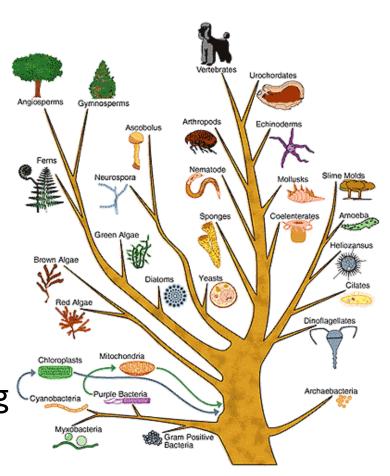
# 1. Introduction to Molecular & Systems Biology

EECS 600: Systems Biology & Bioinformatics, Fall 2008
Instructor: Mehmet Koyuturk




#### Life

- There is no universal definition of life
  - The structural and functional unit of all living organisms is the cell
  - Living beings use energy to produce offsprings
  - Living beings feed on negative entropy
- Fundamental properties
  - Diversity
  - Unity
- In biology, almost every rule has an exception
  - Are viruses a form of life?



#### Evolution

- All organisms are part of a continuous line of ancestors and descendants
- Key principles
  - Self-replication: Inheritance of characters
  - Variation: Diversity and adaptation
  - Selection: Not all variation goes through
- Evolution is key to understanding the principles that underlie life

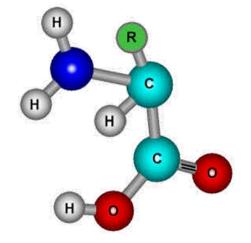


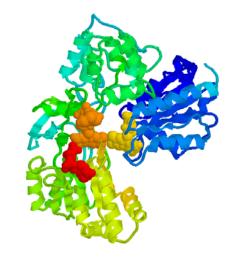
## Molecular Biology

#### Structure & Function

- Structure: Physical composition and relationships of a molecule, cell, organism
- ▶ Function: The role of the component in the process of life
- The main function: Turn available matter & energy into offsprings
- Required structural components
  - Boundaries to separate organism from environment
    - Membranes, composed of lipids
  - Storage medium for inheritable characteristics
    - Chromosomes
  - All other materials necessary for survival and reproduction
    - Cytoplasm



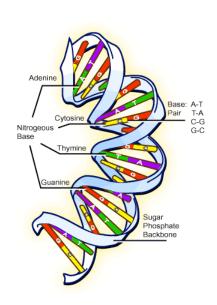

#### Molecules

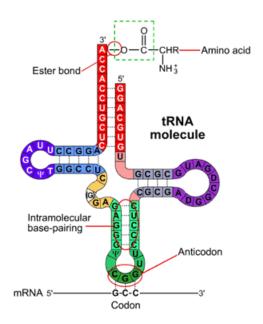

#### Small molecules

- Source of energy or material, structural components, signal transmission, building blocks of macromolecules
  - Water, sugars, fatty acids, amino acids, nucleotides

#### Proteins

- Main building blocks and functional molecules of the cell
  - Structure, catalysis of chemical reactions, signal transduction, communication with extracellular environment



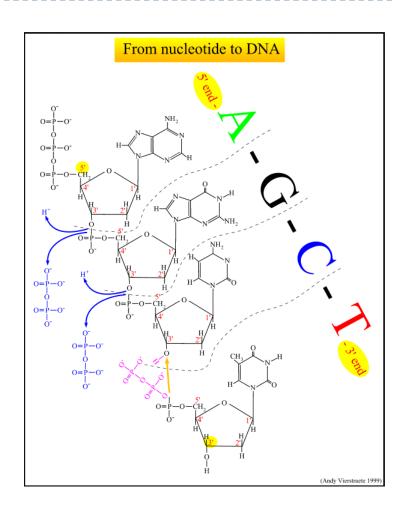



#### Molecules

- DNA
  - Storage and reproduction of information
- ▶ RNA
  - Key role in transformation of genetic information to function



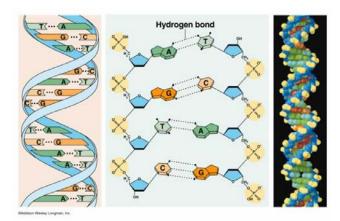



## The Central Dogma



- Proteins are in action, their structure determines their function
- DNA stores the information that determines a protein's structure
- RNA mediates transformation of genetic information into functional molecules
  - There are functional RNA molecules as well!

