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• