
Monograph

on

Operating System

By

Dr. Mamta Bansal Rajshree
Professor

Shobhit Institute of Engineering & Technology

(Deemed to be University)

Unit-I: Operating Systems Overview

An Operating System (OS) is an interface between computer user and

computer hardware.

An operating system is a software which performs all the basic tasks like

file management, memory management, process management, handling

input and output, and controlling peripheral devices such as disk drives and

printers.

Some popular Operating Systems include Linux Operating System,

Windows Operating System, VMS, OS/400, AIX, z/OS, etc.

Definition

An operating system is a program that acts as an interface between the

user and the computer hardware and controls the execution of all kinds of

programs.

Following are some of important functions of an operating System.

 Memory Management

 Processor Management

 Device Management

 File Management

 Security

 Control overall system performance

 Job accounting

 Error detecting aids

 Coordination between other software and users

Memory Management

Memory management refers to management of Primary Memory or Main

Memory. Main memory is a large array of words or bytes where each word

or byte has its own address.

Main memory provides a fast storage that can be accessed directly by the

CPU. For a program to be executed, it must in the main memory.

An Operating System does the following activities for memory management

−

 Keeps tracks of primary memory, i.e., what part of it are in use by

whom, and which part are not in use?

 In multiprogramming, the OS decides which process will get memory

when and how much.

 Allocates the memory when a process requests it to do so.

 De-allocates the memory when a process no longer needs it or has

been terminated.

Processor Management

In multiprogramming environment, the OS decides which process gets the

processor when and for how much time. This function is called process

scheduling. An Operating System does the following activities for

processor management −

 Keeps tracks of processor and status of process. The program

responsible for this task is known as traffic controller.

 Allocates the processor (CPU) to a process.

 De-allocates processor when a process is no longer required.

Device Management

An Operating System manages device communication via their respective

drivers. It does the following activities for device management −

 Keeps tracks of all devices.

 The part of Program of os responsible for this task is known as the

I/O controller.

 Decides which process gets the device when and for how much time.

 Allocates the device in the efficient way.

 De-allocates devices.

File Management

A file system is normally organized into directories for easy navigation and

usage. These directories may contain files and other directions.

An Operating System does the following activities for file management −

 Keeps track of information, location, uses, status etc. The collective

facilities are often known as file system.

 Decides who gets the resources.

 Allocates the resources.

 De-allocates the resources.

Other Important Activities

Following are some of the important activities that an Operating System

performs:

 Security − By means of password and similar other techniques, it

prevents unauthorized access to programs and data.

 Control over system performance − Recording delays between

request for a service and response from the system.

 Job accounting − Keeping track of time and resources used by

various jobs and users.

 Error detecting aids − Production of dumps, traces, error messages,

and other debugging and error detecting aids.

 Coordination between other softwares and users − Coordination

and assignment of compilers, interpreters, assemblers and other

software to the various users of the computer systems.

Operating System as extended machine or virtual machine:

Operating System hides the complexity of hardware and presents a

beautiful interface to the users.

-> Just as the operating system shields (protect from an unpleasant

experience) the programmer from the disk hardware and presents a simple

file-oriented interface, it also conceals a lot of unpleasant business

concerning interrupts, timers, memory management, and other low level

features.

-> In each case, the abstraction offered by the operating system is simpler

and easier to use than that offered by the underlying hardware.

-> In this view, the function of the operating system is to present the user

with the equivalent of an extended machine or virtual machine that is easier

to work with than the underlying hardware.

Operating system as resource manager:

A computer system has many resources (hardware and software), which

may be required to complete a task.

The commonly required resources are -

 input/output devices,

 memory,

 file storage space,

 CPU etc.

The operating system acts as a manager of the above resources and

allocates them to specific programs and users, whenever necessary to

perform a particular task.

Therefore operating system is the resource manager i.e. it manages the

resource of a computer system internally.

Types of Operating System

Operating systems are there from the very first computer generation and

they keep evolving with time. Some of the important types of operating

systems which are most commonly used, are as follows-

Batch operating system

The users of a batch operating system do not interact with the computer

directly. Each user prepares his job on an off-line device like punch cards

and submits it to the computer operator.

To speed up processing, jobs with similar needs are batched together and

run as a group. The programmers leave their programs with the operator

and the operator then sorts the programs with similar requirements into

batches.

The problems with Batch Systems are as follows −

 Lack of interaction between the user and the job.

 CPU is often idle, because the speed of the mechanical I/O devices is

slower than the CPU.

 Difficult to provide the desired priority.

Time-sharing operating systems

Time-sharing is a technique which enables many people, located at various

terminals, to use a particular computer system at the same time. Time-

sharing or multitasking is a logical extension of multiprogramming.

Processor's time which is shared among multiple users simultaneously is

termed as time-sharing.

The main difference between Multiprogrammed Batch Systems and Time-

Sharing Systems is that in case of Multiprogrammed batch systems, the

objective is to maximize processor use, whereas in Time-Sharing Systems,

the objective is to minimize response time.

Multiple jobs are executed by the CPU by switching between them, but the

switches occur so frequently. Thus, the user can receive an immediate

response. For example, in a transaction processing, the processor

executes each user program in a short burst or quantum of computation.

That is, if n users are present, then each user can get a time quantum.

When the user submits the command, the response time is in few seconds

at most.

The operating system uses CPU scheduling and multiprogramming to

provide each user with a small portion of a time. Computer systems that

were designed primarily as batch systems have been modified to time-

sharing systems.

Advantages of Timesharing operating systems are as follows −

 Provides the advantage of quick response.

 Avoids duplication of software.

 Reduces CPU idle time.

Disadvantages of Time-sharing operating systems are as follows −

 Problem of reliability.

 Question of security and integrity of user programs and data.

 Problem of data communication.

Distributed operating System

Distributed systems use multiple central processors to serve multiple real-

time applications and multiple users. Data processing jobs are distributed

among the processors accordingly.

The processors communicate with one another through various

communication lines (such as high-speed buses or telephone lines). These

are referred as loosely coupled systems or distributed systems.

Processors in a distributed system may vary in size and function. These

processors are referred as sites, nodes, computers, and so on.

The advantages of distributed systems are as follows −

 With resource sharing facility, a user at one site may be able to use

the resources available at another.

 Speedup the exchange of data with one another via electronic mail.

 If one site fails in a distributed system, the remaining sites can

potentially continue operating.

 Better service to the customers.

