procedure — call it temporarily’@ = 7@ (x, X") — is admissible if it adapts to the
sets(Xg, X) in the following sense: define ttaglaptive rate

12 i 2
2y __Jn if o € o,
Ynle®) = {n—1/3 if 023\ %,

ThenT,@ should verify

(1.7)

limsupR, (T, =, ¥, () < +o0. (1.8)
However, even if we have satisfied the adaptive criterion (1.8), we are unable to state an
accuracy of the method singg, = v, (¢2) depends on the unknown, we cannot provide
any confidence set of the type (1.5).

In this paper, we propose an alternative approach by introducing a procedure base
on random normalizing factors (r.n.f. for abbreviation), following Lepski in [11] and [7].
This will enable us to improve the accuracy of estimation in the sense of (1.5). We will
even show that a procedure based on r.n.f. can simultaneoulsy give an improvement
accuracy and be adaptive in the sense of (1.8).

1.2.2. Random normalizing factors
We introduce the class of observable normalizing factors (r.n.f.)

Q, = {pn € (0, 0,(2)]: py is G,-measurabli,

whereg, is the o-field generated by the obervatioxy,,, i =0,...,n. Clearly, any
estimator7, satisfying
limsupR, (T, =, p,) < oo for somep, € 2, 1.9
n—0o0

attains the optimal rate of convergence o¥erBut in contrast to an adaptive estimator,
we now guarantee the existence of an explicitly computgblgom (1.9) such that for
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anyo > O:

sup P23"{|| T, = 02, = vapu} < e
o2ex
where we have set — recall (1.5)P;”§”(-) = P,2{- | D}(v)}. This provides us with a new
(possibly random) accuracy of estimation. The possibility tabelongs toxy may
give a value top, essentially better thap,(X) = n~Y2 with some probability, while
still ensuring a confidence set uniformly over
Next, we need a consistent way to compare 2 r.n.f. in order to define an optimality cri-
terion. Since ar.n.f. is random, we introduce the following (deterministic) characteristic:

DerINITION 1.—For a given confidence levd < «, < 1, the characteristic of
On € 2, 1S

Xolpn) =inf{t € Q. g, (D)L int P (p, <) >1—a,}.
o4eXp

Note thaty, (0,) depends o, and onX.

Remark — A heuristic approach to understand this definition can be the following: let

us fixt > 0 “small”, i.e. at least smaller thap, (X). What we require is that a “good”
o, Will provide improvement of accuracy if the guegs? € %) turns out to be true.
This means that undet’", for o? e ¥y, the event ), < ¢” has a controlled probability.
Mathematically, we translate this idea by saying that for a given confidencedgweke
guarantee that

inf P (o, <t) > 1—a,. (1.10)

02eXg o

Next, the smaller we can find such that (1.10) holds, the bettgrhencey, (o,) is
defined as infimum of providing (1.10).

We now have a canonical way to compare r.n.f. We naturally derive the following
optimality criterion:

DEFINITION 2.—p; € , is optimal(or «-optimal) w.r.t. (X, o) if
(i) There exists an estimatdi** such that

limsupR,(T,", X, p;) < +o00.

(i) Foranyp, € ©, such that

Xn(on)

— 0, asn— oo,
Xn(O))

we have

liminfinfR,(T,, X, p,) = +00
n—»oo T,

where the infimum is taken over all estimators.
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Remark 2. — Following Lepski, we calll* an «-adaptive estimator. Note that by
definition, we always have: < ¢,(X). Thus anx-adaptive estimator is optimal with
respect tox. Also, note that ame-optimal random normalizing factor may depends in
general on the quantity,,.

The aim of this paper is to construct an optimal random normalizing factor w.r.t
(X.%o) following Definition 2 and arx-optimal estimator accordingly.

1.3. Organization of the paper

In Section 2, we recall and adapt some facts about statistical estimation of the diffusior
coefficient from discrete observations. The nonparametric kernel estimator of Section 2.
was introduced in [4] and later generalized to our setting in [8]. However, we give a self
containing proof of the upper bound. The lower bound is new, and follows the same
strategy as Proposition 1 in [6], with new technicalities.

Section 3 is devoted to the construction of an optimal r.n.f. for the diffusion coefficient
under a parametric hypothesis. We discuss the link to adaptive estimation and sho
how a slight modification of the optimak{adaptive) estimator enables to obtain
simultaneously an optimal accuracy of estimation and an adaptive estimator. Links tc
testing are also mentioned. The proofs are delayed until Section 4.

2. Preliminary results
2.1. Parametric estimation

We need the following regularity assumptions@randog.

Assumption A- We have
(1) The se® is compact inR* =R.
(2) ForsomeM = M; > 0,

sup|oé(x, 01) — o(x, 02)| < M0 — 6, for 61,6, € ©.
xel
(3) For somey =n; > 0, inf, g)crxo |j—9<702(3€, ) =n.

. 2 . .
(4) The functions;0¢ and - -2 o¢ are well defined and continuous érx ©.

(5) The equalityZ(x, 61) = o2(x, 6,) for all x € I impliesd; = 65.

Remark 1. — The above assumptions are standard in parametric estimation but do nc
claim to be minimal. For instance, A5 can be relaxed but known extensions are usuall
difficult to check (see, e.qg., [2]).

By Ito formula, the model given by (1.1) can be recast in a regression setting, having
i/n
(A;‘X)2 =n / o%(X,)ds + & + a higher order term (2.11)
(i—1)/n
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wheres! = 2n f"/_"l)/n(XS — Xi-1/2) dW; is a martingale increment. Thus we observe
on the non-uniform random grid ;_1),,, i =1, ..., n) the valuen fii/_”l)/n o?(X,)ds ~
o2(X-1/a), contaminated by the noise!, plus a negligible drift effect. From this
formulation, we readily obtain the least-square estima@jdt = 2(-, 6,), whered, is
defined by (1.6).

PROPOSITION 1. —Grant Assumption A. Thep,(Zo) = n~Y? is an optimal rate of
convergence and is attained BY?.

The proof of the upper bound is readily obtained from Theorem 1 in [2]. We simply
addedad hocassumptions in order to obtain the uniformitydre ® for the integrated
risk. The proof of the lower bound follows from the LAMN property of the parametric
model (see, e.g., [1]).

Remark 2. — Note thab, is not the best available parametric estimato efit is not
equivalent to the MLE — but since we focus on rates of convergence only, this intuitively
simple choice is sufficient.

2.2. Nonparametric estimation

We assume (with no loss of generality as far as practical considerations are concerne:
that/ is on a dyadic scale, namely

I = [ko2770, ky277°],  for some integerso, k1, jo.
For integersk, j), let1;, =[k27/, (k + 1)27/) and define forj > jo
V/ ={f €Ly fisconstantod, I;; C I}

the finite element space of functions which are piecewise constantover a grid of
mesh 2/. Indeed an orthogonal basis fg} is given by the family

bix =2/?¢(2/ - —k), ksuchthatl;, C I,

where¢ = 1j51,. We estimater? by an element ofv/*, for some projection levej,
chosen in accordance with the asymptotics in the following way. Let

1 n
Z(A?X)z‘bjnk(x(i—l)/n)»

n Ejnk i=1

Cink =

(with 0/0 = 0), wheret , = % >im1 Ix iy mer;,- INformally, we use the regression
analogy

(A7X)? ~ 0% (X -1y/n) + &

defined in (2.11) and we weight the local average by an approximéjprmf the time
spent by the procesk in I;,;. Finally, the nonparametric estimatdy (x) of o2(x) is
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defined by
Tr) = Y & i)

ki I, rCl
and is specified by the projection levgl The performances df* are summarized in
the following result. Fox € R, we denote by x| the integer part ok.

