Biological Diversity through Duplication

F. Farnoud 🌴
with
M. Schwartz🔥, J. Bruck🌴

🌴 California Institute of Technology
🔥 Ben-Gurion University of Negev
Mutation and Diversity

- Mutation plays a crucial role in evolution by creating diversity.
- Types of mutation include:
 - Point mutation: TCATGCA → TGATGCA
 - Deletion/insertion: TCATGCA → TCATAGCA
 - Duplication:
 - Tandem: TCATGCA → TCATCATGCA
 - Transposon driven: TCATGCA → TCATGCATCA
- A mathematical study of duplication systems.
Repeated Sequences in Human Genome

- The majority of the human genome.

- “Much of the remaining ‘unique’ DNA must also be derived from ancient transposable element copies that have diverged too far to be recognized as such.” [Lander et al. Nature 2001]
Repeated Sequences in Human Genome

- The majority of the human genome.

- “Much of the remaining ‘unique’ DNA must also be derived from ancient transposable element copies that have diverged too far to be recognized as such.” [Lander et al. Nature 2001]

- Cause chromosome fragility, expansion diseases, gene silencing, rapid morphological changes.

[Myers et al., Nature 2007]
Role of Duplication in Generating Diversity

- Is it possible/probable to generate a diverse family of sequences by duplication?

- Two types of models:
 - **Combinatorial**: Study of what is possible.
 - Information theoretic view: capacity and expressiveness of string duplication systems.
 - **Stochastic**: Study of what is probable.
 - Asymptotic properties of likely outcomes.
A Tandem Duplication String System

- String system: $S(\text{seed, rule})$

- Example:
 - Seed = AGT
 - Rule: a substring of length 2 may be duplicated in tandem
A Tandem Duplication String System

- String system: $S(\text{seed, rule})$
- Example:
 - **Seed** = AGT
 - **Rule**: a substring of length 2 may be duplicated in tandem

\[
\begin{align*}
\text{AGT} & \quad \downarrow \\
\text{AGAGT} &
\end{align*}
\]
A Tandem Duplication String System

- **String system:** $S(\text{seed, rule})$
- **Example:**
 - **Seed** = AGT
 - **Rule:** a substring of length 2 may be duplicated in tandem
A Tandem Duplication String System

- String system: $S(\text{seed, rule})$
- Example:
 - Seed = AGT
 - Rule: a substring of length 2 may be duplicated in tandem
- System contains all possible strings.
Capacity and Expressiveness

- The capacity of S is given by

$$\text{cap}(S) = \lim_{n \to \infty} \sup \frac{\log(\text{# strings of length } n \text{ in } S)}{n}$$

- Base of log = #distinct symbols in seed

- Used to measure the amount of information a constrained coding system can store.

- A string system is fully expressive if it can generate every string as a substring.

- Full capacity (capacity = 1) \Rightarrow Fully expressive
Duplication Rules
Duplication Rules

❖ Duplication rules:
Duplication Rules

- Duplication rules:
 - Tandem duplication: TCATGC → TCATCATGC
Duplication Rules

- Duplication rules:
 - Tandem duplication: $\text{TCATGC} \rightarrow \text{TCATCATGC}$
 - Reverse tandem duplication: $\text{TCATGC} \rightarrow \text{TCATTACGC}$
Duplication Rules

- Duplication rules:
 - Tandem duplication: \textit{T}CATGC→\textit{T}CATCATGC
 - Reverse tandem duplication: \textit{T}CATGC→\textit{T}CATTACGC
 - Displaced duplication: \textit{T}CATGC→\textit{T}CATG\textit{CAT}C
Duplication Rules

- Duplication rules:
 - Tandem duplication: TCATGC → TCATCATGC
 - Reverse tandem duplication: TCATGC → TCATTACGC
 - Displaced duplication: TCATGC → TCATGCATC
 - Parameters: length of duplicate k, gap k'
Duplication Rules