 Reduction of the load on the host computer.

 Reduction of delays in data processing.

Network operating System

A Network Operating System runs on a server and provides the server the

capability to manage data, users, groups, security, applications, and other

networking functions. The primary purpose of the network operating system

is to allow shared file and printer access among multiple computers in a

network, typically a local area network (LAN), a private network or to other

networks.

Examples of network operating systems include Microsoft Windows Server

2003, Microsoft Windows Server 2008, UNIX, Linux, Mac OS X, Novell

NetWare, and BSD.

The advantages of network operating systems are as follows −

 Centralized servers are highly stable.

 Security is server managed.

 Upgrades to new technologies and hardware can be easily integrated

into the system.

 Remote access to servers is possible from different locations and

types of systems.

The disadvantages of network operating systems are as follows −

 High cost of buying and running a server.

 Dependency on a central location for most operations.

 Regular maintenance and updates are required.

Real Time operating System

A real-time system is defined as a data processing system in which the

time interval required to process and respond to inputs is so small that it

controls the environment.

The time taken by the system to respond to an input and display of required

updated information is termed as the response time. So in this method,

the response time is very less as compared to online processing.

Real-time systems are used when there are rigid time requirements on the

operation of a processor or the flow of data and real-time systems can be

used as a control device in a dedicated application.

A real-time operating system must have well-defined, fixed time

constraints, otherwise the system will fail.

For example, Scientific experiments, medical imaging systems, industrial

control systems, weapon systems, robots, air traffic control systems, etc.

There are two types of real-time operating systems.

Hard real-time systems

 Hard real-time systems guarantee that critical tasks complete on

time.

 In hard real-time systems, secondary storage is limited or missing

and the data is stored in ROM.

 In these systems, virtual memory is almost never found.

Soft real-time systems

Soft real-time systems are less restrictive.

A critical real-time task gets priority over other tasks and retains the priority

until it completes.

Soft real-time systems have limited utility than hard real-time systems.

 For example, multimedia, virtual reality, Advanced Scientific Projects like

undersea exploration and planetary rovers, etc.

Operating systems and system calls

The interface between a process and an operating system is provided by

system calls. In general, system calls are available as assembly language

instructions. They are also included in the manuals used by the assembly

level programmers. System calls are usually made when a process in user

mode requires access to a resource. Then it requests the kernel to provide

the resource via a system call.

Types of System Calls

There are mainly five types of system calls. These are explained in detail

as follows −

Process Control

These system calls deal with processes such as process creation, process

termination etc.

File Management

These system calls are responsible for file manipulation such as creating a

file, reading a file, writing into a file etc.

Device Management

These system calls are responsible for device manipulation such as

reading from device buffers, writing into device buffers etc.

Information Maintenance
These system calls handle information and its transfer between the
operating system and the user program.

Communication
These system calls are useful for interprocess communication. They also
deal with creating and deleting a communication connection.

Some of the examples of all the above types of system calls in Windows

and Unix are given as follows −

Types of System Calls Windows Linux

Process Control

CreateProcess()

ExitProcess()

WaitForSingleObject()

fork()

exit()

wait()

File Management

CreateFile()

ReadFile()

WriteFile()

CloseHandle()

open()

read()

write()

close()

Types of System Calls Windows Linux

Device Management

SetConsoleMode()

ReadConsole()

WriteConsole()

ioctl()

read()

write()

Information Maintenance

GetCurrentProcessID()

SetTimer()

Sleep()

getpid()

alarm()

sleep()

Communication

CreatePipe()

CreateFileMapping()

MapViewOfFile()

pipe()

shmget()

mmap()

UNIT-II: Process Management

Definition

The process scheduling is the activity of the process manager that handles

the removal of the running process from the CPU and the selection of

another process on the basis of a particular strategy.

Process scheduling is an essential part of a Multiprogramming operating

systems. Such operating systems allow more than one process to be

loaded into the executable memory at a time and the loaded process

shares the CPU using time multiplexing.

Process Scheduling Queues

The OS maintains all PCBs in Process Scheduling Queues. The OS

maintains a separate queue for each of the process states and PCBs of all

processes in the same execution state are placed in the same queue.

When the state of a process is changed, its PCB is unlinked from its current

queue and moved to its new state queue.

The Operating System maintains the following important process

scheduling queues −

 Job queue − This queue keeps all the processes in the system.

 Ready queue − This queue keeps a set of all processes residing in

main memory, ready and waiting to execute. A new process is always

put in this queue.

 Device queues − The processes which are blocked due to

unavailability of an I/O device constitute this queue.

The OS can use different policies to manage each queue (FIFO, Round

Robin, Priority, etc.). The OS scheduler determines how to move processes

between the ready and run queues which can only have one entry per

processor core on the system; in the above diagram, it has been merged

with the CPU.

Schedulers

Schedulers are special system software which handle process scheduling

in various ways. Their main task is to select the jobs to be submitted into

the system and to decide which process to run.

Schedulers are of three types −

 Long-Term Scheduler

 Short-Term Scheduler

 Medium-Term Scheduler

Long Term Scheduler

It is also called a job scheduler. A long-term scheduler determines which

programs are admitted to the system for processing. It selects processes

from the queue and loads them into memory for execution. Process loads

into the memory for CPU scheduling.

The primary objective of the job scheduler is to provide a balanced mix of

jobs, such as I/O bound and processor bound. It also controls the degree of

multiprogramming. If the degree of multiprogramming is stable, then the

average rate of process creation must be equal to the average departure

rate of processes leaving the system.

On some systems, the long-term scheduler may not be available or

minimal. Time-sharing operating systems have no long term scheduler.

When a process changes the state from new to ready, then there is use of

long-term scheduler.

Short Term Scheduler

It is also called as CPU scheduler. Its main objective is to increase system

performance in accordance with the chosen set of criteria. It is the change

of ready state to running state of the process. CPU scheduler selects a

process among the processes that are ready to execute and allocates CPU

to one of them.

Short-term schedulers, also known as dispatchers, make the decision of

which process to execute next. Short-term schedulers are faster than long-

term schedulers.

Medium Term Scheduler

Medium-term scheduling is a part of swapping. It removes the processes

from the memory. It reduces the degree of multiprogramming. The medium-

term scheduler is in-charge of handling the swapped out-processes.