PROPOSITION 2. —An optimal rate of convergence ovet is ¢,(X) = n~ /3,
Moreover, T, calibrated byj, = L% logn Vv jo] is optimal for the criterion given bgl.3)
and(1.4).

3. Main result

This section is devoted to the construction of an optimal rgy;fin the sense of
Definition 2. Accordingly, we construct am-adaptive estimator w.r.{Xq, ). Our
algorithm can be described as follows:

(1) Estimate the distanag, (for the|| - ||; seminorm) between? and =,

(2) Takep: =n~Y3if d, is above some threshold level (possibly depending on the

confidence levek,).

(3) Takep) = ¢,.q, > 0 for some normalizing factap, o, (tuned with the asymptot-

ics) otherwise.

We will show that we can take, ,, converging to O faster tharm /3 by a polynomial
power. The valuep, ,, corresponds to the acceptance thate =, and measures the
improvement of the accuracy of estimation. The assumptions on the parametric family
> are less stringent than in Section 2.

Assumption B- We have
(1) The set® is compact iRR*, s > 1.
(2) There exisiu > 0 andM = M, ,, > 0 such that

sup|oé(x, 01) — ol (x, 02)| < M||61 — 62| for 61,6, € ©.

xel

(3) Forallg € ®, 0&(-,0) € .
(4) There existy € ® andL < L such thabé(-, o) € Z.(L).

3.1. Construction of p} and main result

For J, > jo andd € O, define

d, @)= 3 (e —cou(02,0))})%

ki Iy, kCI
where

cm(oé(-,e))zzf"/z/og(x,e)dx.

Lk
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By Assumption B2, there exists = C(u, M, ,) such that
|dy (1) — dn(62)] < Cl01 — 6] for 61,0, € ©.

This, together with Assumption B1, ensures the existencé;af,®, measurable w.r.t.
G,-measurable and solution to

dn(6;) = Inf d,(9).

For technical reasons, we need to compensate the variaageasffollows. Let

2 n
Cok =z D (AIX)*82  (X—1ym)
3n4lj ]

and
d, O =d, ) — > Cye

ki 1y, Cl

The estimatec?n(e,;) will determine the following decision rule. Far, > 0, let J, =
2log—2— Vv jo| and
|_5 g W Jol
( |Ogozn—1>
Onoy = | ———
n

Note that 2’* andg, ,, coincide up to a constant. Define now the threshold

2/5

A= A0, ¢, v)~ Y4

whereA(t, ¢, v) is specified in (4.17), see the proof of Lemma 3. (The choick will
become transparent in the proof of Theorem 1 in Section 4 below when Lemma 3 is
used.) The decision rule then takes the form

-1/31

*
P = Pnon L, 0y <202,,) TN {dn (03)> 2207 o)

and
L) = Y cru(0§C.0))dsix).

ki 1y, kCl

Finally, our estimator of2(x) is
T (x) = T, () Lppmgn oy + T () L 13y,

whereT; is the nonparametric estimator of Section 2.2 specified yyith L% logn Vv jo].

THEOREM 1. — Grant Assumption B. Assume that' < «,, < 2= for some arbitrary
a > 0. Thenp} is an optimal random normalizing factor w.r.txo, ) and 7,* is
a-adaptive.



M. HOFFMANN / Ann. . H. Poincaré — PR 37 (2001) 339-372 349

Remark 1. — In particular, we see that if our parametric assumption is correct, with
prescribed confidence X «,,, we are able to improve (asymptotically) the accuracy
of estimation, i.e., the size of the confidence band we construct, by a fagcior=

(\/loga,;/m)?".

Remark?2. — The improvement of the random confidence band is of a polynomial
order, but is lowered down by the size®f. However, the restriction,, > n~¢ ensures
that it is a least of ordef,/Togn/n)?/°.

Remark 3. — For practical purposes, it seems more clever to replacéhe definition
of A by infy. 7, .cr £,k FOr technical reasons, we are unable however to prove Theorem 1
in this setting. Note also that the practical implementatiop;ak easy: the computation
of ¢, is reasonably fast and the cardinality () of suchc¢, , is of order log:.
Likewise for theC,, ;. Eventually, the minimization problem arg rgia, (6) has the
same complexity as the computation of a standard parametric estimator. Dmnge
computed, one readily computes eitl&r (which is no more difficult to obtain than
T;) or T, itself, the standard Nadaraya—Watson estimator.

3.2. Discussion

3.2.1. Linksto adaptive estimation

We show in this paragraph how a simple modification7pf provides us with an
adaptive estimator — in the usual sense of (1.8) — without loosing the optimality in
terms of r.n.f. Assumption A is in force here. We consider the estirﬂa(ﬂbr: ag(., 6,)
introduced in Section 1.2, wheég solves (1.6). Note thak © is well defined thanks to
Assumption A. Let

@y _ 70 o * o
L7 =T," ()1, G<izgte) T i LG 6002021

Define the random normalizing factpf* accordingly

-1/3
P = Pnan 1y, 6 <22} T 1, On)=12gE o}
THEOREM 2. — Grant Assumption A. We have
() The estimato® is a-adaptive w.r.t(Zo, ).
(i) If moreovera, = O(n~1), the estimatorT,® is adaptive in the usual sense w.r.t.
(2o, X):
limsupR, (T, =, ¥,(-)) < oo,

whereyr, (0?) denotes the adaptive rate defined(ly?).
The proof of (i) is delayed until Section 4. The proof of (ii) is a direct consequence of
(i) and Proposition 2 in [11].
Remark 1. — The decision rule{%(@n)gzwga , answers to our original question: given

a parametric procedurE(® versus a nonparametric off¢f, which one shall we use in
practice? The answer 1 to our test yields the chdif®, whereas the answer 0 yields



350 M. HOFFMANN / Ann. I. H. Poincaré — PR 37 (2001) 339-372

T. The precise mathematical consequences of this choice are described by the r.n
p\@. Moreover, this choice is optimal in the sense of Definition 2.

Remark2. — Again — see Remark 3 in Section 3.1 — we can see that the practical
implementation off @ is fast and has complexity no worse than that pf

3.2.2. Linkstotesting

We explore in this section another virtue gf, namely the possibility to build a test
for the hypothesisr? € %, against a family of local alternatives. More precisely, given
h>0and O< o < 1, define

Wa(h, I.e)={f € Z(L): inf | f - oSG, =h pual-

THEOREM 3. —Grant Assumption A. For any < «, 8 < 1, we have, for large
enoughn

() SUR,2cx() P’ (0y =n~3) <.