#### DNA


- Sequence of nucleotides
- Backbone is composed of sugars, linked to each other via phosphate bonds
- Each sugar is linked to a base
  - Adenine (A), Thymine(T),Guanine (G), Cytosine (C)
  - Base molecules compose the alphabet of genetic information



#### The Double Helix

- DNA is generally found in a double strand form
  - A and T, C and G form hydrogen bonds
  - Two strands with complementary sequences run in opposite directions
    - 5' A-T-C-T-G-A 3'
    - 3'T-A-G-A-C-T 5'
  - They are coiled around one another to form double helix

structure



### Storage of Genetic Information

#### Chromosomes

- Long double stranded DNA molecules
- In eukaryotes, chromosomes reside in nucleus
- Humans have 23 pairs of chromosomes

#### Genome

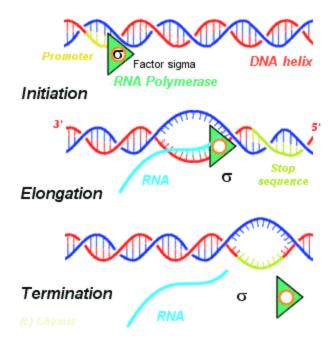
- All chromosomes (and mitochondrial DNA) form the genome of an organism
- It is believed that almost all hereditary information is stored in the genome
- All cells in an organism contain identical genomes



## Genome Length Statistics

| Organism    |                       | Genome Size (KB) | No. of Genes |
|-------------|-----------------------|------------------|--------------|
| Viruses     | MS2                   | 4                |              |
|             | Lambda                | 50               | ~30          |
|             | Smallpox              | 267              | ~ 200        |
| Prokaryotes | M. genitalium         | 580              | 470          |
|             | E. coli               | 4,700            | 4,000        |
| Eukaryotes  | S. cerevisiae (yeast) | 12,068           | 5,885        |
|             | Arabidopsis           | 100,000          | 20 - 30,000  |
|             | Human                 | 3,000,000        | ~ 100,000    |
|             | Maize                 | 4,500,000        | ~ 30,000     |
|             | Lily                  | 30,000,000       |              |

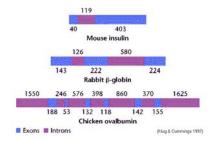
#### RNA


- RNA is made of ribonucleic acids instead of deoxyribonucleic acids (as in DNA)
  - RNA is single-stranded
  - In RNA sequences, Thymine (T) is replaced by Uracil (U)
- mRNA carries the message from genome to proteins
- tRNA acts in translation of biological macromolecules from the language of nucleic acids to aminoacids
- Several different types of RNA have several other functions
  - NA is hypothesized to be the first organic molecule that underlies life

#### **Proteins**

- Proteins are chains of aminoacids connected by peptide bonds
  - Often called a polypeptide sequence
  - There are 20 different types of aminoacid molecules (each aminoacid in the chain is commonly referred to as a residue)
- Proteins carry out most of the tasks essential for life
  - Structural proteins: Basic building blocks
  - Enzymes: Catalyze chemical reactions that enable the mechanism transform forms of matter and energy to one another (metabolism)
  - Transcription factors: Genetic regulation, i.e., control of which protein will be synthesized to what extent

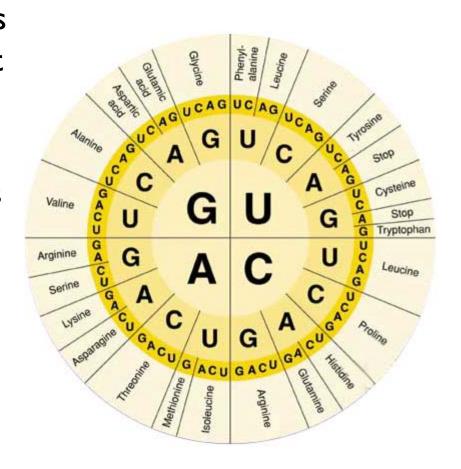
## Proteins: Synthesis, Structure, Function


### Transcription



- One strand of DNA is copied into complementary mRNA
- Carried out by protein complex RNA polymerase II