- Duplication rules:
 - Tandem duplication: T\text{CATGC} \rightarrow T\text{CATCATGC}
 - Reverse tandem duplication: T\text{CATGC} \rightarrow T\text{CATTACGC}
 - Displaced duplication: T\text{CATGC} \rightarrow T\text{CATG}\text{CATC}

- Parameters: length of duplicate k, gap k'

- Tandem duplication studied in literature: [Dassow’99,’02], [Leupold’04,’05]: Concerned with position in Chomsky hierarchy of formal languages.
A Tale of Two Systems

- **Capacity** measures the ability of systems to generate a large number of sequences.
- $S(\text{AGT, } T_2)$ is not fully **expressive** (e.g., cannot have GAT as a substring), but $S(\text{AGT, } R_2)$ is fully expressive (e.g., AGGATTG is in the system).
Tandem Duplication

- T_k: Tandem duplication of length k
- TCATGC → TCATCATGC ($k=3$)

\[S(AGT, T_2) \]

\[\text{AGT} \]
\[\text{AGTGT} \]
\[\text{AGTGTGT} \]
\[\text{AGTGTGT} \]
\[\text{AGTGTGT} \]

\[\text{AGAGT} \]
\[\text{AGAGGAGT} \]
\[\text{AGAGGAGT} \]
\[\text{AGAGGAGT} \]

...
Tandem Duplication

- T_k: Tandem duplication of length k
- $\text{TCA}T\text{GC} \rightarrow \text{TCA}T\text{CAT}G\text{C}$ ($k=3$)

For any s and positive integer k, $S(s,T_k)$ has capacity zero!

- Number of sequences grows polynomially.
- It is never fully expressive.
Tandem Duplication with Variable Length

- \(T_{\geq k} = \) Tandem duplication of length \(\geq k \)
- \(T_{\geq 2} : TC\text{ATGC} \rightarrow TC\text{ATCATGC} \rightarrow TC\text{ATCTCATGC} \)
Tandem Duplication with Variable Length

- $T_{\geq k} = \text{Tandem duplication of length } \geq k$
- $T_{\geq 2}: \text{TCATGC} \rightarrow \text{TCCATGC} \rightarrow \text{TCATCTCATGC}$

For a nontrivial string s, $S(s, T_{\geq k})$ is *fully expressive* and $\text{cap}(S(s, T_{\geq k})) > 0$.
Tandem Duplication with Variable Length

- \(T_{\geq k} = \) Tandem duplication of length \(\geq k \)
- \(T_{2} : \) \textsc{CATGC} \rightarrow \textsc{CATCATGC} \rightarrow \textsc{TCATCTCATGC} \)

For a nontrivial string \(s \), \(S(s,T_{\geq k}) \) is \textit{fully expressive} and \(\text{cap}(S(s,T_{\geq k})) > 0 \).

Also, \(\text{cap}(S(s,T_{=1})) \geq \log(r+1) \), where \(r \) is the largest (real) root of \(x^\delta-(1+x+\cdots+x^{\delta-2}) \), and \(\delta=\# \text{distinct symbols in } s \).

<table>
<thead>
<tr>
<th>(\delta(s))</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{cap}(S') \geq)</td>
<td>1</td>
<td>0.77</td>
<td>0.65</td>
<td>0.58</td>
</tr>
</tbody>
</table>

See the poster by \textit{Siddhartha Jain} for tandem duplications with short duplication lengths.
Tandem Duplication with Variable Length Example