(i) There exist#(8) > 0 such that

sup P (o) =¢na) < B
o2eW, (h(B),1,a)

In words, the hypothesiss? € To(I) can be tested against the family of local
alternativeso? € W, (h(B), I, o) with prescribed first and second type error probability.
The proof of (i) readily follows from (4.27) in the proof of Theorem 1 below. The proof
of (ii) follows from Theorem 1 together with Proposition 3 in [11].

4, Proofs

The proof of Proposition 2 can be read independently from the that of Theorems 1
and 2. The reader is however invited to first scanrbation and preliminariesection.

4.1. Notation and preliminaries

For6 € ©, we abbreviateoag(,ﬂ) by P, when no confusion is possible. Fof € X,

let P,> denote the law of the proce¥ssuch thaidY, = o (Y,) dW;, Yo = xo. Defineﬁ:é”
accordingly. We denote bg a generic constant, possibly varying from line to line and
which may depend oh. Any other dependence will be explicitly mentioned.

4.1.1. Preliminary decompositions
(@) Foro? e %, define

) 23Jn/2 n
n _ n
Ay (0 ) - Z 1X(i—l)/nEIJnk / T (x, X)dx,
ngjnk X
i=1 I
2],,/2 n
n J—
b le(z 1>/n611nk i

I’lﬁjn
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where
i/n
'(x, X) =0%(x) —n / o?(X,)ds. (4.12)
(i—1/n
Define the random variable
= > {enk(0dC. 0 —0?) —a (o))}, (4.13)

ki Ij,kCI

where —recall Section 2 — we denetg(c?) = 2//2 Ji o?(x)dx. Using that(A? X)? =
i/n

n Ji"y,n0%(X;)ds + € under P, we have
Coi = o =ai (0%) +bj (o).
We thus obtain the following decomposition
d,(6}) = Ay (02) + M, (02) + N, (7).
having

My(0%)=2 Y [csu(0®—0g(.00) —ai (0?))]b{ (o),

ki I,k CI

Na(0?) = D0 [(5)" = Cuul-

ki I,k CI

(b) Define yr(x) = Ljp1/2)(x) — Ljj2.1)(x). If djx(0?) = [o?(x)¥j(x)dx is the
wavelet coefficient ob? in the Haar basis, from the multiscale decompositiorn &f
we have by Parseval’s identity

ool Y ulo?—ofe0) +en(o?)
ki Ij,kCI

<28, () +2 Y | )2+ ey, (0?),

k: Ij,,kCI

where the remainder terey, (%) = 325, Y. 1,,c; d5 (0?) satisfies
€, (0%) <Cle, 2% =C'(c, L)gZ,,

sinces? € . Note that
i/n
|T[n('x?X)|1X([_l)/n61jnk <L<2_«/n +n / |XS —X(i_]_)/nldS), (414)
(i-D/n

therefore |7/ (x, X)|1x,_y e < L2777 + n7Y?r7(c%), and since we have
Sup, 2.y, E’O“_’z”(|r{l (0c?)|P) < C), for aII p =1 by the Burkholder—Davis—Gundy inequality
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— further abbreviated by BDG — it follows that
af (07)] < L(2730/2 4 27 /2y V1)
and finally
EZ:;{Z(a;j (02))2} < C(e,L)27%" =C'(c, L)gZ,, - (4.15)

k

(c) The random functionaoz(-, 0r) — o? belongs to X,.(L). Moreover, since
sup, |7/ (x, X)| < 2c, we always havéay (o2)| < 27%/2t1c. ThereforglA, (0?)] < 8¢2.
(d) We further decompos¥, = NV + N@ | having

1 - n\ 2 2 ny\2
O = S o Y = SO0 8 (o)

ki Ij,kcrt n E-,nk i=1
1
NP = Z Y7 Z & €501,k (X(i-1)/n) Pk (X (j=1)/n)-
ki Ij,kcrt n Jnk 1<i<j<n
4.1.2. Technical lemmas
LEMMA 1.- Letx > 0. For all r > 2, we have
P {N® > x} <C(t, ¢, L vyn /220 .

Proof. —Itis easily seen that!)? — 2(A7X)?= U + V}", with
2
U7 = Xamnm [(81W)° = 1% = S (a1W)]
and where the remainder terif satisfies (apply the BDG inequality)

sup E"{|V'|"} < C(p,c,vyn~?/2, forall p > 0.

02eXx

Since underﬁg‘é”, we have inf¢3, > v? and noting thafy"; ¢7 , (X_1)/,) < 27, it
suffices then to bound

Py {

By Chebyshev’s inequality, we readily see that the term involAtig= V" has the right
order. Likewise, using thaE’;’z”{|% Y UMPy < C(p,c,v) since theU!" are zero-
mean and have bounded moments of any order, we obtain the desired result.

LEMMA 2 (Fuk and Nagaev [5]). tetS, =" ; M; be aF,-martingale. Forx > 0
andr > 2, we have

14
i=1

n2 <

1
> EZ_J"X"}’ z'=ur, V.

2
P(IS,| > ) < o) Arux™ + exp{cz(t)%},

n
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where A, ,, = Y1 E(IM;|"), B> =" E(M?) and Ci(t) = (1 + 2/t)", Ca(t) =
2/(t +2)%".

LEMMA 3. - Letx > 0. Forall r > 2, we have
ﬁ;&”{N,EZ) >x}<C(t,c L, V)nt32mt 1 4 exp{—A(t, c, v)x2n22 },

whereA(t, ¢, v) is specified in4.17)below.
Proof. —Define, forj =2,...,n

i1
=27 N (X mnm) D &l b (Xi—1y/m)-
ki el i=1

(a) Since undeﬁ(fé”, we have inf ¢ , > 1?, it suffices to bound

ﬁ;ﬁv{ Zx7 >n22_j”v2x}.
j=1
g ) 2.2 25 27
Cl(t)]z_:lEU’z {[x7] }—i—exp{—Cz(t)v x°n®2 T} (4.16)
EN x|} < Z_J"ZE”{\S i Sup¢1nk(X(] n/m)| Y€l Zqﬁj,,k(X(, /n)

=1 }
1/2
<Cle, L v)z—fnf/2< { }) :

where we used Cauchy-Schwarz inequality and, ®yp(X;—1/,) < 2//2. Using
S bk (Xi—1m) < 27/2 and a martingale argument, the last quantity is less than
C(t,¢, L,v)j"% UsingYi_, j'/? < Cn'/?*1, we obtain the desired bound for the first
term.

(b) It remains to boun(B2 The process; i=7 Z’ 1 &',k (X -1/, indexed by
j is a martingale, therefore

n 2
BZ=n272"%" EZ’ZV{ ( > ¢Jnk(X<j—1>/n)”Z,j> }
=1

k:1j,kCI

By Lemma 2, this last quantity is less than

whereB? = > 1EZZ”{(X7)2} We readily have

j—1

Z¢Jnk(X(l 1/n)

Now

Z Gr(X(j-1)/m)V

ki 1j,kCl

Jn/2|,n
<2 ‘vk(X(_i_l)/,,),j’
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wherek (X j_1)/,) = inf{k: X(j_1)/» < (k+1)27'}. Using

(v” E Sup v} ) 1
k(X(i—1)/n k.l {k(X n)=k}
(X(j-1y )J P 1<i<n =1/

and{k(Xj_1/n) =k} ={X(j—1n € 1,1}, We successively have

By <n27h Y EN{(v,)}
j=1

2, 1/2
<n2 JnZEnv{ SUpUkl }1/2E {(Z]-X(J 1/n €k ) }
by Cauchy—-Schwarz inequality. Using Doob’s inequality, we get
Epi{(supef,)*} < Cev).

