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Object Detection and Recognition for Assistive
Robots

Ester Martinez-Martin, Member, IEEE, and Angel P. del Pobil, Member, IEEE

Abstract—Technological advances are currently being directed
to assist the human population in performing ordinary tasks in
everyday settings. In this context, a key issue is the interaction
with objects of varying size, shape and degree of mobility.
Consequently, autonomous assistive robots must be provided with
the ability to process visual data in real time so that they can react
adequately for quickly adapting to changes in the environment.
Reliable object detection and recognition is usually a necessary
early step to achieve this goal. In spite of significant research
achievements, this issue still remains a challenge when real-life
scenarios are considered. In this paper, we present a vision system
for assistive robots that is able to detect and recognise objects
from a visual input in ordinary environments in real time. The
system computes colour, motion and shape cues combining them
in a probabilistic manner to accurately achieve object detection
and recognition, taking some inspiration from vision science.
In addition, with the purpose of processing the input visual
data in real-time, a Graphical Processing Unit (GPU) has been
employed. The presented approach has been implemented and
evaluated on a humanoid robot torso located at realistic scenarios.
For further experimental validation, a public image repository
for object recognition has been used, allowing a quantitative
comparison with respect to other state-of-the-art techniques when
real-world scenes are considered. Finally, a temporal analysis of
the performance is provided with respect to image resolution and
number of target objects in the scene.

Index Terms—Object detection, Object recognition, Robot
vision systems, Service robots

I. INTRODUCTION

OWADAYS, robots have found their way from sealed

working stations in factories to people’s living and
working spaces, where they should be able to autonomously
perform different services useful to the well-being of humans,
such as domestic tasks, healthcare services, entertainment,
and education. In particular, with the purpose of improving
people’s quality of life, especially for the elderly, the field of
assistive robotics is becoming increasingly popular. Research
is progressing from special-purpose service robots such as
autonomous cleaning or transport systems, to multi-functional
assistive robots able to integrate diverse abilities such as person
detection and tracking, human-robot interaction, reasoning,
localization, navigation, object detection and recognition, plan-
ning and manipulation. In addition, these assistive robots are
expected to operate in a flexible manner, without constraining
the environment, and in a reasonable time, while guaranteeing
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the safety of all their surrounding elements, especially when
they are human beings [1] [2].

However, despite the wide research in this area (e.g.
Johnny [3], HOBBIT [4], KSERA [5], Cogniron [6], Care-
O-Bot [7], HERB [8], Accompany [9], AAL4ALL [10] and
many others), the progress in assistive robotics has been
relatively slow to date. This is mainly due to the fact that
the environments to cope with are dynamic, unpredictable and
human-oriented. In addition, depending on the application,
long human-robot interactions could miserably fail because
of the limited system’s autonomy and abilities, as broadly
analysed in [11]. Thus, an assistive robot should be pro-
vided with a vast set of perception and action capabilities
to efficiently perform its goal tasks in real scenarios, while
properly interacting with its users along its life. Among all
these capabilities, this paper is focused on perception for
object detection and recognition, a key task for a meaningful
assistance.

In this context, vision is considered a primary cue because of
the information it can provide. Actually, vision has been used
in numerous robotic applications to successfully achieve a task
(e.g. obstacle avoidance for navigation [12], [13], [14], [15],
human recognition for Human-Robot Interaction [16], [17],
activity recognition for cooperative behaviour [18], [19], [20]
and object identification for manipulation [21], [22], [23], to
name only a few). However, despite significant achievements,
the problem of detecting and recognising objects efficiently
and accurately still remains a scientific challenge when real
scenes are considered. Apart from a great number of objects
in the images, the reasons for this difficulty are to be found
in issues such as their interactions and occlusions, along
with photometric and geometric variations in pose, size, etc.
Furthermore, noise in images, the nature of objects themselves,
complex object shapes and illumination changes, make it a
hard task. This is becoming still harder with the advent of
digital cameras with resolutions of megapixels and frame rates
exceeding 100 frames per second, since considerably more
data needs to be processed in less time. Therefore, given
that a practical assistive robot requires real-time performance,
optimized implementations and novel insights are necessary.

Many efforts have been made to overcome these problems.
The most habitual way to recognise shapes and objects is
by means of model-based approaches [24], [25], [26]. These
techniques start by taking a large set of images in different
poses and from different viewpoints. From them, an object
model is built and learnt in advance. Then, the features
extracted from the objects in a scene are matched against
features of the previously stored object models. It is important
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to highlight that the considered features must be invariant with
respect to various transformations (such as view direction,
scale and changes in illumination) and also need to be robustly
extracted; conditions that can hardly be met in unconstrained
environments. Despite being a good procedure for some kind
of objects, it is difficult to learn models of objects with a
high dimensionality or with a rich variability in their motion,
such as human beings. In addition, autonomy is a requirement
in assistive robotics and, consequently, no constraints about
the object appearance or motion can be established. On the
other hand, there exist methods based on local features. In
this case, objects are represented via their edges, colour
or corner cues [27], [28], [29]; steerable filters [30]; haar-
like features [31]; or scale-invariant descriptors (e.g. SIFT,
SURF) [32], [33]. These approaches are commonly used for
their computational simplicity, efficiency, and robustness to
affine transformations. Nevertheless, their accuracy is tightly
coupled to the number of features used for describing an
object. Also, a trustworthy segmentation for obtaining object
features is especially complex when real scenarios are consid-
ered. In addition, object features are only relatively robust to
small affine transformations, a condition that, again, can hardly
be fulfilled when unconstrained scenarios are considered.