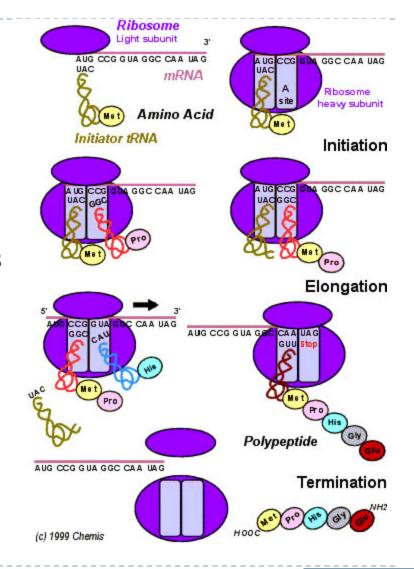
## Splicing


- A gene is a continuous stretch of genomic DNA from which one (or more) type(s) of protein(s) can be synthesized
- Genes contain coding regions (exons) separated by non-coding regions (intron)



- Introns are removed from pre-mRNA through a process called splicing, resulting in mRNA
- Alternative splicing: Different combinations of introns and exons may be used to synthesize different proteins from a single gene

#### Genetic Code

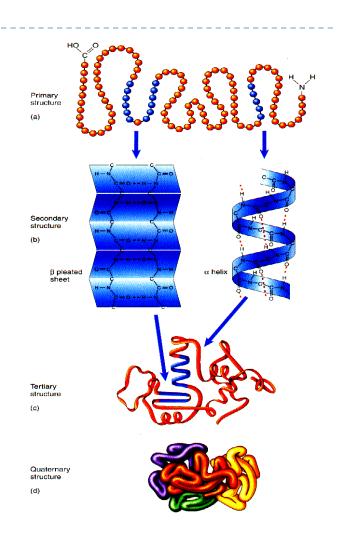

- There are 4 different types of nucleotides, 20 different types of aminoacids
- A contiguous group of 3 nucleotides (codon) codes for a single aminoacid
  - 64 possible combinations, multiple codons code for a single aminoacid
  - There are codons reserved for signaling termination





#### Translation

- The process of synthesizing a protein, using an mRNA molecule as template
- Carried out in ribosome
- ▶ tRNA
  - Cloverleaf structure, three bases at the hairpin loop form an anticodon
  - A single type of aminoacid may be attached to the 3' end of a single tRNA
- There is no tRNA with a stop anticodon






#### Protein Structure

#### Primary structure

- The aminoacid sequence and the chemical environment determine a protein's 3D structure
- Secondary structure
  - Alpha helices, beta sheets
- Tertiary structure
  - Folding: relatively stable 3D shape
  - Domain: functional substructure
- Quarternary structure
  - More than one aminoacid chain
- Structure is key in function





#### Protein Function

- Three aspects
  - Activity: What does the protein do? (e.g., an enzyme might break a particular kind of bond)
  - Specificity: The ability to act on particular targets
  - Regulation: Activity may be modulated by other molecules (on or off?)
- Each of these aspects is realized by a corresponding aspect of structure
- In this course, we will focus on analyzing data that provide clues on how proteins cooperate to perform complex functions

## Domains of Life

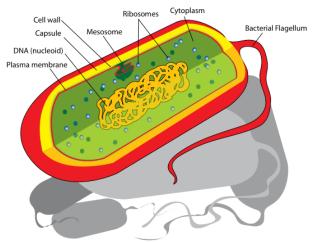
#### Domains of Life

#### Three cell types

- Prokaryotes
- Eukaryotes
- Archaea

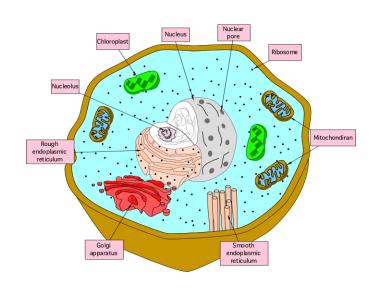
#### Similarities

- All have DNA as genetic material
- All are membrane bound
- All have ribosomes
- All have similar basic metabolism
- All are diverse in forms