Likewise, we have

2

2Jn . 1,V
{ < Z 1X(I 1)/'151/nk) } < Ea’z {(Sup[’;zc(Xn))z} g C(Cv L, U)

by approximation of the local time (see, e.g., [9]). Theref@®< C(c, v)n?2~/.
A more detailed examination d@f? shows that

B2 < n?27"Z(c) :=n?27"2c2inf C(2p)K (c, q),
q

whereC(2p) is the optimal constant in Rosenthal’s inequality, afg + 1/g = 1. The
constantX (c, ¢) is defined by

K(c.q) > E{(supL2) }[E{(supL’2)"}] ",

whereL7 is the Brownian local time. (The proof is rather technical so we omit it.) Back
to (4.16), we see that the choice

A(t, ¢, v) := Co(t)v?/ Z(c) (4.17)
yields the desired bound.O
4.2. Proof of Proposition 2: upper bound
(a) Note that orY;,x, T (x) is identically equal to

2}n
n Z 1(AnX) 1x(, 1/n€Ljnk

2in
n 21 lX(f—l)/nel./nk
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Therefore, from the definition of! given in (1.2) and the choice gf = L% logn Vv jol,
we have undepP’;":

, 2
~V,n * — Vv, 1 Zjn é n
£ [ (02w -1y00) ax<vt | E( le(i_l)/nezjnk[az<x>—(A,Xﬁ>-
i=1

n “
ik Ljk
Recall from Section 2.2 and Eq. (2.11) that undéjé”, we have the following
decomposition: (A7 X)? = n (’/_”l)/naz(xs)ds + ¢!, where the martingale term is
defined bye! = 2n fii/—nl)/n(XS — X(i—y/m)o (X,;) dW,. Recall from (4.12) and (4.14) that
forx el
i/n
‘Tin (-xa X)‘J-X(i_l)/néljnk < L <2—jn +n |Xs - X(i—l)/nlds> s
(i—1/n

wheret/ (x, X) is defined in (4.12). It follows that

B [0 - )i} < ey + A+ a3,
1

where
2

~ 10
A= Z /E"’ZV{ <_le(f1>/n€1_mk> }dx,
K Lclp niz
n in 2
A=Y /22j”15“§’z”{ <Z / | Xs — X(i—l)/nllx(,-_l)/,,elj,,k) }dx,
ke Lk I =1G_1)/n
1¢ ?
As= Z / EZ’ZU{ <_ ZS?lX(fl)/VlEI_ink> }dx.
K Lclp iz
(b) Let 2<i < j < n. The random variabl&;_1),, has a densityp(,_;) , (x) W.r.t.

the Lebesgue measure undé;z which satisfieSpg._l)/n(x) < C(L,c)/n/(i —1).
(See (4.21) in Section 4.3.2. below for an explicit form ggf.) Thus, by use of the
Markov property, we have

~ . n
P X i—1ym €1 ks Xeimpym €11} < Ce, L,v)2 2 —.
52 \Xi—1/n € Ljk, X(j—1y/m € Lj,i} < C( ) N

Expanding the sum within the expectation, it follows tlgtis less than

[Tn ™+ Cle, L2723 [0/ — D —D]"*< Cle, L, vyn™ 3

2<i<j<n
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from the choice ofj,, thusA’ has the right order. (One easily checks that expanding the
sum from 2 ton instead of 1 to: does not alter the order of magnitude4.)

(c)Let2<i<j<nand(u,s) e [’nl, L] x [f 1 f] By repeated use of the Markov
property, using the same argument on the densﬂ;X@Il)/n as in (b) and the BDG
inequality, we obtain

Egév“Xs - X(i—l)/n|1Xu_1)/n611‘nk | X — X(j-1/n |1X<_/—1>/n€1jnk}

2_2jn
< C ) L, T
L ==

Thus, by expanding the sum within the expectationAf), we readily getA} <
C(c, L, v)n~t which is asymptotically negligible.

(d) Finally, we haveE:‘,’z“{(e;?)z} < C(c, L) from the BDG inequality; using that
the ¢! are martingale increments, it is easily seen t§t< C(c, L,v)2"n~t <
C(c, L,v)n=?3from the choice ofj,. The proof of the upper bound is complete.

4.3. Proof of Proposition 2: lower bound

For technical convenience and with no loss of generality, we prove the lower bound
for the new parametrization? — 1/02. Indeed, for any normalizing factas, — O,
the infimum in inf, R,(T,, £, z,) is clearly attained among the estimat@jssuch that
T, € X. Thus:

Vx € R: [T, (x) — o%(x)| > c—12|Tn_l(x) —o(x)7?

and

1

T, — = 2}. (4.18)

infR,(T,, T, z,) > ¢~ %inf sup E”’z“{z;Z
T, o i

" g2exy
Therefore, it is sufficient to prove a lower bound for the RHS of (4.18). We further
assume for simplicity that = [0, 1]. Let ¥ : R — R be of clas4, with sup, |¢/(x)| <
L/c? and bounded derivative up to order 4, with suppoifidiri]. For j, andy, > 0, we
consider the following parametric subfamily:

1 2 2/n
2 .
Cjn,)/n:{g € X.(L): 02—()6):;+ynkzz;)vkwjnk(X)’ Uk::tl}

so thatg Cj, ,, = 22" and the functions); , andy;  have disjoint support fok # &’
We impose that = sup, [y (x)| is such that 2 -t > ¢ and% + 1t < ¢t We take
Jja = |3log,n| andy, = n~Y/2. These conditions imply

Cjn,)/n C EC(L)

4.3.1. First reduction
Foro?e(,, ,,, denote byQ, the law of

1
dX, =500/ (X)) di +0 (X)) dW, (4.19)



M. HOFFMANN / Ann. I. H. Poincaré — PR 37 (2001) 339-372 357

and defineQ”, analogously. We will also use the notati@Y , for the law of X" =
(Xim, i =1,...,n) on R" where X solves (4.25). Fok =1,. , 2/n denote byok n

ando?_ any pair of functions ir¢;, ,, such thao, 5 (x) — okff(x) 2y, ¥,k (x). Set

n

2
O+

o,

k,—

)‘(‘7k2,+’°k2,—’X(n)) =

LEMMA 4. —Under the assumptions of Propositi@nthe following condition implies
the lower bound of PropositioR:

lim supsupEQ . (|loga (o, of_, X™)]) < oo. (4.20)

n—o0

Proof. —We abbreviate.(o? ,, 07 _, X)) by A and setu = P, 2 (mfxe,/: >v). Let
t > 0. Clearly

)-

where we used Chebyshev’s inequality. By takitgrge enough, (4.20) implies for large
enoughn

