
�� ��

Coding and Cryptography

Chris Wuthrich

�� ��

Contents

Information . 3

Introduction 4

I Error-Correcting Codes 8
I.1 Coding for Noisy Channels . 8
I.2 The Hamming distance . 10
I.3 Bounds on codes . 14
I.4 Some Linear Algebra . 15
I.5 Linear Codes . 17
I.6 The standard form . 19
I.7 Error correction for linear codes . 21
I.8 Minimum distance for linear codes . 23
I.9 Linear codes with large distance . 25
I.10 Hamming Codes . 26
I.11 The First Order Reed-Muller Codes . 27
I.12 Cyclic Codes . 29
I.13 Generator polynomial . 30
I.14 Generator and parity check matrices for cyclic codes 33
I.15 Error-correction for cyclic codes . 35
I.16 Other Topics in Error Correction Codes . 37

II Cryptography 39
II.1 Modular Arithmetic . 39
II.2 Monoalphabetic Ciphers . 40
II.3 Vigenère Cipher . 43
II.4 Other Ciphers and Improvements . 46
II.5 Block Cipher . 47
II.6 Number Theory . 49
II.7 RSA . 55
II.8 Elgamal . 56
II.9 Diffie-Hellmann Key Exchange . 58
II.10 No-Key Protocol . 59
II.11 Signatures . 60

Problem sheets 63

Bibliography 71

2

Coding and Cryptography G13CCR cw ’13

�� ��
Essential information for G13CCR

Module : Coding and Cryptography, 10 credits, level 3.

Lecturer : Chris Wuthrich,
christian.wuthrich@nottingham.ac.uk,
phone 14920.

Lectures : • Mondays 15:00 in room C04 in Physics
• Thursdays 10:00 in the same room

Office Hours : In my office C58 in Mathematics on Mondays 12:00 – 15:00. If you wish
to meet me at any other time, please contact me by email.

Booklist : See also the official booklist.

• Dominic Welsh, Codes and cryptography [21] QA 269.5 WEL
• San Ling and Chaoping Xing, Coding theory : a first course [11]

QA 268 LIN
• Raymond Hill, A first course in coding theory [5] QA 269.6 HIL
• William Stein, Elementary number theory: primes, congruences,

and secrets available online [16] QA241 STE
• Gareth A. Jones and Mary J. Jones, Elementary number theory [6]

QA 241 JON
• Henry Beker and Fred Piper, Cipher systems : the protection of

communications [1] QA 269.5 BEK
• Simon Singh The code book [15] Jubilee Library QA 76.9 A25 SIN

Lecture Notes : This booklet. An electronic copy can be found on the moodle webpage
http://moodle.nottingham.ac.uk/course/view.php?id=3660.

Assessment : The assessment of this module consists of a 2h exam (3 out of 4 ques-
tions). Consult the page the feedback page
http://www.maths.nottingham.ac.uk/MathsModulesFeedback/G13CCR/

for information on exams in previous years.

Computer software : Not needed at all, but these are the most useful software packages
related to this module.

• sage is a free open-source mathematical software which contains
a lot of built-in functions for coding and cryptography. See [7]
and [13]. You can use it online at http://www.sagenb.org.
• pari-gp is a small but very powerful software for doing number

theory.

3

christian.wuthrich@nottingham.ac.uk
http://www.nottingham.ac.uk/is/gateway/readinglists/local/displaylist?module=G13CCR
http://modular.math.washington.edu/ent/ent.pdf
http://moodle.nottingham.ac.uk/course/view.php?id=3660
http://www.maths.nottingham.ac.uk/MathsModulesFeedback/G13CCR/
http://www.sagemath.org
http://www.sagenb.org
http://pari.math.u-bordeaux.fr/

Introduction

These are the lecture notes for the modules G13CCR, Coding and Cryptography, as given
in the spring semester 2013 at the University of Nottingham.

Cryptography is the art (or the science) of encrypting messages so that no other than
the authorised person can decrypt and read the message. What is coding theory then? It
is something quite different.

There are many sorts of code and we will only discuss one type, namely error-correction
codes. Other codes are used for compression, but they are (no longer) part of this module.
There is a conceptual, mathematical approach called Information Theory, which treats
the subjects like entropy and information in transmissions.

This module consists of two parts, one on error-correction codes and one on cryptogra-
phy.

�� ��
Coding for Error Detection and Correction

The software for early computer had to be fed to the machine using long paper tape, later
came the magnetic tapes. Each character was stored as 7 bits, plus an additional bit, the
parity check bit. Simply this last bit was a 1 if within the the 7 bits there were an odd
number of 1’s. In this way it was possible to check if there was an error. Maybe one bit
was not recorded correctly or it was not read correctly. Of course, if two errors appeared
in one single block of 7 bits the parity check could not detect the errors. Moreover, even
if a single error in the block has been transmitted, there is no way to recover the correct
block, as any of the seven bit could have been wrong. This lead Hamming to discover
error-correcting codes.

Here is another simple example, the International Standard Book Number ISBN. Any
book has a unique code, e.g. the book ‘Coding Theory’ by San Ling and Chaoping Xing [11]
is listed as 0-521-52923-9. The last digit of this code is a check digit. If the previous digits
are x1, x2, . . . , x9, then the last digit is computed as

x10 = 1 · x1 + 2 · x2 + 3 · x3 + · · ·+ 9 · x9 mod 11 ,

where ‘mod 11’ indicates that we replace the result by the remainder when dividing by
11. An ‘X’ is used when the remainder is equal to 10. In our example

9 ≡ 1 · 0 + 2 · 5 + 3 · 2 + 4 · 1 + 5 · 5 + 6 · 2 + 7 · 9 + 8 · 2 + 9 · 3 (mod 11) .

4

Coding and Cryptography G13CCR cw ’13

Suppose I made an error when copying the code, e.g. I confused the 1 at the fourth
position with a 7. Then the sum above would give

0 ≡ 1 · 0 + 2 · 5 + 3 · 2 + 4 · 7 + 5 · 5 + 6 · 2 + 7 · 9 + 8 · 2 + 9 · 3 (mod 11) ,

so we know that there is an error. But the code is even better, suppose I swapped the 2
and 3 in the eighth and ninth position, then again my sum will give a different value as
the coefficients are different:

8 ≡ 1 · 0 + 2 · 5 + 3 · 2 + 4 · 1 + 5 · 5 + 6 · 2 + 7 · 9 + 8 · 3 + 9 · 2 (mod 11) .

Again, this code still does not tell us where the error is; also if we made two errors it may
well be that the sum equal the check digit.

Error-correcting codes are extremely important in modern telecommunication. When
the reception of your mobile is very poor, the antenna does not receive correctly all infor-
mation your phone has sent. It is then important to be able to recover your message from
the partial information that the antenna received.

Another example is data storage. Using magnetic disk as an example, if you were to
look at bits coming right off a magnetic disk you would see, on the average, about 1 bit
error for every 109 bits transferred, i.e. as frequent as every 25 seconds. If you were to
look at bits coming right off an optical disk, you would see a much higher rate of errors,
about 1 bit error in every 105 bits transferred. Without some form of error detection and
correction, most storage devices would be too unreliable to be useful. (Source [22])

�� ��
Cryptography

Cryptography originally deals with the problem of encrypting messages so that nobody
but the authorised person can decrypt and read it. It has been used throughout the last
2000 years, but the methods and the problematic have become more and more elaborate.
Often codes that were believed to guarantee secrecy were in fact not too difficult to break.
Here a text in which Casanova explains how he decrypted a text much to the surprise of
Madame d’Urfé.

J’avais fini par connâıtre à fond Mme d’Urfé qui me croyais fermement un adepte
consommé sous le masque de l’incognito, et cinq ou six semaines après elle se confirma
dans cette idée chimérique, lorsqu’elle me demanda si j’avais déchiffré le manuscrit où
se trouvait la prétendue explication du Grand-Œuvre.
«Oui, lui-dis-je, je l’ai déchiffré et par conséquent lu ; mais je vous le rends en vous
donnant ma parole d’honneur que je ne l’ai pas copié, car je n’y ai trouvé rien de
nouveau.
— Sans la clef, monsieur, excusez-moi, mais je crois la chose impossible.
— Voulez-vous, madame, que je vous nomme la clef ?
— Je vous en prie. »
Je lui donne la parole, qui n’était d’aucune langue, et voilà ma marquise tout ébahie.
«C’est trop, monsieur, c’est trop ! je me croyais seule en possession de ce mot mysté-
rieux, car je le conserve dans ma mémoire, je ne l’ai jamais écrit et je suis certaine de
ne l’avoir jamais donné à personne. »

5

cw ’13 Coding and Cryptography G13CCR

Je pouvais lui dire que le calcul qui m’avait servi à déchiffrer le manuscrit m’avait
naturellement servi à deviner la clef ; mais il me vint la lubie de lui dire qu’un génie
me l’avait révélé. Cette sottise me soumit entièrement cette femme vraiment savante,
vraiment raisonable. . . sur tout autre point que sur sa marotte. Quoi qu’il en soit, ma
fausse confidence me donna sur Mme d’Urfé un ascendant immense : je fus dès cet
instant l’arbitre de son âme, et j’ai souvent abusé de mon pouvoir sur elle. Maintenant
que je suis revenu des illusions qui ont accompagné ma vie, je ne me le rappelle qu’en
rougissant, et j’en fais pénitence par l’obligation que je me suis imposée de dire toute
la vérité en écrivant ses mémoires.
La gande chimère de cette bonne marquise était de croire fermement à la possibilité de
pouvoir parvenie au colloque avec les génies, avec les esprits qu’on appelle élémentaires.
Elle aurait donné tout ce qu’elle possédait pour y parvenir, et elle avait connu des
imposteurs qui l’avaient trompée, en la flattant de lui faire atteindre le terme de ses
vœux.
«Je ne savais pas, me dit-elle, que votre génie eût le pouvoir de forcer le mien à lui
révéler mes secrets.
— Il n’a pas été nécessaire de forcer votre génie, madame, car le mien sait tout de sa
propre nature.
— Sait-il aussi ce que je renferme de plus secret dans mon âme ?
— Sans doute, et il est forcé de me le dire si je l’interroge.
— Pouvez-vous linterroger quand vous voulez ?
— Toujours, pourvu qe j’aie du papier et de l’encre. Je puis même le faire interroger
par vous en vous disant son nom.
— Et vous me le diriez !
— J’en ai le pouvoir, madame, et pour vous en convaincre, mon génie se nomme
Paralis. Faites-lui une question par écrit, comme vous la feriez à un simple mortel :
demandez-lui, par exemple, comment j’ai pu déchiffrer votre manuscrit, et vous verrez
comme je l’obligerai à vous répondre. »
Mme d’Urfé, tremblante de joie, fait sa question et la met en nombres, puis en pyra-
mide à ma façon, et je lui fais tirer la réponse qu’elle met elle-même en lettres. Elle
n’obtint d’abord que des consonnes ; mais moyenant une seconde opération qui donna
les voyelles, elle trouva la réponse exprimée en termes fort clairs.
Sa surprise se peignait sur tous ses traits, car elle avait tiré de la pyramide la parole
qui était la clef de son manuscrit. Je la quittai, emportant avec moi son âme, son cœur,
son esprit et tout ce qui lui restait de bon sens.

Casanova de Seingault, 1725–1789

Probably Madame d’Urfé used a Vigenère cipher, a system for encryption that we will
discuss in detail – and also show how it is easily broken, if one has a sufficiently long
encrypted text at ones disposal. Until today the race is on between those who wish to
encrypt messages and those who try to break codes. Did you know, for instances, that
your GSM mobile phone communicates with the antenna using some encryption? But
did you also know that this code was broken a few years ago and that it is now possible
to find the key and to decrypt your conversation? Of course, there are different levels
of security: Whether someone wants to make sure that the CIA can not read a message
or whether a subscription television company wants to prevent that the average old lady
watches television without paying are two completely different tasks. The book [15] is a
very pleasant read on the history of cryptography.

Also there is more to cryptography now than encryption and decryption, modern ap-
plications such as secure Internet connections need more, like good signature schemes for
instance. Say A wants to send a message to B.

6

Coding and Cryptography G13CCR cw ’13

• Secrecy: A and B want to make sure that no third party E can read the message.

• Integrity: A and B want to make sure to detect when a third party E alters the
message.

• Authenticity: B wants to be certain that it was A who sent the message.

• Non-repudiation: B can prove to a third party that it was A who sent the message.

The last entry is typically very important if you buy an online insurance policy and you
want to make a claim, but the insurance company claims you have never signed a policy
with them. The authenticity is crucial when you use online banking as you want to
be certain that the site you are communicating with is indeed your bank and not some
phishing site.

�� ��
Acknowledgements

These course notes are largely based on Dr. Woodall’s previous notes for this course, but
I enlarged and modified quite a lot using sources like [11], [4], Tom Körner’s course [9],
Peter Symonds’ course [18] and wikipedia, of course. I would also like to thank Edward
Hobbs for many correction of the earlier version.

All computations for this course as well as all plots were made using the computer
algebra package sage [17], which itself uses pari-gp [14]. This is free, open-source software
comparable to maple, matlab, mathematica or magma. See in particular [7] and [13] for
more details how to use sage for coding and cryptography.

7

Chapter I

Error-Correcting Codes

The aim of error-correcting codes is to add redundancy to a message in order to be able
correct errors that may occur during the transmission of the message.

�� ��
I.1 Coding for Noisy Channels

Throughout the whole chapter on error-correction codes will be in the following situation.
See also figure I.1.

• A source produces a message as a sequence of ‘0’ and ‘1’ only1.

• In a first step this message is encoded. The source message is cut into sourcewords
w of the same length k. Then the encoding is a function that associates to each
possible sourceword a codeword c, again a block of ‘0’ and ‘1’, but of length n.
Since two distinct sourcewords will correspond to two distinct codewords (because we
want to be able to decode later), we have n > k.

• Then the codewords are sent through the noisy channel. Bit after bit, the symbols
‘0’ and ‘1’ are sent through this channel. For each symbol there is a probability
p that the noise in the channel corrupts the symbol. Such a channel could be the
communication between two antennas, say your mobile phone and the base station
antenna. See below for more explanations and examples.

• On the other side of the channel the receiver will receive a word x of length n, which
may or may not be the codeword c. The error correction tries to recover the original
sent codeword from the received word. If for instance the received word differs only
in one symbol (also called bits) from a codeword c′, but is not itself a codeword, then
it would be a good guess to change it to c′. The hope is that c′ = c.

• In the final step the codeword c′ is decoded by finding the corresponding sourceword
w′.

1In other words, we assume to work only with the binary alphabet; it is not hard to generalise to
arbitrary alphabets but we will stick to the easiest situation here.

8

Coding and Cryptography G13CCR cw ’13

�
�

�

source word
w ∈ Vk

encoding

��

�
�

�

source word
w′ ∈ Vk

�
�

�
�code word c′ ∈ C

decoding

OO

�
�

�

code word
c ∈ C

Noisy

channel
//

�
�

�

received word
x ∈ Vn

error correction

OO

Figure I.1: Coding for a noisy channel

The code C is the set of all codewords, usually together with the encoding and decoding
function. Let Vn denote the set of all binary words of length n. For example 01001110 is
an element of V8, which we also write as (0, 1, 0, 0, 1, 1, 1, 0). We think of elements in Vn
as vectors of length n. They will be written in bold face like x or with a~· on top, like ~x.

As described above, we assume that the set of all sourcewords is Vk for some natural
number k. The code is then a well chosen subset C of Vn with a 1-to-1 mapping from Vk
to C. Hence

#Vk = 2k = #C 6 #Vn = 2n.

Since each codeword will be n − k bits longer, we slow down our communication. The
rate of the code is defined to be

r(C) =
k

n
6 1.

So a good code should have a large rate.
The second measurement of a good code will be how well we can do the error-correction.

The hope is of course that w′ is most often equal to w or, equivalently, that c′ is equal
to c. In other words we need a good procedure to find a codeword “close” to the received
word. This is best done with the minimum-distance decoding scheme described in the
next section.
Example. As a very simple first example we can imagine the following. We split up the
source message ‘110 001 000 01. . . ’ as illustrated in blocks of k = 3 bits. As a code we
decide to repeat each word thrice; so n = 3k = 9 and the first sourceword w =‘110’ is
encoded to c =‘110110110’. So the code C is the set of all words of length 9 which are
composed of three copies of the same word of length 3.

This codeword is then sent through the channel and maybe slightly corrupted by noise
in the channel. If the probability p is significantly lower than 1

9 , say p = 10−7, we expect
only at most one error per transmitted word. So if exactly one error occurs then one of
the three copies is different and we choose as a codeword in the error correction step to

9

cw ’13 Coding and Cryptography G13CCR

change the one copy that is different. Say we receive x =‘010110110’, we will just change
the starting 0 back to a 1. Of course, this may go wrong. In the very, very unlikely case
that two errors occurred and that they happen to change the same bit, e.g. if we receive
x =‘010010110’ we would change the last copy instead and then decode to the wrong
sourceword w′ =‘010’.

This is a very bad code as we will see later. It has some strength for correcting errors,
but its rate 1

3 is very bad. All the transmission is slowed down to a third of the uncoded
speed. �

A few more words on the channel2. The only symbols that can be transmitted are 0 and
1. If P (a received |b sent) denotes the probability that a is received given that b is sent,
then

P (1 received |0 sent) = P (0 received |1 sent) = p

P (0 received |0 sent) = P (1 received |1 sent) = 1− p .

Diagrammatically:

0
1−p //

p
))RRRRRRRRRRRRRRRRRR 0

1
1−p

//

p

55llllllllllllllllll 1

We shall assume3 that p < 1
2 . Examples of such noisy channels include digital radio

transmission, e.g. for mobile phones and Wireless LAN, but also digital transmission
through optical fibres and traditional electrical cables. But we can also include storage
devices as the channel which starts at the computer writes on a magnetic disk and reads
off it later again. As mentioned in the introduction, a Compact Disk has read with
probability p = 10−5 the wrong bit; while for a magnetic disk the error probability is as
low as p = 10−9.

The probability that a word of length n is sent through the channel with some corruption
is 1−(1−p)n, which for small p is approximately n·p. The probability that errors occurred
at d given places in the word is equal to pd · (1− p)n−d.

Finally, we make an assumption4 on the source: We suppose that all sourcewords appear
with approximately the same frequency and that the probability is not influenced by the
word previously sent. This is typically not the case in a language like English as words
like ‘the’ are much more frequent than others. In reality this is not always the case, but
it can be achieved by first using a compression algorithm, e.g. “zip” the file. In any case,
the restriction is not a serious one.

2Such a channel is called a binary symmetric channel with crossover probability p.
3Why? Well, try to think what you would do if p > 1

2
. And what does it mean that p = 1

2
?

4This is called a memoryless source.

10

Coding and Cryptography G13CCR cw ’13

�� ��
I.2 The Hamming distance

In this section we will find the best error-correction method. What we hope for is that
c′ = c (referring to the notation in this figure I.1) as then w = w′. If the received word w
is not a codeword, we wish to interpret it as the codeword most likely to have been sent.
Intuitively, this is the codeword closest to w.

Definition. If x,y ∈ Vn, their Hamming distance d(x,y) is the number of positions in
which they differ. The weight w(x) of x is the number of 1’s in x.

So w(x) = d(x,0), where 0 = (0, 0, . . . , 0) is the word with n zeroes. For example, the
distance between

x = (1, 0, 0, 1, 1, 0) and
y = (0, 0, 1, 0, 1, 0)

is d(x,y) = 3. The function d : Vn → N∪{0} satisfies the axioms of a metric, which are

• d(x,y) = 0 if and only if x = y;

• d(x,y) = d(y,x) and

• d(x,y) + d(y, z) > d(x, z) (triangle inequality).

Theorem I.1. When a word x ∈ Vn is received, the codewords c ∈ C that are most likely
to have been sent are those for which d(c,x) is smallest.

Proof. Let x be a fixed source word. By Bayes’s theorem,

P (c sent | x received) =
P (c sent, x received)

P (x received)

=
P (c sent) · P (x received | c sent)

P (x received)
.

holds for any code word c. Let

h =
P (c sent)

P (x received)
,

which is independent of c, since we are assuming that all codewords are equally likely. By
the definition of the distance d = d(c,x), the probability that x was received, knowing
that c was sent is pd · (1− p)n−d. Thus

P (c sent | x received) = h · P (x received | c sent)

= h · pd · (1− p)n−d = h · (1− p)n ·
(p

1− p

)d
,

which is largest when d = d(c,x) is smallest, since we are assuming that p < 1
2 and so

p
1−p < 1.