Alternatively, the concept of Object Action Complexes
(OACs) could be used. In this case, objects and actions
are assumed to be inseparably intertwined. Thus, OACs are
proposed as a framework for representing actions, objects, and
the learning process that constructs such representations at all
levels, from the high-level planning and reasoning processes
to the sensorimotor low-level. Therefore, OACs can act as
an interface between the Artificial Intelligence planning and
the diverse representation languages for robot control [34].
Moreover, a connection between robot actions and the visual
and haptic perception is defined for the interaction objects [35]
[36].

The same idea underlies in approaches in which a process
to segment interest objects and to extract their shape is based
on active visual exploration [37]. Even though the exploration
system is completely autonomous, the system still requires a
significant amount of prior knowledge about the world (in
terms of a sophisticated visual feature extraction process in
an early cognitive vision system), knowledge about its body
schema and knowledge about geometric relationships such as
rigid body motion. That is, it is necessary to know the system’s
visuomotor map in order to be successful.

The perception-action relationship was also studied from
a cognitive point of view [38] [39]. In this case, perception
and action are linked through a memory component. Basically,
perception allows the system to sense its surroundings with
three sensor modalities: audio, vision, and touch. This data is
fed into the memory module to produce motor-control signals,
that are translated into robot responses by the action unit. In
this way, the intermediate mechanism acts as the robot’s brain
by making the recognition task easier. However, despite the
vast analysis of existing perceptual systems, the conclusion
is that semantic and emotion understanding still remains an
open problem. Consequently, in a similar way, robust object
recognition still requires much efforts, especially when real

scenarios are used. Palomino et al. [40] presented an attention-
based cognitive architecture in which reasoning is the bond
between perception and action. In this case, the core idea is to
select the tasks that will be active at each time based on the
context data and the state of achievement of each action. So,
depending on the perceived elements, a task can be executed
or not since the accomplishment of a task is closely linked
to the presence of specific elements in the scene. This system
has a high success rate (85%) when only one type of object is
used (balls) and the distinctive feature is colour; considerable
additional efforts are still required for an object-based visual
attention system to accurately detect and categorize a wider
range of objects.

New approaches are called for to achieve our goal. In princi-
ple, we would like the required knowledge for object detection
and recognition to be only obtained from the visual input.
From a biological point of view, psychophysics experiments
have shown that humans perform some pre-segmentation using
boundaries and regions as a previous step prior to actual image
understanding [41]. This early segmentation is then tuned by
using a huge object database stored in our brains. Thanks
to this process, real-life objects can be perfectly recognised
even with intense shadows, large occlusions or geometric
distortions.

From the same underlying idea and with the purpose of
overcoming these problems, a combination of several visual
object features can be a promising approach. In this way,
colour-based invariant gradients have been combined with
Histogram of Oriented Gradient (HoG) local features [42]
for object detection in outdoor scenes (such as urban scenes)
under cast shadows. The approach is, however, limited by the
constrained nature of the environments.

This work is based on our previous ideas on this topic [43].
Motivated by the challenges discussed above, we present new
scientific results with a focus on working systems. Indeed, our
robot system is capable of detecting and recognising objects
from a visual input in realistic, truly unconstrained scenarios
in real time. For that, and based on the amazing ability of
the human visual system for object identification, the system
computes object-specific colour, motion and shape cues and
combines them in a probabilistic manner to adequately detect
and recognise objects. Moreover, a Graphical Processing Unit
(GPU) is used to achieve real-time performance in processing
the visual data. Extensive experimental validation has been
conducted with a humanoid torso and an image repository, as
well as a temporal analysis of the performance.

The rest of this article is organised as follows: Section II
describes the architecture of the designed system. Section III
provides the implementation details. The obtained experimen-
tal results are presented and discussed in Section IV, and the
guidelines for our future work are introduced in Section V.

II. SYSTEM DESCRIPTION

From a biological point of view, humans are able to easily
identify the objects present in their environment. Therefore,
insights from human visual processing could be a starting
point for developing computer models. This is the case of Al-
Absi and Abdullah [44], who designed BIORecS emulating
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the human vision system. Concretely, BIORecS achieves ac-
curate object recognition in complex scenarios by combining
functions of some areas of the human visual cortex and the
connection mechanisms between the visual areas in humans,
implemented by feedforward and feedback techniques. This
model consists of four stages closely intertwined: feature
extraction (object shapes are obtained by combining the image
edges extracted with Gabor filters); visual attention (a support
vector machine is used as object shape classifier); recognition
(carried out by Principal Components Analysis) and image
database (containing the objects to be recognised).

However, although this architecture may allow the system
to overcome some key issues in object recognition -such as
changes in illumination, occlusions and high-cluttered scenes-
the description of objects is not adequate since different
objects can have the same visual shape. For example, a ball,
a bracelet, a disk, a coin or a drum would all belong to the
category of circular shape. Furthermore, some factors such
as its pose, scene background or illumination conditions may
modify the object’s shape. Consequently, a model reformula-
tion is necessary.

Alternatively, object detection and recognition could be
considered as an attentional mechanism since it refers to
the extraction of target information from the observed scene.
In this sense, a dorsal attention system could fit. Generally
speaking, this system could be defined as a top-down (goal-
oriented) modulation of stimulus-driven (e.g. saliency) atten-
tional capture by targets versus distractors. In this regard,
a four-module attentional architecture has been defined by
Lanillos et al. [45] in which the first module corresponds to
the perception sense by building an egocentric map according
to relevance encoded as saliency. This information is fed to
the top-down controller which ensures that the selection of
the new focus of attention will take into account the current
system goals and context. Then, the action module chooses the
next fixation location and translates it into the proper control
signals for the actuators. Finally, the behavioural reorienting
module is responsible for detecting novel and behaviourally-
relevant stimuli that should result in interrupting and resetting
the attentional process as an action-perception loop.