A running process may become suspended if it makes an I/O request. A

suspended processes cannot make any progress towards completion. In

this condition, to remove the process from memory and make space for

other processes, the suspended process is moved to the secondary

storage. This process is called swapping, and the process is said to be

swapped out or rolled out. Swapping may be necessary to improve the

process mix.

Comparison among Scheduler

S.N. Long-Term Scheduler Short-Term Scheduler Medium-Term Scheduler

1 It is a job scheduler It is a CPU scheduler
It is a process swapping

scheduler.

2
Speed is lesser than short

term scheduler

Speed is fastest among

other two

Speed is in between both

short and long term

scheduler.

3
It controls the degree of

multiprogramming

It provides lesser control

over degree of

multiprogramming

It reduces the degree of

multiprogramming.

4

It is almost absent or

minimal in time sharing

system

It is also minimal in time

sharing system

It is a part of Time sharing

systems.

5

It selects processes from

pool and loads them into

memory for execution

It selects those

processes which are

ready to execute

It can re-introduce the

process into memory and

execution can be

continued.

Context Switch

A context switch is the mechanism to store and restore the state or context

of a CPU in Process Control block so that a process execution can be

resumed from the same point at a later time. Using this technique, a

context switcher enables multiple processes to share a single CPU.

Context switching is an essential part of a multitasking operating system

features.

When the scheduler switches the CPU from executing one process to

execute another, the state from the current running process is stored into

the process control block. After this, the state for the process to run next is

loaded from its own PCB and used to set the PC, registers, etc. At that

point, the second process can start executing.

Context switches are computationally intensive since register and memory

state must be saved and restored. To avoid the amount of context

switching time, some hardware systems employ two or more sets of

processor registers. When the process is switched, the following

information is stored for later use.

 Program Counter

 Scheduling information

 Base and limit register value

 Currently used register

 Changed State

 I/O State information

 Accounting information

Operating System scheduling algorithms

A Process Scheduler schedules different processes to be assigned to the

CPU based on particular scheduling algorithms. There are six popular

process scheduling algorithms which we are going to discuss in this

chapter −

 First-Come, First-Served (FCFS) Scheduling

 Shortest-Job-Next (SJN) Scheduling

 Priority Scheduling

 Shortest Remaining Time

 Round Robin(RR) Scheduling

 Multiple-Level Queues Scheduling

These algorithms are either non-preemptive or preemptive. Non-

preemptive algorithms are designed so that once a process enters the

running state, it cannot be preempted until it completes its allotted time,

whereas the preemptive scheduling is based on priority where a scheduler

may preempt a low priority running process anytime when a high priority

process enters into a ready state.

First Come First Serve (FCFS)

 Jobs are executed on first come, first serve basis.

 It is a non-preemptive, pre-emptive scheduling algorithm.

 Easy to understand and implement.

 Its implementation is based on FIFO queue.

 Poor in performance as average wait time is high.

Average Wait Time: (0+4+6+13) / 4 = 5.75

Shortest Job Next (SJN)

 This is also known as shortest job first, or SJF

 This is a non-preemptive, pre-emptive scheduling algorithm.

 Best approach to minimize waiting time.

 Easy to implement in Batch systems where required CPU time is

known in advance.

 Impossible to implement in interactive systems where required CPU

time is not known.

 The processer should know in advance how much time process will

take.

Given: Table of processes, and their Arrival time, Execution time

Process

Execution Time Waiting Time

P1

6 3

P2

8 16

P3

7 9

P4

3 0

Priority Based Scheduling

 Priority scheduling is a non-preemptive algorithm and one of the most

common scheduling algorithms in batch systems.

 Each process is assigned a priority. Process with highest priority is to

be executed first and so on.

 Processes with same priority are executed on first come first served

basis.

 Priority can be decided based on memory requirements, time

requirements or any other resource requirement.

Shortest Remaining Time

 Shortest remaining time (SRT) is the preemptive version of the SJN

algorithm.

 The processor is allocated to the job closest to completion but it can

be preempted by a newer ready job with shorter time to completion.

 Impossible to implement in interactive systems where required CPU

time is not known.

 It is often used in batch environments where short jobs need to give

preference.

Round Robin Scheduling

 Round Robin is the preemptive process scheduling algorithm.

 Each process is provided a fix time to execute, it is called a

quantum.

 Once a process is executed for a given time period, it is preempted

and other process executes for a given time period.

 Context switching is used to save states of preempted processes.

Multiple-Level Queues Scheduling

Multiple-level queues are not an independent scheduling algorithm. They

make use of other existing algorithms to group and schedule jobs with

common characteristics.

 Multiple queues are maintained for processes with common

characteristics.

 Each queue can have its own scheduling algorithms.

 Priorities are assigned to each queue.

For example, CPU-bound jobs can be scheduled in one queue and all I/O-

bound jobs in another queue. The Process Scheduler then alternately

selects jobs from each queue and assigns them to the CPU based on the

algorithm assigned to the queue.

What is Thread?

A thread is a flow of execution through the process code, with its own

program counter that keeps track of which instruction to execute next,

system registers which hold its current working variables, and a stack

which contains the execution history.

A thread shares with its peer threads few information like code segment,

data segment and open files. When one thread alters a code segment

memory item, all other threads see that.

A thread is also called a lightweight process. Threads provide a way to

improve application performance through parallelism. Threads represent a

software approach to improving performance of operating system by

reducing the overhead thread is equivalent to a classical process.

Each thread belongs to exactly one process and no thread can exist

outside a process. Each thread represents a separate flow of control.

Threads have been successfully used in implementing network servers and

web server. They also provide a suitable foundation for parallel execution

of applications on shared memory multiprocessors. The following figure

shows the working of a single-threaded and a multithreaded process.

Difference between Process and Thread

S.N. Process Thread

1
Process is heavy weight or

resource intensive.

Thread is light weight, taking lesser

resources than a process.

2

Process switching needs

interaction with operating

system.

Thread switching does not need to

interact with operating system.

3

In multiple processing

environments, each process

executes the same code but has

its own memory and file

resources.

All threads can share same set of

open files, child processes.

4

If one process is blocked, then

no other process can execute

until the first process is

unblocked.

While one thread is blocked and

waiting, a second thread in the same

task can run.

5
Multiple processes without using

threads use more resources.

Multiple threaded processes use

fewer resources.

6

In multiple processes each

process operates independently

of the others.

One thread can read, write or

change another thread's data.

Advantages of Thread

 Threads minimize the context switching time.

 Use of threads provides concurrency within a process.

 Efficient communication.

