Problem Set 13

Note: It is very important that you solve the problems first and check the solutions afterwards.

Problem 1

All text examples in section 4.3.

Problem 2

Consider the following function

\[F(u, v) = \begin{cases}
0, & u + v \leq 1 \\
1, & u + v > 1.
\end{cases} \]

Is this a valid joint CDF. Why or why not? Prove your answer and show your work.

Solution

Suppose that \(F \) is the CDF of \((U, V)\). Consider the rectangle \(R \) with vertices \(\{(0,0), (0,2), (2,0), (2,2)\}\).

Then,

\[P\{(U, V) \in R\} = F(2, 2) - F(2, 0) - F(0, 2) + F(0, 0) = -1. \]

Negative probability implies that our assumption that \(F \) is a CDF is wrong.

Furthermore, \(F \) is not right continuous for any point \((u, v)\) such that \(u + v = 1\). Note that even if we make \(F \) right-continuous by letting

\[F(u, v) = \begin{cases}
0, & u + v < 1 \\
1, & u + v \geq 1,
\end{cases} \]

it is still not valid because of the first reason.

Problem 3

Suppose that two cards are drawn at random from a deck of 52 cards. Let \(X \) be the number of queens obtained and let \(Y \) be the number of spades obtained.

a) Find the joint probability mass function of \(X \) and \(Y \), the marginal probability mass function of \(X \), and the marginal probability mass function of \(Y \).

b) Find \(P(X = Y) \).

c) Find \(P(X \leq Y) \).

d) Find \(P(X = 2 | Y = 2) \).
Solution

a) Some of probabilities are easy to find directly. Others may be more easily obtained by conditioning on X.

$$P(Y = i, X = 0) = \begin{cases} \frac{36 \cdot 35}{52 \cdot 51}, & i = 0, \\ \frac{2(12 \cdot 36)}{52 \cdot 51}, & i = 1, \\ \frac{12 \cdot 11}{52 \cdot 51}, & i = 2. \end{cases}$$

For $X = 1$, we consider two cases: the queen is the queen of spades, or it is not.

$$P(Y = i, X = 1, Q\spadesuit) = \begin{cases} \frac{2(1 \cdot 36)}{52 \cdot 51}, & i = 1, \\ \frac{2(1 \cdot 12)}{52 \cdot 51}, & i = 2, \end{cases}$$

$$P(Y = i, X = 1, Q\blackspadesuit) = \begin{cases} \frac{2(3 \cdot 36)}{52 \cdot 51}, & i = 0, \\ \frac{2(3 \cdot 12)}{52 \cdot 51}, & i = 1, \end{cases}$$

where $Q\spadesuit$ is the event that the queen of spades is chosen. Hence,

$$P(Y = i, X = 1) = \begin{cases} \frac{2(3 \cdot 36)}{52 \cdot 51}, & i = 0, \\ \frac{2(3 \cdot 12)}{52 \cdot 51}, & i = 1, \\ \frac{2(1 \cdot 12)}{52 \cdot 51}, & i = 2. \end{cases}$$

Finally,

$$P(Y = i, X = 2) = \begin{cases} \frac{3 \cdot 2}{52 \cdot 51}, & i = 0, \\ \frac{3 \cdot 1}{52 \cdot 51}, & i = 1. \end{cases}$$

So we get

<table>
<thead>
<tr>
<th></th>
<th>$X = 0$</th>
<th>$X = 1$</th>
<th>$X = 2$</th>
<th>Marginal of Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y = 0$</td>
<td>$\frac{11}{442}$</td>
<td>$\frac{43}{442}$</td>
<td>$\frac{169}{442}$</td>
<td>$\frac{210}{442}$</td>
</tr>
<tr>
<td>$Y = 1$</td>
<td>$\frac{114}{442}$</td>
<td>$\frac{24}{442}$</td>
<td>$\frac{21}{442}$</td>
<td>$\frac{144}{442}$</td>
</tr>
<tr>
<td>$Y = 2$</td>
<td>$\frac{22}{442}$</td>
<td>$\frac{4}{442}$</td>
<td>$\frac{2}{442}$</td>
<td>$\frac{26}{442}$</td>
</tr>
</tbody>
</table>

Note that the marginals can be either found directly or by summing up rows and columns.

b) $P(X = Y) = \frac{210 + 24 + 0}{442} = \frac{234}{442}$

c) $P(X \leq Y) = \frac{210 + 144 + 22 + 24 + 4 + 0}{442} = \frac{404}{442}$

d) $P(X = 2|Y = 2) = \frac{P(X = Y = 2)}{P(Y = 2)} = \frac{\frac{22}{442}}{\frac{26}{442}} = 0$.
Problem 4

The jointly continuous random variables X and Y have joint pdf:

\[
f_{X,Y}(u,v) = \begin{cases}
1.5, & 0 \leq u < 1, \ 0 \leq v < 1, \ 0 \leq u + v < 1, \\
0.5, & 0 \leq u < 1, \ 0 \leq v < 1, \ 1 \leq u + v < 2,
\end{cases}
\]

and zero elsewhere.

a) Find the marginal pdf of Y.

b) Find $P(X + Y \geq 3/2)$.

c) Find $P(X^2 + Y^2 \leq 1)$.

Solution

The support is the square with vertices $\{(0, 0), (0, 1), (1, 0), (1, 1)\}$. On the triangle with vertices $\{(0, 0), (0, 1), (1, 0)\}$, the pdf is 1.5 and on the triangle with vertices $\{(0, 1), (1, 0), (1, 1)\}$, it is 0.5. Sketching the pdf and marking the triangles is helpful for understanding the solution.

a) For $v \in [0, 1]$, we have $f_Y(v) = \int_0^1 f_{X,Y}(u,v) \, du = \int_0^{1-v} \frac{3}{2} \, du + \int_{1-v}^1 \frac{1}{2} \, du = \frac{3(1-v) + 1 - (1-v)}{2} = \frac{3-2v}{2}$. For $v \notin [0, 1]$, we have $f_Y(v) = 0$.

b) $P(X + Y \geq \frac{3}{2}) = \frac{1}{2} \times \text{area of the triangle with vertices } \{\left(\frac{1}{2}, 1\right), \left(\frac{1}{2}, 1\right), (1, 1)\} = \frac{1}{16}$.

c) Let A be the area of the triangle with vertices $\{(0, 0), (0, 1), (1, 0)\}$ and let O be the area of the unit circle. Then,

\[
P(X^2 + Y^2 \leq 1) = \frac{3}{2} A + \frac{1}{2} \left(\frac{\pi}{4} - A\right) = \frac{3}{4} + \frac{1}{2} \left(\frac{\pi}{4} - \frac{1}{2}\right) = 0.89.
\]