11

cw ’13 Coding and Cryptography G13CCR

The ideal observer always chooses c so that P (c sent | w received) is maximal. The-
orem I.1 says that, in our setting, the ideal observer uses the minimum-distance or
nearest-neighbour decoding scheme. For complicated codes C it may be very compli-
cated to find the nearest neighbour to a received word. So another scheme may be used
in certain cases (see the Reed-Muller codes in section I.11).
Example. This is Hamming’s original5 code. We choose the code C to lie in V7, while
the source word will be in V4. So this code has rate 4

7 . The code C is defined to be the
set of all c = (c1, c2, . . . , c7) which satisfy the following parity conditions:

c1 + c3 + c5 + c7 is even,
c2 + c3 + c6 + c7 is even, and (I.1)
c4 + c5 + c6 + c7 is even.

For any source word w = (w1, w2, w3, w4), we set c7 = w1, c6 = w2, c5 = w3. Now the
parity of c4 is determined, so we set c3 = w4. The three equation above then determine the
parity of c1, c2 and c4, and hence determine completely c. Here is the complete encoding
map.

0000 7→ 0000000 1000 7→ 1101001
0001 7→ 1110000 1001 7→ 0011001
0010 7→ 1001100 1010 7→ 0100101
0011 7→ 0111100 1011 7→ 1010101
0100 7→ 0101010 1100 7→ 1000011
0101 7→ 1011010 1101 7→ 0110011
0110 7→ 1100110 1110 7→ 0001111
0111 7→ 0010110 1111 7→ 1111111

(I.2)

Suppose that the code word c = 1101001 is sent. We may or may not receive the correct
word w. Here three examples of possible words we could receive:

received number of distance to
word errors 0000000 1101001 0101010 1000011 . . . 1111111

1101001 0 4
�� ��0 3 3 3

1101000 1 3
�� ��1 2 4 4

1101010 2 4 2
�� ��1 3 3

Note the number of errors is simply d(w, c). In the first two cases the code word c is
closest to the received word and so, by choosing the closest neighbour to the received word

5Hamming had access to an early electronic computer but was low down in the priority list of users.
He should submit his program encoded on paper tape to run over the weekend, but often he would have
his tape returned on Monday because the machine had detected an error in the tape. ‘If the machine can
detect an error’ he asked himself ‘why can the machine not correct it?’ and he came up with the first
error-correcting code.

It was easy to implement. It took a little time for his company to realise what he had done, but they
were soon trying to patent it. (Source [9])

12

Coding and Cryptography G13CCR cw ’13

we correct the error. In the last example, the closest word is 0101010 rather than c. So
by choosing the code word that was most likely sent, we would actually pick6 the wrong.
See [26] for more pictures and descriptions on this code.

In general it might happen (though not for this code) that there are two or more code
words among those closest to the received word, in which case we would have to choose
randomly among these and make a mistake with a certain likeliness. �

Definition. A code is e-error-detecting if it can detect that there is a mistake whenever
e or fewer errors are made in any one codeword. It is said to be e-error-correcting if it
can correct these errors. The minimum distance of a code C is

d(C) := min
{
d(c, c′)

∣∣ c 6= c′ ∈ C
}
.

It is easy to see that C is e-error-detecting if and only if d(C) > e + 1 and that C is
e-error-correcting if and only if d(C) > 2 e + 1. So the proof of the following lemma is
obvious.

Lemma I.2. A code C of minimum distance d(C) can detect d(C)− 1 errors and correct
bd(C)−1

2 c errors, but it cannot do any better than that.

'

&

$

%
(a) e-error-detecting

'

&

$

%
(b) e-error-correcting

Figure I.2: Two Potatoes

In an illustrative drawing, we can draw the two pictures in figure I.2. The red dots in
the centre of the circles represent the code words in Vn, which is drawn as a potato. The
blue circle represent the balls of radius e centred at the code-words. A code is e-error
detecting if each ball contains a unique code word. If the circles do not intersect at all,
then the code is e error-correcting.
Example. Hamming’s code in the previous example has minimum distance d(C) = 3. It
is therefore 2-error-detecting and 1-error-correcting. �

Notation. A [n,k,d]-code is a code of length n with 2k codewords7 and minimum dis-
tance d.

6 The German word ‘verschlimmbessern’ describes well how we ‘disimproved’ the error.
7You will also find the notation (n, 2k, d) instead in the literature.

13

cw ’13 Coding and Cryptography G13CCR

�� ��
I.3 Bounds on codes

As seen in figure I.2, it is natural to consider the (closed) Hamming balls

B(x, r) =
{
y ∈ Vn

∣∣ d(x,y) 6 r
}
.

Observe that the balls for varying x have all the same size; in fact, since all y of distance j
to x are obtained by switching j coordinates in x, there are exactly

(
n
j

)
such y, and hence

#B(x, r) =
r∑
j=0

(
n

j

)
.

It is now easy to prove a first bound on codes.

Theorem I.3 (Sphere packing bound). If C is a an e-error correcting code in Vn then

#C 6
2n∑e
j=0

(
n
j

) . (I.3)

Proof. Each word in Vn appears in at most one of the #C balls of radius e around the
code-words. So #C ·#B(x, e) 6 #Vn gives the result.

Definition. A code is perfect if we have an equality in formula (I.3).

In other words, a code is perfect if the balls of radius e around the codewords fill out
all of Vn without intersecting. Perfect codes do not exist for all n and e, since the right
hand side of (I.3) is not always an integer.

The following codes are further perfect codes.

• The above code of Hamming is perfect.

• Any code with just one codeword.

• The binary repetition code of length n, for odd n. Every word in Vn lies within
distance 1

2(n−1) of exactly one of the two codewords 0 0 . . . 0 and 1 1 . . . 1. These are
[n, 1, n]-codes, usually called trivial.

• In section I.10, we will learn about a family of Hamming codes which are all perfect.

• There is a nice 3-error-correcting [23, 12, 7]-code, the binary Golay code. (See
section I.16.6).

Theorem I.4 (The Singleton8 bound). Let C be a [n, k, d] code, then d 6 n− k + 1.

8Named after R. C. Singleton and not the mathematical notion of a set with one single element.

14

Coding and Cryptography G13CCR cw ’13

Proof. Take each of the 2k elements in C and cut off the last d−1 bits. Since the distance
of C is d, the resulting words of length n− d+ 1 are still distinct, for otherwise we would
find two words with distance at most d − 1 apart from each other. So we have found 2k

distinct elements in Vn−d+1, so k 6 n− d+ 1.

Let Perr be the average probability that a codeword is incorrectly identified. If no code
is used, i.e. if C = Vk, then Perr = 1− (1− p)k = k · p + O(p2). A code is good if Perr is
small, hopefully at least quadratic in p.

Since error-correcting ability is achieved by building redundancy into the message, one
might expect that the rate k

n would have to drop down to 0 in order for Perr to become
smaller and smaller. This is not so. '

&

$

%
Figure I.3: The capacity

The capacity of the channel with error probability
p is defined by the formula

C(p) := 1 + p · log2(p) + (1− p) · log2(1− p).

log2 stands for the logarithm in base 2. Intuitively one
should think of it as a measure of how much informa-
tion can flow through the channel. Shannon developed
this notion as part of his Information theory, in which
the concepts of information and redundancy are defined
rigorously.

Theorem I.5 (The noisy coding theorem (Shannon
1948)). Let ε > 0 and R < C(p). There exists a code with rate larger than R and Perr < ε.

But for any code of rate R > C(p) and length n, the error Perr is bounded away from 0
by a function in p, R and n which tends to 1 as n grows.

The proof is not given here as it quite long and complicated. If R < C(p), then the
existence of a code with small error is proven in a very non-constructive way. In fact the
length of this code will be huge. Nobody knows of any practical construction of such codes
and, even if they were found, they may well not be efficient to implement at all.

In fact, this theorem plays a central role in coding theory, even though it does not have
any useful application, practical or theoretical. It is nevertheless a beautiful and surprising
result.

�� ��
I.4 Some Linear Algebra

Remember that I called Vn a vector space; but over what field? Define the smallest field of
all times, denoted9 by F2 or Z/2Z, to be the set {0, 1} with the multiplication and addition
given by

9 Some people and computer algebra packages such as sage [17] will write GF(2) for this field. The
worst notation is the most frequently used by computer scientist, namely Z2 which is easily confused with
the ring of so-called dyadic numbers.

15

cw ’13 Coding and Cryptography G13CCR

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

(just as for 0, 1 ∈ R except that 1 + 1 = 0). Of course this is the unique field structure on
a set of two elements. Note that a+ a = 0 for all a ∈ F2, so addition and subtraction are
the same: a = −a, and a+ b = a− b.

Now Vn, the set of binary words of length n, is a n-dimensional vector space over F2. We
will always write elements of Vn as row vectors. Addition in Vn is defined coordinate-wise,
like

x = (0, 0, 1, 1, 0, 1)
+ y = (0, 1, 0, 1, 1, 1)

x + y = x− y = (0, 1, 1, 0, 1, 0) .

The scalar multiplication is defined in the obvious way

0 · x = 0 and 1 · x = x

with 0 being the zero vector 0 = (0, 0, . . . , 0).

Lemma I.6. For a non-empty set X in Vn it is enough to check that it is closed under
addition to assure that it is a linear subspace.

Proof. Suppose X is a non-empty subset of Vn which is closed under addition. In order to
prove that X is a linear subspace, we have to make sure that it is also closed under scalar
multiplication. Indeed, if x ∈ X then x + x = 0 ∈ X and hence, for any x ∈ X and any
λ ∈ F2, we have λ · x ∈ X.

As usual, we have the scalar product

x · y = x1 · y1 + x2 · y2 + · · ·+ xn · yn

with values in F2; e. g.

(1, 0, 1, 1, 0, 1, 1) · (0, 0, 1, 1, 0, 1, 0) = 0 + 0 + 1 + 1 + 0 + 1 + 0 = 1 .

It satisfies the usual properties

x · y = y · x, x · (y + z) = x · y + x · z, and (λx) · y = λ (x · y) .

Definition. If X is a subset of Vn, we define the orthogonal complement by

X⊥ =
{
y ∈ Vn

∣∣x · y = 0 for all x ∈ X
}
.

Theorem I.7. If X is a subspace of Vn of dimension k, then X⊥ is a subspace of dimension
n− k.

16

Coding and Cryptography G13CCR cw ’13

Proof. Clearly x · 0 = 0 for all x, so 0 ∈ X⊥. For any y, z ∈ X⊥, we have

x · (y + z) = x · y + x · z = 0 + 0 = 0

for all x ∈ X. So y + z ∈ X⊥, hence X⊥ is a subspace.
Now let

x1 = (x11, x12, . . . , x1n)
x2 = (x21, x22, . . . , x2n)

...
...

xk = (xk1, xk2, . . . , xkn)

be a basis of X. Then y = (y1, y2, . . . , yn) belongs to X⊥ if and only if
x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...
xk1 xk2 · · · xkn



y1

y2
...
yn

 =


0
0
...
0

 .

The coefficient matrix has rank k. Since X⊥ is the solution space to this equation it must
be of dimension n− k, as required.

Corollary I.8. (X⊥)⊥ = X.

Proof. Since x · y = 0 for each x in X and y in X⊥, clearly X ⊂ X⊥⊥. But, by the
previous theorem I.7,

dimX⊥⊥ = n− dimX⊥ = n− (n− k) = k = dimX,

and so X⊥⊥ = X.

�� ��
I.5 Linear Codes

A linear code (of dimension k and length n) is a code C that is a k-dimensional subspace
of Vn.

The distance d(C) of a linear code is now simply

d(C) = min
{
w(c)

∣∣0 6= c ∈ C
}

(I.4)

since w(x− y) = d(x,y).
Almost all codes used in practice are linear, because:

17

cw ’13 Coding and Cryptography G13CCR

• encoding and decoding are easy (by matrix multiplication);

• error-correction may be easy, and is certainly relatively straightforward when n − k
is small;

• the error-correcting ability of linear codes is easier to determine.

Example. Hamming’s original code presented earlier is a linear code. It is a linear
[7, 4, 3]-code. The code C lies in V7, the parity conditions (I.1) for c = (c1, c2, . . . , c7) in
V7 to lie in C can be rewritten as a set of linear equation over F2:

c4 + c5 + c6 + c7 = 0
c2 + c3 + c6 + c7 = 0 (I.5)
c1 + c3 + c5 + c7 = 0

This defines a 4-dimensional subspace of V7. �
We introduce some more notations. Given any matrix (or vector), write At for the

transpose matrix (or the corresponding column vector, respectively). In what follows, we
will write Ij for the j × j-identity matrix. Also, we will often write block matrices. If,
for instance, A is a matrix of size n×m and B is a matrix of size k ×m then the matrix
C = (A B) is a matrix of size (n+ k)×m.

The following two definitions10 are crucial for linear codes.

Definition. A matrix G is a generator matrix for C if the row vectors of G span the
linear subspace C.

In other words, we have that x ∈ C if and only if x is a linear combination of rows of
G. Since the only scalars are 0 and 1, we can also say that x ∈ C if and only if x is a sum
of some of the rows of G.

Often, we are in the situation where the rows of G form a basis of C. Then there will
be exactly k rows. But we might have a generator matrix with more rows in which case
they will be linearly dependent, but we will still have that the rank of G is k.

Given a linear code C, we can spell out a generator matrix, by putting elements of C
as rows until the rank of the matrix reaches the dimension of C, or equivalently until all
remaining elements of C are sums of some of the rows of G.

One can view the generator matrix as a way of giving the encoding map

Vk // C

w � // w ·G

The ith basis vector of Vk is sent to the ith row of G.

Definition. A matrix H is a parity-check matrix for C if C = ker(H), the kernel of
H.

10If you have troubles understanding them, then you should go back to the first year linear algebra. Make
sure you fully understand the notions of “basis”, “linearly (in)-dependent”, “span a subspace”, “rank of a
matrix”, etc. before continuing.

18

Coding and Cryptography G13CCR cw ’13

Recall that the kernel of H is the set of all solutions of the system of linear equations
Hxt = 0t. So the parity-check matrix H can be used to give a criterion: A vector x
belongs to C if and only if H xt = 0t or, in other words, if and only if x ∈ D⊥, where D
is the subspace generated by the rows of H.

Often, we will be in the situation where the rows of H are linearly independent, in which
case there are n− k of them. Both G and H have always n columns.
Example. Giving a parity check matrix for a code is the same as listing linear equations
that are satisfied by all elements of C. For the Hamming code given by the equations I.5
it is easy to write out a parity check matrix just by copying these equations.

H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 (I.6)

By solving the equations I.5, we find easily four linearly independent vectors in C. We get
a generator matrix by putting them in a matrix as rows.

G =


1 1 0 1 0 0 1
0 1 0 1 0 1 0
1 0 0 1 1 0 0
1 1 1 0 0 0 0

 (I.7)

In fact, I have taken the image under the encoding map in (I.2) (which happens to be a
linear map) of the obvious basis in V4. So this G corresponds to this encoding map. �

Since all rows in G are orthogonal to the rows in H, we have the matrix equation
H ·Gt = 0. Here 0 is the zero-matrix.

Clearly rank(G) = dimC = k and rank(H) = dimD = n − k by theorem I.7, since
C = D⊥ and hence, by corollary I.8, D = D⊥⊥ = C⊥.

Definition. C⊥ is the dual code of C.

If G and H are a generator matrix and a parity check matrix for C, respectively, then
H is a generator matrix for C⊥ and G is a parity-check matrix for it.

�� ��
I.6 The standard form

It is obvious from the previous section that there are several choices of generator and
parity check matrices for a linear code C. Here we describe a way of getting them in a
standard form.

Definition. Two linear codes are equivalent if one can be obtained by applying the same
position-wise permutation of bits to all the codewords in the other.

The quality (rate and distance) of two equivalent codes are the same. For all practical
purposes, we can exchange a code with an equivalent code without changing the important
properties.

19

cw ’13 Coding and Cryptography G13CCR

Theorem I.9. By replacing C by an equivalent code if necessary, we can choose

G =
(
Ik A

)
and H =

(
At In−k

)
for some k × (n − k) matrix A. The generator matrix G is then said to be in standard
form.

Proof. Let G be a k × n generator matrix for C. Note that elementary row operations
on G do not change C, while permuting the columns corresponds to permuting the bits
so as to give a code equivalent to C. Also, we may assume that no row of G is all zero.
So permute the columns to ensure g11 = 1, then add row 1 to other rows as necessary to
clear the first column apart from g11. Now permute columns 2, . . . , n to ensure g22 = 1,
then operate with row 2 to clear the second column apart from g22. And so on.11

Given G =
(
Ik A

)
in standard form, define H =

(
At In−k

)
. It clearly has rank n − k,

and so it suffices to show that every row of G is orthogonal to every row of H. But the
dot product of the ith row of G with the jth row of H is

0 + 0 + · · ·+ 0 + aij + 0 + · · ·+ 0 + aij + 0 + · · ·+ 0 = 0.

In matrix equations, we can also write

H Gt =
(
At In−k

)
·
(
Ik
At

)
= At +At = 0 .

As an example, we treat again Hamming’s code. We start with the matrix G in (I.7).
We add the first row to the last two rows.

1 1 0 1 0 0 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1


Then add the second row to the first and the third.

1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 0 0 1 1 1 1
0 0 1 1 0 0 1


Now we swap the last two rows. 

1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 0 1 1 0 0 1
0 0 0 1 1 1 1


11In practice it is preferable to permute rows rather than columns, since this does not change C; but it

will not always work.

20

Coding and Cryptography G13CCR cw ’13

Finally we add the last row to the second and third row.

G′ =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 (I.8)

So we have found the matrix A and we can write a new parity check matrix

H ′ =

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 . (I.9)

Of course, in our operation we have just changed the basis of C, so the rows in G′ are still
elements in C.

We could have replaced the code by an equivalent code to get to the standard form:
Swap the first and last column in G, swap also the second and the sixth and finally move
the third column to the forth, the forth to the fifth and the fifth to the third; i.e. apply
the permutation (17)(26)(345) to the basis of V7. We get a generator matrix

1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

 (I.10)

for a different, but equivalent code.
For instance the encoding map

Vk // C

w � // wG′

corresponding to G′ in (I.8) above sends

(w1, w2, w3, w4) 7→ (w1, w2, w3, w4, w2 + w3 + w4, w1 + w3 + w4, w1 + w2 + w4)

So clearly the first k coordinates of a code word are just the source word, so we can also
easily decode in standard form, simply multiply from the right with the matrix

C // Vk

x � // x
(
Ik
0

)
.

This corresponds to chopping off the n − k last bits. If the generator matrix is not in
standard form, then decoding can be quite difficult as it means that we have to solve the
inhomogeneous linear equations x = wG.

21

cw ’13 Coding and Cryptography G13CCR

�� ��
I.7 Error correction for linear codes

Definition. The error-pattern vector of a received word x is the vector (word) with
1’s where errors have been made. The corrector z is what we add to x to get a codeword
– hopefully the right one.

Recall that according the theorem I.1, the ideal observer is going to choose as the
corrector a possible error-pattern vector of minimal weight.
Example. For example, still with Hamming’s code, suppose that in the above code C we
receive x = (1, 0, 0, 0, 0, 0, 1). Here a list of some codewords c and error-pattern z vectors.

c z
(0, 0, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0, 1)
(1, 0, 0, 0, 0, 1, 1) (0, 0, 0, 0, 0, 1, 0)
(0, 1, 0, 0, 1, 0, 1) (1, 1, 0, 0, 1, 0, 0)
(0, 0, 1, 0, 1, 1, 0) (1, 0, 1, 0, 1, 1, 1)
(0, 0, 0, 1, 1, 1, 1) (1, 0, 0, 1, 1, 1, 0)

The error-pattern of minimum weight is (0, 0, 0, 0, 0, 1, 0), so we adopt this as corrector z
and add it to x to get (1, 0, 0, 0, 0, 1, 1), which is the codeword closest to x and hopefully
the one that was sent. �

The set of possible error-pattern vectors is the coset

x + C =
{
x + c

∣∣ c ∈ C} ,
and a corrector z is any word of minimum weight in this coset, called the coset leader.
We can locate the coset by calculating12 x·Ht, the error syndrome or simply syndrome
of x, since

x ·Ht = y ·Ht ⇐⇒ H · xt = H · yt

⇐⇒ H · (xt − yt) = 0t

⇐⇒ x− y ∈ C
⇐⇒ x and y are in the same coset.