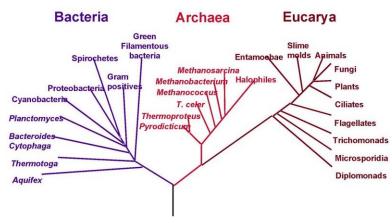

## Prokaryotes

- Their genetic material is not membrane bound
- They do not have membrane bound cellular compartments
- They contain only a single loop of DNA (no chromosomes)
- All prokaryotes are unicellular (they do form colonies,


though)

- They are ubiquitous
- All bacteria are prokaryotes
  - E. coli, H. Pylori

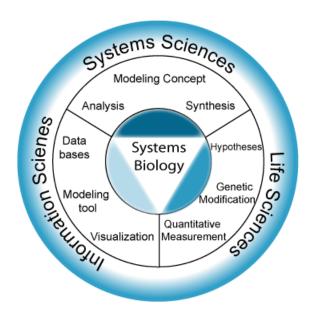



## Eukaryotes

- Cells are organized into complex structures by internal membranes and a cytoskeleton
  - Nucleus is the most characteristic membrane bound structure
  - Genetic material is stored in chromosomes
- All multicellular organisms are eukaryotes
  - Can be unicellular as well
- Plants, animals, fungi, protists
  - Human (H. sapiens)
  - Mouse (M. musculus)
  - Weed (A. thaliana)
  - ► Fly (D. melanogaster)
  - Baker's yeast (S. cerevisiae)



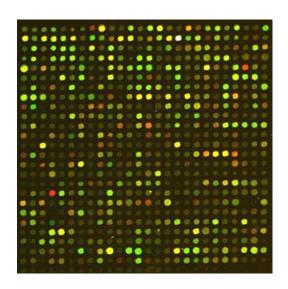
#### Archaea

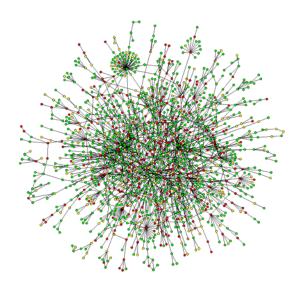

- Most recently discovered domain of life
- Generally extremophile
- Microorganisms like prokaryotes, therefore sometimes referred to as archaebacteria
  - Similar to prokaryotes in cell structure and metabolism
  - Genetic transcription and translation is more similar to that in eukaryotes



## Systems Biology

## Why Systems Biology?


- "To understand biology at the system level, we must examine the structure and dynamics of cellular and organismal function, rather than the characteristics of isolated parts of a cell or organism." (Kitano, Science, 2002)
- Cell is not just an assembly of genes and proteins
- Systems biology complements molecular biology






## Systems Perspective is Possible Today

- Progress in molecular biology
  - Genome sequencing
    - Information on underlying molecules
  - High-throughput measurements
    - Comprehensive data on system state

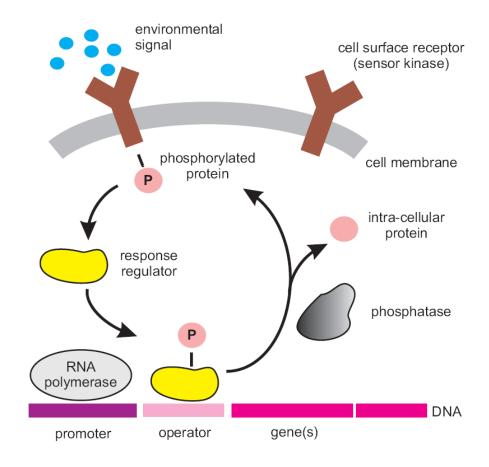




## An Analogy

- Understanding how an airplane works
  - What do we learn if we list all parts of an airplane?
    - Identifying single genes or proteins
  - How are these parts assembled to form the structure of an airplane?
    - This tells us on what parts may have an effect what parts
    - Identifying regulatory effects of genes on one another, protein-protein interactions, etc.
  - How do individual components dynamically interact?
    - What is the voltage on each signal line?
    - How do voltages on different signal lines effect each other?
    - ▶ How do the circuits react when malfunction occurs?




## What is a System?

## System Concepts

- ▶ I. System structures
  - ▶ Topology, wiring, architecture, organization
- 2. System dynamics
  - Behavior over time, under different conditions
- 3. System control
  - Mechanisms that systematically control the state of the cell
- 4. System design
  - Underlying design principles
- All interrelated!