A substring from chromosome 1 of human genome

```
GGGGTGTGTTGTGTGCTCTGCAGGGGCACTTGGGGGGGTTGTGTTGGTCTGCGGGGCCCTGGGGGGTGTGGTGGGGTCTGCGGGGCCCTGGG
GGGGTGTGTTGTGCTCTGCAGGGGCACTTGGGGGGTGTGGTGGGGTCTGCGGGGCCCTGGG
GGGGTGTGTTGTGCTCTGCAGGGGCACTTGGGGGGTGTGGTGGGGTCTGCGGGGCCCTGGG
GGGGTGTGTTGTGCTCTGCAGGGGCACTTGGGGGGTGTGGTGGGGTCTGCGGGGCCCTGGG
GGGGTGTGTTGTGCTCTGCAGGGGCACTTGGGGGGTGTGGTGGGGTCTGCGGGGCCCTGGG
GGGGTGTGTTGTGCTCTGCAGGGGCACTTGGGGGGG
```

```
Tandem Duplication with Variable Length Example
Tandem Duplication with Variable Length Example

GTCTG → GTCTGCTG → GTGTGTGTCTGCGCTG → GGGGTGTGTGGTGTCTGCGGGGCCTGGGGGGG
Tandem Duplication with Variable Length Example

GTCTG → GTCTGCTG → GTGTGTGTCTGCCTCTG → GGGGTTGGTGGTCTGCGGGCCCTGGGGGGG

→GGGGTGTGGTGGTCTGCGGGCCCTGGGGGGG TGTGGTGGTCTGCGGGCCCTGGGGGGG
# Tandem Duplication with Variable Length Example

| GTCTG  | → | GTCTGCTG | → | GTGTGTGTGGCTGGGGGCCCTGGGGGGGTGTGGTGTCGGGGGCCCCTGGGGGGGTGTCGGGGGGGGGGGGGTGTCGGGGGCCCCTGGGGGGGGGGGGGGGGGGGGGGG |
|--------|→ | GTGTGTGGCTGGGGGCCCCTGGGGGGGTGTGGTGTCGGGGGCCCCTGGGGGGGGGGGGGGGGGGGGGGG |
| →GGGGTGTGGGTGTGGTCGGGGGCCCCTGGGGGGGTGTGGTGTCGGGGGCCCCTGGGGGGGGGGGGGGGGGGGGGGG |
| →GGGGTGTGGGTGTGGTCGGGGGCCCCTGGGGGGGTGTGGTGTCGGGGGCCCCTGGGGGGGGGGGGGGGGGGGGGGG |
Tandem Duplication with Variable Length Example

<table>
<thead>
<tr>
<th>GTCTG</th>
<th>→</th>
<th>GTCTGCTG</th>
<th>→</th>
<th>GTGTGTGTCTGCCTG</th>
<th>→</th>
<th>GGGGTGTGGTGGTGTCTGCCTGGGGGCTTGGGGGGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>→GGGGTGTGTTGTTGCTCTGGCCCCCTGGGGGGG</td>
<td>TGTGGTGGTCTGCGGGGCCCCTGGGGGGGG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→GGGGTGTGTTGTTGCTCTGGCCCCCTGGGGGGGG</td>
<td>GTCTGCGGGGCCCCTGGGGGGGG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→GGGGTGTGTTGTTGCTCTGGCCCCCTGGGGGGGG</td>
<td>G TGTGGTGGTCTGCGGGGCCCCTGGGGGGGG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tandem Duplication with Variable Length Example

GTCTG → GTCTGCTG → GTGTGTGTCGCGTG → GGGGTGTGGTGCTCTGCCGGGCTGTGGGGGGG

→GGGGTGTGGTGCTCTGCCGGGCTGTGGGGGGG

→GGGGTGTGGTGCTCTGCCGGGCTGTGGGGGGG

→GGGGTGTGGTGCTCTGCCGGGCTGTGGGGGGG

→GGGGTGTGGTGCTCTGCCGGGCTGTGGGGGGG
Tandem Duplication with Variable Length Example

GTCTG → GTCTGCTG → GTGTGTGTCGCGGCTG → GGGGTGTGTTGCTGCGGGCCCTGGGGGGG

→GGGGTGTGTTGCTGCGGGCCCTGGGGGGG

→GGGGGTTGTGGTTGCTGCGGGCCCTGGGGGGG

→GGGGGTTGTGGTTGCTGCGGGCCCTGGGGGGG

→GGGGGTTGTGGTTGCTGCGGGCCCTGGGGGGG

→GGGGGTTGTGGTTGCTGCGGGCCCTGGGGGGG

→GGGGGTTGTGGTTGCTGCGGGCCCTGGGGGGG

→GGGGGTTGTGGTTGCTGCGGGCCCTGGGGGGG

→GGGGGTTGTGGTTGCTGCGGGCCCTGGGGGGG
## Tandem Duplication with Variable Length Example

<table>
<thead>
<tr>
<th>GTCTG</th>
<th>GTCTGCTG</th>
<th>GTGTGTCTGCGGTTG</th>
<th>GGGGTGTGGTGTCTGCGGGGCGGGCCCTGGGGGG</th>
<th>TGTGGTGGTGTCTGCGGGGCGGGCCCTGGGGGG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GTGCTGCTGCTGCTG</td>
<td>GGGGTGTGGTGTCTGCGGGGCGGGCCCTTGGGGG</td>
<td>GGGGTGTGGTGTCTGCGGGGCGGGCCCTGGGGG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GTGCTGCTGCTGCTG</td>