For Hamming’s code with the parity check matrix in (I.9), we have
coset syndrome coset leader
x + C xH ′t z

(0, 0, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 1, 1) (0, 1, 0, 0, 1, 0, 1) . . . (0, 0, 0) (0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 1) (1, 0, 0, 0, 0, 1, 0) (0, 1, 0, 0, 1, 0, 0) . . . (0, 0, 1) (0, 0, 0, 0, 0, 0, 1)
(0, 0, 0, 0, 0, 1, 0) (1, 0, 0, 0, 0, 0, 1) (0, 1, 0, 0, 1, 1, 1) . . . (0, 1, 0) (0, 0, 0, 0, 0, 1, 0)
(1, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 1, 1) (1, 1, 0, 0, 1, 0, 1) . . . (0, 1, 1) (1, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 1, 0, 0) (1, 0, 0, 0, 1, 1, 1) (0, 1, 0, 0, 0, 0, 1) . . . (1, 0, 0) (0, 0, 0, 0, 1, 0, 0)
(0, 1, 0, 0, 0, 0, 0) (1, 1, 0, 0, 0, 1, 1) (0, 0, 0, 0, 1, 0, 1) . . . (1, 0, 1) (0, 1, 0, 0, 0, 0, 0)
(0, 0, 1, 0, 0, 0, 0) (1, 0, 1, 0, 0, 1, 1) (0, 1, 1, 0, 1, 0, 1) . . . (1, 1, 0) (0, 0, 1, 0, 0, 0, 0)
(0, 0, 0, 1, 0, 0, 0) (1, 0, 0, 1, 0, 1, 1) (0, 1, 0, 1, 1, 0, 1) . . . (1, 1, 1) (0, 0, 0, 1, 0, 0, 0)

12This is the transposed of Hxt; if we decided in the beginning to write all our vectors vertically instead
of horizontally, we would simply apply H on the left to it.

22

Coding and Cryptography G13CCR cw ’13

It is surprising here that the non-trivial coset leaders are exactly the words of weight 1.
In general we might well have coset leaders of higher weight or we could have that two
words of weight 1 belong to the same coset (when d(C) = 2)

Note that we do not need to store the cosets. We need only store the table of 2n−k coset
leaders indexed by the syndromes, known as the syndrome look-up table.

The error-correcting routine is then: for each received word x, calculate the syndrome
xHt, use it to read off the corrector z from the table, and return the codeword x + z ∈ C.
(And then decode it!)
Example. Here is a second example. Suppose the code is given by the parity check
matrix

H =

1 1 1 0 0 1 0
1 0 1 0 1 1 1
0 0 0 1 0 1 1

 . (I.11)

This is also a code of dimension 4 and length 7, but it is not as good as Hamming’s
code. We wish to build up the syndrome look-up table. We know that the syndromes are
vectors of length 3, the rank of H, which equals the number of its rows here. So we can
put all vectors of length in a list. (We usually order them as binary numbers, but that is
optional). The result is given below.

Now, we want to find a coset leader for each of the syndromes. Of course, the syndrome
000, will have 0000000 as a coset leader as it corresponds to the code itself. All other
entries will have weight at least 1. We start by looking at 1000000. Its syndrome equals
the first column of H, so we can put this vector 1000000 as the coset leader for 110. Next
the vector 0100000 is a coset leader for 100. Then the vector 0010000 has also syndrome
110, but we have filled this space already, and as we need only one coset leader for each
syndrome, we can choose which one we want. We keep on filling the coset leaders of weight
1, once we have used them all, we find that the syndrome 101 has not yet been given a
coset leader. This is imply because 101 does not appear in H as a column. So we know
that no vector of weight 1 belongs to the coset, so we have to try to find a vector of weight
2, i.e. we are looking for two columns in H that sum up to 101. There are several choices
now, like the second and the fourth, or the first and the last column. So we can give
0101000 or 1000001 as a coset leader to 101.

syndrome coset leader
(0, 0, 0) (0, 0, 0, 0, 0, 0, 0)
(0, 0, 1) (0, 0, 0, 1, 0, 0, 0)
(0, 1, 0) (0, 0, 0, 0, 1, 0, 0)
(0, 1, 1) (0, 0, 0, 0, 0, 0, 1)
(1, 0, 0) (0, 1, 0, 0, 0, 0, 0)
(1, 0, 1) (0, 1, 0, 1, 0, 0, 0)
(1, 1, 0) (1, 0, 0, 0, 0, 0, 0)
(1, 1, 1) (0, 0, 0, 0, 0, 1, 0)

Say we receive the word (1, 1, 1, 1, 1, 1, 1). Its syndrome is (0, 1, 1), so we need to add the
corrector (0, 0, 0, 0, 0, 0, 1) to it. The unique (because the coset leader for this syndrome
was unique) codeword closest to the received word is (1, 1, 1, 1, 1, 1, 0). �

23

cw ’13 Coding and Cryptography G13CCR

�� ��
I.8 Minimum distance for linear codes

Proposition I.10. Let C be a linear code with a parity check matrix H. Then the mini-
mum distance d(C) of the code is the minimum number of columns that add up to zero.

In particular, the distance is d > 2 if there is no zero column in H. The code is 1-error-
correcting, i.e. d > 3, if there is no zero-column and no two equal columns in H. It can
now be checked very quickly that the Hamming code has minimum distance d = 3. The
other code given by the parity check matrix (I.11) instead has minimum distance d = 2
as there are two equal columns in H.

Proof. Let c ∈ C be of weight a. Then c ·Ht = 0; however the product c ·Ht is equal13

to the sum of the columns where c has a 1. Hence it is a sum of a columns of H that sum
up to 0.

For a linear code d(C) is the smallest weight of a non-zero vector in C by (I.4), hence
the proposition follows.

For a linear code we have an exact expression for Perr:

Theorem I.11. Let C be a linear code and fix a syndrome look-up table for C. Let ai be
the number of coset leaders in this table of weight i. Then

Perr = 1−
n∑
i=0

ai p
i(1− p)n−i .

Proof. A received word is corrected suc-
cessfully if and only if the error-pattern
vector is one of the coset leaders. The
probability that it is a particular coset
leader z of weight i is

P (error pattern = z) = pi · (1− p)n−i,

whence the result.

Note that, if C is e-error-correcting, then
ai =

(
n
i

)
for 0 6 i 6 e, since all words

with weight less than e are coset leaders,
and so

Perr 6 1−
e∑
i=0

(
n
i

)
· pi · (1− p)n−i,

which behaves like a constant times pe+1

for p close to 0.

'

&

$

%
Figure I.4: Perr for Hamming’s code

13For example (0, 1, 0, 0, 0, 0, 0, 1) ·Ht is the sum of the second and the last column of H.

24

Coding and Cryptography G13CCR cw ’13

For Hamming’s code, we get

Perr = 1− 1 · (1− p)7 − 7 · p · (1− p)6

= 21 p2 + O(p3) .

If we did not use any code, we would have

Perr = 1− (1− p)7 = 7 p+ O(p2) .

Hence Hamming’s code is vastly better, especially when p is small. See figure I.4.
The code in (I.11) instead has

Perr = 1− 1 · (1− p)7 − 6 · p · (1− p)6 − 1 · p2 · (1− p)5 = p+ 14 · p2 + O(p3)

�� ��
I.9 Linear codes with large distance

We have seen in theorem I.3, that a code had to be small in order to be e-error-correcting.
For a linear code of dimension k and length n which is e-error correcting, we have14

2n−k >
e∑
j=0

(
n

j

)
= #B(0, e) . (I.12)

Our task is to find e-error-correcting codes of length n with high rate, i.e. with large k.
Given k and n, the sphere bound is a limit on the largest possible distance d. The next
theorem in due to E. N. Gilbert and R. R. Varsharmov and it is a positive result that the
distance can be made fairly large.

Theorem I.12. If

2n−k >
2 e−1∑
j=0

(
n− 1
j

)
,

then there exists a linear e-error-correcting code C of dimension k and length n.

Proof. By lemma I.2, we want to find a linear [k, n, 2e + 1]-code. We shall construct an
(n−k)×nmatrixH which is the parity check matrix for such a code. From proposition I.10,
we see that we want that no sum of 2e or fewer columns of H is zero. We construct the
columns x1, x2,. . . , xn ∈ Vn−k recursively.

First, pick x1 to be any nonzero word in Vn−k. Suppose we have constructed already
x1,. . . , xr for some r < n. We wish to choose xr+1 to be any word in Vn−k such that xr+1

is not equal to any sum of 2e− 1 or fewer of the previously constructed xi with 1 6 i 6 r.
That is to say that xr+1 should not be equal to

14The inequality can be reinterpreted as follows: The left hand side is the number of distinct syndromes
for C. It is easy to see that all elements in the ball B(0, e) must have distinct syndromes when C is
e-error-correcting.

25

cw ’13 Coding and Cryptography G13CCR

• 0 (this excludes 1 element)

• x1, x2, . . . , xr (this excludes r elements)

• x1 + x2, . . . (this excludes
(
r
2

)
elements)

• . . .

• any sum of 2e− 1 of the xi (this excludes at most
(

r
2e−1

)
elements).

So at most

1 + r +
(
r

2

)
+ · · ·+

(
r

2e− 1

)
(I.13)

among all #Vn−k = 2n−k are excluded. So if we can prove that the quantity in (I.13) is
strictly smaller than 2n−k, then we know that there is at least one possible choice for xr+1.
By assumption in the theorem, we have

#Vn−k = 2n−k >
2e−1∑
j=0

(
n− 1
j

)
>

2e−1∑
j=0

(
r

j

)
,

with the second inequality coming from r 6 n− 1.

Remark. The above construction proves that such codes exist, but it is not useful in
practice. �

Both the sphere packing bound and the bound given by the theorem of Gilbert and
Varshamov are not optimal. Say, we would like to find 4-error-correcting codes. If n = 13,
the sphere packing bound gives us that the dimension will be at most 2. Obviously, there
is one of dimension 1, but the above theorem does not tell us if there is a 4-error-correcting
code with n = 13 and k = 2. In fact, there is no [13, 2, 9]-code.

If instead we ask for n = 14, the sphere packing bound tells us again that k 6 2 and the
above theorem does not help either. But this time, there exists a [14, 2, 9]-code.

There are plenty of open problems related to finding better bounds, either lower or
upper bounds. For small k and n, the best possible distance are listed in the tables in [3]
by Markus Grassl. Clicking on one of the entry will give you a description of the best
codes for this n and k.

Here is a table of dimensions and length of 4-error correcting codes. Note that the rate
increases.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14
n 9 14 17 19 20 22 23 25 26 27 29 30 31 32?

It is not known if there exists a 14-dimensional code in V32 with minimal distance 9, only
one with distance 8 was found so far.

26

http://iaks-www.ira.uka.de/home/grassl/codetables/BKLC/Tables.php?q=2&n0=1&n1=256&k0=1&k1=256

Coding and Cryptography G13CCR cw ’13

�� ��
I.10 Hamming Codes

In this section we construct a family of perfect codes. Recall that a code is perfect if we
have an equality in (I.12).

For r > 2, let Hr be the r× (2r − 1) matrix whose columns are all the nonzero words in
Vr, arranged so that the ith column is i in binary. The binary Hamming code Ham(r)
is the code of length 2r−1 with Hr as its parity-check matrix (not in standard form). For
example if r = 2,

H2 =
(

0 1 1
1 0 1

)
so Ham(2) is the 1-dimensional code generated by (1, 1, 1), i.e. it is the trivial [3, 1, 3]-code.
For r = 3, we get

H3 =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


Surprise, surprise, this is the ever recurring example which was called Hamming’s original
code.

Let 1 6 j 6 2r − 1 = n. Consider ej the jth basis element of Vn. By definition ej ·Ht
r

is the vector of length r containing the binary expansion of j. In particular ej ·Ht
r 6= 0t,

and moreover (ej − ek) ·Ht
r 6= 0t for any j 6= k. Therefore the 2r − 1 syndromes ej ·Ht

r

are all distinct. Adding 0 as a further syndrome, we have all 2r syndromes. Hence every
non-trivial coset has exactly one word of weight 1. Therefore we have shown the following
proposition.

Proposition I.13. The Hamming code Ham(r) for r > 2 is a perfect 1-error-correcting
code of length n = 2r − 1 and dimension k = 2r − r − 1.

Note that the rate of Ham(r) is

k

n
=

2r − r − 1
2r − 1

,

which tends to 1 as r grows.

�� ��
I.11 The First Order Reed-Muller Codes

Another important and very much used family of error-correcting codes are the Reed-
Muller codes. The nasa used the them for the Mariner and Viking spacecrafts. Let
m > 1. The Reed-Muller code R(1,m) is defined by the generator matrix Gm which

27

cw ’13 Coding and Cryptography G13CCR

is the (m+ 1)× 2m matrix whose ith column is 1 followed by the binary representation of
i− 1. For instance

G1 =
(

1 1
0 1

)
G2 =

1 1 1 1
0 0 1 1
0 1 0 1

 G3 =


1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1


The code R(1,m) has therefore length n = 2m and dimension m+1. The word (1, 1, . . . , 1)
is always a codeword as it is the first row in Gm. All other rows have equally many 0’s
as 1’s, since every binary representation appears once as a column. More precisely the ith

row from the bottom starts with a block of 2i zeroes followed by the same number of 1’s,
then again 2i zeroes and so on. Hence every codeword apart from 0 and (1, 1, . . . , 1) has
weight 2m−1. So the distance d is 2m−1, therefore R(1,m) is a [2m,m+ 1, 2m−1]-code. It
is (2m−2 − 1)-error-correcting. The rate is k

n = m+1
2m . The big disadvantage for this code

is that the syndrome look-up table is huge; it contains 22m−m−1 entries.
For instance the code R(1, 5) was used for spacecrafts where there is quite a lot of noise

in the channel. This code is 7-error-correcting with a rate of 0.1875. But the syndrome
look-up would contain 226 = 67108864 entries.

There is a different algorithm for decoding. This is not a minimum distance decoding
scheme. We will illustrate the method on the example of m = 3. Let w = (w1, w2, w3, w4)
be a source word and c = (c1, c2, . . . , c8) the corresponding codeword. Then we have the
following equalities.

w4 = c1 + c2 = c3 + c4 = c5 + c6 (= c7 + c8)
w3 = c1 + c3 = c2 + c4 = c5 + c7 (= c6 + c8)
w2 = c1 + c5 = c2 + c6 = c3 + c7 (= c4 + c8)

On receiving a word x = (x1, x2, . . . , x8), we try to find a source word y which will
hopefully be w. First evaluate x1 +x2, x3 +x4, and x5 +x6, and choose y4 to be the more
frequent in these three values. Similarly we can obtain y3 and y2. Finally choose y1 as the
digit that appears more often in

x + y2 · r2 + y3 · r3 + y4 · r4 ,

where r1, r2, r3, and r4 are the four rows of G3.
For a general m > 3, the method is similar. One needs to choose y2, . . . , ym+1 by

choosing the more frequent value among 2m−1−1 values. If we made an error in one of these
values y2, . . . ym+1, then at least 2m−2 errors must have been made in the transmission.
If all of them are correctly decoded, then we obtain the wrong value for y1 only if the
transmission contained at least 2m−1 errors. Hence this decoding scheme is (2m−2 − 1)-
error-correcting, just as the minimum-distance decoding.

Here an example why this decoding scheme does not always yield the nearest codeword.
The code R(1, 4) is 3-error-correcting. Suppose we received the word

x = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1).

The above scheme yields the source word 0, but the second row is closer than 0 to x:

r2 = (0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1).

28

Coding and Cryptography G13CCR cw ’13

�� ��
I.12 Cyclic Codes

Definition. A linear code C ⊂ Vn is cyclic if

(c0, c1, . . . , cn−1) ∈ C =⇒ (cn−1, c0, c1, . . . , cn−2) ∈ C .

We shifted here the index in the vector; we will keep this throughout the section.
Example. For instance the original code of Hamming’s given by (I.6) is not cyclic, as
one can see best from the list of all code words (I.2). Also the equivalent code (I.2) is
not cyclic. But by swapping in this last matrix first the top two rows, then the last two
columns and finally the first two columns we get an equivalent code with generator matrix

G′′ =


1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

 .

Here the list of all codewords but 0 and 1111111.

c1 = 1000101 c2 = 0100111
c1 + c2 = 1100010 c1 + c3 = 1010011
c2 + c3 = 0110001 c1 + c2 + c4 = 1101001

c1 + c3 + c4 = 1011000 c1 + c2 + c3 = 1110100
c2 + c4 = 0101100 c2 + c3 + c4 = 0111010

c3 = 0010110 c3 + c4 = 0011101
c4 = 0001011 c1 + c4 = 1001110

(I.14)

So clearly this is a cyclic code, which is equivalent to Hamming’s code. �
We identify now the vector Vn with the vector space of polynomials15 in F2[X] of

degree smaller than n by the following map.

(a0, a1, . . . , an−1) 7→ a0 + a1 ·X + · · ·+ an−1 ·Xn−1

So from now on, we will not only write elements in Vn as vectors, like c, but also as
polynomials c(X).
Example. The element c1 in the above code is now also the polynomial

c1(X) = 1 +X4 +X6 .

15Polynomials in F2[X] are formal sums of the form a0 + a1X + · · · + an−1X
n−1 subject to the usual

rules of addition and multiplication. It is important to distinguish this polynomial from the map

x 7→ a0 + a1x+ · · ·+ an−1x
n−1

on F2. For instance the map x 7→ x2 + x is the zero-map, but the polynomial X +X2 is not zero.

29

cw ’13 Coding and Cryptography G13CCR

�
The above map is clearly linear. We can endow the vector space of these polynomials

with a multiplication with the usual polynomial multiplication, but subject to the ad-
ditional rule that Xn = 1. When multiplying two polynomials f(X) and g(X), all the
terms of degree larger than n− 1, can be simplified by Xn+k = Xk. In algebraic terms we
identified Vn with the ring

F2[X]
(Xn − 1)F2[X]

.

Example. In V7, we will have

c1(X) · c2(X) = (1 +X4 +X6) · (X +X4 +X5 +X6)

= X +X4 +X6 +X7 +X8 +X9 +X11 +X12

= X +X4 +X6 + 1 +X +X2 +X4 +X5

= 1 +X2 +X5 +X6 ,

which, by some marvellous miracle, is equal to c1 + c3. �
With this multiplication the cyclic permutation in the definition of a cyclic code is simply

the multiplication by X as in

X ·
(
c0 + c1 ·X + · · ·+ cn−1 ·Xn−1

)
= cn−1 + c0 ·X + c1 ·X2 + · · ·+ cn−2 ·Xn−1 .

Proposition I.14. Let C be a cyclic code in Vn, then for all f(X) ∈ Vn, we have f(X) ·
c(X) ∈ C for all c(X) ∈ C.

Proof. Let c(X) ∈ C. By the definition of a cyclic code and the above remark, we have
X · c(X) ∈ C. So by induction X2 · c(X), X3 · c(X), . . . all belong to C. Since C is a
linear subspace, we have

f(X) · c(X) =
(
f0 + f1 ·X + · · ·+ fn−1 ·Xn−1

)
· c(X) ∈ C .

Definition. A linear subspace I in Vn such that we have f(X) · c(X) ∈ I for all c(X) ∈ I
and f ∈ Vn is called an ideal.

Theorem I.15. The cyclic codes in Vn are exactly the ideals in Vn.

Proof. We have seen that any cyclic code is an ideal. Conversely, let I be an ideal. It is
clear that I is a linear code. It is cyclic because X · c(X) ∈ I for all c(X) ∈ I.

�� ��
I.13 Generator polynomial

We will show that to each cyclic code, we can associate a unique polynomial, called the
generator polynomial, which characterises the code completely. But first, we need the
following fact about polynomials.