 It is more economical to create and context switch threads.

 Threads allow utilization of multiprocessor architectures to a greater

scale and efficiency.

Types of Thread

Threads are implemented in following two ways −

 User Level Threads − User managed threads.

 Kernel Level Threads − Operating System managed threads acting

on kernel, an operating system core.

User Level Threads

In this case, the thread management kernel is not aware of the existence of

threads. The thread library contains code for –

 creating and destroying threads,

 for passing message and data between threads,

 for scheduling thread execution and

 for saving and restoring thread contexts.

The application starts with a single thread.

Advantages

 Thread switching does not require Kernel mode privileges.

 User level thread can run on any operating system.

 Scheduling can be application specific in the user level thread.

 User level threads are fast to create and manage.

Disadvantages

 In a typical operating system, most system calls are blocking.

 Multithreaded application cannot take advantage of multiprocessing.

Kernel Level Threads

In this case, thread management is done by the Kernel. There is no thread

management code in the application area. Kernel threads are supported

directly by the operating system. Any application can be programmed to be

multithreaded. All of the threads within an application are supported within

a single process.

The Kernel maintains context information for the process as a whole and

for individuals threads within the process. Scheduling by the Kernel is done

on a thread basis. The Kernel performs thread creation, scheduling and

management in Kernel space. Kernel threads are generally slower to

create and manage than the user threads.

Advantages

 Kernel can simultaneously schedule multiple threads from the same

process on multiple processes.

 If one thread in a process is blocked, the Kernel can schedule

another thread of the same process.

 Kernel routines themselves can be multithreaded.

Disadvantages

 Kernel threads are generally slower to create and manage than the

user threads.

 Transfer of control from one thread to another within the same

process requires a mode switch to the Kernel.

Unit-III: Sequential and Concurrent Process

Concurrency is the execution of two or more independent, interacting

programs over the same period of time; their execution can be interleaved

or even simultaneous. Concurrency is used in many kinds of systems, both

small and large.

A concurrent system may be implemented via processes and/or threads.

Processes have separate address spaces, whereas threads share address

spaces.

The two most common communication techniques in processes and

threads are-

 Message passing and shared variables.

 In order to communicate at the right times, they must synchronize,

together arriving at agreed-upon control points.

 Often, one or more threads block, or stop and wait for some external

event.

Even though we have multiple flows of control, that doesn't imply we need

multiple processors. Concurrent programs may be executed on a single

processor by interleaving their control flows.

Process Synchronization

On the basis of synchronization, processes are categorized as one of the

following two types:

 Independent Process : Execution of one process does not affects

the execution of other processes.

 Cooperative Process : Execution of one process affects the

execution of other processes.

Process synchronization problem arises in the case of Cooperative process

also because resources are shared in Cooperative processes.

Race Condition

When more than one processes are executing the same code or accessing

the same memory or any shared variable in that condition there is a

possibility that the output or the value of the shared variable is wrong so for

that all the processes doing the race to say that my output is correct this

condition known as a race condition.

Several processes access and process the manipulations over the same

data concurrently, then the outcome depends on the particular order in

which the access takes place.

A race condition is a situation that may occur inside a critical section. This

happens when the result of multiple thread execution in the critical section

differs according to the order in which the threads execute.

Race conditions in critical sections can be avoided if the critical section is

treated as an atomic instruction. Also, proper thread synchronization using

locks or atomic variables can prevent race conditions.

Critical Section Problem

Critical section is a code segment that can be accessed by only one

process at a time. Critical section contains shared variables which need to

be synchronized to maintain consistency of data variables.

In the entry section, the process requests for entry in the Critical Section.

Any solution to the critical section problem must satisfy three requirements:

 Mutual Exclusion : If a process is executing in its critical section,

then no other process is allowed to execute in the critical section.

 Progress : If no process is executing in the critical section and other

processes are waiting outside the critical section, then only those

processes that are not executing in their remainder section can

participate in deciding which will enter in the critical section next, and

the selection can not be postponed indefinitely.

 Bounded Waiting : A bound must exist on the number of times that

other processes are allowed to enter their critical sections after a

process has made a request to enter its critical section and before

that request is granted.

Semaphores

A semaphore is a signaling mechanism and a thread that is waiting on a

semaphore can be signaled by another thread. This is different than a

mutex as the mutex can be signaled only by the thread that called the wait

function.

A semaphore uses two atomic operations, wait and signal for process

synchronization.

A Semaphore is an integer variable, which can be accessed only through

two operations wait() and signal().

There are two types of semaphores: Binary Semaphores and Counting

Semaphores

 Binary Semaphores: They can only be either 0 or 1. They are also

known as mutex locks, as the locks can provide mutual exclusion. All

the processes can share the same mutex semaphore that is

initialized to 1. Then, a process has to wait until the lock becomes 0.

Then, the process can make the mutex semaphore 1 and start its

critical section. When it completes its critical section, it can reset the

value of mutex semaphore to 0 and some other process can enter its

critical section.

 Counting Semaphores:

 They can be used to control access to a resource that has a limitation

on the number of simultaneous accesses.

The semaphore can be initialized to the number of instances of the

resource.

 Whenever a process wants to use that resource, it checks if the number

of remaining instances is more than zero, i.e., the process has an

instance available.

 Then, the process can enter its critical section thereby decreasing the

value of the counting semaphore by 1.

 After the process is over with the use of the instance of the resource, it

can leave the critical section thereby adding 1 to the number of available

instances of the resource.

Precedence graph

Precedence Graph is a directed acyclic graph which is used to show the

execution level of several processes in operating system. It consists of

nodes and edges. Nodes represent the processes and the edges represent

the flow of execution.

Properties of Precedence Graph :

Following are the properties of Precedence Graph:

 It is a directed graph.

 It is an acyclic graph.

 Nodes of graph correspond to individual statements of program code.

 Edge between two nodes represents the execution order.

 A directed edge from node A to node B shows that statement A

executes first and then Statement B executes.

Consider he following code:

S1 : a = x + y;

S2 : b = z + 1;

S3 : c = a - b;

S4 : w = c + 1;

If above code is executed, the following precedence relations exist:

 c = a – b cannot be executed before both a and b have been

assigned values.

 w = c + 1 cannot be executed before the new values of c has been

computed.

 The statements a = x + y and b = z + 1 could be executed

concurrently.

What are Deadlocks?

Deadlock is a state of a database system having two or more transactions,

when each transaction is waiting for a data item that is being locked by

some other transaction.