1
PR (h>e )2 Pp (hze ) tu—1>u—"Ep, (|logh(of,.of . X")
k T %= ’ ’

P (A=e")>s5>0,

ak,—

wheres does not depend on This implies the lower bound’2?y, = n=1/3 for the risk
R,, as follows from [10, Chapter 2]. O

4.3.2. Proof of (4.20)
Preliminary decomposition. Let S, (x) = [y 55 If 02 € C;, ,,, we have by Ito's
formula

X, = 8,1(So (x0) + W),
therefore, the transition density &% underQ, reads forr > 0

1 1 2
o _ - _ , 4.21

Elementary computations yield, uner;,kzi
093 =~ 3 {100 250Xy + 5 (050, 00)° = (515, 00)7] .
i=1 +

where we denoté? f(X) = f(Xi/n) — f(Xi-1,.)- FOr a generiw? in C;, ,,, define
H; by the formula

1 2
Z(X) c -+ ynvkwj,,k(x) + Vn ],,k(x)
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We thus havem 2 =5 =2,V (x) and

1 ‘- 1
of (x)  of_(x)

4
-+ Vn jnk(x)
c

It follows that

(87 S0y, (X)) = (8785, (X))

8 Xl/n Xl/'l Xl/"
= Z" St X / dfjnk(u)du—l—Zyn / V() du / H;(u)du.
X(i-1/n X(i~1/n X(i-v/n
(4.22)
By Taylor’s formula, summing im, we have from the decomposition of lag
n 8 Xi/n
n N on
a3 wx) [ v
i=1 X(i-1/n
4 o(p—3jn M 11
«/_Z ZW(” V(2" X —nm — k) (87X)"
T (p+ D! <
f NG
30 291n/22w(4) ZJ"SX(, X k) (51' X) , (4_23)

i=1
whereéx, . x;, € [Xi-1)/n> Xisnl-

Remainder terms. Let us first show that the terms of order 2 and more in (4.23)
have finite moments, uniformly im andk. Up to a drift translation, we may assume that
X is a local martingale with diffusion coefficien, _. (This only amounts to a change
of probability — further denoted b?ak.7 — which is sensitive to constants only.)

(a) We first study the term correspondingpte= 2. By a standard martingale argument
its variance is less thafi(c, L)2%n sup, [y (x)| x S1_; E,, _{(87X)®}. Using the BDG
inequality the properties af and the fact that? € ¥.(L), we see that the term within
the expectation is of order—3. This, together with the choice gf shows that the above
variance is less tha@(c, L).

(b) Let us denote by, the term corrresponding to = 3 in (4.23). We have

n

Eo {1 | FIY < Cle, Ln > 21" (20 X oty — k) B, {(87X)* | 71
i=1

Applying again the BDG inequality, the term within the conditional expectation is of
ordern—2. Therefore

E,2 (1)) < Cle, Lyn™ )2 Py {Xiiyjn € Lik)-
' i=1
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Next, we remark that it (/;,,) denotes the midpoint af, ;, then the above term is equal
to C(c, L)Eokﬁ(ﬁﬁ“-’”")), which is uniformly bounded (see, e.g., [8]).

(c) In the same line as in (a), the variance of the term correspondipg-td is less
thanC(c, L)2"n 3!, E[,kz_{((S{‘X)lo} and is asymptotically negligible from the choice
of j,.

(]d) The remainder term has a first moment boundedCdy, L)/n2%/2%"_,
Eakz_{(éf‘X)s}, which has the right order.

(e) We now bound the second term in the decomposition (4.22), that is, after summing
inn,

" Xi/n Xi/n
0. =Y [ viawde [ Hypwadu.
=16 0 m X(i-1/n

By Taylor’s formula, we successively have

Xi/n
n 1 j / j n 2
Vi) du =9, (Xi-1)/2)87 X + 523’"/2(‘” (27Ex gy xiw — K) (8] X)

X(i-/n
and
Xi/n L ,
| Hia di = Hy a8 X + 50 @y, (81X
X(i=1/n

with &x,_y . x;, @NAEx,_y 0 x,,, 1N [X—1)/05 Xi/al, therefore, sincey;,, and H;, . have
disjoint support, it suffices to bound the cross-terms in the product of the two above
expansions. We first need an auxiliary result.

LEMMA 5.— Let ¢ be a Borel function with compact support ii®, 1]. For
SX(,‘_;L)/,,,X,*/" € [X(i—l)/na Xi/n]v we have

|g(2jngX(i—l)/n7Xi/n - k)| < Sup|g(x)|(1{X(1—1>/n51j,,k} + 1{X(i—1)/n€1j,,k} + 1Kn)’
whereP,, (x,) < Ci(c, Lyn=*/®for all k > 0.
Proof. —Clearly
(EX_yynXipn € 1juk) C (Xi—y/n € Lipt) U (Xijn € 1,00 U (|87 X| > 277m).

Thus we have the announced inequality with= (|8’ X| > 27/r). By Chebyshev’s
inequality, forr >0

Poy (1) 2By (187X[) < Clhk e, 37D,

where we used the BDG inequality
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(el) We first bound
Z I—I'nk(Xi—l/n)23jn/2w/(Zj'l SX(i—l)/naXi/n - k) (5?X)3'
i=1

Applying Lemma 5 withg = ¢, by takingk large enough, it suffices to bound
3/n/2 - n 3 _ .
232N (81 X) Lgmer, . 1=i—11.
i=1
By combining Hélder and BDG inequalities, the expectation of the last term is less than

C(B, ¢, Lns127/F " (n/ 1)Y/?
i=2

for 8 > 1, where we used tha&,kﬁ(X,/n €l < ﬁZ‘f". Forg < 2, this last quantity
is asymptotically negligible.
(e2) The two other terms

n i 3
D Hj) Exay X)) Yk (X i—1y/0) (8] X)
i=1

and>"!y (H ) (Ex gy xi)n) 22029 (20nEx 4 x,n — K)(87' X)* can be bounded in the
same line as in (e1) so we omit them.

Completion of proof. It remains to bound the main term, namely

n

O _
Z{Iog ﬁ(x,-/n) + nynw,-nuxu_l)/n)(s;’X)Z}.
,+

i=1
Clearly, the order of magnitude is not altered if we replace g:quX,-/n) by
log Z’;—:(X(i_l)/n), as we shall do for technical convenience.
LEMMA 6. —The following expansion holds

or-(x) —2+1 o, _ Vi) 2 v ()

IO - — n A
Yo =241 " IayHy() 3L+ 7 HGoP

for someg, € [0, 1].
Proof. —Elementary by a Taylor's expansion

For technical convenience, we further assume ¢hat2, with no loss of generality.
The general case is obtained by a modification of the constants. We thus need a bou
for
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é Vi (Xi—1y/n) 2
—2)/,1 . + 2”)/n1ﬂ'nk(X i—1 n) AlnX
;{ 1+ v, Hj i (Xi—1)/n) ink (X m)( )

_ 2)/}13 Xn: l//ik(é‘x(i—l)/n) (424)

3 i=1 [1+ ynHjnk(é‘X(,‘,l)/n)]s'

Clearly, the second term has its first order moment bounded thanks to the chgjce of
andy,,.