30

Coding and Cryptography G13CCR cw ’13

Lemma I.16. Let f(X) and g(X) be two polynomials in F2[X]. Then there exist two
polynomials q(X) and r(X) in F2[X] such that deg(r(X)) < deg(g(X)) and

f(X) = q(X) · g(X) + r(X) . (I.15)

The polynomial q(X) is called the quotient and r(X) the remainder of the division of
f(X) by g(X).

Proof. This is just the usual long division of polynomials.

Example. If we divide, say c1(X) = 1 +X4 +X6 by c3(X) = X2 +X4 +X5, we get

X + 1

X5 +X4 +X2
)
X6 + X4 + 1
X6 +X5 + X3

X5 +X4 +X3 + 1
X5 +X4 + X2

X3 +X2 + 1

So the quotient is q(X) = 1 + X and the remainder r(X) = 1 + X2 + X3. Or in one
equation:

1 +X4 +X6 = (1 +X) · (X2 +X4 +X5) + (1 +X2 +X3) .

One thing that is really wonderful about 1 + 1 = 0 is that you can not make any sign
errors. �

Note that we can replace on both sides of the equality (I.15) the terms of degree higher
than n− 1 by the rule for Vn and the equation still holds, but with elements in Vn.

Theorem I.17. Let C be a proper16 cyclic code in Vn. There exists a unique polynomial
g(X) ∈ Vn, called the generator polynomial such that

C =
{

f(X) · g(X)
∣∣∣ f(X) ∈ Vn

}
.

Moreover g(X) is the non-zero polynomial of smallest degree in C and g(X) divides Xn−1
in F2[X].

Of course, the divisibility here means that there exists a polynomial h(X) ∈ Vn of degree
n− deg(g(X)) such that g(X) · h(X) is equal to Xn − 1 as polynomials in F2[X], or that
g(X) · h(X) = 0 in Vn. This polynomial h(X) is also unique and it is called the parity
check polynomial for C.
Example. For example if n = 3 and g(X) = X + 1, then h(X) = 1 + X + X2, since
X3 − 1 = (X + 1) · (1 +X +X2). �

Note that Xn − 1 = Xn + 1 as the coefficients are in F2[X]; but it seems more natural
to write the negative sign here, for aesthetic reasons.

16Meaning different from Vn and from {0}.

31

cw ’13 Coding and Cryptography G13CCR

The theorem does not apply as such to the full code C = Vn and the trivial code
C = {0}. We define the generator polynomial of Vn to be g(X) = 1 and the generator
polynomial of {0} to be g(X) = Xn − 1. Similarly, we define the parity check polynomial
of Vn to be h(X) = Xn − 1 and the one of {0} to be h(X) = 1.

Proof. Let g(X) be a non-zero polynomial in C of smallest degree. If now c(X) ∈ C, then
there are f(X) and r(X) with c(X) = f(X) · g(X) + r(X) and deg(r(X)) < deg(g(X))
by lemma I.16. Since c(X) ∈ C and f(X) · g(X) ∈ C by proposition I.14, we also have
r(X) ∈ C. By minimality of g(X), this implies that r(X) = 0; so all elements in C are of
the form f(X) · g(X).

Suppose that there are two polynomials g1(X) and g2(X) of minimal degree in C. Then
they both have the same leading term.17 Hence g1(X)−g2(X) is an element of C of smaller
degree. So g1(X) = g2(X).

Finally, when dividing Xn − 1 by g(X), we get two polynomials h(X) and r(X) such
that Xn − 1 = h(X) · g(X) + r(X) as polynomials in F2[X] and such that deg(r(X)) <
deg(g(X)) 6 n. So in Vn this yields 0 = h(X) · g(X) + r(X). So r(X) must belong to C
and by minimality of g(X), it has to be zero. Hence Xn − 1 = h(X) · g(X).

Of course, this is in algebraic terms the proof that Vn is a principal ideal ring (not
domain).
Example. Which is the generator polynomial for our favourite code here? Scanning
through the list (I.14), we find that

g(X) = c1(X) + c3(X) + c4(X) = 1 +X2 +X3

Does it divide X7 − 1? Yes, as X7 − 1 = (1 +X2 +X3) · (1 +X2 +X3 +X4). �'

&

$

%

X2 − 1 = (1 +X)2

X3 − 1 = (1 +X) · (1 +X +X2)

X4 − 1 = (1 +X)4

X5 − 1 = (1 +X) · (1 +X +X2 +X3 +X4)

X6 − 1 = (1 +X)2 · (1 +X +X2)2

X7 − 1 = (1 +X) · (1 +X +X3) · (1 +X2 +X3)

X8 − 1 = (1 +X)8

X9 − 1 = (1 +X) · (1 +X +X2) · (1 +X3 +X6)

X10 − 1 = (1 +X)2 · (1 +X +X2 +X3 +X4)2

X11 − 1 = (1 +X) · (1 +X +X2 +X3 +X4 +X5 +X6 +X7 +X8 +X9 +X10)

Table I.1: Factorisations of Xn − 1

Proposition I.18. Conversely, each factor g(X) of Xn − 1 gives rise to a cyclic code in
Vn.

17Yes, all polynomials in F2[X] are monic.

32

Coding and Cryptography G13CCR cw ’13

Proof. The set I =
{
f(X) · g(X)

∣∣ f(X) ∈ Vn
}

is an ideal in Vn.

Hence we have a classification of all cyclic codes of length n, simply by listing all divisors
of Xn − 1. In the table I.1, we give a list of the first few factorisations. Note that when
n is even, then the polynomials factors into squares of the polynomials involved for n

2 .
Therefore, one restricts usually the attention to odd n, called separable18 cyclic codes.

�� ��
I.14 Generator and parity check matrices for cyclic codes

Proposition I.19. Let g(X) = g0 + g1X + · · ·+ gn−kX
n−k be the generator polynomial

of a cyclic code C of length n. Then C is of dimension k and a generator matrix is given
by

G =


g0 g1 g2 . . . gn−k 0 0 . . . 0
0 g0 g1 . . . gn−k−1 gn−k 0 . . . 0

0 0 g0 . . . gn−k−2 gn−k−1 gn−k
. . . 0

...
...

.
...

0 0 0 0 g0 g1 g2 . . . gn−k

 .

Proof. We have to show that

B =
{
g(X), X g(X), . . . , Xk−1 g(X)

}
is a basis of the subspace C. They are clearly linearly independent. Let c(X) = f(X)·g(X)
be an arbitrary element in C. Recall from theorem I.17 that there is a polynomial h(X)
of degree k such that g(X) · h(X) = 0 in Vn. Let r(X) be the remainder and q(X) the
quotient when dividing f(X) by h(X). Now

r(X) · g(X) =
(
f(X)− q(X) h(X)

)
· g(X)

= f(X) · g(X) = c(X)

and since r(X) has degree smaller than deg(h(X)) = k, we have shown that c(X) belongs
to the span of the set B.

Example. So we get yet another generator matrix for the Hamming code
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1

 .

�
18Those knowing about Galois theory will know why.

33

cw ’13 Coding and Cryptography G13CCR

Definition. Given a polynomial f(X) = f0 + f1X + · · · + fmX
m of degree m in F2[X],

we define the reverse polynomial by

f̆(X) = fm + fm−1X + · · ·+ f0X
m = Xdeg(f) · f

(1
X

)
.

For instance the reverse polynomial of Xn − 1 is itself.

Lemma I.20. Let g(X) and h(X) be two polynomials in F2[X]. Put f(X) = g(X) ·h(X).
Then ğ(X) · h̆(X) = f̆(X).

Proof. Using the above formula, we get

f̆(X) = (g · h)̆(X) = Xdeg(g·h) · (g · h)
(1
X

)
= Xdeg(g)+deg(h) · g

(1
X

)
· h
(1
X

)
= ğ(X) · h̆(X).

Theorem I.21. Let C be a cyclic code with parity check polynomial h(X). Then h̆(X) is
the generator polynomial of the dual code of C. If h(X) = h0 + h1X + · · ·+ hkX

k, then

H =


hk hk−1 . . . h1 h0 0 . . . 0

0 hk . . . h2 h1 h0
. . . 0

...
.

...
0 0 0 hk hk−1 hk−2 . . . h0


is a parity check matrix for C.

Proof. By the previous lemma I.20, we have that h̆(X) divides Xn − 1 because ğ(X) ·
h̆(X) = Xn − 1.

Let f(X) be any polynomial of degree smaller than n − k. We shall now prove that
f(X) · h̆(X) belongs to the dual code C⊥. Write f(X) · h̆(X) = a0 + a1X + · · · + arX

r

for some r < n and ar = 1. Let c(X) = c0 + c1X + · · ·+ cn−1X
n−1 be any element of C.

Since g(X) is a generator, c(X) is a multiple of g(X). But then f̆(X) · h(X) · c(X) is a
multiple of h(X) · g(X) = Xn − 1 = 0 in Vn. So

(ar + ar−1X + · · ·+ a0X
r) · (c0 + · · ·+ cn−1X

n−1) = 0

in Vn because the first factor is f̆(X) · h(X) by the previous lemma. Consider now the
coefficient in front of Xr in the above equality. As no simplification of the form Xn+i = Xi

can interfere in this, we must have a0 c0 + a1 c1 + · · · + ar cr = 0 . In other words the
dot-product of the vector (a0, a1, . . . , ar, 0, . . . , 0) and the vector (c0, c1, . . . , cn−1) is zero.
Hence a0 + a1X + · · ·+ arX

r belongs to C⊥.
Note that by proposition I.19, any element of the cyclic code C ′ generated by h̆(X)

belongs to C⊥. So C ′ is a subspace of C⊥. On the one hand, by theorem I.7, the
dimension of C⊥ is n − k where k = deg h̆(X). On the other hand, by theorem I.17, the
dimension of the cyclic code C ′ is n− k. Hence C ′ = C⊥.

The final statement about the parity check matrix for C, follows from proposition I.19
and the fact that the parity check matrix of C is a generator matrix for C⊥.

34

Coding and Cryptography G13CCR cw ’13

Corollary I.22. The dual code of a cyclic code is cyclic.

�� ��
I.15 Error-correction for cyclic codes

Cyclic codes are linear. So we could just apply the usual method involving the syndrome
look-up table to correct. The following theorem gives a much faster method to correct small
errors. But note that this will not always correct to the closest codeword as illustrated in
the example after the theorem.

Theorem I.23. Let C be a cyclic code of minimum distance d generated by g(X). Let
y(X) be a received word in Vn. Let s(X) be the remainder when dividing y(X) by g(X).
If the weight of s(X) is smaller or equal to d−1

2 , then s(X) is a corrector for y(X), that
is y(X) + s(X) is the nearest codeword to y(X).

Proof. When dividing y(X) by g(X), we find a quotient f(X) and a remainder s(X) with
y(X) = f(X) · g(X) + s(X) and deg(s(X)) < deg(g(X)). So y(X) + s(X) = f(X) · g(X)
is a codeword in C.

Let c(X) be any other codeword in C. If we assume that d(s,0) 6 d−1
2 , then

d(c,y) > d(c,y + s)− d(y + s,y) > d− d− 1
2

=
d+ 1

2
>
d− 1

2
.

Hence y(X) + s(X) is the closest codeword to y(X).

In fact one could prove a bit more. Namely that s(X) is the syndrome of y(X) with
respect to the ‘reversed standard form’ parity check matrix. See [11] for more details.

If the length n of the code is huge then the computation of the syndrome using the parity
check matrix in theorem I.21 will take a long time, even if most of the entries are zero.
The computation of the remainder when dividing by g(X) is fairly fast, especially when
the weight of the polynomial g(X) is small. Nevertheless, to take the remainder s(X) as
a corrector could yield a codeword which is not the closest codeword to the received word
y(X) – and, hence, it is not likely to be the word which was sent.
Example. Let C be the cyclic code in V5 generated by the polynomial g(X) = 1 +X +
X2 +X3 +X4. Suppose we receive the word y(X) = 1 +X +X2 +X3. Since the degree
of y(X) is smaller than the degree of g(X), we immediately know that s(X) = y(X) is
the remainder when dividing by g(X). Hence with the above method, we would correct
y(X) to y(X) + s(X) = 0, while the codeword g(X) is closer to y(X) than 0. So this
method is not even 1-error-correcting.

Of course, this is a binary repetition code of length 5. It has minimal distance 5 and
the usual way of correcting is 2-error-correcting. �

In table I.2 we give a list of frequently used cyclic codes. They have some cryptic
codenames used by those who actually implement them. The code is given by a generating
polynomial. Note that not all g(X) are irreducible polynomials. (Source [24])

35

cw ’13 Coding and Cryptography G13CCR

Name g(X) Use
CRC-1 X + 1
CRC-4-ITU X4 +X + 1 telecom. [19]
CRC-5-ITU X5 +X4 +X2 + 1 telecom. [19]
CRC-5-USB X5 +X2 + 1 USB token packets
CRC-6-ITU X6 +X + 1 telecom. [19]
CRC-7 X7 +X3 + 1 MultiMediaCard
CRC-8-ATM X8 +X2 +X + 1 Asynchronous Transfer

Mode (ADSL)
CRC-8-CCITT X8 +X7 +X3 +X2 + 1 1-Wire (cheap wireless

communication)
CRC-8-D/M X8 +X5 +X4 + 1 1-Wire
CRC-8 X8 +X7 +X6 +X4 +X2 + 1
CRC-8-SAE J1850 X8 +X4 +X3 +X2 + 1
CRC-10 X10 +X9 +X5 +X4 +X + 1
CRC-12 X12 +X11 +X3 +X2 +X + 1 telecommunication
CRC-15-CAN X15 +X14 +X10 +X8 +X7 +X4 +

X3 + 1
CRC-16-CCITT X16 +X12 +X5 + 1 Modems, Bluetooth,

Point-to-Point Proto-
col (dial-up internet),
Infrared

CRC-16-IBM X16 +X15 +X2 + 1 XMODEM, USB
CRC-24-Radix-64 X24+X23+X18+X17+X14+X11+

X10+X7+X6+X5+X4+X3+X+1
CRC-32-MPEG2 X32+X26+X23+X22+X16+X12+

X11 +X10 +X8 +X7 +X5 +X4 +
X2 +X + 1

mpeg2

CRC-32-IEEE 802.3 X32+X26+X23+X22+X16+X12+
X11 +X10 +X8 +X7 +X5 +X4 +
X2 +X + 1

ethernet

CRC-32C X32+X28+X27+X26+X25+X23+
X22+X20+X19+X18+X14+X13+
X11 +X10 +X9 +X8 +X6 + 1

V.42 Modem

CRC-64-ISO X64 +X4 +X3 +X + 1 Wide Area Networks

Table I.2: Cyclic codes in use

36

Coding and Cryptography G13CCR cw ’13

Example. The cyclic code ‘CRC-16-CCITT’ is generated by g(X) = X16 +X12 +X5 +1.
The smallest n such that g(X) divides Xn−1 is n = 7 ·31 ·151 = 32767. Take any message
in binary digits with at most 32767− 16 bits. Consider it as a polynomial f(X) in F2[X]
of degree less than 32751. Then compute f(X) ·X16 and the remainder s(X) thereof when
dividing by g(X). The coded message to send is then c(X) = f(X) · X16 + s(X). By
construction c(X) is a multiple of g(X) and hence it is a codeword. We have only added
16 bits of redundancy.

If we receive a word, any polynomial y(X) of degree less than 32767. Compute the
remainder of y(X) when dividing by g(X). If the result is non-zero, we know that y(X)
is not a codeword and we have detected an error. So this method is 1-error-detecting
and has a very high rate of 32751/32767 = 0.9995. It is neither 2-error-detecting nor
1-error-correcting, but it would detect if all the errors in the transmission were made in
15 consecutive bits. (See the discussion of burst errors below). �

�� ��
I.16 Other Topics in Error Correction Codes

I.16.1 Burst Error Correction Codes

In many applications, typical errors do not come alone. It is quite common to have
sequences of a certain length of errors, so called burst of errors. Many of the implemented
cyclic codes have a particularly good behaviour to correct (or detect) burst errors. See
chapter 7.5 in [11].

I.16.2 BCH-Codes

These are special cyclic code that are frequently used. The polynomials are constructed
using the fact that the multiplicative group of finite fields F2d are cyclic groups. In partic-
ular the Hamming [7, 4]-code is such a BCH-Code. They are named after Hocquenghem,
Bose and Ray-Chaudhuri.

I.16.3 Reed-Solomon Codes

These are also linear codes that are much used. But rather than working over the finite
field F2 of two elements they work with larger fields Fq and their particular structure.
They were used for the Voyager missions and they are still in use in every CD-Player.

I.16.4 Quadratic Residue Codes

(Only for G13FNT-people). These codes are special cyclic codes. Let p ≡ ±1 (mod 8)
be a prime number. Let ζ be a primitive pth root of unity over F2. Then the cyclic code
generated by the polynomial ∏

a

(X − ζa) ,

37

cw ’13 Coding and Cryptography G13CCR

where a runs over all quadratic residues modulo p, is called a quadratic residue code.
For example with p = 7, we get Hamming’s original code, once again: Any generator of

F×8 is a primitive 7th root of unity. For instance the root of X3 +X2 + 1 is such. But this
is nothing else but the polynomial above in this particular case.

I.16.5 Goppa Codes

These codes use algebraic geometry in their construction. Even though they are not always
very practical for implementations, they are very important from a theoretical point of
view. Among them one finds families of codes that have an asymptotically very good
behaviour.

I.16.6 Golay’s code

This is a particularly beautiful code, found by Marcel J. E. Golay in 1949, with many
links to different subjects in mathematics, like the Leech lattice, the Monstrous moonshine
linking modular forms to a huge finite simple group, . . .

This is a perfect cyclic code C in V23 of dimension 12 of minimum distance 7. In fact it
is the unique code with this property. One way of defining it is via the quadratic residue
code for p = 23. Or, we can simple give a generating polynomial

1 +X2 +X4 +X5 +X6 +X10 +X11 .

38

Chapter II

Cryptography

�

�

�

�
Plaintext or
Source message

encrypt

encode

encipher

���

�

�

�
Ciphertext or
Coded message

decrypt

decode

decipher

OO

Figure II.1: Cryptography

First some terminology. Cryptography deals with en-
cryption, the process of converting ordinary information
(plaintext) into unintelligible gibberish (ciphertext).
Decryption is the reverse, moving from unintelligible ci-
phertext to plaintext. A cipher system consists of a
general method of encipherment, which remains invariant
but uses a variable key. It is wise to assume that the
enemy knows the general method and is missing only the
key.

The goal of cryptanalysis is to find some weakness or
insecurity in a cipher system; usual the main aim is to
reproduce the key given a sufficiently large ciphertext.

The first four sections concern classical cryptography.
Then after a short interlude about number theory, we will
progress to public key cryptography, the more modern ap-
proach to cryptography.

�� ��
II.1 Modular Arithmetic

Let n > 1 be an integer. We say that a integer a is coprime to n if there is no integer greater
than 1 dividing both n and a. For any two integers a and b, we will write a ≡ b (mod n) if
a− b is divisible by n. The relation ≡ modulo n is an equivalence relation that partitions
the integer in residue classes of integers having the same remainder when divided by
n. The set of all residue classes is denoted by Z/nZ, which is a set with n elements often
represented by {0, 1, 2, . . . , n − 2, n − 1}. The usual addition and multiplication induce
operations on Z/nZ. For instance, we have

23 + 34 ≡ 11 + 10 ≡ 21 ≡ 9 (mod 12) and 18 · 19 ≡ 6 · 7 ≡ 42 ≡ 6 (mod 12) .

Note however that the division is not always possible. We have

39

cw ’13 Coding and Cryptography G13CCR

Proposition II.1. Let n > 1 be an integer. Suppose that a is an integer coprime to n.
Then there exists a integer b such that a · b ≡ 1 (mod n).

See proposition II.2 for a proof when n is prime and see section II.6.2 for a method to
find the integer b. The above proposition is wrong if a is not coprime to n. We call b the
inverse of a modulo n. We can now divide any residue class x in Z/nZ by a simply by
multiplying x by b.

For instance if n = 26 and a = 5 then b = 21, since 21 · 5 ≡ 105 ≡ 1 (mod 26). On the
other hand, if a = 12, then all multiples a · b, for any b, are even numbers. Hence even
reduced modulo 26, which is also even, we can never be equal to 1. So 12 is not invertible
in Z/26Z.