Focusing on the task at hand, the developed visual system
should be provided with a perception module which builds a
saliency map based on the most distinctive visual features,
followed by a module in charge of object recognition. In
this way, the system will be centred in the potential targets
by reducing the sensory data to be processed and, therefore,
making tractable the unmanageable amount of information
received from the visual sensors. In addition, a memory that
stores information about the objects to be recognised should
also be integrated. Therefore, our vision system consists of
three different modules (Figure 1):

o Feature Extraction, that generates a saliency map from
image segmentation based on three object properties:
colour, shape and motion

e Memory, which stores the models of the potential target
objects

e Recognition, that is responsible for recognising the ob-
jects from the visual input and the data coming from the

previous modules
Thus, this architecture is based on a richer object description
for robustly detecting and recognising any object in real
scenarios without establishing any constraint about the objects
and the environment.

Fig. 1. Overview of the system architecture for object detection and
recognition, showing its three main modules (Feature Extraction, Memory
and Recognition) and the threefold object description (colour, motion and
shape)

A. Feature Extraction

Visual features are a key point in any detection and recogni-
tion procedure. Deciding what features are required to properly
detect and recognise a farget object in detriment of others is
not an easy task. The reason lies in the fact that a wide variety
of features would result in a very time-consuming processing,
while a poor feature-based object description would lead to
an inefficient recognition. So, similar to human attentional
mechanisms (see for example [46] for an extensive survey),
a discrimination between features of incoming stimuli has to
be defined to properly establish behaviour- and task-relevance.
In particular, in this work three distinctive feature types are
considered: colour, motion and shape. Therefore, in an early
step an image is divided into semantically meaningful parts
according to the values of those properties, which will be part
of the robot’s focus of attention for further processing.

1) Colour cues: Colour plays a main role in object detec-
tion and recognition due to the rich information it can provide.
A wide range of approaches can be found in the literature. For
instance, colour histograms can be used to represent and match
images or objects. However, despite its simplicity and efficacy,
its accuracy is significantly deteriorated when the illumination
conditions change.

As an alternative, the colour gradient obtained from the
addition of channel derivatives could be considered. Nev-
ertheless, given that the colour derivatives are separately
computed, differences in the colour edge directions can make
this technique miserably fail.

Another possibility could be to use a different colour model.
Actually, a great variety of colour spaces are normally used
for different purposes such as video and television (YIQ,
YUV); display and printing (RGB, CMY); perceptual uniform
spaces (U*V*W#* L*a*b* Luv); human perception (HSI); or
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standard primary colours (rgb, xyz). However, a large number
of these colour models are combinations of RGB (e.g. CMY,
XYZ and I I513) or normalizations of rgb in terms of intensity
(e.g. 1Q, xyz, UV, U*V* a*b* uv); others, on the contrary,
are correlated to intensity I (e.g. Y, L* and W*).

Thus, keeping in mind the goal of a visual system able to
accurately detect and recognise multi-coloured objects in real
scenes, existing colour models have been analysed in order to
determine which one is more robust to changes in illumination,
object geometry and camera viewpoint. The aim is a colour
model that is less sensitive to imaging conditions and has a
higher discriminative ability, removing the constraints on the
image process and, as a consequence, considerably improving
object detection and recognition.

In this sense, Gevers and Smeulders [47] and later Vil-
lamizar et al. [42], deeply analysed diverse colour models
by evaluating their robustness for object recognition under
different image parameters. This comparison, summarized in
Table I, concluded that the colour model to be chosen depends
on the imaging conditions. Indeed, if all the imaging condi-
tions are controlled, RGB is the most invariant colour model
for object recognition. However, under the constraints of white
illumination and no presence of highlights, normalized colour
rgb and cjcocs are the most robust colour spaces. On the
contrary, in the presence of highlights, 0105 is the most
appropriate despite its sensitivity to all the other parameters.
Finally, {11203 is the best alternative for the job at hand due to
its invariance.

shadow geometry material highlights

RGB + + + +

rgb - - + +

c1c2C3 - - + +

0102 + + + -

l1l2l3 - - - -
TABLE I

COLOUR MODEL SENSITIVITY TO IMAGE PARAMETERS SUCH THAT +
DENOTES SENSITIVITY, WHILE - INDICATES INVARIANCE TO A
PARTICULAR PARAMETER.

Given that no environmental and object constraints are
established, the [l2l3 colour space is used in our system
for object recognition due of its robustness in the presence
of varying illumination across the scene (e.g. multiple light
sources with different spectral power distributions), and also
with changes in surface orientation of the object (i.e. its
geometry), and with object occlusion and cluttering. Thus,
the first step is to obtain [ilol3—images from the captured
RGB—images as follows:

I, = (R—G)?
L= (R=G)*+(R—B)’+(G—B)?
(R—B)*

l» = R=G(r-B)"+(C-B)" 1)
Iy = G—B)?

(R—G)?*4+(R—B)?>+(G-B)?

Nevertheless, with the aim of robustly detecting and recog-
nising objects in realistic scenarios, other cues must also be
used.

2) Motion cues: The capability of visually perceiving mo-
tion is a key issue in computer vision. Actually, this is a
requirement for a wide range of applications. By way of

example, Orabona et al. [48] used motion as a salient feature
to focus attention on moving elements. Another alternative is
to use independent motion in weakly supervised object recog-
nition settings thanks to the priors provided on the visual target
location [49]. In addition, other object characteristics that are
significant for detection and recognition can be generated from
motion data (e.g. trajectory, speed or shape).

Nonetheless, the motion present in a visual input could
be caused by various circumstances such as the camera’s
movement, a flickering scene illumination, the movement of
scene elements (targets or vacillating background elements), or
a combination of them. As a consequence, these factors must
be considered when image segmentation for motion detection
is performed.