A deadlock can be indicated by a cycle in the wait-for-graph. This is a

directed graph in which the vertices denote transactions and the edges

denote waits for data items.

For example, in the following wait-for-graph, transaction T1 is waiting for

data item X which is locked by T3. T3 is waiting for Y which is locked by T2

and T2 is waiting for Z which is locked by T1. Hence, a waiting cycle is

formed, and none of the transactions can proceed executing.

Deadlock Handling in Centralized Systems

There are three classical approaches for deadlock handling, namely −

 Deadlock prevention.

 Deadlock avoidance.

 Deadlock detection and removal.

All of the three approaches can be incorporated in both a centralized and a

distributed database system.

Deadlock Prevention

The deadlock prevention approach does not allow any transaction to

acquire locks that will lead to deadlocks. The convention is that when more

than one transactions request for locking the same data item, only one of

them is granted the lock.

One of the most popular deadlock prevention methods is pre-acquisition of

all the locks. In this method, a transaction acquires all the locks before

starting to execute and retains the locks for the entire duration of

transaction. If another transaction needs any of the already acquired locks,

it has to wait until all the locks it needs are available. Using this approach,

the system is prevented from being deadlocked since none of the waiting

transactions are holding any lock.

Deadlock Avoidance

The deadlock avoidance approach handles deadlocks before they occur. It

analyzes the transactions and the locks to determine whether or not waiting

leads to a deadlock.

The method can be briefly stated as follows. Transactions start executing

and request data items that they need to lock. The lock manager checks

whether the lock is available. If it is available, the lock manager allocates

the data item and the transaction acquires the lock. However, if the item is

locked by some other transaction in incompatible mode, the lock manager

runs an algorithm to test whether keeping the transaction in waiting state

will cause a deadlock or not. Accordingly, the algorithm decides whether

the transaction can wait or one of the transactions should be aborted.

There are two algorithms for this purpose, namely wait-die and wound-

wait. Let us assume that there are two transactions, T1 and T2, where T1

tries to lock a data item which is already locked by T2. The algorithms are

as follows −

 Wait-Die − If T1 is older than T2, T1 is allowed to wait. Otherwise, if

T1 is younger than T2, T1 is aborted and later restarted.

 Wound-Wait − If T1 is older than T2, T2 is aborted and later

restarted. Otherwise, if T1 is younger than T2, T1 is allowed to wait.

Deadlock Detection and Removal

The deadlock detection and removal approach runs a deadlock detection

algorithm periodically and removes deadlock in case there is one. It does

not check for deadlock when a transaction places a request for a lock.

When a transaction requests a lock, the lock manager checks whether it is

available. If it is available, the transaction is allowed to lock the data item;

otherwise the transaction is allowed to wait.

Since there are no precautions while granting lock requests, some of the

transactions may be deadlocked. To detect deadlocks, the lock manager

periodically checks if the wait-forgraph has cycles. If the system is

deadlocked, the lock manager chooses a victim transaction from each

cycle. The victim is aborted and rolled back; and then restarted later. Some

of the methods used for victim selection are −

 Choose the youngest transaction.

 Choose the transaction with fewest data items.

 Choose the transaction that has performed least number of updates.

 Choose the transaction having least restart overhead.

 Choose the transaction which is common to two or more cycles.

This approach is primarily suited for systems having transactions low and

where fast response to lock requests is needed.

Inter-process communication

A process can be of two types:

 Independent process.

 Co-operating process.

An independent process is not affected by the execution of other processes

while a co-operating process can be affected by other executing processes.

Though one can think that those processes, which are running

independently, will execute very efficiently, in reality, there are many

situations when co-operative nature can be utilised for increasing

computational speed, convenience and modularity. Inter process

communication (IPC) is a mechanism which allows processes to

communicate with each other and synchronize their actions. The

communication between these processes can be seen as a method of co-

operation between them. Processes can communicate with each other

through both:

1. Shared Memory

2. Message passing

The Figure 1 below shows a basic structure of communication between

processes via the shared memory method and via the message passing

method.

An operating system can implement both method of communication. First,

we will discuss the shared memory methods of communication and then

message passing. Communication between processes using shared

memory requires processes to share some variable and it completely

depends on how programmer will implement it. One way of communication

using shared memory can be imagined like this: Suppose process1 and

process2 are executing simultaneously and they share some resources or

use some information from another process. Process1 generate

information about certain computations or resources being used and keeps

it as a record in shared memory. When process2 needs to use the shared

information, it will check in the record stored in shared memory and take

note of the information generated by process1 and act accordingly.

Processes can use shared memory for extracting information as a record

from another process as well as for delivering any specific information to

other processes.

Let’s discuss an example of communication between processes using

shared memory method.

i) Shared Memory Method

Ex: Producer-Consumer problem

There are two processes: Producer and Consumer. Producer produces

some item and Consumer consumes that item. The two processes share a

common space or memory location known as a buffer where the item

produced by Producer is stored and from which the Consumer consumes

the item, if needed.

There are two versions of this problem: the first one is known as

unbounded buffer problem in which Producer can keep on producing items

and there is no limit on the size of the buffer, the second one is known as

the bounded buffer problem in which Producer can produce up to a certain

number of items before it starts waiting for Consumer to consume it. We

will discuss the bounded buffer problem. First, the Producer and the

Consumer will share some common memory, then producer will start

producing items. If the total produced item is equal to the size of buffer,

producer will wait to get it consumed by the Consumer. Similarly, the

consumer will first check for the availability of the item. If no item is

available, Consumer will wait for Producer to produce it. If there are items

available, Consumer will consume it.

ii) Messaging Passing Method

Now, We will start our discussion of the communication between processes

via message passing. In this method, processes communicate with each

other without using any kind of shared memory. If two processes p1 and p2

want to communicate with each other, they proceed as follows:

 Establish a communication link (if a link already exists, no need to

establish it again.)

Start exchanging messages using basic primitives.

We need at least two primitives:

–send(message, destinaion) or send(message)

– receive(message, host) or receive(message)

The message size can be of fixed size or of variable size. If it is of fixed

size, it is easy for an OS designer but complicated for a programmer and if

it is of variable size then it is easy for a programmer but complicated for the

OS designer. A standard message can have two parts: header and body.

The header part is used for storing message type, destination id, source

id, message length, and control information. The control information

contains information like what to do if runs out of buffer space, sequence

number, priority. Generally, message is sent using FIFO style.