Up to a change of probability, we may again assume Xhet a local martingale with
diffusion coefficiento?_. Therefore, by a Taylor's expansion, the first term in (4.24)
splits into four terms:

i/n

A ==4y Y Vi [ O = Xmyon-(X) dW,.
i=1 (i~/n
n i/n
n__ 2
A5 = =2y, Z Vi (Xi—1y/n) [Hjnk(X(i—l)/n) —n / H;(Xy)ds|,
i—1 .
(i—1)/n

Aj=—-2y>%" Klfjnk(X(i—l)/n)O(SUijznk(x)),
i=1 u
n i/n
AZZVnZZ[wj,,k(X(i—l)/n) —n ank(Xs)dS]-
i=1

(i—D/n

The expectation of the four terms is bounded using the same technigjuesbounded

by a martingale argument; fod5, we use the fact tha¥; , and H;,, have disoint
supports;A5 and A} are bounded using the same straightforward arguments. The proof
of Proposition 2 is complete.

4.4. Proof of Theorem 1. upper bound

With no loss of generality, we prove the upper bound of Theorem 1 under the change
of probability P;* — P’;" under whichX is a local martingale. This only amounts to a
modification of the constants. Let

RV (0?) = E" {n?3|| T — 62| 1pe_ps ),
R?(0?) =E"{¢,2

n,apn

= 2
Tn - 02||[ 1/);:(/)17,01" }

By Proposition 2, sincd is optimal w.r.t.X, we have

R.(T*, 2, p}) < C(c, L,v) + supR? (0?).

02ey
Define

R¥(c6?) = EX' {0,2 Mn(07) Lpsmg,u }-
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Using (a) and (b) of the preliminary decompositions, we have

supR? (6% < C(c, L,v) +2 supRP (0?).

02ex o2ex

Letq,8 >0, 0<u <1 andk, = |g :gg’;J Puts) = ( fo'gg” + 1). We introduce the
following partition of :

Fo={A=-a,(0) <}, Ti ={A-0A(0%) =1},

={ <A-8)A,(0%) <tq}, k=1,... k-1

Let also

Dy = {|M, (0%)] <84, (%) }.

We thus obtain the decompositi®}> (62 = >>F_; R (52), with

R’(13’ b (02) = EZ’ZU {wn_,ftn A” (02) 1{p;=(ﬂn.an ZFS} } ’
kn—1
(32) Z Env{(pna ( 2)1{ﬂﬁ=<ﬂn.an:rz:0n}}’

R;(13’3)(O' ):E:-’ZV{()DI‘I_,OM ”(G )1{ﬂn =@n,an > F D”}}’

REZY(0%) = Ep{0nd, An (%) L Um0

(@) Let us first studyR®V(0?). Clearly RV (02) < (Ifgg: )22, Therefore,
letting § — 0, we obtain the bound

lo 1/2
lim supR®Y (0?) < (ﬂ) A2,
n—00 a < loga

wherea = liminf,_ » «,. (1/1og0=0.)
(b) We next turn toR®4(0?). Since |A,(0?)| < 82, by (c) of the preliminary
decompositions and the definition bBf,, we have

RI*¥(0%) <8, P { An(0®) + My (0%) + Nu(0%) <327, (T5)": (D)}

<Cle Lo, B {IM02)] 2 580(0%: 8,(09) > 115 )

1-6

<Cle, L,v)g, 2 :”{|M A2 804(0%); Au(0?) = f(”()sxzw,f%},

whereC (u) = ./'03“ We now need the following fundamental technical result, proof of
which we delay until Appendix A.

LEMMA 7.-— Letéq,8, > 0. We have

Py {|M(0%)] = 818, (0%): Au(0?) > 6207, } =0(97.,)

uniformly ino? € ¥ asn — oo.
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Applying Lemma 7 withs; = §, 8, = $%12, we obtain

lim supR®%(0?) =0.

n—0o0 262
(c) We now studyR>? (¢2). Analogously
R34 (62) < Clc, L, v)g, 2 P13 {d,0)) <A%92, i Th: Dy}

The following inclusion holds
{d.(67) <3292, T4 Da}
= {84(0%) + Mu(0®) + Nu(0?) <2207, } N {A =) A (0?) > 11, }
N{|M.(0%)] <884 (0?)}

glogn , , }
CIN,(0%) <4/ T—2 )
—{ ( ) |OgOln (pn,an

It remains to bound®’s"{|N."| > «ffo'gi’,” W22, ), i=1,2.

We plan to use Lemma 1 to bound the first term. Fpr2, we have

- 1 /gqlogn _ _
Paév{| (l)| Z5 loger kchfan} <C(t,c,L,v)n 3’/22/”’% ffn

By taking ¢ large enough, we see that this term '(sojgan), uniformly in 02 € © as
n — oo and is thus asymptotically negligible.
Likewise, we plan to use Lemma 3 for the second term.tEoR, we have

- 1 /glogn
Paz {| (2)|/ loga, Kz(ﬁfa,,}

lo
< C(t,c,L,v)nl_S’/ZZJ"’fpn_ff +exp{ A(t, c,v)n?2” J”A4<pna Iog?n }
n an
Takingr = 10 and using the definition &f, the last quantity is less than

o(¢pf,,) +n?

asn — oo, uniformly in 62 € ¥. Sinceq is free, the above term is asymptotically
negligible and

(d) We eventually turn t(R,(f"z)(az). Letk € {1, ..., k, — 1}. The following inclusion
holds

{d,0) <2202, T D} S {Na(0?) < =1 + 227, s A=) A, (07) <14}

klo
- {Nn (02) < _)\2(/)3,05,7 gu

log e,

L(1—8)A,(0?) < t}
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It follows that

RE?(0?)
ko—1 _n

-2 D1 gy 2 > o [klogu o
< P N, < —A s (1=8)A, <t .
@n 0y Z 1—35 o2 { (G ) (pn,an |Og o, ( ) (G ) k+1

Again, we splitv, (o?) into NV + N@ and we successively apply Lemmas 1 and 3.
The calculation is done in the same way as for the term in (c) so we omit it. Eventually

22 (k +1)logu\*'?
R®?2(0?) < Z[1+ <7) }uk+rn(02),
1-6 7 loga,

wherer,(0?) = 0o(1) uniformly in 62 € ¥ asn — oco. Letting § — 0, we obtain the
bound

logu &
lim supR(&? < (k + )Yk,
n—o00 5 s ( ) /| Z

The proof of Theorem 1, upper bound, is complete.
4.5. Proof of Theorem 1: lower bound

45.1. Preliminaries

The same preliminary remark as for the proof of Proposition 2, lower bound, can
be applied and we consider the parametrizatidm> 1/02 with no loss of generality.
We then follow the arguments developed by Lepski in [11]. For simplicity, we prove
the lower bound under the additional restriction ttat [0, 1] and o&(f, x) = 1 in
Assumption B4. Take an infinitely many times differentiable functipnR — R with
support in[0, 1] and such that sypy’(x)| < L/c? and [ ¥?(x)dx = 1. Consider the
parametric subfamily