An affine equation c ≡ a · x (mod n) can be solved uniquely in x if a is coprime to n.
The solution is x ≡ b · c (mod n), where b is the inverse of a modulo n. For instance
17 ≡ 5 · x (mod 26) has as a unique solution x ≡ 21 · 17 ≡ 19 (mod 26).

If a is not coprime to n, then the equation c ≡ a · x (mod n) has either no solution or
many solutions. For example 1 ≡ 12 ·x (mod 26) has no solution. But 2 ≡ 12 ·x (mod 26)
has two solution : x ≡ 11 or x ≡ 24 (mod 26). See table II.1 for the list of all inverses
modulo 26.

�
�

�
�

a 1 3 5 7 9 11 15 17 19 21 23 25
b 1 9 21 15 3 19 7 23 11 5 17 25

Table II.1: Inverse modulo 26

A quick note on the fastest way to compute “modulo” on a calculator. Say we wish
to compute the remainder of a = 123456 modulo n = 789. We start by computing
a/n: 123456 ÷ 789 = 156.4714829 (the number of decimal digits will depend on your
display-size). We see that 156 is the integer part of this number, so we subtract it:
156.47142829− 156 = 0.47142829. Now we multiply the result with n to get 0.47142829×
789 = 372.0000081. So the answer is 372, i.e. 123456 ≡ 372 (mod 789).

Obviously most computer algebra systems will have the “mod” function implemented.
In pari-gp [14] one can use 123456 % 789 or Mod(123456,789). The same notations
apply to sage [17]. In mathematica it is Mod[123456,789], in maple we write 123456
mod 789 and mod(123456,789) in matlab.

Please consult [16, chapter 2] for more on modular arithmetic.

�� ��
II.2 Monoalphabetic Ciphers

Monoalphabetic ciphers are simple permutations of the alphabet, which we will from
now on fix as the set of all lower case letters ‘a’, ‘b’, . . . The key is the permutation. We

40

Coding and Cryptography G13CCR cw ’13

will present here two special cases of monoalphabetic ciphers, namely the Caesar cipher
and the affine cipher.

Caesar cipher

A famous historic example is the Caesar cipher, which, according to Suetonius, was used
by Julius Caesar to communicate important military information to his generals. Identify
the letters in the alphabet with the integers modulo 26 as follows ‘a’= 0, . . . , ‘z’= 25.
Encipher by adding κ modulo 26 to each letter, decipher by subtracting κ modulo 26.
Julius Caesar used κ = 3, so the mapping is

plain : a b c ... w x y z
cipher: D E F ... Z A B C

The key is the value of κ, here 3 or ‘D’. There are only 26 possible keys, so one can easily
try them all. (This is called the ‘brute force attack’.)

Affine cipher

Another example, a little bit more sophisticated is the affine cipher. Choose as a key a
κ ∈ Z/26Z and a λ ∈ Z/26Z. But make sure that λ is invertible modulo 26, i.e. that it is the
class of an integer which is coprime to 26. Now use the map

Z/26Z // Z/26Z

x � // λ · x+ κ

as a permutation of the letters, used for encryption. The decryption is done with the
inverse permutation, given by

Z/26Z // Z/26Z

y � // µ · (y − κ) = µ · y + ν

where µ is the inverse of λ modulo 26 and ν ≡ −µ · κ (mod 26). For example with
λ = 7 and κ = 3, we get the permutation in figure II.2. The decryption map is given by#

"

!

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

3 10 17 24 5 12 19 0 7 14 21 2 9 16 23 4 11 18 25 6 13 20 1 8 15 22
D K R Y F M T A H O V C J Q X E L S Z G N U B I P W

Figure II.2: An affine encryption table

y 7→ 15 · y + 7.
Despite the fact that this list looks very random, this cipher is not secure at all. In order

to break this code, one starts by making a guess for two correspondences. For instance,
just from looking at the frequency and positions of letters in a certain given ciphertext,

41

cw ’13 Coding and Cryptography G13CCR

one might make the guess that e7→Q and t 7→X, say. So in the decryption1 map y 7→ µ·y+ν,
we must have

µ · 16 + ν ≡ 4 (mod 26)
µ · 23 + ν ≡ 19 (mod 26)

This system of equations modulo 26 has a unique2 solution µ = 17 and ν = 18. From
this is it easy to spell out the full decryption table. Then one checks if the text can be
decrypted with this table, if not the guess was wrong and one should try with another
guess. Obviously a computer can also use brute force, by testing all 12 · 26 possible keys.

General attack on monoalphabetic ciphers

It is certainly better to use an arbitrary permutation, rather than these affine maps.
Nevertheless these monoalphabetic ciphers are easy to attack with frequency analysis.

In figure II.3(a), we see a graphical representation of how often a letter appears in a
average English text. In particular, the most frequent letters in the English language are in
decreasing order : ‘e’, ‘t’, ‘a’, ‘o’, ‘i’, ‘n’, ‘s’, ‘h’, ‘r’, ‘d’, ‘l’, . . . Now we scan the ciphertext
to see which are the most frequent letters. Usually one recovers a large part of the original
message this way, sufficient to guess the rest. More advanced frequency analysis uses that

(a) Letter frequencies

th 3.21% the 2.00%
he 3.05% and 0.93%
in 1.83% ing 0.74%
er 1.74% her 0.58%
an 1.73% tha 0.47%
re 1.37% hat 0.44%
nd 1.28% his 0.41%
ed 1.28% you 0.40%
ha 1.23% ere 0.39%
es 1.21% dth 0.35%
ou 1.16% ent 0.34%
to 1.12% eth 0.32%
at 1.09% for 0.32%
en 1.07% nth 0.31%
on 1.07% thi 0.30%
ea 1.06% she 0.30%
nt 1.05% was 0.29%
st 1.04% hes 0.29%
hi 1.03% ith 0.28%

(b) Digram and trigram frequen-
cies

Figure II.3: Frequencies in English (Source [20], see also [2])

1One could also determine the encryption map, i.e. solve the equations for λ and κ, but since we are
interested in decoding it is often quicker to trying to determine the decryption map directly.

2Such systems of equations modulo 26 may also have no solution or two solutions or even 13 solutions.
It is important only to take the solutions with µ invertible.

42

Coding and Cryptography G13CCR cw ’13

certain couples (digrams) appear more frequently than others. In table II.3(b), you find a
list of the most common digrams and trigrams.

�� ��
II.3 Vigenère Cipher

Another classic encryption is due to Giovan Battista Bellaso in 1553, but it was later
attributed to Blaise de Vigenère. It was for long time believe to be unbreakable.

As a key, we fix a word of a certain length k. We add this word repeatedly to the text.
As an example suppose the key was ‘deadparrot’, then we would encode as follows

plain yeahremarkablebirdthenorvegianbluebeautifulplumageinnit
key deadparrotdeadparrotdeadparrotdeadparrotdeadparrotdeadp

cipher BIAKGEDRFDDFLHQIIUHAHROUKEXZOGEPUHQERLHBIYLSAUDRUXLRNLI

(One can do this quickly on http://www.sharkysoft.com/misc/vigenere/.) This is a polyal-
phabetic version of Ceasar’s cipher. We could be more general: Take as a key an integer
k > 1 and permutations π1, π2,. . . , πk of the alphabet. We encode the first letter using
π1 the second using π2 and so on.

How can one break this encryption? Note first that, once we know k we can apply
frequency analysis to all letters encoded with π1, then to all letters encoded with π2 and
so on. If the ciphertext is long enough, we will discover the important parts of πi for all i.
In order to find the length k, we can either do it by brute force or with one of the following
two ideas.

Babbage’s method

Originally3 the Vigenère code was broken by Charles Babbage, noting that one can spot
multiples of the key length from repeating sequences. For instance the word ‘the’ appears
quite often. If the key has length k = 4 then roughly every fourth time the word ‘the’
will be encrypted to the same cipher, say ‘skf’. So the sequence ‘skf’ appears quite often
and the distances between these appearances will be a multiple of the length k. Finding
several such lengths, the greatest common divisor of them is likely to be the length k.

Friedman’s method

Here is a different approach by William F. Friedman, based on coincidence frequencies.
Suppose we compare two passages of English text. Suppose, for instance, that the second
passage is exactly the same as the first, only shifted by a certain number of places.

o h th e
lookmyladivehadjustaboutenoughofthisthatparrotisdefinitelydeceased
lookmyladivehadjustaboutenoughofthisthatparrotisdefinitelydeceased

3The same method was rediscovered a little bit later by Friedrich Wilhelm Kasiski. This technique is
also known as the “Kasiski examination”.

43

http://www.sharkysoft.com/misc/vigenere/

cw ’13 Coding and Cryptography G13CCR

o h th e

There is a certain number of places where we have by chance the same letter above each
other. Here it happened 5 out of 64 times. That is roughly 7.8%. How often do we expect
it to happen in average? The probability that a letter is an ‘a’ in an English text is about
p‘a’ = 0.08167, so the probability that an ‘a’ is on top of an ‘a’ is about p2

‘a’ = 0.081672.
Hence we find that the probability that two equal letter are above each other is

P (id) = p2
‘a’ + p2

‘b’ + · · ·+ p2
‘z’ =

‘z’∑
i=‘a’

p2
i ≈ 0.0655 .

Here I used the same the numerical data as in II.3(a). Note that we expect the same
probability if we apply the same monoalphabetic cipher to the top and bottom.

Now let π be any permutation of the alphabet. In the example below, I have taken the
permutation π(x) = 3 ·x5+14 modulo 26, which happens to be a bijection. So π(‘a’) = ‘O’,
π(‘b’) = ‘R’, . . . , π(‘z’) = ‘L’. Apply the permutation to the second line.

a s
lookmyladivehadjustaboutenoughofthisthatparrotisdefinitelydeceased

jeeaywjopmzsvopxiqhoreihsbeiuvedhvmqhvohtoffehmqpsdmbmhsjwpsgsoqgp
a s

Here we have only 2 cases among the 62 comparisons, i.e. roughly 3.2%. In fact, the
average chances to find two equal letters is now

P (π) = p‘a’ · p‘o’ + p‘b’ · p‘r’ + · · ·+ p‘z’ · p‘l’ =
‘z’∑
‘a’

pi · pπ(i) ,

which for our particular π gives 0.0433, clearly less than 0.0655. For an average π, we
expect a value of about 1

26 ≈ 0.0385. Here the mathematical proof why the permuted
version will always have less coincidences: Let π be any non trivial permutation.

P (id)− P (π) =
∑
i

p2
i −

∑
i

pi · pπ(i) =
1
2
·
(∑

i

p2
i +

∑
i

p2
π(i)

)
−
∑
i

pi · pπ(i)

=
1
2
·
∑
i

(
pi − pπ(i)

)2
> 0 .

Here is how we use it on Vigenère ciphers. Suppose we have a ciphertext C0 encoded
with a Vigenère cipher of an unknown length k and unknown permutations π1, . . . , πk.
Let Cm be the text obtained by shifting C0 by m letters. Define am to be the proportion
of coincidences that we find when comparing C0 with Cm.

If m is a multiple of k then the coincidences of the ciphertext are exactly at the same
places as coincidences of the m letter shifted plaintexts. So we expect a frequency of
about P (id) = 6.55%. Otherwise, if k is not a multiple of k, then we expect a lower
frequency of coincidences: Suppose at the nth place in the plaintext we have the letter αn.
The ciphertext C0 and Cm agree at the nth position if πn(αn) = πn−m(αn−m), i.e. when
αn = π−1

n ◦ πn−m(αn−m). So we expect a frequency P (π−1
n ◦ πn−m) 6 P (id) with equality

only if πn = πn−m.

44

Coding and Cryptography G13CCR cw ’13

We can now quickly compute the values of am for various m, and we should have large
values when k is a multiple of k. So we can just read off k.

I have encoded the full text of Monty Python’s ‘Dead Parrot’ sketch with a certain key
using Vigenère’s cipher:

P Z G S T U A H H F Z F Z K T Q L T R M N C H T W Y A C T Q W Z J Q T Q K L H M

E R J C Z S E T A Z X W N W T K K D R D J W C E G C S R O X O W R M D F L D M M

V S V G Z K H A A U Y H R I C C U A O E T B A S C J M C C T Y S Q I C K A C D F

S O O Q J J S S I I T G C X Z A G B P X L W I E M M M I T T T G K E C P G I W T

L H D T F P U W A E P R I S E F S A F M Y V J Y C Y Y D F D Z A O L T Q N T R K

M C P X T O M T O T J S N X S C M W T T P B J V H C Y X A Z M Z P I H F S I S G

S K C E E Q O G O Z R K D X S G L X L X E S G P J M M L H M E G R V Z L Y L I F

S W O Q J J S S E E O S V H E F S I S I S O O W H P G C G I T H C M E L G C O Q

D I C L P Q J T S F T B B P Z M C B A F P M D O Y M O P D Q L R K E C P G I W T

P B D W P C G C E M Y R D Q W M G Z I Z R O O S Y C J X G T E B J A Y M F D H Q

D B J X O C S S H Q D V Z W C C K I I Z C S H E C I S Q L Q M W M H E F W C O D

H S B M L L T A U Q T R I M E Y Q Q E M F H D J F J H A U Y L U Z X S C H A U Y

L U Z H Z L L T N F P F D R E M A I I F D G O S Y C V T A P Y C I S Y M F D N A

Y C Z W C C K I I Z R O G P C G Y W T F S S I M Q F W H R Q D H D R T J D L A W

P V D Q F N W A L A X W N X P P H D L X J D V V C M L X V Q R C O E W M N T L K

Q F Z W S A M I T X P T D W S D G G Y A F W A C Z S K W O I E V Z V P F W B O H

P R I S S C V X D Z E H C E E U S H Y A F V D X E G F V T T P Q V K P G F T V Q

C M Z W J M M S I P T B Z Z P P F T V Q C R D H L L Q I H U Y U Z P W M H D L X

J H Z W E G F V T Q D H D R R R W H T U Y U O I D R A C G F S W N M D W G J R Z

T B Z S N J G R K M W O M Q N Y D A N A H H C E E Q O W A F T Q V P W Y V T A P

A O M V Z R F D N A Y C Z W D R M C N Q O G O Y Y L W S Y Q L V T S F Q L J N Z

P R C M X H M H T M D V Z A L Q O P K U Y I K R Z P O T G U L B W P F C K H T G

Y S V W T J Q B A V Z F P Q Y M O A O A V B J A W M G Z M M E S D Z P B W U I Z

T H Z P J Y V T N A F U C S Q R Z X S F S O O T L P J D T U D R Z J T L A I E X

J R Z G P Y K T D M Y R R L P L A E U D N V V W P B A I N A E O G J L L Z D U D

L U J C Z S S H S G C S Y Q P R Z P T U E G O S E Y D A A O V C A Q Z T W B E Z

E K V W O S W I O U E P Z M Y R A G E P L B Y W S Y Y V E P Z I O J Z J D D W U

Y U V T C M D D N S P R N U F Y O Z W Q W Z C I D F W H A T A F J F L Z D N P U

Y W I K Q M J I H Q Q X J V O Q H X N U Y T J V E F W U J A C R N A S Y L Z I Z

O C A X L J C X S F S O O P Z M C L H K O W Y L P D S A L R W O O S Y F A H B M

N Y O L P K G B E Z E W B S E G E W O Y P H C I Y M J L E S T O I F W S W E R Q

Q S M W V C W E I Z Z B D X D Z S R K D P A V V V Y T A E N T F Y M O L A I S C

F W M I W M N T L K A Z P Q L E W A O A V W O S Z I L W E X T P Z V E W G U E J

L A D R T L Y I H M E D V V C M L L H Q Y W B S E G L W O Y P O I H T B A H C A

G S M I O R Z T O Z W M M I L Q G C T T L H D X S Y V Q E Q Y G D X E G F V O Z

T H N T P P U W I Z E V Z J T P K I P X L Q Z A L Q L W A F T H C E O Z W T N Z

L W G I O R Z T R Q H S G P Z A G J R E P W O A L Q F P I X P R O L P P W X F U

S O Y R E L S X L Q O H C E E Z A G D P Z K I M E U G J L P S O Q I Y S R O L Q

O I K X Z R Z D S Q M O M W M C F I E Y L D V V E U A I H U E G W I L I S C D H

Z C H J P C O T E I P S R I P T G D M Y L H Z X S G K Q I D O K J Y W B F I V A

Z A D J J M M E U F Q C P V X G D A I A Y J J P E Q L W R A F U C M E C K Q L Q

45

cw ’13 Coding and Cryptography G13CCR

P R D R O C E X S Q O B J R Z C K E I Z T B B I D L G I P U Y W I I D N S H S Q

O C I X S G K E A D C C O M D L G B O D P V Z L L Q U T A E P R O S M C W H E J

A W M I O Y F S G A Y S O S X C W I I E X O F I C C K P S F T T A F P P W U T A

Q Z D J P C J T S F D W I T P Y U T I R J C P L L B F I N M T Z Z H T K L D T T

P D Z V N F W S B Q A I N L T L Y J P F S S Y E T Q A T S U D A Z X L Z G A I O

A F J G P Q K T S M C S I S H G K I O D J S N S Q D L W E F H W B I D I A R K Q

O H C I M S U Z E F P G N L F D X A E P Z T A M D K G G T M W Q J M W P M C D A

H B O L P A M G T M T B V R O H G X N Q O H C I M J W T D U Y Q C S T P A C V U

D W W M W C L W I E T G V R P V H P R D Z H R I W J A S B Q E H Z V C C H A A O

P W O X S C F H O D C M N U F G J T I H P V V H L J G D K D Z I I H E F W Q A O

V C A X S C K W O B L B Y Y S U W G E D T U C X Z S L D F B L F M S E Q A H E Q

T G Z I T E W I T T P D D G E S J T I S Z H V W W S Y E R M J R J I D G L I A X

V B I R Y M L G E M W Z T A P J D X T E S O M H W W S Q L A Z R T V P N D P C Q

X S I X T Q A I N Z Z W B Y P Q K C O F H S G P O W G J D K Z I R E Y R L D C A

X S W E N I L D M K A Z V G P W W P H M W Z M M R F L H U D P

Now I computed the values of am for some m.

m 1 2 3 4 5 6 7 8 9 10
am 4.617 3.675 3.317 3.720 3.900 4.841 2.689 2.958 4.348 7.216

m 11 12 13 14 15 16 17 18 19 20
am 3.765 3.362 3.631 4.527 4.393 3.810 3.451 4.034 4.617 6.141

m 21 22 23 24 25 26 27 28 29 30
am 3.810 3.675 3.765 3.720 3.407 3.720 3.451 3.317 4.393 6.186

m 31 32 33 34 35 36 37 38 39 40
am 3.989 3.989 3.048 3.586 4.572 4.348 3.451 3.182 3.586 5.872

From the fact that the only am > 5 are exactly the multiples of 10, we should believe that
key had length 10. The last step now is to break the ten Caesar ciphers.

�� ��
II.4 Other Ciphers and Improvements

We saw that we improved the cipher by considering blocks of letters rather than a simple
permutation letter by letter. One way of increasing the security is by taking a keyword
in the Vigenère cipher that is as long as the plaintext. Typically one would use the page
of a book that the sender and the receiver both have. This can again be attacked by a
frequency analysis.

Rather than taking a keyword in English, one would better choose a randomly4 generated
string of letters. An example of a perfectly safe cipher system is a one-time pad, where
the key is a random sequence of letters just as long as the plaintext. This method was
used by Soviet spies during the cold war. Though if the key is reused several times, it
ceases to be random; then the problem becomes that of the transmission of the key itself.

4Actually it is not that easy to generate ‘random’ text, but we will not discuss this here at all.

46

Coding and Cryptography G13CCR cw ’13

Another and better encryption of blocks is to treat them as vectors and to apply a matrix
(the key) to it. Rather than working with an alphabet of 26 letters, one usually picks a
prime number p, and works with vectors and matrices over the finite field Z/pZ = Fp. On
the one hand, if the length of the vector is too small, then the security is not sufficient,
but, on the other hand, if the size of the matrices are huge, then the multiplication is very
time consuming.

All ciphers can be improved, and poor ciphers can be improved greatly, by making the
ciphertext more random. Methods include:

• Use abbreviations, acronyms, codenames, unexpected languages, etc., wherever pos-
sible.