## An Example: Cellular Signaling



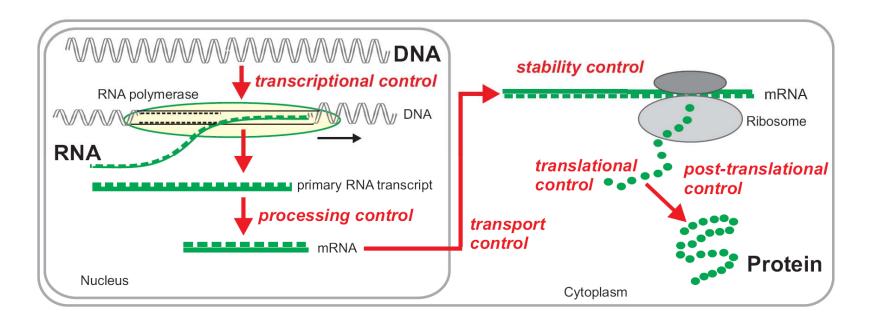
http://www.informatik.uni-rostock.de/~lin/GC/Slides/Wolkenhauer.pdf



## System Structure

- Wiring, architecture, or organization of the system
  - Protein-protein interactions form a network
    - From direct physical relationships to large-scale orchestration between proteins
    - How are cellular signals are transmitted?
  - Metabolic network represents chains of reactions
  - Gene regulatory networks characterize the "control" of cellular state
- Has to go beyond intracellular wiring
  - How about organization of cells?
- Tools
  - Informatics, data analysis, knowledge discovery




## System Dynamics

- ▶ The logic of system control in biological systems is fuzzy
  - Dimensions of time and space
- How does a system behave over time under various conditions?
  - How do concentrations of biochemical factors influence each other?
  - What is the effect of perturbation?
  - What are the essential mechanisms that underlie specific behaviors?
- Tools
  - Mathematical modeling
  - Simulation



## System Control

- Mechanisms that systematically control the state of the cell
  - Robustness, how does the system respond to malfunction?



http://www.informatik.uni-rostock.de/~lin/GC/Slides/Wolkenhauer.pdf



## System Design

- Engineering aspects of the system
  - Optimization, use of resources
- Are there general principles?
  - Convergent evolution
  - Evolutionary families of cellular circuitry?
  - "Periodic table" of functional regulatory circuits?
- In most cases, we may not know what we are looking for
  - Data mining & knowledge discovery
  - Pattern identification
  - Statistical evaluation: Which patterns are potentially relevant?

## Organization & Dynamics

- Organization tells us about the architecture, but not how that architecture behaves
  - We have a road map, we want to characterize traffic patterns on the roads as well
  - The map is useful, but we need more information and more detailed modeling
- Organization underlies dynamics
  - If we understand network structure, we can start assigning functions on links (how do the gates behave?)
- Nevertheless, understanding of organization and dynamics is an overlapping process
  - Dynamic analysis may provide clues on identifying interactions

# Properties of Complex Systems

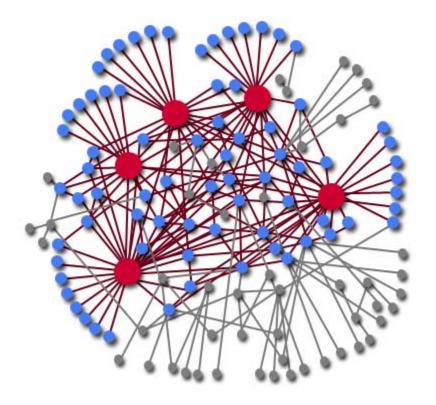
## Properties of Complex Systems

- I. Emergence
- 2. Robustness
- 3. Modularity

Biological systems demonstrate these properties.