Research on this topic has taken a number of forms. The
early algorithms [50] were based on temporal information
by using a thresholded frame difference of temporally ad-
jacent frames. This kind of methods have some well-known
problems, such as ghosts and foreground aperture [51]. As a
consequence, they were mostly replaced by methods based on
spatial information in the image sequence, namely background
subtraction. This technique, in its simplest form, detects mov-
ing regions in an image by taking the pixel-by-pixel difference
between the current image and a reference background image.
This approach is sensitive to changes in the scene background
due to the lack of a reliable reference image or the effect of
changing illumination, noise or periodic motion, and requires
the use of a good background model [52] [53] together with
a well-defined stationarity criterion to decide when a pixel
deviates from the background [54]. Afterwards, most of the
research focused on methods for background maintenance,
that is, the construction and updating of a statistical repre-
sentation of the background trying to capture the temporal
evolution of the image sequence. As a representative selection
of methods we can mention Pfinder [52] in which a single
Gaussian distribution was used, multimodal statistical models
such as a mixture of Gaussians (MoG) [55] [56] or Normal
distributions [57]; adaptive background estimation based on
Wiener (Wallflower [54]) or Kalman filtering [29] [58] to make
predictions of the expected background; statistical models
based on the minimum and maximum intensity values and the
maximum inter-frame change (temporal derivative [59]). Other
methods incorporate spatial region-based scene information
such as Kernel Density Estimation (KDE), a Parzen-window
estimate with a kernel [60]), Eigenbackground (eigenspace de-
composition based on images of motionless backgrounds [61])
or Independent Component Analysis (ICA [62]). A number
of alternative approaches used Hidden Markov Models [63],
codebook vectors [64] [63] or explicit models of the fore-
ground [65].

More recent approaches tend to incorporate specific knowl-
edge of the particular application [29] [66] [67]; introduce a
number of enhancements and refinements in the fundamental
methods above [68]; or apply other techniques such as saliency
maps [29] or regions of interest [69] prior to background
subtraction.

Despite the wide research on this topic, there are still some
issues to be solved such as how to arrange for a training
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period with foreground objects in dynamic, real environments;
the adaptation to minor dynamic, uncontrolled changes such
as the passage of time, blinking of screen or shadows; the
adaptation to sudden, unexpected changes in illumination; or
the differentiation between foreground and background objects
in terms of motion and motionless situations.

With the purpose of overcoming these problems, Martinez-
Martin and del Pobil proposed a hybrid algorithm based on
frame differencing and background subtraction along with a
single-Gaussian background model and a mechanism for its ef-
fective maintenance (which is described in depth in [70]). The
underlying idea of this method is to mutually reinforce frame
difference and background subtraction so that the drawbacks
of both approaches are overcome while keeping their original
advantages.

So, in a first stage, an initial background model is built. Un-
like most background estimation algorithms, another technique
for controlling the activity within the system workspace is per-
formed. As computational and time cost are critical issues, this
control is performed by means of a combination of difference
techniques: frame difference with reference frame subtraction.
Thus, frame difference allows the system to identify objects
which have moved from one frame to the next one. However,
it is important to take into account that both previous position
and the current one are detected. This problem was solved
by using background subtraction since the only highlighted
position is the current one. Note that, as the reference frame
is the first taken frame, it might be possible that it contains
objects that are not part of the background. For that reason,
some additional constraints have been defined in order to
solve this kind of situations. Furthermore, the used thresholds
for those subtraction approaches are automatically set for
each pixel from pixel neighbourhood information. In a similar
way, the stationary object problem has been solved with the
combination of both subtraction techniques. Therefore, there
is no danger of missing foreground objects while the initial
model is being built. Moreover, the obtained background
model does not contain information about those moving targets
thanks to the use of a simple frame-difference approach that
detects moving objects within the robot workspace.

In a second stage, adjacent frame difference, background
subtraction and background maintenance techniques are used.
So, the detection and identification of moving objects is
composed of two processes:

1) the adaptive background model, built initially, is used
to classify pixels as foreground or background. This is
possible because each pixel belonging to the moving
object has an intensity value that does not fit into the
background model. That is, the used background model
associates a Gaussian distribution to each pixel of the
image, as defined by its mean colour value and its
variance. Then, when an interest object enters or moves
around the system workspace, there will be a difference
between the background model values and the object’s
pixel values. A criterion based on stored statistical
information is defined to deal with this classification and
it can be expressed as follows:

b(T C) — 1 lf |Z (Tv C) - ,U/r,c| > k X 0'7-70 (2)
" 10 otherwise

where b (r,c) is the binary value of the pixel at row
r and column c to be calculated, i (1, c) represents the
pixel brightness in the current frame, i, . and o, . are
the mean and standard deviation values estimated by
the background model and k is a constant value which
depends on the point distribution

2) improvement of the raw classification based on the
background model as well as detection and adaptation
of the background model when a global change in
illumination occurs. The proper combination of subtrac-
tion techniques is used to improve the segmentation
carried out at pixel level by using background sub-
traction. Furthermore, this difference processing allows
the system to identify global illumination changes. It
is assumed that a significant illumination change has
taken place when there is a change in more pixels
than two thirds of the image size. When an event of
this type occurs, a new adaptive background model is
built because, otherwise, the application would detect
background pixels as targets, since the model is based on
intensity values and a change in illumination produces
a variation of them.