<td>GGGGTGTGGTGTCTGCGGGGCGGGCCCTGGGGG</td>
<td>GGGGTGTGGTGTCTGCGGGGCGGGCCCTGGGGG</td>
</tr>
</tbody>
</table>
Reverse Tandem Duplication

- $R_k$: the duplicate of length $k$ is inserted in reverse.
- $R_3$: $\text{T}\text{CATGC} \rightarrow \text{T}\text{CATTACGC}$

[Griffiths et al, An Introduction to Genetic Analysis, 2000]
Reverse Tandem Duplication

- $R_k$: the duplicate of length $k$ is inserted in reverse.
- $R_3$: $\text{T CAT GC} \rightarrow \text{TCAT TAC GC}$

For nontrivial $s$ and positive integer $k>1$, and $S=(s,R_k)$, we have $\text{cap}(S)>0$ and $S$ is fully expressive.

[Griffiths et al, An Introduction to Genetic Analysis, 2000]
Tandem vs Reverse Tandem

- The main difference between tandem and reverse tandem duplication is that the former leads to near-periodic behavior with period $k$, but the latter does not.
Displaced Duplication

- $D_{k,k'}$: Duplicates a $k$-substring and inserts it $k'$ positions after original copy.
- $\text{TCA} \text{TG} \text{C} \rightarrow \text{TCA} \text{TG} \text{CAT} \text{C}$ ($k=3, k'=1$)

Displaced duplications
Displaced Duplication

The capacity of \( S = (s, D_{k,k'}) \) is zero if and only if \( s \) is periodic with period \( \gcd(k, k') \).

- “if” direction: if \( s \) is periodic with period \( \gcd(k, k') \), then so is every other string in \( S \):
  - \( k=2, k'=4, s=\text{AGAGAGAG} \Rightarrow S=\{ (\text{AG})^m : m \geq 4 \} \)

- If \( \gcd(k, k') = 1 \), then \( S \) is fully expressive.
## Summary of Results for Combinatorial Models

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0 &lt; (\text{cap}(S)) &lt; 1</th>
<th>1</th>
<th>Expressive</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tandem (k)</strong></td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td><strong>Tandem (\geq k)</strong></td>
<td>✗</td>
<td>?</td>
<td>?</td>
<td>✓</td>
</tr>
<tr>
<td><strong>Reverse Tandem</strong></td>
<td>✗</td>
<td>?</td>
<td>?</td>
<td>✓</td>
</tr>
<tr>
<td><strong>Displaced ((k,k'))</strong></td>
<td>✓</td>
<td>✓</td>
<td>?</td>
<td>✓✗</td>
</tr>
</tbody>
</table>
Stochastic Duplication Systems

- $s$: evolving string
- At each time step, a substring of length $l$ is duplicated.
- Length $l$ of duplicated string is bounded, has distribution $q_l$.
- The position of the copy depends on type of duplication.
- After a long time, what does the outcome look like?
Symbol Frequencies

- $\mu_n(a)$: # occurrences of $a$ in $s$ at time $n$
- $L_n$: length of $s$ at time $n$
- $x_n(a) = \frac{\mu_n(a)}{L_n}$: frequency of $a$ in $s$ at time $n$
- How do symbol frequencies change in duplication systems?
  - Convergence?
  - Dominated by one symbol?
Symbol Frequencies

Symbol frequencies are martingales and converge almost surely. If $K$ is the bound on distribution $q_{l}$,
\[
P(|x_n(u) - x_0(u)| \geq \lambda) \leq 2e^{-\lambda^2L_0^2/(2K^4)}.
\]
String Frequencies

- How do frequencies of strings (length>1), e.g. AA and AC, change? Not martingale!