### Emergence


- Emergent properties: Those that are not demonstrated by individual parts and cannot be predicted even with full understanding of the parts alone
  - Understanding hydrogen and oxygen is not sufficient to understand water
- Life is an emergent property
  - It is not inherent to DNA, RNA, proteins, carbohydrates, or lipids, but it is a consequence of their actions together
- Systems-level perspective is required to comprehensively understand emergent properties

#### Robustness

- Phenotypic stability under diverse perturbations
  - Environment, stochastic events, genetic variation
- Properties
  - Adaptation
    - Ability to cope with environmental changes
  - Parameter insensitivity
    - Not affected too much by slight perturbations
  - Graceful degradation
    - Slow degradation of a system's functions after damage (as compared to catastrophic failure)
  - Robustness might also cause fragility

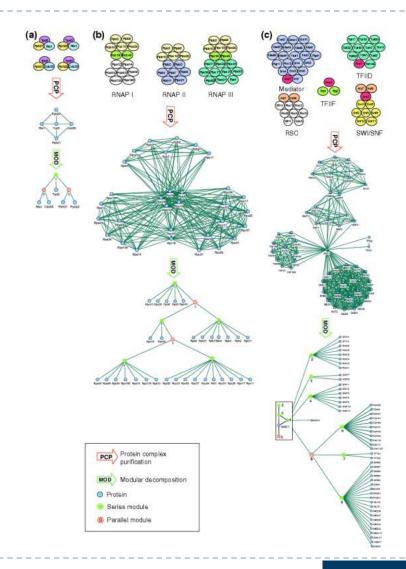


#### Cost of Robustness



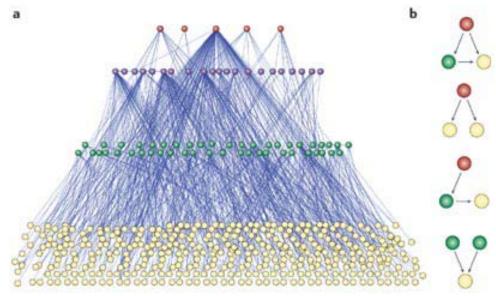
Scale-free networks: Robust against random attacks, vulnarable to targeted attacks




#### Robustness

- How can robustness be attained?
  - System control
    - Negative feedback: Insulates system from fluctuations imposed by the environment, dampens noise, rejects perturbations
    - Positive feedback: Enhances sensitivity
  - Redundancy
    - Multiple components with equivalent functions, alternate pathways
  - Structural stability
    - Intrinsic mechanisms that promote stability
  - Modularity
    - Sub-systems are physically or functionally isolated
    - Failure in one module does not spread to other parts




## Modularity

- A module is a functional unit, a collection of parts that interact together to perform a distinct function
  - Inputs: signals that influence a module
  - Outputs: signals that are produced by a module



## Modularity

- Contributes to robustness
- Contributes to development and evolution
  - Just multiply, rewire, revert a module
- Hierarchical modularity
  - Modules of modules of modules...



# Omics of Systems Biology

## Central Dogma Revisited

replication



genome

transcriptome

proteome

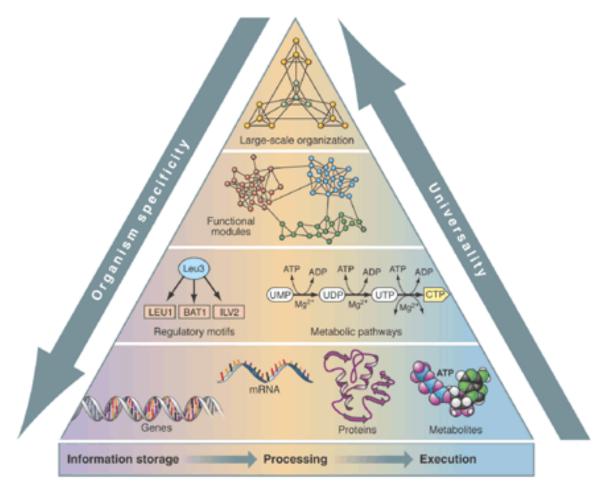
http://www.informatik.uni-rostock.de/~lin/GC/Slides/Wolkenhauer.pdf



#### 'Omes and 'Omics

- ... 'ome: the complete set of ...
  - Genome: genes
  - Transcriptome: mRNA (used to measure the state of a cell in terms of gene expression)
  - Proteome: proteins
  - Interactome: molecular interactions
  - Metabolome: chemicals involved in metabolic reactions
- ...'omics': the study of...
- High-throughput methods
  - The same experiment is performed on many different molecules (genes, proteins, etc.) in a (partially) automated way
  - Make 'omics possible




## Layers of Organization

- Genome
  - Long term information storage
- Transcriptome
  - Retrieval of information
- Proteome
  - Short term information storage
- Interactome
  - Execution
- Metabolome
  - State
- Analogies with computer hard/software?