Once the whole image is processed, those pixels classified
as background are incorporated into the adaptive background
model. For that, the following formulas are used:

fe (E41) = (1= @) prye () + @izt (ryc) if background
’ e (t) otherwise

e (t4+1) = (1—a)ore(t) + aiirr (r,e) if background
’ o (t) otherwise

3)
Here, the constant o (0 < o < 1) controls the adaptation
rate and it is given by the number of pixels which are part
of the Gaussian distribution. However, sometimes the pixel
grey level might change quicker than the background model
as when illumination gradually brightens. As the proposed
updating process is too slow, after a certain period of time,
the background model might not be suitable for foreground
pixel detection. For that reason, a new updating process was
designed. So, during the updating phase two different tasks
are carried out:

« the background model is being updated with each new
frame by using Eq. 3

« a new background model is being built from the segmen-
tation obtained with the current background model

In this way, after some time, the background model is re-
placed by a new one more suitable for the current background
scene.

3) Shape cues: Shape is the third characteristic describing
an object in our system. Similar to the motion cue, enriched
information can be obtained from shape data. However, object
shape may change when the object is observed from a different
point of view. For instance, a car presents different shapes
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depending on the location of the observer (front, bottom, side-
ways or in perspective). To overcome this problem, different
object shapes should be represented in accordance with the
distinct observable views. Obviously, the robustness obtained
from a greater number of shapes will come hand in hand with
a higher computational cost.

As a solution, Principal Components Analysis (PCA) has
been widely used (e.g. [71] [72] [73]) as a statistical tool
for finding patterns in data of high dimension, highlighting
their similarities and differences. In our case, object templates
are matched with their appearance in the current image. First
the provided training data is pre-processed in some way (e.g.
image normalization for contrast, optical flow computation,
face alignment, etc.) and then, the dimensionality of the
search space is reduced by converting a set of observations
of possibly correlated variables into a set of values of linearly
uncorrelated variables (i.e. principal components). As a con-
sequence, invariance with respect to object contrast, rotation
or scale is not provided by PCA itself. In a similar way,
other problems such as occlusions, illumination variations,
high object dimensionality or image noise, are not solved with
this approach.

A neuroscientific viewpoint reveals that Gabor filters is
the approach with a higher biological plausibility [74] [75]
[76] [77]. In this way, images are represented by a sinusoidal
function moved in depth and the wavelength of any sinusoidal
shape pattern can be detected and recognised. What is more,
phase-based methods have been shown to be robust to changes
in contrast, scale and orientation [78] [79].

Therefore, a symmetrical and an anti-symmetrical filter
kernels can be used to estimate the phase difference at any
point x. As a result, the two obtained filter outputs for an
image I would be:

Liino (#,w) = [w(Z=21 (2') sin (w (x — 2')) ) da’
Tos,o (,w) = [w (221 (2)) cos (w (x — ') ) da’

“)
where o corresponds to the spatial expansion of the kernel
filter and w refers to its frequency. Note that when the ratio
between w and o is a constant and a Gaussian bell curve
represents the window function, then Equation (4) describes a
convolution with Gabor functions.
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Fig. 2. Bank of oriented Gabor filters used for shape detection and recognition

In particular, the proposed method extracts the object shape
using a bank of eight oriented Gabor filters (Figure 2). For
that, we have constrained the number of shape representations

to four at most: (1) a shape when the object is seen from the
front; (2) a shape when the object is observed sideways; (3) a
shape when the object is seen from the top; and, (4) one shape
representation when it is seen in perspective (chosen thinking
of autonomous systems performing a task). Note that the
system only requires a certain number of shape representations
to recognise an object. For instance, objects like balls only
require one shape representation, while other objects will need
two or three shapes. An example of some shape models for
different objects are shown in Figure 3.

Object|Considered Shapes

Fig. 3. Shape cue in terms of Gabor filters based on four shape representations
(front, sideways, top and perspective) used in the proposed approach

Representation

B. Memory

Memory performs a fundamental role in human object
recognition. Similarly, in our system, a memory module stores
the description of all the potential targets to be recognised.
It contains all the features integrating the description of each
known object, as shown in Figure 4.
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Fig. 4. Object description in terms of colour, motion and shape properties
saved in the system memory for proper object detection and recognition

C. Recognition

The last stage of the process is performed by the recognition
module, which is responsible for the object recognition itself.
At this point, it is important to take into account that two
different kinds of object recognition can be distinguished;
namely, object categorization and object identification. On the
one hand, the goal of object categorization is to classify an
object as belonging to an abstract object class (e.g. animal,
person, car, building, etc.). On the other hand, object identifi-
cation is aimed at identifying an object as a unique instance
within a class. In this paper object identification is addressed,
since no category abstraction is intended.

Our approach is aimed at visually identifying the surround-
ing objects in their corresponding object classes. For that, a
statistical combination of similarity likelihood is used, based
on all the considered cues. Assuming independence between
the three cues (colour, motion and shape), the object-based
likelihood can be obtained as follows:
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P(Ilo) = P(Ic|o)| P(Im|0)| P (s o) (5)

where P(I.|o), P(I,,|o) and P(I4|o) respectively correspond
to colour-based, motion-based and shape-based likelihoods for
an object o.

Note that the task to be performed and the object charac-
teristics will determine what features are more distinctive for
achieving an accurate object recognition. For that reason, the
cue weights have to be experimentally set. By way of example,
for recognizing a ball, a greater weight is assigned to colour
as compared to shape, since a circular shape is very common
in real-world scenarios and its discriminative value is lower.

III. IMPLEMENTATION DETAILS

Real-time processing is a critical demand when state-of-
the-art robot systems are designed. This requirement calls for
an efficient processing unit. A solution is to process visual
input with a Graphical Processing Unit (GPU), potentially
reducing time consumption in a drastic way. However, despite
its highly parallel computation capabilities, writing efficient
GPU programs is not evident, especially for uneven workloads
(e.g. the higher the number of interest objects is, the higher
the computational costs are).