Unit-IV: What is Memory Management?

Memory Management is the process of controlling and coordinating

computer memory, assigning portions known as blocks to various running

programs to optimize the overall performance of the system.

It is the most important function of an operating system that manages

primary memory. It helps processes to move back and forward between the

main memory and execution disk. It helps OS to keep track of every

memory location, irrespective of whether it is allocated to some process or

it remains free.

Why Use Memory Management?

Here, are reasons for using memory management:

 It allows you to check how much memory needs to be allocated to

processes that decide which processor should get memory at what

time.

 Tracks whenever inventory gets freed or unallocated. According to it

will update the status.

 It allocates the space to application routines.

 It also make sure that these applications do not interfere with each

other.

 Helps protect different processes from each other

 It places the programs in memory so that memory is utilized to its full

extent.

Memory Management Techniques

Here, are some most crucial memory management techniques:

Single Contiguous Allocation

It is the easiest memory management technique. In this method, all types

of computer's memory except a small portion which is reserved for the OS

is available for one application. For example, MS-DOS operating system

allocates memory in this way. An embedded system also runs on a single

application.

Partitioned Allocation

It divides primary memory into various memory partitions, which is mostly

contiguous areas of memory. Every partition stores all the information for a

specific task or job. This method consists of allotting a partition to a job

when it starts & unallocate when it ends.

Paged Memory Management

This method divides the computer's main memory into fixed-size units

known as page frames. This hardware memory management unit maps

pages into frames which should be allocated on a page basis.

Segmented Memory Management

Segmented memory is the only memory management method that does

not provide the user's program with a linear and contiguous address space.

Segments need hardware support in the form of a segment table. It

contains the physical address of the section in memory, size, and other

data like access protection bits and status.

What is Swapping?

Swapping is a method in which the process should be swapped temporarily

from the main memory to the backing store. It will be later brought back into

the memory for continue execution.

Backing store is a hard disk or some other secondary storage device that

should be big enough inorder to accommodate copies of all memory

images for all users. It is also capable of offering direct access to these

memory images.

Benefits of Swapping

Here, are major benefits/pros of swapping:

 It offers a higher degree of multiprogramming.

 Allows dynamic relocation. For example, if address binding at

execution time is being used, then processes can be swap in different

locations. Else in case of compile and load time bindings, processes

should be moved to the same location.

 It helps to get better utilization of memory.

 Minimum wastage of CPU time on completion so it can easily be

applied to a priority-based scheduling method to improve its

performance.

What is Memory allocation?

Memory allocation is a process by which computer programs are assigned

memory or space.

Here, main memory is divided into two types of partitions

1. Low Memory - Operating system resides in this type of memory.

2. High Memory- User processes are held in high memory.

Partition Allocation

Memory is divided into different blocks or partitions. Each process is

allocated according to the requirement. Partition allocation is an ideal

method to avoid internal fragmentation.

Below are the various partition allocation schemes :

 First Fit: In this type fit, the partition is allocated, which is the first

sufficient block from the beginning of the main memory.

 Best Fit: It allocates the process to the partition that is the first

smallest partition among the free partitions.

 Worst Fit: It allocates the process to the partition, which is the largest

sufficient freely available partition in the main memory.

 Next Fit: It is mostly similar to the first Fit, but this Fit, searches for

the first sufficient partition from the last allocation point.

What is Paging?

Paging is a storage mechanism that allows OS to retrieve processes from

the secondary storage into the main memory in the form of pages. In the

Paging method, the main memory is divided into small fixed-size blocks of

physical memory, which is called frames. The size of a frame should be

kept the same as that of a page to have maximum utilization of the main

memory and to avoid external fragmentation. Paging is used for faster

access to data, and it is a logical concept.

What is Fragmentation?

Processes are stored and removed from memory, which creates free

memory space, which are too small to use by other processes.

After sometimes, that processes not able to allocate to memory blocks

because its small size and memory blocks always remain unused is called

fragmentation. This type of problem happens during a dynamic memory

allocation system when free blocks are quite small, so it is not able to fulfill

any request.

Two types of Fragmentation methods are:

1. External fragmentation

2. Internal fragmentation

 External fragmentation can be reduced by rearranging memory

contents to place all free memory together in a single block.

 The internal fragmentation can be reduced by assigning the smallest

partition, which is still good enough to carry the entire process.

What is Segmentation?

Segmentation method works almost similarly to paging. The only difference

between the two is that segments are of variable-length, whereas, in the

paging method, pages are always of fixed size.

A program segment includes the program's main function, data structures,

utility functions, etc. The OS maintains a segment map table for all the

processes. It also includes a list of free memory blocks along with its size,

segment numbers, and its memory locations in the main memory or virtual

memory.

What is Dynamic Loading?

Dynamic loading is a routine of a program which is not loaded until the

program calls it. All routines should be contained on disk in a relocatable

load format. The main program will be loaded into memory and will be

executed. Dynamic loading also provides better memory space utilization.

What is Dynamic Linking?

Linking is a method that helps OS to collect and merge various modules of

code and data into a single executable file. The file can be loaded into

memory and executed. OS can link system-level libraries into a program

that combines the libraries at load time. In Dynamic linking method,

libraries are linked at execution time, so program code size can remain

small.

Difference Between Static and Dynamic Loading

Static Loading Dynamic Loading

Static loading is used when you want

to load your program statically. Then

at the time of compilation, the entire

program will be linked and compiled

without need of any external module

or program dependency.

In a Dynamically loaded program,

references will be provided and the

loading will be done at the time of

execution.

At loading time, the entire program is

loaded into memory and starts its

execution.

Routines of the library are loaded

into memory only when they are

required in the program.

Difference Between Static and Dynamic Linking

Here, are main difference between Static vs. Dynamic Linking:

Static Linking Dynamic Linking

Static linking is used to combine all

other modules, which are required

by a program into a single

executable code. This helps OS

prevent any runtime dependency.

When dynamic linking is used, it does

not need to link the actual module or

library with the program. Instead of it

use a reference to the dynamic

module provided at the time of

compilation and linking.

What is Virtual Memory?

Virtual Memory is a space where large programs can store themselves in

form of pages while their execution and only the required pages or portions

of processes are loaded into the main memory. This technique is useful as

large virtual memory is provided for user programs when a very small

physical memory is there.

In real scenarios, most processes never need all their pages at once, for

following reasons :

 Error handling code is not needed unless that specific error occurs,

some of which are quite rare.