• Delete spaces and punctuation. Delete the word ‘the’ wherever it occurs.

• Replace each space by one of the letters ‘v’, ‘k’, ‘q’, ‘j’, ‘x’, ‘z’ chosen at random.

• Insert two random letters before every plaintext letter before encryption.

• Do the same with the ciphertext after encryption.

• Encode the ciphertext using an e-error-correcting code, but make e random ‘errors’ in
each codeword. This will make no difference to legitimate readers but it will confuse
the the illegitimate attacker.

�� ��
II.5 Block Cipher

Block ciphers are the most used encryption systems. Although not as secure as the public
key systems that we will discuss later, they are very fast and provide a sufficient level of
security for most applications.

A first block cipher developed in the early 70’s, called DES (Data Encryption Standard)
that was much used was based on Horst Feistel’s idea. It was for a long time the standard
system, using a key of length 56 bits. With modern computers this encryption can not
be considered secure any more, as it is possible to run through all possible 256 keys5

(brute force attack). The feasibility of cracking DES quickly was demonstrated in 1998
when a special machine was built by the Electronic Frontier Foundation, a cyberspace
civil rights group, at the cost of approximately 250000 US $. This computer decrypted a
DES–encrypted message after only 56 hours of work.

Since 2000, the new standard is AES, Advanced Encryption Standard, which operates
with keys of length 128, 192 or 256 bits. But DES has not died out, yet, it still lives on
in the form of Triple DES, which consists of apply DES three times with three different
keys.

5It seems that IBM had first planned keys with 128 bits length, but that they were urged by the
American National Security Agency to drop down to 56 bits (source [25]).

47

cw ’13 Coding and Cryptography G13CCR

II.5.1 Feistel Cipher

A block cipher enciphers binary plaintext by chopping it up into blocks of a certain
length, say 64 bits in the case of DES (and 128 bits in case of AES). This block is split
up into two equally long blocks considered as vectors v and w over F2. Then these two
vectors are enciphered in a first round using a relatively simple algorithm of the form

v′ = w and w′ = v + F (w,k)

where F is a vector-valued function on the block w and the key k. This procedure is easily
reversed by the map

w = v′ and v = w′ + F (v′,k) .

Next we modify the key k to obtain a new key k′, called subkey.
This round is now repeated with v′, w′ and k′ at the place of v, w and k. And then

again on the result and so on.

II.5.2 DES

Let us explain the block cipher explained above in the example of the Data Encryption
Standard DES. The blocks are of length 64 bits and the key k is of length6 56 bits.

Here there are 16 rounds. In each round the function F is computed using four steps

• The vector w is enlarged from a 32 bit block to a 48 bit block by duplicating certain
bits.

• The subkey k is added to the enlarged vector.

• The result is split up into eight blocks of 6 bits. Each of these blocks is passed through
a S-box. This is simply a map S from the set of blocks of 6 bits to the set of blocks of
4 bits. The function S is chosen to be non-linear, in the case of DES it is just given
by a large table with all values it.

• Finally the resulting eight blocks of 4 bits are put together to a new vector of 32 bits.
At last a permutation of these bits is applied to the vector.

II.5.3 AES

For the new encryption system AES the blocks are of 128, 192 or 256 bits. We explain
the ideas for 128 bits. Each block is split up into 16 bytes aij , arranged in a 4× 4 table.

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

Each byte aij is considered to be an element of the field F256, the finite field7 with 256
elements. In each round, we do the following steps.

6Actually it is longer but the last bits are just parity check bits.
7 Don’t worry if you do not know what this is. There is a field structure on the set of bytes, but it is

not Z/256Z.

48

Coding and Cryptography G13CCR cw ’13

• Apply to each aij an S-box. Here this is simply given by taking first the inverse
element in the field F256. This operation is not F2-linear. Afterwards an affine trans-
formation is applied.

• The rows are shifted. In fact the first row stays the same, the second row is cyclically
rotated by one place to the left, the third row by two and the last row by three places
to the left.

• The columns are mixed. Consider each column as a 4-dimensional vector over F256.
A certain invertible 4× 4-matrix is applied to this vector.

• Finally the subkey is added.

There is a good description of AES in wikipedia [23].

�� ��
II.6 Number Theory

For the second part of the course, we will need some elementary number theory. The proof
in this section are non-examinable, but they may be very helpful for a better understanding
of the subject. It is very crucial to understand the computational complexity of the
different tasks discussed here. Also you should be able to compute inverses and powers in
modular arithmetic.

II.6.1 Fermat’s Little Theorem

Proposition II.2. Let p be an odd prime number and let a be a number coprime to p.
Then there is a number b such that a · b ≡ 1 (mod p).

In other words, the set Z/pZ is a field, usually denoted by Fp.

Proof. Look at the list
a, 2 a, 3 a, . . . , (p− 1) a .

None of the values can be zero modulo p, since p is a prime number. All of these values
are distinct modulo p, because, if x a ≡ y a (mod p), then (x− y) · a is divisible by p and,
since a is coprime to p and p is a prime number, the first factor has to be divisible by p,
which means that x = y when 1 6 x, y < p. Hence the above list contains every non-zero
residue class modulo p exactly once. In particular, the residue class 1 must appear in the
list, say it is b · a.

The next theorem is known as Fermat’s Little Theorem.

Theorem II.3. Let p be an odd prime number and let a be an integer coprime to p. Then
ap−1 ≡ 1 (mod p).

49

cw ’13 Coding and Cryptography G13CCR

Proof. In the proof of the previous proposition, we have shown that the set of the residue
classes of {a, 2 a, . . . , (p − 1) } is equal to {1, 2, . . . , (p − 1)}. Multiply all the elements in
this list together

a · 2a · · · (p− 1)a ≡ 1 · 2 · · · (p− 1) (mod p) .

which gives

(p− 1)! · ap−1 ≡ (p− 1)! (mod p) .

Now by the proposition there is an integer b such that (p− 1)! · b ≡ 1 (mod p), since p can
not divide (p− 1)! again because p is a prime. After multiplying the last equation with b,
we get the formula in the theorem.

There is also a short combinatorial proof of this theorem.8

II.6.2 Euclid’s Algorithm

In proposition II.2, we have seen that any number prime to p has an inverse residue class.
But how do we compute this? The answer is given by the Euclidean algorithm.

Let n and m to natural numbers. We will suppose that n > m. The aim is to compute
two integers x and y such that x · n + y ·m = gcd(n,m), where gcd(n,m) is the largest
positive integer that divides both n and m. Use the division with remainder to write

n = q1 ·m+ r1

where 0 6 r1 < m is the remainder and q1 is the quotient. Then we repeat the same with
n and m replaced by m and r1 respectively, to get

m = q2 · r1 + r2

for some q2 and 0 6 r2 < r1. And then we do the same with r1 and r2 and so on. Note
that the sequence of remainders ri is strictly decreasing, so at some step k, we will have
rk = 0. Then rk−1 is equal9 to gcd(n,m). From the line defining rk−1, namely

rk−3 = qk−1 · rk−2 + rk−1 , (II.1)
8Consider the task to fabricate pearl necklaces with coloured pearls. You want p pearls on a string

and you have a different colours at your disposal. How many different non-uni-coloured necklaces can you
make? Answer is

ap − a
p

,

since there are ap choices for the pearls, but a of them are uni-coloured and the p in the denominator
appears because by rotating the necklace you will get a different one (since p is prime) that you don’t want
to count twice. Since this number must be an integer p divides ap − a. Now let b be such that ab ≡ 1
(mod p); then

1 ≡ ab ≡ apb ≡ ap−1 (mod p) .

9 There is something to prove here! By the last line, we have rk−2 = qk · rk−1; so rk−1 divides rk−2.
From the previous line (II.1), we now conclude that rk−1 also divides rk−3 and so on. When we reach the
first line, we have shown that rk−1 is indeed a common divisor of n and m.

Note by construction, the greatest common divisor d of n and m will divide r1, too. By induction d will
divide all of the remainder. In particular, it will divide rk−1. So d = rk−1 is the gcd(n,m).

50

Coding and Cryptography G13CCR cw ’13

we get gcd(n,m) as a linear combination of rk−3 and rk−2. Working our way backwards,
we get in the end a linear combination of n and m.

For the above question of finding the inverse of a modulo p, we take n = p and m = a,
so we get an x and a y = b such that a · b ≡ x · p+ y · a = 1 (mod p).

Here an example: We try to find the inverse of 22 modulo 31. We find the greatest
common divisor by �� ��31 = 1 ·

�� ��22 + 9�� ��22 = 2 ·
�� ��9 + 4�� ��9 = 2 ·
�� ��4 + 1

4 = 4 · 1 + 0

No surprise, we found that 31 and 22 are coprime. Now we work our way backward,
solving each line on the last term. We find

1 =
�� ��9 − 2 ·
�� ��4

=
�� ��9 − 2

(�� ��22 − 2 ·
�� ��9)

= 5 ·
�� ��9 − 2 ·
�� ��22

= 5 ·
(�� ��31 −
�� ��22

)
− 2 ·
�� ��22 = 5 ·
�� ��31 − 7 ·
�� ��22

So x = 5 and y = −7. Since 1 ≡ (−7) · 22 ≡ 24 · 22 (mod 31), we have found that the
inverse of 22 modulo 31 is 24.

This algorithm is very fast. A clever implementation does not need to run down and
up again, but can keep track of the linear combination at each step. It is no problem on
a computer to work out inverses of huge integers modulo even huger prime numbers in
seconds. For instance computing an inverse modulo the prime

p = 2160 − 232 − 21389
= 1461501637330902918203684832716283019651637554291

(II.2)

requires my laptop in average about 9µs.

II.6.3 Fast Exponentiation

Let p be a large number (maybe a prime) and let 0 < a < p. Suppose we want to compute
ak modulo p for some exponent k. Of course we can first compute the integer ak and
then take its remainder modulo p. Even though multiplication of integers is quite a fast
process, this takes absurdly long when the k and a are big. So it is better to first multiply
a2 then take it modulo p, and so on. But we can make it even faster with the following
idea, called fast modular exponentiation.

Write k in binary expansion

k = k0 + k1 · 2 + · · ·+ kn · 2n .

51

cw ’13 Coding and Cryptography G13CCR

By definition kn = 1. Start with b = a. Now, if kn−1 is 1, then we replace b by a · b2
modulo p, otherwise by b2 modulo p. Then with the same rule for kn−2 and so on. In the
end b will have the value ak modulo p. The idea is simply the following equation

ak = ak0 ·

(
ak1 ·

(
ak2
(
· · ·
(
akn−1 · (akn)2

)2 · · ·)2
)2
)2

.

So all we need to do is squaring n times and maybe multiplying a few times by a, always
modulo p. For instance suppose we want to compute 341 modulo p = 101. As 41 =
25 + 23 + 1 = 1010012, we get

i 5 4 3 2 1 0
ki 1 0 1 0 0 1
b 3 32 ≡ 9 3 · 92 ≡ 41 412 ≡ 65 652 ≡ 84 3 · 842 ≡ 59.

So 341 ≡ 59 (mod 101), which is much better than passing through the computation of
341 = 36472996377170786403.

Warning: Do not forget that in the first step, we simply copy b; alternatively you can
think that you started with b = 1 at the very start.

To illustrate how quick this is, my laptop computed ak mod N for randomly chosen
integers with 600 decimal digits. In average it took 33 milliseconds. Since this operation
is so often used in modern secure communication, it is now no longer just implemented in
software, but directly designed in microchips.

II.6.4 Discrete Logarithm

Many public key cipher systems are based on the discrete logarithm problem. Let p be
a prime; think of a large one. Let 1 < a < p. Suppose we have a number b which was
computed as the power ak modulo p for some unknown exponent k. How can we find k,
given we know a and p ? This number is called the discrete logarithm of b in base a
modulo p. Of course, we can not use the real logarithms loga. Note also that the solution
will not be unique, since for instance if k is a discrete logarithm, then k + (p− 1) will be
a discrete logarithm, too. (Use Fermat’s little theorem II.3.)

But unlike for real number where the logarithm can be computed very fast, there is no
known fast algorithm to compute this discrete version. If you do find one, you will get very
rich and famous. Of course, when p is small, it is quite simple to check the possibilities a,
a2, . . . until we hit b. But for large p this may take very, very long.

As we will need a particularly good choice for the basis a, so called primitive elements
we delve a bit deeper into number theory here.

Definition. The multiplicative order of a modulo p is the smallest k > 0 such that
ak ≡ 1 (mod p).

It is not difficult to see that ak ≡ 1 (mod p) if and only if k is a multiple of the
multiplicative order of a modulo p.
Example. Take p = 13 and a = 3. Then a2 ≡ 9 (mod p), but a3 ≡ 1 (mod 13), so the
multiplicative order of 3 modulo 13 is 3. Instead 2 has multiplicative order 12 modulo 13.
�

52

Coding and Cryptography G13CCR cw ’13

The larger the multiplicative order of an element the more distinct powers it will have,
since it is easy to see that ak 6≡ al (mod p) if k 6= l are between 0 and the multiplicative
order of a. So the larger the multiplicative order, the better a is suited as a basis for the
discrete logarithm.

Lemma II.4. The multiplicative order of a modulo p divides p− 1.

Proof. Let r be the multiplicative order of a modulo p. Let n be the smallest integer such
that nr > p− 1. So r > nr − (p− 1) > 0. We have

anr−(p−1) =
(
ar
)n · (ap−1

)−1 ≡ 1n · 1−1 = 1 (mod p)

by Fermat’s little theorem II.3 and the definition of r. Now nr 6= p− 1 would contradict
the minimality of r as then nr − (p− 1) would be a smaller power of a that is congruent
to 1 modulo p. So r divides p− 1.

So we see that the largest possible multiplicative order is p− 1.

Theorem II.5. Let p be a prime. Then there exists integers 1 < a < p of multiplicative
order p− 1. They are called primitive elements or primitive roots modulo p.

The proof of this theorem is a bit harder, see Chapter 1 in G13FNT or proposition
II.1.2. in [8] for more details.

The theorem says that we can always find such a primitive element, but it does not tell
us how. For p = 7, for instance, we can take a = 3, since 32 ≡ 2, 33 ≡ 6, 34 ≡ 4, 35 ≡ 5,
and 36 ≡ 1 modulo 7. We could also take a = 5, but not a = 2, since 23 ≡ 1 (mod 7).

In order to check that an integer a is a primitive element modulo p, it suffices to check
that ad 6≡ 1 (mod p) for all prime divisors ` of p − 1 where d = p−1

` . (This is due to
lemma II.4.) There is no general recipe to create a primitive element for a prime p. But
there are usually so many that one can be found very quickly by trying randomly some
small integers.

Lemma II.6. If a is a primitive element, then any b coprime to a can be written as a
power of a modulo p.

Proof. The list 1 = a0, a1, a2, . . . ap−2 contains only distinct residue classes modulo p.
Since there are p− 1 of them, each invertible one appears exactly once.

Back to the original question of the discrete logarithm. Let p be a large prime and a
a primitive element modulo p. The previous lemma tells us that for any b, there exists
a k such that ak ≡ b (mod p). We even know that k is unique modulo p − 1, but we
have no fast method of computing it. Among the best algorithms currently known are the
‘baby-step-giant-step’, the ‘index calculus’, and the ‘number field sieve’.

For instance, take p = 1020 + 93. The integer a = 3 is a primitive element. Powering a
by k = 82736834255363542111 requires about 7µs on my laptop. But reversing this, i.e.
taking the discrete logarithm of b = 15622648482551120887 to base a to recover k takes
me more than 3 seconds. If the prime has twice as many digits, the computation will take
very, very long. In fact, this does not only depend on the size of p, but also on the size of
the largest prime factor of p− 1, here 507526619771207.

53

http://www.maths.nottingham.ac.uk/personal/cw/wiki/pmwiki.php?n=FNT.Chapter1b

cw ’13 Coding and Cryptography G13CCR

II.6.5 Factoring

Another example of a so-called trap-door function is factorisation. Let p and q be two
huge prime numbers. It is very easy to multiply the two number together to get a huge
integer N = p · q. The reverse operation is very, very difficult. Suppose we are given N ,
how could we find the factors p and q ? For small N we would just run through the prime
numbers up to

√
N to check if they divide N . But as p and q are large, this will take too

much time.
There are now many interesting methods for factoring large integer. Some use so called

elliptic curves, other use sieves, but all of them have only limited power to succeed when
p and q are big. When one of the primes is of a special form, like when it is too close to
a power of 2, or when p and q are too close to each other, then there are methods that
work a little bit faster. My favourite algorithm, which in practice factors quite fast, is
Pollard’s rho, which has also a version used to compute discrete logarithms. It involves
two kangaroos jumping around randomly. See [8] for more information on factorisation
methods.

Typically on my computer, I can factor

4858738916116954251157973608555681449863774770991599 =
57141921130057378056164071 · 85029323831417276569251769

in about 3 seconds. While

1808597096704633142667649646423 · 4682089892295173825828175304957

takes me already 35 seconds. Then

1111308344785709049953120411803466047 · 6708249697815512520542475376196424103

needs more than 4 minutes to factor.
Until a few years ago, the RSA Laboratories [10] maintained a list of large N = p · q

with a prize sum for finding its factorisation. The largest N in this list that was factored
in 2009 had 230 decimal digits.

p = 3347807169895689878604416984821269081770479498371376856891
2431388982883793878002287614711652531743087737814467999489

q = 3674604366679959042824463379962795263227915816434308764267
6032283815739666511279233373417143396810270092798736308917 (II.3)

Such computations use a very large number of computers working for 3 years. Here it
took almost 2000 2.2GHz-Opteron-CPU years to factor it.

One should also add to this discussion that ‘quantum computer’ would be able to factor
integers very fast. Until now such computing methods using quantum physics are only
theoretical; but maybe in the future there will be computers that will be able to decipher
all the methods discussed here. Then we will have to use other methods, like quantum
cryptography.

54

Coding and Cryptography G13CCR cw ’13

II.6.6 Primality

In the discussions so far on computational number theory, we often used large prime
numbers. So we need a way of testing that a number n is a prime number. At first this
problem looks just as difficult as factorisation. But in fact it is much easier.

For instance it is often very easy to prove that a number is composite, even without
spotting a factor. Say we want to check if a number n is prime. Choose any integer a. If
the gcd(a, n) is not 1 or n then, we have already found a factor (though that is not likely
to happen). So suppose that a and n are coprime. Now compute an−1 modulo n using
the fast exponentiation. If the result is not 1, we immediately know that n can not be
a prime number by Fermat’s Little Theorem II.3. If it is 1, we can still pick another a.
Even if we fail thousand times, this method will not prove to us that n is a prime, other,
more powerful methods are needed. One of the fastest algorithms uses elliptic curves.
Recently a ‘deterministic polynomial time’ algorithm was found by Manindra Agrawal,
Neeraj Kayal, and Nitin Saxena [12]. The latter two were undergraduate students at the
time of discovery in 2002.

For instance the huge number in (II.2) was proven to be a prime in 25.1 ms on my
computer. Similarly, I can check within 0.1 seconds that the two numbers in (II.3) are
indeed primes.

�� ��
II.7 RSA

In 1977, Ron Rivest, Adi Shamir, and Leonard Adleman found10 how one could use the
factorisation trapdoor to create a cipher system. This method, abbreviated RSA, is among
the most used systems nowadays. Most secure internet connections will use RSA. Though
because it takes longer to encrypt and decrypt as with classical methods, it is very often
only used for an initial key exchange for a classical cipher system, such as DES or AES.

Let us suppose that Alice would like to send a highly secret message to Bob. First,
Bob needs to create the keys. He chooses two large11 prime numbers p and q. Bob then
computes N = p · q. He then chooses a large d < (p − 1)(q − 1) which is coprime to12

(p− 1) · (q− 1). Using the Euclidean algorithm, he can compute an inverse e of d modulo
(p − 1) · (q − 1). He gives the key (N, e) to Alice. In fact even better, he can publish it
to everyone. It is a public key cipher system. Meanwhile he keeps p, q and d secret to
himself.

Alice can now encrypt the message. She breaks the message into blocks each of which
can be represented by an integers m modulo N . She encrypts m into c = me modulo N .
And she sends the sequence of codetexts c to Bob.

Bob, receiving c, computes b = cd modulo N using his private key d.