In particular, our algorithms have been implemented on an
NVIDIA GeForce GTX 745. It includes 384 Compute Uni-
fied Device Architecture (CUDA) cores with 4-GB memory
and chip-level power enhancements. A fast access to shared
and GPU’s main memories characterizes these CUDA cores.
Moreover, graphics API functions are not required for parallel
implementations in C language; this is very convenient for
properly implementing the necessary parallel algorithms that
deal with irregular workloads.

The CPU-GPU system implementation is shown in Figure 5.
The CPU captures an image and uploads it to the GPU, which
will perform the subsequent image processing steps, namely,
from feature extraction to object recognition. The GPU will
return the output to the CPU for it to decide the next action to
be performed by the robot. Then, the visual processing starts
again.

Since object feature detection and tracking is a computation-
ally intensive task, but highly parallelizable, a good parallel
solution can be devised to the effect that all image processing
is carried out by the GPU (using 1023 threads per block). As a
final system output, the CPU shows on the screen the detected
objects.

Feature
Extraction

System |
Output JP

CPU | GPL

Fig. 5. Overview of our CPU-GPU implementation, meeting real-time
performance by parallelly implementing on the GPU the computationally
intensive task of object detection and recognition

IV. EXPERIMENTAL RESULTS

The proposed approach for object detection and recognition
in real scenarios has been tested in three different kinds of
scenarios. First of all, a semi-structured scene was considered
so that a methodical study of the efficiency based on different
factors could be carried out (e.g. occlusions, light reflexes,
changes in illumination, shadows, etc.). Then, the second set
of experiments involved two real, cluttered environments in
which the target objects were to be found amongst a set
of ordinary items such as calendars, books, clocks or pens.
Finally, an image dataset has been used to evaluate the perfor-
mance of the system by means of object instance recognition
and in comparison with other state-of-the-art approaches. To
conclude, a performance analysis in terms of execution time
is presented.

For the two first experiments, a humanoid torso endowed
with a Robosoft TO40 pan-tilt-vergence stereo head and two
multi-joint arms was used (see Figure 6). The head mounts two
Imaging Source DFK 31BF03-Z2 cameras acquiring colour
images at 30 Hz with a resolution of 10242768 pixels. The
baseline between cameras is 270 mm and the motor positions
are provided by high-resolution optical encoders.

Fig. 6. External view of the humanoid torso employed for the experiments
(left) and a detailed view of the pan/tilt/vergence head (right)

A. Experiment 1: Semi-structured scenes

In the case of semi-structured scenes, the robot was located
in front of a table on which the objects were placed. In
this experimental setup, the table was initially empty and,
after a little while, a human was placing and removing the
different objects on the table without interacting directly with
the robot system. In this way, the motion cue was instrumental
in detecting both the human presence in the robot workspace
as well as the new object instance on the table. Actually, in
this experiment, the three visual cues have the same weight
when the segmentation result is determined. Four different
objects have been used as targets: a red ball, a toy car, a bottle
and a money box. The object position and orientation were
modified for each frame. Obviously, the number of resulting
orientations varies based on the considered object; for instance,
the red ball has only one orientation, while the toy car was
observed in 12 different orientations (approximately every 30
degrees). As depicted in Figure 7, the implemented approach
starts with capturing an image. This image is the input of
two different processes: the colour cue segmentation and the
segmentation of the other two considered cues (i.e. motion and
shape). This distinction is for efficiency reasons. Therefore, on
the one hand, the image is expressed in L1L2L3—coordinates
and segmented by using the memory information about the
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different objects to be found. On the other hand, an intensity
image is obtained with the purpose of speeding up motion
and shape segmentation. Note that shape detection is obtained
from the combination of the 8 Gabor-filtered images. Once
segmentation for each cue is performed, their fusion allows the
system to reduce the search area for object recognition and,
despite the presence of factors such as shadows or reflexions,
the red ball is properly detected in the image.
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Fig. 7. Object detection and recognition process in semi-structured scenes

In a similar way, experiments with the other objects were
carried out. Figure 8 shows some of the obtained results (only
the final result). Note that the illustrated results correspond to
a single trial since there is no randomness in the data. As it can
be observed, only one object is searched each time. The reason
lies in the performance analysis in the presence of different
factors susceptible of making the system fail (e.g. shadows,
flickering light sources, variable light reflexes, objects partially
visible, etc.). As shown, all the objects were successfully
recognised even when they changed their orientation or lo-
cation in the scene, or the cameras changed their viewpoint.

(Captured frame

[Recognition

Fig. 8. Qualitative experimental results in a semi-structured scenario in
which both the camera viewpoint and the object location and orientation were
continuously changed

With the purpose of validating the obtained qualitative
results, a quantitative evaluation has been carried out. In this
case, the true positive rate (TPR) and false positive rate
(FPR) measurements are used [80]. That is, the proportion
of correctly classified positives (TPR); and the proportion of
incorrectly classified negatives (FPR). From their definition,
a good performance is obtained when both measurements
are close to 1. As shown in Figure 9, the obtained results
(blue line) are above the line dividing the ROC space (grey
line), which means a good performance. Consequently, it can
be concluded that the system was successful in the object
detection/recognition task.
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Fig. 9. ROC curve for the quantitative evaluation of the proposed approach
in semi-structured scenes

B. Experiment 2: Real scenarios

In this experiment, the objects to be detected and recognised
were placed on a desk. Two unstructured environments were
used composed of everyday objects of different nature and
features such as textured books, pens, clock, etc. In this
context, the objects to be detected and recognised include a
red ball, a toy car, a yellow ball, a green bulb, a stapler, and
a wooden generalized cylinder. These objects were located at
different positions and/or orientations within the considered
scenario, resulting partially occluded in some cases. As in the
previous case, a human is continuously interacting with the
target objects, but not with the robot system, so that the motion
cue triggers again a visual attention focus. However, the other
two visual cues are required to distinguish between the target
objects and other moving elements in the scene such as the
person. For this reason, the three cues have the same weight
in the object recognition process.