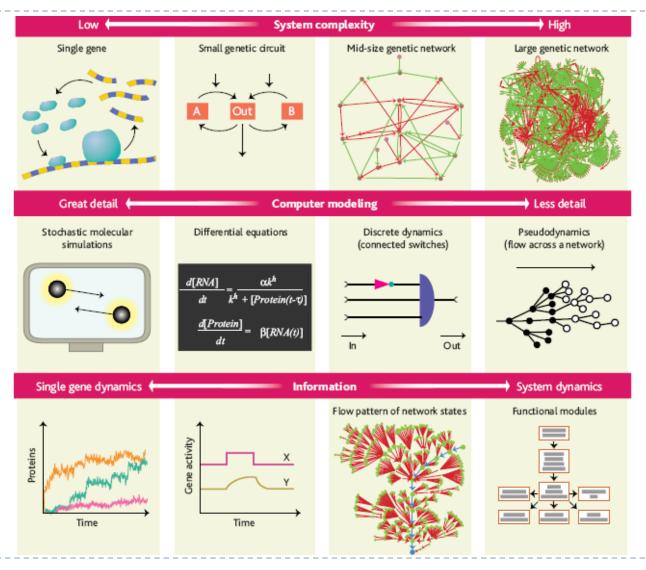


## Levels of Complexity

## Life's Complexity Pyramid



Oltvai & Barabasi, Science, 2002




## Specificity vs. Universality

- Tendency toward universal as levels coarsen
  - Genes, metabolites, proteins are unique to organism
  - ▶ 43 organisms, for which metabolic information is available, share only about 4% of their metabolites
  - Key metabolic pathways are more frequently shared
- Higher degree of universality at module level?
  - Properties appear to be
    - Scale-free, hierarchical nature of wiring
  - Coherent regulatory motifs are common
  - Results on identified "modules" also demonstrate significant conservation
    - Still a lot to explore on modular conservation



#### Model Resolution



Bornholdt, *Science*, 2005

## System Complexity

- Different models, different abstraction, different information, different computational needs
  - Boolean networks
    - General (thousands of genes)
    - Irrelevant to a particular system
    - Simple model
  - Flux networks
    - Specific (a few genes)
    - Relevant only to a particular system
    - Complex model



#### Level of Detail

#### Trade off: Less is more

- Less low level detail enables understanding at a larger scale
- Computational limitations
- Availability of data is an important consideration (e.g., gene expression provides correlation, what about causality?)

#### What level of detail do we need?

- The trajectory of segment polarity network in Drosophila was predicted solely on the basis of discrete binary modeled genes (Albert et al., *J. Theo. Biol.*, 2003)
- A dynamic binary model of yeast cell cycle genetic network was constructed (Li et al., PNAS, 2004)

## Comprehensiveness of Data

#### I. Factor comprehensiveness

- Number of components that can be inspected at a time
- ▶ How many mRNA transcripts in an assay?

#### 2. Time-line comprehensiveness

- Time frame within which measurements are made
- Longitude, resolution
- Correlation vs causality

#### 3. Item comprehensiveness

- Simultaneous measurement of multiple items
- mRNA & protein concentrations, phosporylation, localization

# Studying Systems Biology

### What Systems Biology Offers

#### How genotype determines phenotype

- Genes (and regulatory elements) have combinatorial effect on phenotype
- Transcription factors combinatorially determine which genes are expressed
- What determines the state of the cell?
- What makes a difference during development?
- Regulation, cooperation, redundancy

#### Drug design

- A ligand might influence multiple factors
- A multiple drug system may guide a malfunctioning system to desired state with minimal effects

## Challenges

- Data quality and standardization
  - Incompleteness
  - Not standardized or properly annotated
  - Quality is uncertain
- How do we use available data?
  - Hypotheses?
  - Iterative refinement
- Technology
  - Limited "comprehensiveness"
  - We cannot measure many things, so we have to make inference
    - ▶ Transient interactions



## Challenges

#### Data Integration

- How do different sources of data relate?
- Interactions
  - ▶ Two-hybrid
  - Co-expression
  - Phylogenetic profiling
  - Linkage
  - What is an interaction?