 Arrays are often over-sized for worst-case scenarios, and only a

small fraction of the arrays are actually used in practice.

 Certain features of certain programs are rarely used.

Benefits of having Virtual Memory

1. Large programs can be written, as virtual space available is huge

compared to physical memory.

2. Less I/O required, leads to faster and easy swapping of processes.

3. More physical memory available, as programs are stored on virtual

memory, so they occupy very less space on actual physical memory.

What is Demand Paging?

The basic idea behind demand paging is that when a process is swapped

in, its pages are not swapped in all at once. Rather they are swapped in

only when the process needs them(On demand). This is termed as lazy

swapper, although a pager is a more accurate term.

Initially only those pages are loaded which will be required the process

immediately.

The pages that are not moved into the memory, are marked as invalid in

the page table. For an invalid entry the rest of the table is empty. In case of

pages that are loaded in the memory, they are marked as valid along with

the information about where to find the swapped out page.

When the process requires any of the page that is not loaded into the

memory, a page fault trap is triggered and following steps are followed,

1. The memory address which is requested by the process is first

checked, to verify the request made by the process.

2. If its found to be invalid, the process is terminated.

3. In case the request by the process is valid, a free frame is located,

possibly from a free-frame list, where the required page will be

moved.

4. A new operation is scheduled to move the necessary page from disk

to the specified memory location. (This will usually block the process

on an I/O wait, allowing some other process to use the CPU in the

meantime.)

5. When the I/O operation is complete, the process's page table is

updated with the new frame number, and the invalid bit is changed to

valid.

6. The instruction that caused the page fault must now be restarted from

the beginning.

There are cases when no pages are loaded into the memory initially, pages

are only loaded when demanded by the process by generating page faults.

This is called Pure Demand Paging.

The only major issue with Demand Paging is, after a new page is loaded,

the process starts execution from the beginning. Its is not a big issue for

small programs, but for larger programs it affects performance drastically.

Page Replacement

As studied in Demand Paging, only certain pages of a process are loaded

initially into the memory. This allows us to get more number of processes

into the memory at the same time. but what happens when a process

requests for more pages and no free memory is available to bring them in.

Following steps can be taken to deal with this problem-

1. Put the process in the wait queue, until any other process finishes its

execution thereby freeing frames.

2. Or, remove some other process completely from the memory to free

frames.

3. Or, find some pages that are not being used right now, move them to

the disk to get free frames. This technique is called Page

replacement and is most commonly used. We have some great

algorithms to carry on page replacement efficiently.

Basic Page Replacement

 Find the location of the page requested by ongoing process on the

disk.

 Find a free frame. If there is a free frame, use it. If there is no free

frame, use a page-replacement algorithm to select any existing frame

to be replaced, such frame is known as victim frame.

 Write the victim frame to disk. Change all related page tables to

indicate that this page is no longer in memory.

 Move the required page and store it in the frame. Adjust all related

page and frame tables to indicate the change.

 Restart the process that was waiting for this page.

FIFO Page Replacement

 A very simple way of Page replacement is FIFO (First in First Out)

 As new pages are requested and are swapped in, they are added to

tail of a queue and the page which is at the head becomes the victim.

 Its not an effective way of page replacement but can be used for

small systems.

LRU Page Replacement

Below is a video, which will explain LRU Page replacement algorithm in

details with an example.

Thrashing

A process that is spending more time paging than executing is said to be

thrashing. In other words it means, that the process doesn't have enough

frames to hold all the pages for its execution, so it is swapping pages in

and out very frequently to keep executing. Sometimes, the pages which will

be required in the near future have to be swapped out.

Initially when the CPU utilization is low, the process scheduling

mechanism, to increase the level of multiprogramming loads multiple

processes into the memory at the same time, allocating a limited amount of

frames to each process. As the memory fills up, process starts to spend a

lot of time for the required pages to be swapped in, again leading to low

CPU utilization because most of the proccesses are waiting for pages.

Hence the scheduler loads more processes to increase CPU utilization, as

this continues at a point of time the complete system comes to a stop.

Unit-V: Device Management

One of the important jobs of an Operating System is to manage various I/O

devices including mouse, keyboards, touch pad, disk drives, display

adapters, USB devices, Bit-mapped screen, LED, Analog-to-digital

converter, On/off switch, network connections, audio I/O, printers etc.

An I/O system is required to take an application I/O request and send it to

the physical device, then take whatever response comes back from the

device and send it to the application. I/O devices can be divided into two

categories −

 Block devices − A block device is one with which the driver

communicates by sending entire blocks of data. For example, Hard

disks, USB cameras, Disk-On-Key etc.

 Character devices − A character device is one with which the driver

communicates by sending and receiving single characters (bytes,).

For example, serial ports, parallel ports, sounds cards etc

Device Controllers

Device drivers are software modules that can be plugged into an OS to

handle a particular device. Operating System takes help from device

drivers to handle all I/O devices.

The Device Controller works like an interface between a device and a

device driver. I/O units (Keyboard, mouse, printer, etc.) typically consist of

a mechanical component and an electronic component where electronic

component is called the device controller.

There is always a device controller and a device driver for each device to

communicate with the Operating Systems. A device controller may be able

to handle multiple devices. As an interface its main task is to convert serial

bit stream to block of bytes, perform error correction as necessary.

Any device connected to the computer is connected by a plug and socket,

and the socket is connected to a device controller. Following is a model for

connecting the CPU, memory, controllers, and I/O devices where CPU and

device controllers all use a common bus for communication.

Input Output Software

I/O software is often organized in the following layers −

 User Level Libraries − This provides simple interface to the user

program to perform input and output. For example, stdio.h,

iostream.h is a library provided by C and C++ programming

languages.

 Kernel Level Modules − This provides device driver to interact with

the device controller and device independent I/O modules used by

the device drivers.

 Hardware − This layer includes actual hardware and hardware

controller which interact with the device drivers and makes hardware

alive.

A key concept in the design of I/O software is that it should be device

independent where it should be possible to write programs that can access

any I/O device without having to specify the device in advance. For

example, a program that reads a file as input should be able to read a file

on a floppy disk, on a hard disk, or on a CD-ROM, without having to modify

the program for each different device.

Device Drivers

Device drivers are software modules that can be plugged into an OS to

handle a particular device. Operating System takes help from device

drivers to handle all I/O devices. Device drivers encapsulate device-

dependent code and implement a standard interface in such a way that

code contains device-specific register reads/writes. Device driver, is

generally written by the device's manufacturer and delivered along with the

device on a CD-ROM.