1 2
Cy, = {02 e X.(L): pren =1+ 2_3J"/ZZ Ve, k(X), v = il}

k=0

indexed byv = (vy,...,vom), SO thatg C;, = 22" and the functionsy;, , and ¥«
have disjoint support fok £ k’. These conditions imply under assumption B4 that for
sufficiently largen, we have

Cjn C EC(L)

Recall that foro? € C;,, we denote byQ? the law of
1 /

and that we defing?”, analogously. Likewise, we also use the notatify, for the
law of X" = (X;/,, i =1,...,n) on R" where X solves (4.25). In the following, we
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abbreviatchg(,ﬁo) by Qo and Q,2 by Q, for a genericw? = o2(v) € C;, parametrized

by v. If V, ={v=(v1,...,vom): vy = £1}, we will use the following sets, fok =
1,...,2"
Vel =weV,: u==1, V9 ={w==1 k'#kandy =0}
Define further forv € V, the vectorr, (v) = (v, ..., vk_1, 0, vgy1, ..., Vo) @nd
d n,v d n,v
78 = Qn?v L A= Z Q;,v, k=1,...,2".
dQ: ) 2 " Vo d Qo

The lower bound essentially relies on the following lemma.

LEMMA 8.— (i) There exist$y > O such thatfor0 < § <§pandj =1,...,2, we
have

on({zP <1-8yn{z{’ <1-5}) <8

(if) We havelimsup,_, ., SUR < <o /200" {(A%)?} < 1, where the notationQ”;’ is
also used to denote expectation.

The proof closely follows the techniques developed for the lower bound of Proposi-
tion 2, based on expansions of likelihood rathg?- U/erkw) underQ?” andd Q' /d O
underQj. To simplify the exposition, we omit the proof of Lemma 8 and refer the reader
to Proposition 2, lower bounds in Appendix A.

4.5.2. Completion of proof
Let p, be an arbitrary r.n.f. inf2,, such thaty, (0,)/x.(p;) — 0 asn — oco. Let T, be
an arbitrary estimator of /-2 and define

Bn = {,On = Xn (;On)}

We have
n,v -2 1
sup Ec’z Ly Tn -
02ex ol
2
n,v -2 1
Zsup Q> 30, ||Th — =| 1,
o2ex o 1
1 2
= sup QZ’ZV{Xn(pn)_Z Tn ) 13,,}
o2(v),veV, o1
1 n,v -2 1 ?
222—‘]}1 Z QU’ {Xn(pn) Tn_ﬁ [18,7}
veV,

Xn(pn) - 1 \?
o2 ZZ 0, {/<TH(X)_0U2(X)) 1Bndx}.

k UEV 1

nk
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SettingD, = (2. <1-8}N{Z{ " <1~ 8}, the last quantity is greater than

-2
X”(sz);ln > QTk(U){lB'! (ZZ%/(Tn(x)—2_3J"/2¢Jnk(X))2dx

k UEV I,k
n

+Zpk [ (Lo + 2—3’"/2wjnk<x>>2dX) }

Lk
1_3 n n 2 B
2(2)2#2 > 0B, man}/z Syl () dx
k UEV(O) 1-117
l (S n n g
> 2w L2 5 (0,18, - 0,{(Du))
ey

We claim that there exists> 0 such that

Pui = szn =) > 0B = k=1,...,2". (4.26)

vEVy

Let us temporarily admit (4.26). Then, takidg< 7/2, by (i) of Lemma 8, we obtain
Q"' {(D, )} < t/2 for all k andv € V9. From the choice of,, it follows that

1(1—8)

Ry(T,. . py) > Xn(0n) 2272 = Cx (0n) 207 4, -

Showing thaty, (0,)/¢n.«, — 0 asn — oo will complete the proof. For this, it is enough
to show thaty, (o)) < ¢n.q,, Of, as follows from Definition 1,

lim supa;, supPg‘”{pn—wnan}\ . (4.27)

n—oo

Let us prove (4.27). We have
Ve ok — pmv ) _ > 2 < phv g > 2 )
Pé) {,On (pn,ot,,} Pé) {0“2(]; dn (9) Ek: CJ,,k = A (pn,oz,,} X P9 {dn (9) = A (pn,oz,,}

Let A, (02,0) =3, Lyecl cjn (08(-,0) — 02 — a}(a?). In the same line as (a) of the
preliminary decompositions, we hadg(6) = A, (02, 0) + M, (64(-, 0)) + N, (c2(-, 6)).
First, A,(c?, 8) = 0 underP,. Next, giveng > 0, it suffices then to bound

Py M, (0§, 0)) = qA2na, } + P {Nu(08(.0)) = (1 — @A’y , }-

By Lemma 7, the first term is asymptotically negligible. Applying Lemma 3 to the
second term and letting— 0, one easily checks that the choice\gfields (4.27).

It remains to prove (4.26). Since, € 2,, taking n large enough, we have
o105 (B} < 1+ 8. Therefore

Puk > 05" {A318,} > 05" { A 15, + coy "L, } — c(1+3)
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for a givenc > 0. Since infy(Ax14 + ca; M 1ay) = Ayl s
follows that

+ cozn_ll{A/nc Seal)s it

<Coz,,_l}

Pk = QS’U{Aﬁl{Aﬁqan—l}} —c(1+9)

1 . _
:1—c(1+3)—ﬁ >0V {AL = cayt)

veV,E?,g
o, ;
>1—-c(1406)— P Z Qv’v{Aﬁ}
¢ vep®©
n,k

=1—c(148) — ¢ T, QB {(A%)?).
Applying (i) of Lemma 8, taking: = a2/#/(1+8)¥2 and using the assumption < 24,
we see that fos small enough the last term in the above inequality is bounded below,
uniformly in n andk. Inequality (4.26) follows and the proof of Theorem 1 is complete.

4.6. Proof of Theorem 2

Define
Au(0d) = > {esul(0§¢.8)) —o?) —ai(0?)}°
k: IJnkCI

which is defined likeA, (62) of (4.13) in (a) of the preliminary decompositions in the
proof of Theorem 1, replacing; by 6,. Next, in the same way as (b) of the preliminary
decompositions, we have

HTH(O)—GZHf: Z cik(az—aoz(-,én))+€Jn(02),

ki Ijkcr
where
E,0H=>" > d%(0f(.6,)—0?) <Clc,L)27%"

=k Icl

sincec? — 002(-, 6,) € a.(L). The proof of the upper bound then readily follows from
that of Theorem 1, replacing,, (62 by A, (¢). In view of the proof of Theorem 1, the
lower bound will follow from

X (PA") < Pn.ay- (4.28)
We first need an approximation result.