In the first experiment, three different objects were used: a
toy car, a stapler, and a wooden generalized cylinder. Some
of the one-trial results are shown in Figure 10. Note that,
despite the nature of the environment and that of the objects
themselves, all the targets were properly detected even in the
case of the toy car, which had a great colour similarity with its
background. An example of the detection of two objects in the
same image is also illustrated, in which the car and the stapler
have been correctly detected and recognised. In a similar way,
the developed approach adequately focuses its attention on the
target object (i.e. the generalized cylinder), although several
objects were added to the scene (the toy car and the stapler)
as shown in the rightmost example in Figure 10.

o
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Fig. 10. Qualitative experimental results when a real scenario is considered

In the subsequent experiment, the visual system was aimed
at detecting and recognising four objects (a red ball, a green
bulb, a yellow ball, and a wooden generalized cylinder) while
a person is interacting with the objects in the scene, changing
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their position on the desk. As a consequence, the motion cue
again plays a main role in the object recognition process. Some
of the obtained one-trial results are presented in Figure 11.
In this case, unlike in previous examples, the binary image is
shown, highlighting the detected objects, especially when they
are partially occluded, or colour similarity with the background
is considerably high.

Once more, a quantitative analysis validates the above quali-
tative results. In this case, as shown in Figure 12, the detection
and recognition results are presented for two different objects:
the stapler and the toy car. In both cases, the ROC curve
are above the division line (grey dashed line), confirming the
quality of the results for real-life scenarios.

C. Experiment 3: Image Repository

For the third validation experiment we compare the per-
formance of our approach with state-of-the-art methods by
using a public image repository. Actually, given that the
ability to recognise objects is crucial for many applications,
a wide range of public image repositories is available. These
datasets allow researchers to evaluate their approaches with
a large number of objects and under different conditions,
as well as to compare their performance with other state-
of-the-art approaches. However, these repositories could be
classified based on the goal to be satisfied. That is, object
recognition has multiple levels of semantics (e.g. category
recognition, instance recognition, pose recognition, etc.), it can
refer to different application scenarios or it could be based
on certain input data. Consequently, the required evaluation
dataset must correspond to the needs of a particular approach.
This is why the RGB-D Object Dataset [81], publicly available
at http://www.cs.washington.edu/rgbd-dataset, has been used
for this validation. This dataset is composed of thousands of
images of 300 objects commonly found in home and office
environments, taken from multiple views by using an RGB-
D camera (see Figure 13 for some examples). Objects are
organized into a hierarchy of 51 categories composed of a
number of instances between three and fourteen, so that each
object belongs to only one category. In addition, ground truth
images are provided to adequately assess the segmentation
process. In consequence, this image dataset allows object
recognition techniques to be evaluated at two levels:

o Category level. Category recognition refers to classifying
previously unseen objects in a category based on objects
from the same category that have been previously seen.
That is, this recognition level corresponds to answering
questions such as is this an apple or a cup?

e Instance level. Instance recognition, on its behalf, in-
volves identifying if an object is physically the same
object that has been previously seen. In this case, the
questions to be answered take the form is this Angel’s
coffee mug or Ester’s?

Despite the fact that the ability to recognise objects at
both levels is a key point in the context of robotic tasks, in
this work only the instance recognition is considered since
no category abstraction was carried out. So, the task for the
recognition algorithm is to detect the exact physical instance

of an object that was previously presented. In our case, the
previous instance (i.e. the first frame of each object sequence)
based on colour and shape cues is used to build an object
model that will be used for object detection and recognition.
Note that, in this case, the motion cue has not been used
because objects are not moving, although the camera is.

For comparison reasons, we consider the cropped RGB-
D frames that tightly include the object, exactly as used in
the object recognition evaluation of the paper introducing the
RGB-D Object Dataset [81] (i.e. subsampled every 5Sth video
frame). Actually, these are the images used for obtaining the
different results over this image repository.

Table II compares the obtained results with those from
different state-of-the-art approaches; namely, EB Local
(an exemplar-based local distance function learning tech-
nique [82]), Linear Support Vector Machine (Linear SVM),
Gaussian kernel Support Vector Machine, Random Forest
(RF), kernel descriptors, Convolutional K-Means descriptors
(CKM Desc), HMP and IDL) described in [83] [84] [85]
[86]. As it can be observed from the results, our technique
substantially improves upon the performance of the several
considered state-of-the-art classification approaches.

[ Approach [Accuracy based on RGB information
EB Local 84.5
Linear SVM 90.2
Nonlinear SVM 90.6
RF 90.5
IDL 91.3
CKM Desc 92.1
The proposed approach 96.1

TABLE IT
ACCURACY COMPARISON ON THE RGB-D OBJECT DATASET WHEN USING
ALTERNATING CONTIGUOUS FRAMES

In addition, the RGB-D image dataset also includes video
sequences of real-life scenarios such as office workspaces,
meeting rooms, and kitchen areas, where some database ob-
jects are visible from different viewpoints and distances and
may be partially or completely occluded in some frames.
Thus, the proposed algorithm has been also tested in those
common indoor environments. Some of the obtained results
are illustrated in Figure 14. The first two images show an
office and, although the scene illumination and the point of
view have been changed, they correspond to the same video
sequence. As it can be observed, the cellophane box has
been recognised in both of them, highlighting the approach
robustness to lighting changes. Furthermore, the second row
refers to different scenarios with the same target object: a green
bowl. As it is apparent, it was properly detected, even when
it was partially occluded.