10It was revealed much later that Clifford Cocks working for the British Intelligence Agency GCHQ
discovered the method earlier. See [15] for more.

11Nowadays, many internet applications use 2048 bit encryption, that is p and q have roughly 300 digits.
12This is of course ϕ(N) for those who know Euler’s ϕ-function.

55

cw ’13 Coding and Cryptography G13CCR

Theorem II.7. The decoded message b is equal to the original plaintext message m.

Proof. We have b ≡ cd ≡ md e (mod N). From the construction of the keys, we know that

d · e = t · (p− 1)(q − 1) + 1

for some integer t. Assume first that m is coprime to p. Then mp−1 ≡ 1 (mod p) by
Fermat’s Little Theorem II.3. So we have

b ≡ mt(q−1)·(p−1)+1 ≡ m ·
(
mp−1

)t(q−1) ≡ m (mod p) .

If p divides m, then p divides b, too, and we find b ≡ m (mod p) in all cases. In the same
way, b and m are congruent modulo q. Hence b − m is divisible by p and q, so b ≡ m
(mod N). Since both b and m were taken modulo N , they are smaller than N and hence
they agree.

At present, nobody knows of any way of breaking this code without factoring N . It
looks13 as if the problems are equivalently hard.

The security relies on the computational difficulty to factor integers. The procedure of
creating a key and the encryption and decryption algorithm, only use primality testing,
Euclid’s algorithm and fast modular exponentiation, all of which are considered compu-
tationally much easier.
Example. Here is a very simple and naive example. The numbers are chosen so small
that you would be able to repeat the calculations by hand; of course for numbers that
small it is very easy to break the cipher.

Say Bob chooses the primes p = 101 and q = 103; so N = 10403. He must now choose
a secret key d coprime to (p− 1) · (q − 1) = 10200. For instance d = 19 will do.

Next he wants to compute the public key. So he computes the inverse of d = 19 modulo
(p− 1) · (q − 1) = 10200 using Euclid’s algorithm. He get e = 6979. He now publishes his
public key (N, e) = (10403, 6979).

Alice can look this up and use it to send a message. Say the message is m = 249
representing the number of British nuclear war heads, a highly sensitive information she
should not leak anywhere. She uses fast modular exponentiation to compute the ciphertext
c = me ≡ 4679 (mod N). This is now sent over to Bob.

Bob receiving c computes b = cd modulo N with his secret key (N, d) = (10403, 19). He
gets 467919 ≡ 249 (mod N). �

The security of this cipher does not only rely on the difficulty to factor N . An eaves-
dropper, usually called Eve, will posses N , e and c. She can also start with her own
message m and in this case she will have N , e, c and m and she would like to know d. If
she could solve m ≡ cd (mod N) on d she would also find the private key of Bob. But that
is a discrete logarithm problem which will be very hard to solve if N and d are sufficiently
large.

13This is known for a sight modification of RSA, called Rabin’s public key system, which, nevertheless,
is not much used in practice.

56

Coding and Cryptography G13CCR cw ’13

�� ��
II.8 Elgamal

Taher Elgamal described another public key system based on the discrete logarithm trap-
door.

Suppose Angela would like to send a secret message to Benjamin. To produce a key,
Benjamin chooses a large prime p and a primitive element a modulo p. He chooses a
private key 1 < d < p − 1. Then he computes e = ad modulo p. He publishes the key
(p, a, e).

Angela, wishing to send the message 1 < m < p, chooses a random integer 1 6 k < p−1
and sends to Benjamin the pair (c1, c2) with c1 ≡ ak (mod p) and c2 ≡ m · ek (mod p).

When receiving (c1, c2), Benjamin can simply14 compute c2 · c−d1 modulo p. Since

m ≡ c2 · e−k ≡ c2 · a−dk ≡ c2 · c−d1 (mod p) ,

he has recovered he plaintext message.
Example. To have a concrete example, we disregard again the actual magnitude re-
quested for p. Say p = 31 and we encode ‘a’ by 0, . . . , ‘z’ by 25, the space by 26, the
apostrophe by 27, the ‘.’ by 28, the ’,‘ by 29, and finally ‘?’ by 30. We can not take 2 as
a primitive element because 25 ≡ 1 (mod 31), but a = 3 is a primitive element modulo p.
Benjamin picks the secret key d = 17 and publishes the public key e = 317 ≡ 22 (mod 31).
Angela would like to send

‘God made beer because he loves us and wants us to be happy.’15

So we start with ‘g’= 6, and picks k = 19. So she sends c1 = ak = 12 and c2 = m · ek = 4,
always modulo p. Benjamin can recover c2 · c−d1 = 12 · 4−17 = 6. The full ciphertext reads
as

(12, 4) (21, 26) (28, 27) (23, 10) (20, 26) (12, 0) (18, 11) (1, 4) (1, 26) (7, 18) (24, 21)
(4, 2) (14, 15) (7, 3) (13, 17) (17, 22) (7, 5) (17, 0) (1, 20) (13, 27) (6, 11) (17, 19)
(11, 21) (8, 8) (15, 9) (30, 20) (21, 26) (19, 17) (29, 15) (28, 7) (29, 20) (2, 18) (4,
9) (16, 22) (6, 0) (1, 13) (3, 4) (18, 23) (28, 12) (17, 0) (14, 6) (18, 18) (1, 18) (20,
15) (13, 30) (1, 18) (30, 5) (17, 27) (6, 23) (30, 5) (6, 26) (14, 9) (13, 8) (8, 14) (25,
0) (25, 13) (1, 15) (18, 26) (11, 22)

where I have used random k’s for each encryption. �
Of course, with such a small p as in the above example, it is easy to break the code.

There are already couples that repeat themselves in the ciphertext. Instead one should
use very large primes.

14 I should add here how to compute negative powers like c−d modulo p. There are two options. Firstly,
one can compute the inverse c−1 of c modulo p and then raise it to the dth power. Secondly, one can
compute cp−1−d instead, by Fermat’s little theorem II.3, this gives the same result and p−1−d is positive
if d < p− 1.

15 A quote that Benjamin Franklin, one of the Founding Fathers of the United States, never said about
beer but more or less about wine, according to wikiquote.

57

http://en.wikiquote.org/wiki/Benjamin_Franklin

cw ’13 Coding and Cryptography G13CCR

Example. Here is how we should have done it better. Write the message in base 31:

m = 6 + 14 · 31 + 3 · 312 + · · ·+ 28 · 3158

= 9082899822880427373708169102831642254331248084798202311264158629033633834114233285040279

Then choose a prime of this size, in fact p = m+94 is the next16 larger prime. The integer
2 is a primitive element. Benjamin creates the e by picking

d = 3478403603391729284720989742523730885804084076876107176787956281742848502614696973565952

and raising 2 to the dth power. Angela chooses

k = 3170574170754971085221124838496442777170289756228641999147846701231454687394088022441984

and can then encrypt m to

c1 = 3509287120782112568854030089705565540810206268218667157170062432397477315065347837322468 ,

c2 = 3812463595284459446104706089365986796987480570156136884508868431035733570987927364537703 .

Now if Benjamin evaluates c2 · c−d1 he will recover the plaintext m. Writing it in base 31,
he will recover the text. �

If someone can compute the discrete logarithm of the public key e in base a modulo p,
then he would be able to decrypt as he is in the possession of the secret key d. There does
not seem any way of decrypting other than solving the discrete logarithm problem.

This system is also widely used. A variant of this idea is used for signatures as we will
see later in II.11.2.

Note that this cipher is vulnerable to the “homomorphism attack”. Say I want to send
m = 123456789, representing the amount of Swiss Francs in my secret bank account.
So I sent a certain (c1, c2). Now someone – it must be that Eve again – intercepts the
transmission. Although she can not read it, she can still alter it before sending it forward.
Say she replaces c2 by 1000 ·c2. Now the receiver, will compute (1000 ·c2) ·c−1

1 ≡ 1000 ·m =
123456789000. By the way, RSA has the same problem.

�� ��
II.9 Diffie-Hellmann Key Exchange

In the sixties, when the banks started to use electronic means to communicate with their
branches all over the world, they used classical symmetrical cipher systems. But in order
to guarantee a certain level of security the keys needed to be changed often. Of course, it
would not be safe to send them electronically, so they had to be distributed by hand.

Whit Diffie and Martin E. Hellman discovered17 in 1976 a way to exchange keys elec-
tronically without having the fear that an eavesdropper would be able to deduce the key.

16Of course, this not a good choice, it should be an arbitrary prime.
17Again it seems that the British GCHQ was earlier, Malcolm J. Williamson had discovered it before,

but it was kept classified.

58

Coding and Cryptography G13CCR cw ’13

As in the Elgamal cipher, it is based on the discrete logarithm. A common prime p,
large as usual, and a primitive root a are fixed and known to everybody. Each participant
of the communication, say Aleksandra and Boris, choose secretly an integer dA and
dB, respectively. They both send their public key qA = adA and qB = adB to the other.
Boris in Moscow can compute k = adA·dB by taking the dB-th power of Aleksandra’s
public key qA, while Aleksandra in her Dacha can compute k by raising Boris’ public
key qB to dA-th power. So without having to travel, they were able to compute each the
same number k, which can now be used as a key in a classical symmetric cipher system.
An eavesdropper, probably called Ivlina this time, would not be able to compute k, as
all she knows is p, a, pA and pB. If she can solve the discrete logarithm problem on either
Aleksandra’s or Boris’ public key, she would break the code.

For instance, Aleksandra and Boris could fix p = 101 and a = 2. She picks the secret
key dA = 7, while he chooses dB = 21 secretly. She sends him qA = 27 ≡ 27 (mod 101)
and receives from him qB = 221 ≡ 89 (mod 101). Both of them can now compute the key
k = 2721 ≡ 897 ≡ 63 (mod 101).

Nevertheless there is a big problem with this key exchange system. It is called the
Man-In-the-Middle attack. Suppose the evil Ivlina is not only listening to the commu-
nication between Aleksandra and Boris, but could also alter it. She then intercepts
the communication, chooses her own private key dE , she sends to Boris her public key
pE = adE , pretending to be Aleksandra. Boris will agree on a key with Ivlina and
all the ciphertext can be read by Ivlina. On the other side she does the same with
Aleksandra, pretending to be Boris. Not only can she read all of the communication,
she can even alter it without that either Aleksandra not Boris will ever notice it.

In order to protect the communication from such attacks it is important that it is used
together with signature and authentication schemes to which we turn our attention later.

�� ��
II.10 No-Key Protocol

This relatively simple encryption system was proposed by Shamir. A version of it is called
Massey-Omura cryptosystem, but I do not know if either is used in real life.

Suppose Ali G would like to send a box containing some important documents to Borat.
He closes the box and locks it with a key and sends it to Borat. He can not open it, of
course, but he can add a second lock to the box and send it back to Ali. Ali can now
remove his lock which he knows how to open and send the box once more to Borat without
having to worry about security as there is still Borat’s lock on the box. Borat can now
open the box.

The fascinating thing about this system is that we never had to communicate a key to
the other party. Based on the discrete logarithm problem, we can propose the following
cryptosystem.

Annebäbi and Barthli agree as usual on p and a and choose each their secret key dA
and dB. Annebäbi who wants to tell Barthli some important message m, sends first mdA

to Barthli. He can not read the message, but he can compute it to the power of dB and so

59

cw ’13 Coding and Cryptography G13CCR

sending back to Annebäbi the ciphertext mdA dB . She knows how to compute an inverse
eA modulo p − 1 to dA. She then sends back to him the message received from Barthli
raised to the eA-th power. There exists an integer k such that dA · eA = k(p− 1) + 1, so(

mdA dB

)eA

= mdA dB eA =
((
mp−1

)k ·m)dB

≡ mdB (mod p) .

Barthli can raise this to the eB-th power, where eB is an inverse of dB modulo p − 1, to
recover the plaintext m by the same argument as above.

This system is also vulnerable to the Man-in-the-Middle attack. It does not need an
exchange of keys, but it needs twice as much transmission than a system based on an
exchange of keys.

�� ��
II.11 Signatures

II.11.1 Authentication

Amélie receives a message, ostensibly from Bartholomé. How can she confirm that he
really sent it? Using any public-key cryptosystem, she can encrypt some arbitrary item
using Batholomé’s public key and ask him to send back the decrypted version. Only
Bartholomé can do this, using his private key.

There is still the problem that Amélie needs to be sure that the public key she found
in a public directory is really created by Bartholomé. Companies, banks or credit card
provider use the services of a Trusted Third Party, such as VeriSign.

II.11.2 Digital Signature Algorithm

This is a standard algorithm that is used a lot when using secure internet connections.
It is similar to Elgamal’s signature algorithm, but a little bit faster and therefore more
popular.

Assume Aurora wants to add a signature s to her message m she wants to send to
Bacchus. We will discuss later what is a good signature. Let suppose now that s is some
large integer. As in the Elgamal encryption scheme, we suppose that Aurora and Bacchus
have agreed on a prime p and a primitive element a. Aurora has announced publicly her
key qA = adA mod p.

To sign her message, she does now the following. She chooses a random integer k, which
should be coprime to p − 1. First she evaluates r = ak mod p. Next she computes an
inverse l to k modulo p− 1. (Not p !) Then she sends to Bacchus the triple (s, r, t) where

t = l · (s+ dA r) mod (p− 1) .

Note that she has used here her private key, so nobody else could produce this t. But
before sending she checks whether t is coprime to p− 1; if not she has to do it over again
with another k.

60

Coding and Cryptography G13CCR cw ’13

Now, Bacchus wants to verify the signature. He can compute an inverse u to t modulo
p−1. Then he put v = s·u and w = r ·u, still modulo p−1. Now he evaluates av ·qwA mod p
and checks if it agrees with r modulo p.

Note that this really produces r if the signature is correct as

av · qwA ≡ av+dA·w ≡ au·(s+dA·r) ≡ ak ≡ r (mod p),

since
k ≡ k · u · t ≡ k · u · l · (s+ dA · r) ≡ u · (s+ dA · r) (mod p− 1) .

Here again the primes chosen for internet communications are at least 160 bits, but to
be on the sure side current recommendations for U.S governmental offices are up to 3072
bits, that is almost 1000 decimal digits.

II.11.3 Hash Functions

A hash function takes as an input a text of any length and returns a short string of
letters, but in such a way that, given an output it is computationally difficult to construct
a second different input with the same output. Of course, this is not really a mathematical
definition. These hash function are used to produce signatures.

Suppose Angelina wishes to put a signature to her message m, which could be an
electronic contract for instance. She computes the value of s = H(m) where H is one of
the standard hash functions. Then, using any of the above public key cipher systems, she
encrypts H(m) using her private key and attaches the result at the end of the message.
Then she sends it off to Brad – probably she encrypts it first using Brad’s public key.

Brad recovers the message m and, using Angelina’s public key, he can decrypt s. Of
course, he had preferred another contract with her, one that she would probably not sign.
So he wishes to change the contract to another version m′. The problem is he has to do it
in such a way that s = H(m′), and that is exactly what is difficult with a hash function.

Signatures using hash functions are a special case of error-detecting codes. But they
are used here in a completely different way. It would be very stupid to use a usual error-
detecting code as a hash function, because it is usually easy to produce collisions, i.e.,
given m, find an m′ such that H(m) = H(m′).

Designed in the early 90’s, the Message Digest MD5 is still very much used. Typically
when downloading files, often the MD5-checksum is provided with it, so that one can check
if the file was corrupted during the transfer. So here it is used rather like a error-detecting
code, but it is also needed for checking in nobody has altered your file for instance by
adding a virus into it.

Also Unix-like systems used it for storing passwords: Your password can not be written
down as such on the computer otherwise it would be easy to gain access without permission.
So instead only H(m), where m is the password is stored. When entered a password m′,
the computer checks if H(m′) agrees with the stored H(m). When they agree it is unlikely
that m′ is different from m.

Here is how it works in principles. MD5 starts by splitting up the input m into blocks
of 128 bits. Each of these blocks is itself split up into four blocks of 32 bits, say a, b, c,
and d. As in the Feistel ciphers, one proceeds now though 16 rounds, each defined by a
rule like

a′ = d, d′ = c, c′ = b, and b′ = F (a, b, c, d)

61

cw ’13 Coding and Cryptography G13CCR

where F is some non-linear functions (which moreover changes from round to round).
After these 16 rounds the result is concatenated to a 128 bit integer. All these integers
from the different 128 bit block are in the end added modulo 2128, the result is the message
digest H(m).

For example, here is a pair of an input18 and a corresponding output

I know that the human being and the fish can coexist.
ce5ee19205f9ea24f94f1037c83e3ca7

The value of the hash function if written in hexadecimal notation, i.e., ‘a’ represents the
hexadecimal digit 10, ‘b’ is 11, . . . , ‘f’ stands for 15. If we change just a little bit the
message m, we get a completely different digest:

I knew that the human being and the fish can coexist.
a01c29091ee0c3d06d5c86d7e0895ade

First problems on this hash functions MD5 were reported in 1995 and, in 2007, Arjen
Lenstra and his collaborators have found a way of producing collisions. It is now not
considered secure any more to use MD5 for signatures; one should use the successors
SHA-1 and SHA-2.

They are similar algorithms but with output of up to 512 bits and the functions F
involved are quite a lot more complicated. But again, it might well be that serious flaws
will be discovered soon in them. The new SHA-3 was defined in 2012.

For example, the two messages above using the 512 bit version of SHA-2 give the digest

36411fb9b8db68cc14b7e9f94c01f0278dc58d69208b6ae07dc08791897c4785
a5c518a8e3a6e55facf439e8a5f360530045e321aa321b8d3b7288c18e3eee3f

and

0050ebf89aa35dea7841aa3d9853f250dda9054a8b432d208b4da7255f640019
78c91f9181809bfd4e7f375c86155682a34511ce83da7d78342a658e7f524859

18A bushism.

62

Problem Sheets

�� ��
Questions for chapter I

Throughout these problems we will often use the following transcription of letters as
numbers.�
�

�
�

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

The indication in [] refers to the section in the text to which the question is related to.

1). [I.1] Consider the following code

a = 0 7→ 0000000 e = 4 7→ 1111000
b = 1 7→ 1000000 f = 5 7→ 1111100
c = 2 7→ 1100000 g = 6 7→ 1111110
d = 3 7→ 1110000 h = 7 7→ 1111111

a) Encode the message “cafe”.

b) Decode the received message 10000001111000000000011000001111111.

c) Try to decode the message 11100000000100110000010111110000000.

d) Give an example showing that a single error in the transmission over the noisy
channel may give another message.

2). [I.2] The binary repetition code of length n is the code in which the only two
codewords are 0 = (0, 0, . . . , 0) and (1, 1, . . . , 1). What are the parameters [n, k, d]
for this code? What is the largest number of errors per codeword that it will correct?

3). [I.2] Let n > 2. The binary even-weight code of length n consists of all words
in Vn that have even weight. Find the parameters [n, k, d] for this code.

63

cw ’13 Coding and Cryptography G13CCR

4). [I.2] Use the Hamming code (I.2)

a = 0000 7→ 0000000 g = 0110 7→ 1100110 l = 1011 7→ 1010101
b = 0001 7→ 1110000 h = 0111 7→ 0010110 m = 1100 7→ 1000011
c = 0010 7→ 1001100 i = 1000 7→ 1101001 n = 1101 7→ 0110011
d = 0011 7→ 0111100 j = 1001 7→ 0011001 o = 1110 7→ 0001111
e = 0100 7→ 0101010 k = 1010 7→ 0100101 p = 1111 7→ 1111111
f = 0101 7→ 1011010

to encode the message “hello”. Then decode

1100110 0001011 0101111 0111100 1001101 1001111 0111100 1101001

using the nearest-neighbour decoding scheme.

5). [I.2] Let C be a code of minimum distance d. Let w be a received word. Suppose
c is a codeword such that

d(w, c) 6
d− 1

2
.

Prove that c is the unique closest codeword to w.

6). [I.2] Extending a code. Given a [n, k, d]-code C, add a 0 or 1 to the end of every
codeword to form a code Ĉ of length n+1 in which every codeword has even weight.
(So we add a 0 to every codeword that already has even weight, and a 1 to every
codeword of odd weight.) Show that the minimum distance of Ĉ must be even.
What can you say about the parameters of Ĉ (a) if d is even, (b) if d is odd?

What is Ĉ if C = Vn?

