Note: It is very important that you solve the problems first and check the solutions afterwards.

Problem 1

Examples 4.8.2, 4.8.5, 4.9.1, 4.9.2, 4.11.4, 4.11.5.

Problem 2

Random variables X and Y have a uniform joint density on the square bounded by the following four corners: $(1, 0), (0, 1), (-1, 0), \text{ and } (0, -1)$.

a) Calculate the marginal pdfs of X and Y. Are X and Y independent? Are they uncorrelated?

b) Let $Z = X + Y$ and $S = X - Y$. Are Z and S uncorrelated or independent or neither of the two?

c) Compute $E[X]$ and $\text{Var}[X]$.

Solution

a) Let R be the square with corners \{(1, 0), (0, 1), (1, 0), (0, 1)\}. The area $|R|$ of R is $\sqrt{2}^2 = 2$. So

$$f_{X,Y} (x, y) = \begin{cases}
\frac{1}{2}, & (x, y) \in R \\
0, & \text{else.}
\end{cases}$$

The marginal density of X is given by

$$f_X(x) = \int_{y=-\infty}^{\infty} f_{X,Y}(x,y) dy = \begin{cases}
\int_{y=x-1}^{1-x} \frac{1}{2} dy, & 0 \leq x \leq 1; \\
\int_{y=x+1}^{1+x} \frac{1}{2} dy, & -1 \leq x \leq 0; \\
0, & \text{else.}
\end{cases}$$

$$= \begin{cases}
(1-x), & 0 \leq x \leq 1; \\
(1+x), & -1 \leq x \leq 0 \\
0, & \text{else.}
\end{cases}$$

$$= \begin{cases}
1 - |x|, & -1 \leq x \leq 1 \\
0, & \text{else.}
\end{cases}$$

By symmetry, the marginal density of Y is given by

$$f_Y(y) = \begin{cases}
1 - |y|, & -1 \leq y \leq 1 \\
0, & \text{else.}
\end{cases}$$

Independence: The support is not a product set, thus X and Y are not independent. Alternatively

$$f_X(x)f_Y(y) = (1 - |x|)(1 - |y|) \neq \frac{1}{2} = f_{X,Y}(x,y)$$
Uncorrelated: Since \(f_X \) (and \(f_Y \)) is symmetric about \(x = 0 \) (and \(y = 0 \)), \(E[X] = E[Y] = 0 \). The covariance of \(X \) and \(Y \) is:

\[
\text{Cov}(X, Y) = E[XY] - E[X]E[Y] = 0 - 0
\]

Thus, \(X \) and \(Y \) are uncorrelated. Alternatively, we can compute

\[
E[XY] = \int_{-1}^{1} \int_{-1}^{1} xy f_{X,Y}(x, y) \, dy \, dx
\]

\[
= \int_{-1}^{1} \left(\int_{y=|x|-1}^{1-|x|} \frac{xy}{2} \, dy \right) \, dx
\]

\[
= \int_{-1}^{1} \frac{xy^2}{4} \left(\frac{y=1-|x|}{y=|x|-1} \right) \, dx
\]

\[
= \int_{-1}^{1} \frac{x}{4} \left((|x| - 1)^2 - (1 - |x|)^2 \right) \, dx = 0
\]

And,

\[
E[X] = \int_{-1}^{1} xf_X(x) \, dx
\]

\[
= \int_{x=1}^{0} x(1 + x) \, dx + \int_{x=0}^{1} x(1 - x) \, dx
\]

\[
= -\left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) = 0
\]

Also, by symmetry \(E[Y] = 0 \). Hence, \(E[XY] = E[X]E[Y] = 0 \). So, \(X \) and \(Y \) are uncorrelated.

b) The transformation between \((Z, S)\) and \((X, Y)\) is given by

\[
\begin{pmatrix}
Z = X + Y \\
S = X - Y
\end{pmatrix}
\leftrightarrow
\begin{pmatrix}
X = \frac{Z + S}{2} \\
Y = \frac{Z - S}{2}
\end{pmatrix}
\]

The transformed region \(T \) in the space of \(Z \) and \(S \) corresponding to region \(R \) in the space of \(X \) and \(Y \) can be represented as

\[
T = \{ (z, s) : -1 \leq z \leq 1 \text{ and } -1 \leq s \leq 1 \}
\]