D. Experiment 4: Execution Time Analysis

The last evaluation experiment refers to the analysis of the
benefits of using the GPU for parallel computing. A similar
study was presented by Ferreira et al. [87] in the context of
Bayesian models for multimodal perception. With that aim,
we carried out a comparison between the performance using
parallel and non-parallel computing depending on the image
resolution and the number of potential targets.
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Fig. 11. Qualitative experimental results when a real scenario is considered
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Fig. 12. ROC curve for the quantitative evaluation of the proposed approach
in unstructured scenarios
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Fig. 13. Some objects from the RGB-D Object Dataset belonging to different
object categories

First, the execution time is analysed for different image
resolutions. Our results show that a similar performance is
obtained with the two methods when the image resolution
is low. However, when the image resolution is increased,
the non-parallel computing time drastically climbs, while the
GPU implementation shows a gradual, much slower, growth.
This is apparent in Figure 15 that plots the speedup with
respect to image size. In fact, the execution time for the
GPU remains virtually constant (around 0.48 seconds) for the
first ten image resolutions considered because the thread loads
remain similar. Given that the number of threads is limited,
when the image resolution is increased, both the thread work
load and, consequently, the execution time rise, resulting in
0.95 seconds for our higher resolution (1600x1200).

Another key issue in practical object recognition is that of
scalability, and our last experiment analyses the execution time
when the number of potential target objects is increased. With
that aim, different image sequences from the RGB-D image
dataset were used. The results, shown in Figure 16, illustrate
the speedup evolution for an averaged image resolution of
84x85 pixels when the number of objects that could be
found in the scene increases. As it can be observed, our
results highlight the efficiency when parallel computing is
used; computation times remain almost unchanged between

Captured
frame

Recognition
result

Fig. 14. Some object recognition results on the real-life scenarios provided
by the RGB-D image dataset

Parallel Speed Up vs image Sles

Fig. 15. Speedup versus image size for parallel (GPU) and non-parallel (CPU)
computing

one object (0.46 seconds) and 50 target objects (0.47 seconds).
Keeping in mind our final goal, an autonomous assistive robot,
the system should provide a similar response time regardless
of the task at hand, as it is the case, and, ideally, this response
time should be the same as that of human beings. As our
results show, the obtained response time is similar in all
the studied cases (up to 50 target objects) and below 0.5
seconds, approximately twice the average human reaction time
(between 200-250 milliseconds [88] [89] [90]). In the context
of human-computer interaction [91] [92] [93], a response time
below 0.1 second is regarded as an instantaneous reaction,
whereas a response delay between 0.1 and 1.0 second is
considered as fast enough for a fluent interaction, even though
the user would notice the delay. Consequently, a response time
of 0.5 seconds is a real-time performance in this sense. In
fact, with this implementation, real-time processing could be
obtained even when hundreds of object instances are searched,
taking us closer to the possibly thousands of objects that could
be found in everyday life.

On the other hand, advances in image technology are
leading to visual sensors with higher image quality to the effect
that higher and higher image resolutions can be expected in
the future. For resolutions higher that 1600x1200, execution
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times would be presumably beyond 1.0 second. In this case,
image resolution could be decreased by using, for instance,
pyramidal images, in order to obtain real-time performance.

Paraliel Speed Up vs Number of Objects
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Fig. 16. Speedup versus the number of potential target objects for parallel
(GPU) and non-parallel (CPU) computing

V. CONCLUSION AND FUTURE WORK

During the last decades, robotics research moved from
stationary robotic systems in constrained environments to
mobile and service-oriented robots operating in realistic and
unconstrained environments. One rising application field is
assistive robotics, aimed at developing robots that support hu-
mans as their daily-life assistants. With that aim, these systems
must be endowed with different abilities such as localization,
mapping, path planning, obstacle avoidance, object detection,
recognition, and manipulation.

In particular, in this paper we have focused on object
detection and recognition. Even though this issue is the heart
of different robotic assistive abilities, real-time efficient object
detection and recognition is still a challenging problem when
real scenarios are considered. Part of this problem is due to
the presence of cluttered, dynamic backgrounds, with possible
occlusions, interactions and additional photometric and geo-
metric variations.

Motivated by these challenges, we presented a framework
that is able to detect and recognise objects from a visual input
in unconstrained scenes in real time. We take inspiration from
biology and use a rich object description based on colour,
motion and shape cues. Robust colour information is obtained
thanks to an adequate colour model choice that makes visual
data invariant to changes in viewpoint, object geometry and
illumination. The second considered cue is motion, which
is perceived by means of a novel background maintenance
technique overcoming the environmental constraints of exist-
ing methods. Finally, a phase-based representation of shape
concludes the object description presented in this paper.

Once the visual features have been properly extracted,
the system analyses the statistical similarity between the
detected objects and those whose description is stored in
the system’s visual memory. This estimated joint likelihood
allows the system to successfully discriminate between several
objects. Furthermore, with the purpose of effectively achieving
real-time computation in visual data processing, a Graphical
Processing Unit (GPU) is used by taking into account that
irregular workloads are common in the task at hand.

The proposed approach has been implemented on a robotic
platform and tested by considering different parameters which
might make the system fail. This large number of parameters
allows us to analyse the robustness of the proposed method.
For further experimental validation, a public image repository
for object recognition has been used, allowing a quantitative
comparison with respect to other state-of-the-art techniques
when real-world scenes are considered. Finally, a temporal
analysis of the performance was provided with respect to
image resolution and number of target objects in the scene.
As shown by these experimental results, the system is able to
accurately detect and recognise objects in everyday scenarios
where there are no constraints about the environment and the
objects.

As future work, new object features will be studied for
improving object detection and recognition. In addition, a
module for visual attention will be developed and integrated
in the current implementation with the purpose of determining
which features make an object more interesting for the system.
At the same time, we would like to add a new stage in order
to automatically learn new objects, going a step further in
emulating the human visual system.
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