LEMMA 9. - We have, undep,
d,(6,) = d, () + v, (0), (4.29)

wherelim,_, . o, ¢, 2 SUR.e E4 " {|va(0)]} = 0.
Proof. —Straightforward computations yield (4.29) und®r, having

V. (0) =% (08, 0,) —d(,0) + 2 s (0. 0,) — oG, 0)a} (oE(-,0)).
k k
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Clearly

32 (02(,8,) — 02, 0)) < |02, 6,) — 02, 0)|[T < M6 — 6,2
k

by Assumption A2. Integrating w.r.tP,"" and recalling that), is optimal w.r.t.®,
this term is of orderm~Y? = o(a,¢, ). By Cauchy-Schwarz, the same argument
together with (4.15) show that after integration w.Pf.", the second term is less than
C(c, L,v)n=Y?27/» and thus has the right orders

We are ready to complete the proof. lget- 0. We have
P {dy0n) = M20% , 3 < P {dn(0) = (L= )A%0f , ) + Pi {0 (0) = 92792,

The second term is asymptotically negligible by Lemma 9. Letting 0, we are back
to (4.27) of the lower bound of Theorem 1 and (4.28) follows. The proof of Theorem 2
is complete.

Appendix A. Proof of Lemma7

We need some notation. Fére ® ando? € ¥, let

§(0%0)=2" 3 [esu(0® =050, ) +a(0%)]a(0?).

k: IJnkCI

Note that since sygz/"(x, X)| < 2c and sup |62 — (9, )| < 2c, we havelé (02, 0)| <
4c?. Forg e [—4c?, 4c?], define

An(02,0,6)= > (6% —0af,))+2 "¢

ki Iy, kCI
We thus have the following representation

A, (0%) = A, (0%,6;,6(0%,6))). (A1)

' Yo

By Assumption B, the se® is bounded, i.e.® C [—P, P]® for someP > 0. LetQ =
max(P, 4c?). Fix someb > 0. We approximate® x [—4c?, 4¢?] by an-net constructed
as follows.

Fori =0,%+1,...,£K,, K, = |On’], put p; =in~" and let

Se={pi, i=i==1,...,%K,}, S$=8§,x--x8, (s+1times)
Finally, define

Na=0 x[-0, 0INS,.

Clearly, # N, < (20n")**L. For x € [-Q, Q], let u(x) be the unique element in
S, such thatu(x) < x < u(x) + n~". Finally, if 6 = (6,...,6,) denotes a generic
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element of® and¢ € [—Q, Q], defineu*Y (8, &) = (u(6), ..., u®,), u(€)). Clearly,
ust@, &) e N, and

26, &) — 6, 8)|| <n”Vs + 1

Now, let (6,,&,) = u®+Y(6;,£(02 6;)). We will first prove Lemma 4 replacing
©,, £(o?, 0;)) by (6,,&,) and then show that the approximation has the right order.
(a) More precisely, we claim that for> 2

P { |, (0% 0, 8)] > FAu(0% 0, ): 8, (0%.01.8) > 2o, |

<C(t,c,L,v)n™™

for somea > 0, uniformly ino? € . Indeed, let

1
N (0?) = {(9 £)eN,: A, (02,0,8) > <p,mn}

We have
91

- - - d
1M (0% 8| > 2800818 Ao 00B) > 2ok, |

DV, ) n =
= Pc,é{\Mn(02,9)|>§1An(02,9,5); (en,sn)zw,s)}
0,6)eN;H (02

~ 616
< Y P“&”{|Mn(oz,9)| > 20 /A, (02,6.8)g, }
o 4 B
6.6)eN;f (02
(b) Next, we need deviation boundstn(az,e). Using (a) of the preliminary
decompositions, we writéf, (2, ) = %Mn (02,0) + >, arb}, where

2],,/2 n

Z{Z C/n 05(9, '))lx(jl)/nEIJnk:| &

Clearly, 1\71n (02, 0) is a sum of martingale increments, with variance less than
Jp N

2 - 44\ 1/2
n Z(E:_’Zn{ |:Zc.lnk (02 _G(]2(99 '))1X(,‘1)/,761Jnk:| })
k

i=1

C(c,L,v)

where we used Cauchy—Schwarz inequality and the factAHaY (em*} < C(e, L,v)
thanks to the BDG inequality.

Leti > 2. SinceX 1)/, has a densityf,_,, ,(x) w.r.t. the Lebesgue measure under
P2, which satisfiep;_;,,,(x) < C(c, L)(3)"? we successively have

4
E;’Zn{ {Z Chk (02 - 05(0’ '))lx(il)/nEIJnkil }
k
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4
<C(c,L),/(if71)R/{§k:c,n 02— 020, ")) xe,,k} dx

( _1) Z Cliky - CJnk4/lx€1J k" JCEIJ k4dx

,,,,,

=C(c L)

It is easily seen that restricting the sum to the 4-upléts. .., k4) € Z, defined by

Ty ={(ky, ..., ka): 1< ki <2 ky <--- < ky} does not alter the order (im) of the

above sum. Moreover, faks, ..., k4) € Z,, we have[, Leetyy = Leery, dx = 274,
Therefore, using the last bound and factorizing again, we have that the last term in th

above inequality is of order

4
V)i — 1274 {Z lesu(o? — o, -))|} < Cle, L)y/n/(i — 127%" A2(0?,0,£)
k

for large enoughe, where we used the decomposition (A.1) and Jensen’s inequality. We
finally obtain

E'J{M, (6% 0)*} <C(c,L,v)= Z(n/l)l/4A (02, 6,,8)
i=1

<C(c,L,v)A,(07,60,,8).
Lets > 2. By Chebyshev inequality, it follows that

{‘[M (0 9)‘ \/_(pn s An(o—zvevg)} < C(I,C,L,U)n l/z(pn_([xn

From the choice op,, “ and sincer is free, this term is arbitrarily small in power of
We now turn toM,, (o2, 6, 5)— M (02,0, &). By repeated use of Cauchy—Schwarz,

we have
| }

<(Ex{| i) e o)

The first term is of order 2 < Cg,.,,, uniformly ino2 € =, by (b) of the preliminary
decompositions. Using the same technique asMr the second term is less than
C(c, L,v)n™\/A,(c2,0,&) for somea > 0. By Chebyshev inequality, we obtain

(0%,6,8) — M, (0%,6,§)

k

{‘M o QS)—%M (o2, 9)‘ «/_wm An(azﬂ»f)}

<C(t,c,L,v)n~ .
(c) Putting together (a) and the deviation bounds of (b), we readily obtain &
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~ — 1) — - - 1)
P:é”{|Mn (020,,8)| > ElAn (0200, E); An(02,0,,8,) > fw,ian}

SENF(0D)Clt e, L, v)n™ < Clt,c, L, v)n? s+

Since the choice of is free, this term is arbitrarily small in power afand claim (a) is
proved.

(d) It remains to prove that Lemma 4 follows from claim (a). Indeed, it is easily
checked that

(A, (02,0,,8,) — A, (02,607, 8(02,07))| < C(s, e, Lyn ™",
whereu is defined in Assumption B1. We further assume that2/... We thus obtain
the following inclusion, for large enough

- - 8
{180(0?)] = 8207, } S {An (02 00, &,) > Ezgoz} (A.2)

Likewise, fort > 2, we claim that
ﬁ;&"ﬂMh (02, 0y) — M, (02, 9_,1)| >n} <C(t,c,L,vyn™

for somea > 0. The proof is done using the same kind of arguments as for (b) so we
omit it.
This last inequality, together with (A.2) and (a) completes the proof of Lemma 4.
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