A device driver performs the following jobs −

 To accept request from the device independent software above to it.

 Interact with the device controller to take and give I/O and perform

required error handling

 Making sure that the request is executed successfully

How a device driver handles a request is as follows: Suppose a request

comes to read a block N. If the driver is idle at the time a request arrives, it

starts carrying out the request immediately. Otherwise, if the driver is

already busy with some other request, it places the new request in the

queue of pending requests.

Interrupt handlers

An interrupt handler, also known as an interrupt service routine or ISR, is a

piece of software or more specifically a callback function in an operating

system or more specifically in a device driver, whose execution is triggered

by the reception of an interrupt.

When the interrupt happens, the interrupt procedure does whatever it has

to in order to handle the interrupt, updates data structures and wakes up

process that was waiting for an interrupt to happen.

The interrupt mechanism accepts an address ─ a number that selects a

specific interrupt handling routine/function from a small set. In most

architectures, this address is an offset stored in a table called the interrupt

vector table. This vector contains the memory addresses of specialized

interrupt handlers.

Device-Independent I/O Software

The basic function of the device-independent software is to perform the I/O

functions that are common to all devices and to provide a uniform interface

to the user-level software. Though it is difficult to write completely device

independent software but we can write some modules which are common

among all the devices.

Following is a list of functions of device-independent I/O Software −

 Uniform interfacing for device drivers

 Device naming - Mnemonic names mapped to Major and Minor

device numbers

 Device protection

 Providing a device-independent block size

 Buffering because data coming off a device cannot be stored in final

destination.

 Storage allocation on block devices

 Allocation and releasing dedicated devices

 Error Reporting

User-Space I/O Software

These are the libraries which provide richer and simplified interface to

access the functionality of the kernel or ultimately interactive with the

device drivers. Most of the user-level I/O software consists of library

procedures with some exception like spooling system which is a way of

dealing with dedicated I/O devices in a multiprogramming system.

I/O Libraries (e.g., stdio) are in user-space to provide an interface to the OS

resident device-independent I/O SW. For example putchar(), getchar(),

printf() and scanf() are example of user level I/O library stdio available in C

programming.

Kernel I/O Subsystem

Kernel I/O Subsystem is responsible to provide many services related to

I/O.

Following are some of the services provided.

 Scheduling − Kernel schedules a set of I/O requests to determine a

good order in which to execute them. When an application issues a

blocking I/O system call, the request is placed on the queue for that

device. The Kernel I/O scheduler rearranges the order of the queue

to improve the overall system efficiency and the average response

time experienced by the applications.

 Buffering − Kernel I/O Subsystem maintains a memory area known

as buffer that stores data while they are transferred between two

devices or between a device with an application operation. Buffering

is done to cope with a speed mismatch between the producer and

consumer of a data stream or to adapt between devices that have

different data transfer sizes.

 Caching − Kernel maintains cache memory which is region of fast

memory that holds copies of data. Access to the cached copy is more

efficient than access to the original.

 Spooling and Device Reservation − A spool is a buffer that holds

output for a device, such as a printer, that cannot accept interleaved

data streams. The spooling system copies the queued spool files to

the printer one at a time. In some operating systems, spooling is

managed by a system daemon process. In other operating systems, it

is handled by an in kernel thread.

 Error Handling − An operating system that uses protected memory

can guard against many kinds of hardware and application errors.

File

A file is a named collection of related information that is recorded on

secondary storage such as magnetic disks, magnetic tapes and optical

disks. In general, a file is a sequence of bits, bytes, lines or records whose

meaning is defined by the files creator and user.

File Structure

A File Structure should be according to a required format that the operating

system can understand.

 A file has a certain defined structure according to its type.

 A text file is a sequence of characters organized into lines.

 A source file is a sequence of procedures and functions.

 An object file is a sequence of bytes organized into blocks that are

understandable by the machine.

 When operating system defines different file structures, it also

contains the code to support these file structure. Unix, MS-DOS

support minimum number of file structure.

File Type

File type refers to the ability of the operating system to distinguish different

types of file such as text files source files and binary files etc. Many

operating systems support many types of files. Operating system like MS-

DOS and UNIX have the following types of files −

Ordinary files

 These are the files that contain user information.

 These may have text, databases or executable program.

 The user can apply various operations on such files like add, modify,

delete or even remove the entire file.

Directory files

 These files contain list of file names and other information related to

these files.

Special files

 These files are also known as device files.

 These files represent physical device like disks, terminals, printers,

networks, tape drive etc.

These files are of two types −

 Character special files − data is handled character by character as

in case of terminals or printers.

 Block special files − data is handled in blocks as in the case of

disks and tapes.

File Access Mechanisms

File access mechanism refers to the manner in which the records of a file

may be accessed. There are several ways to access files −

 Sequential access

 Direct/Random access

 Indexed sequential access

Sequential access

A sequential access is that in which the records are accessed in some

sequence, i.e., the information in the file is processed in order, one record

after the other. This access method is the most primitive one. Example:

Compilers usually access files in this fashion.

Direct/Random access

 Random access file organization provides, accessing the records

directly.

 Each record has its own address on the file with by the help of which

it can be directly accessed for reading or writing.

 The records need not be in any sequence within the file and they

need not be in adjacent locations on the storage medium.

Indexed sequential access

 This mechanism is built up on base of sequential access.

 An index is created for each file which contains pointers to various

blocks.

 Index is searched sequentially and its pointer is used to access the

file directly.

Space Allocation

Files are allocated disk spaces by operating system. Operating systems

deploy following three main ways to allocate disk space to files.

 Contiguous Allocation

 Linked Allocation

 Indexed Allocation

Contiguous Allocation

 Each file occupies a contiguous address space on disk.

 Assigned disk address is in linear order.

 Easy to implement.

 External fragmentation is a major issue with this type of allocation

technique.

Linked Allocation

 Each file carries a list of links to disk blocks.

 Directory contains link / pointer to first block of a file.

 No external fragmentation

 Effectively used in sequential access file.

 Inefficient in case of direct access file.

Indexed Allocation

 Provides solutions to problems of contiguous and linked allocation.

 A index block is created having all pointers to files.

 Each file has its own index block which stores the addresses of disk

space occupied by the file.

 Directory contains the addresses of index blocks of files.