Stochastic Approximation

Suppose a discrete random process $x$ satisfies:

$$x_{n+1} - x_n = a_n(h(x_n) + M_{n+1})$$

for a Lipschitz function $h$, martingale difference $M$, and

$$\sum a_n = \infty, \quad \sum a_n^2 < \infty, \quad \text{e.g., } a_n = \frac{1}{n}.$$  

Then $x_n$ converges almost surely to a compact connected internally chain transitive invariant set of the ode

$$\dot{x}_t = h(x_t).$$
Tandem Duplication

- Start with a seed $s$. Repeat:
  - Choose a bounded length $l \sim q_i$.
  - Choose random $l$-substrings of $s$ and insert a copy after original.
- Example: Seed = 0110, $T_{1,2}$, for $n=100$:  
  011100001001111111110000000000000000000000111111111111111111111111111111111010100111
  1111110111110101000000101010111010110111101100110000001101010000000
Tandem Duplication: Autocorrelation

- **Autocorrelation of** $s$: $R(r) = \sum_{i=1}^{\lfloor s \rfloor} \mathbb{I}(s_i = s_{i+r})$
- $\rho_n = \frac{1}{L_n}(R_n(0), \ldots, R_n(m-1))$.

- If we choose $m$ such that $q_i=0$ for $i \geq m$ then

$$\dot{\rho} = A\rho,$$

$$A = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
q_1 & -1 + q_2 & q_3 & q_4 & q_5 \\
q_2 & q_1 + q_3 & -1 + q_4 & q_5 & q_6 \\
q_3 & q_2 + q_4 & q_1 + q_5 & -1 + q_6 & \cdots \\
\vdots & & & & \ddots
\end{pmatrix}$$
Tandem Duplication

- **Eigenvalues:** either 0 or negative imaginary part $\rightarrow$ Stable system.
- **Null space:** depends only on the set of indexes $i$ with $q_i$.
  - All vectors in null space are periodic with period $\gcd\{i: q_i > 0\}$. 
Tandem Duplication

- **Eigenvalues**: either 0 or negative imaginary part → Stable system.
- **Null space**: depends only on the set of indexes $i$ with $q_i$.
  - All vectors in null space are periodic with period $\text{gcd}\{i:q_i>0\}$.

\[ \rho_n(d) \text{ converges almost surely to 1. That is, with high probability, every two symbols at distance } d \text{ are the same—the string becomes locally periodic.} \]
Tandem Duplication

- **Eigenvalues:** either 0 or negative imaginary part $\rightarrow$ Stable system.
- **Null space:** depends only on the set of indexes $i$ with $q_i$.
- All vectors in null space are periodic with period $\text{gcd}\{i: q_i > 0\}$.

$\rho_n(d)$ converges almost surely to 1. That is, with high probability, every two symbols at distance $d$ are the same—the string becomes locally periodic.

- Example: seed = ACGTCATG, with $q_4 = q_6 = \frac{1}{2} \rightarrow d=2$.
- At $n=15000$:
  ...TATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTAT...
Conclusion

❖ We presented tandem duplication systems that have nonzero capacity and are fully expressive: capable of creating diversity.

❖ Stochastic tandem systems asymptotically show periodic behavior: many novel sequences not a likely outcome.

❖ Stochastic interspersed systems are indistinguishable from iid systems in certain respects.

❖ These results suggest that it is plausible to generate diverse genomic sequences using duplications.