The joint density of \(Z \) and \(S \) is given by

\[
f_{Z,S}(z, s) = f_{X,Y} \left(\frac{z + s}{2}, \frac{z - s}{2} \right) \left| \begin{array}{cc}
\frac{dz}{dx} & \frac{dz}{ds} \\
\frac{dx}{dz} & \frac{dx}{ds}
\end{array} \right|
\]

\[
= \frac{1}{2} \begin{vmatrix}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{vmatrix}, \quad (z, s) \in T
\]

\[
= \frac{1}{4}, \quad (z, s) \in T
\]

Hence, \(Z \) and \(S \) are uniformly jointly distributed over the square given by \(\{ (z, s) : -1 \leq z \leq 1 \text{ and } -1 \leq s \leq 1 \} \) of area 4.
Marginal pdf of Z and S:

$$f_Z(z) = \int_{s=-1}^{1} f_{Z,S}(z,s) ds$$
$$= \int_{s=-1}^{1} \frac{1}{4} ds \quad -1 \leq z \leq 1$$
$$= \frac{1}{2} \quad -1 \leq z \leq 1$$

By symmetry, $f_S(s) = \frac{1}{2}, -1 \leq s \leq 1$.

Independence: Z and S are independent because,

$$f_Z(z)f_S(s) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} = f_{Z,S}(z,s)$$

Uncorrelated: Independence implies uncorrelated. Hence, Z and S are uncorrelated.

c) From part (a),

$$E[X] = 0$$

Variance of X can be computed as

$$Var(X) = E[X^2] - (E[X])^2$$
$$= \int_{x=-1}^{1} x^2(1-|x|)dx - 0$$
$$= 2 \int_{x=0}^{1} x^2(1-x)dx$$
$$= 2 \left(\frac{1}{3} - \frac{1}{4} \right) = \frac{1}{6}$$

Problem 3

Suppose X and Y are jointly Gaussian random variables with $E[X] = 2$, $E[Y] = 4$, $\text{Var}(X) = 9$, $\text{Var}(Y) = 25$, and $\rho = 0.2$. Let $W = X + 2Y + 3$.

a) Find $E[W]$ and $\text{Var}(W)$.

b) Find the correlation and covariance of X and W.

Solution

a)

$$= 13$$
From the problem description, we know the following:

\[
egin{align*}
E [X^2] &= \text{Var}(X) + E[X]^2 = 13 \\
E [Y^2] &= \text{Var}(Y) + E[Y]^2 = 41 \\
E[XY] &= 0.2 \sqrt{\text{Var}(X) \text{Var}(Y)} + E[X]E[Y] = 11 \\
\text{Var}(W) &= E[W^2] - E[W]^2 \\
&= 121
\end{align*}
\]

b)

\[
\begin{align*}
corr(X,W) &= E[XW] \\
&= E[X^2 + 2XY + 3X] \\
&= 41 \\
Cov(X,W) &= corr(X,W) - E[X]E[W] \\
&= corr(X,W) - 26 \\
&= 15
\end{align*}
\]

Problem 4

If you drop a raw egg onto a concrete floor, what is the probability that you crack it?

Solution

Virtually zero; a concrete floor is very hard to crack.

Problem 5

This problem is concerned with minimum mean square error estimators.

a) Find the constant minimum mean square error estimator of the random variable \(3X\), where \(X\) has mean \(E[X] = 3\) and \(\text{Var}(X) = 4\).

b) Find the linear minimum mean square error estimator of the random variable \(2X\), where \(X\) has mean \(E[X] = 3\) and \(\text{Var}(X) = 4\), given an independent random variable \(Y\) with mean 2.

Solution

a)
\[
\delta = E[3X] = 3E[X] = 9.
\]

b)
\[
L^*(Y) = \mu_{2X} + \sigma_{2X} \rho_{Y,2X} \frac{Y - \mu_Y}{\sigma_Y} \\
= \mu_{2X} \\
= 6.
\]
Problem 6

Let $X \sim N(0,a^2)$ and $Y \sim N(0,b^2)$ and suppose X,Y are jointly Gaussian with correlation coefficient ρ. Define $Z = X + Y$. Is the pair (Z,X) jointly Gaussian? Find $\text{Var}(Z)$ and $\text{Cov}(Z,X)$.

Solution

Since

$$
\begin{pmatrix} X \\ Z \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix},
$$

(X, Z) are jointly Gaussian.

$$
\text{Cov}(X,Z) = \text{Cov}(X,X+Y) = \text{Cov}(X,X) + \text{Cov}(X,Y) = a^2 + \rho ab,
$$

$$
\text{Var}(Z) = \text{Cov}(X+Y,X+Y) = \text{Var}(X) + 2\text{Cov}(X,Y) + \text{Var}(Y) = a^2 + b^2 + 2\rho ab.
$$