In this problem set, we will use define some important functions using integrals. Use only the definitions given here in the following exercises.

Definition. Define a function \(\arctan : \mathbb{R} \to \mathbb{R} \) by the following formula:

\[
\arctan(x) = \int_0^x \frac{1}{1 + t^2} \, dt.
\]

Exercise 47. Show that \(\arctan \) is increasing and that for any \(x \in \mathbb{R} \), one has

\[
\arctan(-x) = -\arctan(x) \quad \text{and} \quad |\arctan(x)| \leq |x|.
\]

Definition. Now define \(\pi \) as the real number \(4\arctan(1) \).

Exercise 48. Show that the image \(\arctan(\mathbb{R}) \) is the open interval \((-\pi/2, \pi/2)\). [Hint: show that for any \(\varepsilon > 0 \), there exists a real number \(N > 0 \) such that for any \(x > N \), one has \(\pi/2 - \varepsilon < \arctan(x) < \pi/2 \).]

Exercise 49. Prove that \(\arctan : \mathbb{R} \to (-\pi/2, \pi/2) \) is a bijection of class \(C^\infty \).

Definition. Denote by \(\mathbb{R}_+ \) the ray \((0, +\infty)\). Define a function \(\log : \mathbb{R}_+ \to \mathbb{R} \) by the formula

\[
\log(x) = \int_1^x \frac{1}{t} \, dt.
\]

Exercise 50. Prove that for any \(x, y \in \mathbb{R}_+ \), one has

\[
\log(xy) = \log(x) + \log(y).
\]

Exercise 51. Show that \(\log \) is increasing, and show that the image \(\log(\mathbb{R}_+) \) is \(\mathbb{R} \).

Exercise 52. Prove that \(\log : \mathbb{R}_+ \to \mathbb{R} \) is a bijection of class \(C^\infty \).

Exercise 53. Prove that the inverse \(\exp : \mathbb{R} \to \mathbb{R}_+ \) of the function \(\log \) is a differentiable function such that for any elements \(x, y \in \mathbb{R} \),

\[
\exp'(x) = \exp(x), \quad \exp(0) = 1, \quad \text{and} \quad \exp(x + y) = \exp(x)\exp(y).
\]