7). [I.2] Shortening a code. First method. Given a [n, k, d]-code C with d > 2, delete
the last symbol from every codeword to get a code C∗ of length n − 1. What can
you say about the parameters of C∗? Why must we have d > 2? When might C∗

be more useful than C?

8). [I.2] Shortening a code. Second method. Given a [n, k, d]-code C, we can form
two new codes C0 and C1. The code C0 is the set of all codewords in C that end
with a zero, which is then removed. Similarly C1 is the set of all codewords that
ended in 1 but with this 1 removed. Both codes C0 and C1 are of length n−1. What
can you say about the parameters of C0 and C1?

9). [I.3]

a) Show that there exists a [5, 2, 3]-code, but no [5, 3, 3]-code.

b) Recall the Hamming’s code is a [7, 4, 3]-code. Show that there are no [6, 4, 3]-
codes, no [7, 5, 3]-codes, and no [7, 4, 4]-codes.

c) Show that a 2-error-correcting code in V10 must have k 6 4.

10). [I.5] Determine which of the following are linear codes.

64

Coding and Cryptography G13CCR cw ’13

a) The trivial code C = {0}.
b) The full code C = Vn.

c) The code in exercise 1).

d) The binary repetition code in exercise 2).

e) The even weight code in exercise 3).

For each that is linear determine the dual code C⊥.

11). [I.5] Let C be a linear code. Let G be a generator matrix and let H be a parity
check matrix for C.

a) Is the extended code Ĉ defined in exercise 6) also linear?

b) Is the shortened code C∗ defined in exercise 7) also linear?

c) Which of the shortened codes C0 and C1 defined in exercise 8) is linear ?

If the new code is linear in any of the above questions, describe how one can obtain
generator and parity check matrices for the new code from G and H.

12). [I.5] Prove that, in a linear code, either all the codewords have even weight or exactly
half have even weight and the other half have odd weight. What, if anything, can
you say about the parity of the minimum distance of the code in each case?

13). [I.5] Let C1 and C2 be two linear codes with parameters [n, k1, d1] and [n, k2, d2].
Let C be the code consisting of all vectors of the form (x,x + y) in V2n such that
x ∈ C1 and y ∈ C2. Prove that C is linear with parameters [2n, k1 + k2, d] where
d = min(2 d1, d2).

14). [I.5] Suppose there exist linear codes with parameters [n1, k, d1] and [n2, k, d2] and
k-row generator matrices G1 and G2. Let G be the matrix

(
G1 G2

)
obtained by

juxtaposing G1 and G2. What can you say about the parameters of the code with
generator matrix G?

15). [I.6] For each of the following generator matrices, find a generator matrix in standard
form for the same code if this is possible, or for an equivalent code otherwise. Write
down the corresponding parity-check matrix, and find the dimension and minimum
distance of each code. Are the codes generated by G4 and G5 (a) the same, (b)
equivalent?

G1 =
(

1 1 1 1 0
1 1 0 0 1

)
G2 =

1 0 1 1 1
0 1 0 1 1
1 1 0 0 0

 G3 =

1 0 0 1 1 0 1
0 1 1 1 0 1 1
1 0 0 1 0 1 0



G4 =


0 1 1 0 1 0 1
1 0 0 0 1 0 1
1 1 0 0 1 1 0
1 0 0 1 0 1 0

 and G5 =


1 1 1 0 0 0 0
1 0 0 0 0 1 1
1 0 0 1 1 0 0
0 1 0 1 0 1 0


65

cw ’13 Coding and Cryptography G13CCR

16). [I.7] For each of the following parity-check matrices, construct the syndrome look-
up table (the table of error syndromes against coset leaders) for the code that they
define. Show how you would correct and decode the received words 0000111, 0001110,
1111111, 1101011, 0110111 and 0111000.

H1 =

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 H2 =

0 0 1 1 1 0 0
1 0 0 0 0 1 0
1 1 1 1 0 0 1


17). [I.8] Find the dimension and minimum distance of each code in the previous problem,

and calculate Perr for it.

18). [I.8] Compute Perr for the binary repetition code of length n = 3 and compare it to
the Hamming code Ham(3). Do the same for a linear [5, 2, 3]-code.

19). [I.9] Show that there exists a 1-error correcting linear code of length n if k <
n− log2(n),

20). [I.9] (hard) The Plotkin bound. Let C be a linear code with parameters [n, k, d]
such that n < 2 d. Then we have the following inequality

2k 6 2 ·
⌊

d

2d− n

⌋
.

Prove this by comparing an upper bound and a lower bound for the sum∑
x,y∈C

d(x,y) .

21). [I.10] Write down the parity-check matrix for the Hamming code Ham(4) of length
15. Construct the syndrome look-up table and find the codeword closest to the
following words: 010100101001000, 111000111000111, and 110011100111000.

22). [I.11] Prove that the Reed-Muller code R(1, 3) is a self-dual [8, 4, 4]-code. A code is
called self-dual if C⊥ = C.

23). [I.12] Which of the following codes are cyclic?

a) All of Vn.

b) The very trivial code C = {0}.
c) The code C = {0, (1, 0, 0), (0, 1, 0), (0, 0, 1)}.
d) The code C = {(1, 1, 0), (0, 1, 0), (0, 1, 1), (1, 0, 1), (0, 0, 1)}.
e) The code of all words in Vn whose first coordinate is different from it second

coordinate. (n > 2.)

f) The code of all words of even weight in Vn.

g) The code of all words of odd weight in Vn.

h) The binary repetition code C = {(0, 0, . . . , 0), (1, 1, 1 . . . , 1)} of length n.

66

Coding and Cryptography G13CCR cw ’13

i) A linear [5, 2, 3]-code.

24). [I.13] Polynomials over F2.

a) Show that the polynomial 1 + X2 in F2[X] factors, while the polynomials 1 +
X +X2, 1 +X +X3 and 1 +X2 +X3 cannot be factored.

b) Compute the remainder when dividing f(X) by g(X) = 1+X+X2 for f(X) one
of the following polynomials: 1+X+X4, 1+X3+X4, and 1+X+X2+X3+X4.
And conclude that all three f(X) are irreducible.

c) Compute the quotient and remainder when dividing X21 + 1 by 1 +X +X2 +
X4 +X6. Show that 1 +X +X4 divides X15− 1 and find the full factorisation
of the latter.

d) Explain how one can use repeatedly lemma I.16 to find the greatest common
divisor of two polynomials g1(X) and g2(X). (Euclid’s algorithm, see II.6.2).
Use this to find the greatest common divisor of 1 + X + X2 + X4 + X6 and
1 +X2 +X4 +X5 +X6.

25). [I.13] For each cyclic code in the list of exercise 23) give the generator polynomial.

26). [I.13] Let C1 and C2 be two cyclic codes of length n. Show that C1 ∩ C2 and
C1 + C2 = {x + y |x ∈ C1,y ∈ C2} are cyclic codes, too. Find their generator
polynomials in terms of the generator polynomial g1 and g2 of C1 and C2 respectively.

27). [I.13] How many linear cyclic codes of length 7 exist? How many of length 15?
Determine all values of k such that there exists a linear cyclic code of length 21 and
dimension k.

28). [I.14] Let g(X) = (1 + X)(1 + X + X3) be the generator polynomial of a cyclic
code C of length 7. Write down a generator matrix and a parity-check matrix for
C. Determine its parameters [n, k, d].

29). [I.15] Let C be the cyclic code of length 63 generated by g(X) = 1 +X +X6.

a) Find the parameters of C. [Hint: It is easy to see that d 6 3 and it is fairly
difficult to show that d > 2. You may use without proof that X63 − 1 is the
smallest polynomial of the forms Xk − 1 that is divisible by g(X).

b) Find the closest codeword to

x = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, . . . , 0)

(all the coordinates in the dots are 0).

30). [I.15] Let C be the ‘CRC-16-CCITT’ code generated by the polynomial X16 +X12 +
X5 +1. Encode the message 101101 as described in the final example of section I.15.

67

cw ’13 Coding and Cryptography G13CCR

�� ��
Problems for chapter II

31). [II.2] Decipher the following ciphertext19, given that it was obtained by applying an
affine cipher to a passage of English text. List the encryption mapping (or, if you
prefer, the decryption mapping) in full, and explain how you broke it.

XD OBNYREM REM V CBMHT VU YTNU UL URJT NTSRGRUT
AQVHOUN.

32). [II.2] Decipher the following ciphertext, given that it was obtained by applying a
monoalphabetic cipher (not an affine cipher!) to a passage of English text. List the
encryption mapping in full and explain how you broke it.

CWT VIFTDBOTBC NDINIAMRA GTDT DTYTQCTS PK CWT
RMPIED ANIZTAOMB MA XDDTRTFMBC CI CWT NDIPRTOA CWMC
CWT RXPDMDK ATDFXQT XA UMQXBV.

33). [II.2] Decipher the following English translation of a quote by François de la Rochfou-
cauld, encrypted with a affine cipher.

GXJ FPC JV VESVFY PCXYGVI YX RVVS XTI DVFIVY BQ JV GPOV
KVVC TCPKMV YX RVVS BY XTIDVMOVD?’

34). [II.3] The following quote by Einstein was encrypted with a Vigenère cipher.

Z E Z A T C C R I P O Q V C X J I K Z L J D I C Z M Y X Z B I X O W
Z L Z B N J M R G H X X P W O N Q N M H O Q D W B C C J O L J D
I C N L V W I X O W Z L Z B N J M R G H W N X X P W O N Y

Explain why you would guess that the keylength is 2. Then assuming this, break
the code.

35). [II.3] (tedious) Find the key used to encrypt the ‘Dead Parrot’ in section II.3.

36). [II.6.2] Find an integer b such that b · a ≡ 1 (mod 101) when a = 2, 3 or 23.

37). [II.6.3] Using the fast exponentiation method compute 3526 modulo 527 on your
calculator. Prove that 527 is not a prime number. If you have access to access to a
computer program20 that can handle large integer, use the same idea to prove that
232 + 1 is not prime.

19From a national newspaper, 24th February 1988
20maple and mathematica can do this of course, the free software pari-gp available at http://pari.

math.u-bordeaux.fr/ is much better for number theory and the free software sage available at http:
//www.sagemath.org is very good for cryptography. All of them have fast exponentiation already in
them. Suppose you want to compute 317 modulo 31. In pari, you can type ‘Mod(3,31)^17’, in sage

it is ‘power mod(3,17,31)’, in maple you use ‘3 &^ 17 mod 31’ and in mathematica one should write
‘PowerMod[3, 17, 31]’.

68

http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://www.sagemath.org
http://www.sagemath.org

Coding and Cryptography G13CCR cw ’13

38). [II.6.4] Find a primitive element modulo 23.

39). [II.7] In a miniature version of RSA, a user has public key (N, e) = (3599, 31). Use
the Euclidean Algorithm to find the private key. (You shouldn’t need a calculator
for this question – assuming you can factorise x2 − 1!)

40). [II.7] In the sequel we will use the following encoding of messages. As before the
characters ‘a’ up to ‘z’ correspond to the integers 0 up to 25, but now we add the
following symbols as in example in section II.8.�
�

�
�

space apostrophe period comma question mark
26 27 28 29 30

In a miniature version of RSA someone has encrypted a message with the public key
(N, e) = (85, 43). Find the private key and decode the message

2, 59, 66, 59, 0, 20, 64, 52, 66, 59, 28, 44, 66, 59, 44, 66, 59, 0, 72, 56, 44,
12.

41). [II.7] (in groups) Each participant should set up a secret and a public key as in
a mini-version of the RSA ciphersystem. To make the computations feasible one
should take the prime factors p and q between 30 and 100. Then the public key is
given to one other member of the group who will then encrypt a short message (not
more than 20 letters) with it.

To encrypt, we use now blocks of two letters (or symbols). If a and b are the
numeric value of the two symbols in the block, we translate the block to the plaintext
m = a+ b · 31. If the length of the full text is not even, just add a space to it in the
end. For instance, the text “good.” is transcribed to 440, 107, 834.

The holder of the secret key can then decrypt and read the message. It is also a
good exercise to add a last round where everyone tries to break one ciphertext, only
knowing the public key.

42). [II.8] This is a baby version of the Elgamal encryption. We choose the prime p = 101.
The integer 2 is a primitive root modulo p. As a private key, you choose d = 96.
Compute the public key and decrypt the message

(68, 0), (33, 28), (2, 90), (79, 52), (32, 66), (75, 80), (69, 63), (87, 0), (87, 51),
(53, 91), (9, 0), (93, 69), (100, 5), (74, 91), (2, 57), (58, 2), (42, 38), (33, 96),
(43, 86)

where we used the same conventions as in previous exercises. Explain why even this
baby version is better than a monoalphabetic cipher, assuming the attacker knows
neither the public nor the private key.

43). [II.9] Amy and Bryan would like to agree on a secret key 1 < n < 1000. Both
choose private keys: dA = 513 and dB = 33 modulo p = 1009, respectively. The
smallest primitive element modulo p is a = 11. Use the Diffie-Hellmann to compute
the secret key for both Amy and Bryan and show that they agree.

69

cw ’13 Coding and Cryptography G13CCR

44). [II.10] Azaliah needs to send the two-digit number m = 12 to her mate Belteshaz-
zar21. They agree to use the prime p = 103. She chooses the secrect key dA = 67
and Belteshazzar decided that he will use his secret key dB = 5. Use the no-key
protocol to send the message m.

45). [II.11.2] You wish to add a signature to your message using the Digital Signature
Algorithm. Suppose the hash-function of your message text is s = 721. Your private
Elgamal key is (p, a, d) = (1019, 2, 17). Compute the signature (s, r, t) and verify
that the receiver, knowing your public key can verify the signature.

46). [II.11.2] Alanis sends to Bruce the signature (s, r, t) = (423, 32, 231). You know that
her public key is (p, a, e) = (1019, 2, 479). Solve the discrete logarithm problem for
r = ak, and find the private key of Alanis.

21biblical name meaning ’who lays up treasures in secret’

70

Bibliography

[1] Henry Beker and Fred Piper, Cipher systems: the protection of communications,
Northwood Bookds, London, 1982.

[2] Cryptograms.org, Frequency of letters, http://www.cryptograms.org/

letter-frequencies.php, visited January 2013.

[3] Markus Grassl, Code Tables: Bounds on the parameters of various types of codes,
http://www.codetables.de/, the table http://iaks-www.ira.uka.de/home/grassl/

codetables/BKLC/Tables.php?q=2&n0=1&n1=20&k0=1&k1=20 is the most relevant for this
module; visited January 2013.

[4] Darrel Hankerson, Greg A. Harris, and Peter D. Johnson, Jr., Introduction to in-
formation theory and data compression, second ed., Discrete Mathematics and its
Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2003.

[5] Raymond Hill, A first course in coding theory, Oxford Applied Mathematics and
Computing Science Series, The Clarendon Press Oxford University Press, New York,
1986.

[6] Gareth A. Jones and J. Mary Jones, Elementary number theory, Springer Undergrad-
uate Mathematics Series, Springer-Verlag London Ltd., London, 1998.

[7] David Joyner and Robert Miller, sage and Coding Theory, 2008, http://sage.math.
washington.edu/home/wdj/cookbook/coding-theory/sage-coding-cookbook.pdf.

[8] Neal Koblitz, A course in number theory and cryptography, Graduate Texts in Math-
ematics, vol. 114, Springer-Verlag, New York, 1987.

[9] T. W. Körner, Coding and Cryptography, http://www.dpmms.cam.ac.uk/~twk/ visited
January 2013, 1999.

[10] RSA Laboratories, The rsa factoring challenge, http://www.rsa.com/rsalabs/node.

asp?id=2092 visited January 2013.

[11] San Ling and Chaoping Xing, Coding theory, Cambridge University Press, Cambridge,
2004, A first course.

[12] Nitin Saxena Manindra Agrawal, Neeraj Kayal, PRIMES is in P, Annals of Math-
ematics 160 (2004), no. 2, 781–793, available at http://www.jstor.org/stable/

3597229.

71

http://www.cryptograms.org/letter-frequencies.php
http://www.cryptograms.org/letter-frequencies.php
http://www.codetables.de/
http://iaks-www.ira.uka.de/home/grassl/codetables/BKLC/Tables.php?q=2&n0=1&n1=20&k0=1&k1=20
http://iaks-www.ira.uka.de/home/grassl/codetables/BKLC/Tables.php?q=2&n0=1&n1=20&k0=1&k1=20
http://sage.math.washington.edu/home/wdj/cookbook/coding-theory/sage-coding-cookbook.pdf
http://sage.math.washington.edu/home/wdj/cookbook/coding-theory/sage-coding-cookbook.pdf
http://www.dpmms.cam.ac.uk/~twk/
http://www.rsa.com/rsalabs/node.asp?id=2092
http://www.rsa.com/rsalabs/node.asp?id=2092
http://www.jstor.org/stable/3597229
http://www.jstor.org/stable/3597229

cw ’13 Coding and Cryptography G13CCR

[13] Minh Van Nguyen, Number Theory and the RSA Public Key Cryptosystem, 2008,
https://bitbucket.org/mvngu/numtheory-crypto/downloads/numtheory-crypto.pdf.

[14] The PARI Group, Bordeaux, PARI/GP, version 2.3.5, 2010, available from http:

//pari.math.u-bordeaux.fr/.

[15] Simon Singh, The Code Book: The Science of Secrecy from Ancient Egypt to Quantum
Cryptography, Anchor, 2000.

[16] William Stein, Elementary number theory: primes, congruences, and secrets: A com-
putational approach, Undergraduate Texts in Mathematics, Springer, New York, 2009,
available online for free at http://modular.math.washington.edu/ent.

[17] William Stein et al., Sage Mathematics Software (Version 4.6), The Sage Develop-
ment Team, 2010, http://www.sagemath.org.

[18] Peter Symonds, Coding theory, notes for MATH32031 available at http://www.maths.

manchester.ac.uk/~pas/, 2009.

[19] International Telecommunication Union, Transmission Systems and Media, Digital
Systems and Networks (g. 704), 1998, pp. 1–45.

[20] Björn von Sydow, Mono-, Bi and Trigram Frequency for English, no longer available
online.

[21] Dominic Welsh, Codes and cryptography, Oxford Science Publications, The Clarendon
Press Oxford University Press, New York, 1988.

[22] Phil White, Error Correction Codes: FAQs, http://web.archive.org/web/

19990117020045/http://members.aol.com/mnecctek/faqs.html visited January 2013.

[23] Wikipedia, Advanced Encryption Standard, http://en.wikipedia.org/wiki/

Advanced_Encryption_Standard visited January 2013.

[24] Wikipedia, Cyclic Redundancy Check, http://en.wikipedia.org/wiki/Cyclic_

redundancy_check visited January 2013.

[25] Wikipedia, Data Encryption Standard, http://en.wikipedia.org/wiki/Data_

Encryption_Standard visited January 2013.

[26] Wikipedia, Hamming’s code, http://en.wikipedia.org/wiki/Hamming%287%2C4%29 vis-
ited January 2013.

72

https://bitbucket.org/mvngu/numtheory-crypto/downloads/numtheory-crypto.pdf
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://modular.math.washington.edu/ent
http://www.sagemath.org
http://www.maths.manchester.ac.uk/~pas/
http://www.maths.manchester.ac.uk/~pas/
http://web.archive.org/web/19990117020045/http://members.aol.com/mnecctek/faqs.html
http://web.archive.org/web/19990117020045/http://members.aol.com/mnecctek/faqs.html
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Hamming%287%2C4%29

	Information
	Introduction
	Error-Correcting Codes
	Coding for Noisy Channels
	The Hamming distance
	Bounds on codes
	Some Linear Algebra
	Linear Codes
	The standard form
	Error correction for linear codes
	Minimum distance for linear codes
	Linear codes with large distance
	Hamming Codes
	The First Order Reed-Muller Codes
	Cyclic Codes
	Generator polynomial
	Generator and parity check matrices for cyclic codes
	Error-correction for cyclic codes
	Other Topics in Error Correction Codes

	Cryptography
	Modular Arithmetic
	Monoalphabetic Ciphers
	Vigenère Cipher
	Other Ciphers and Improvements
	Block Cipher
	Number Theory
	RSA
	Elgamal
	Diffie-Hellmann Key Exchange
	No-Key Protocol
	Signatures

	Problem sheets
	Bibliography

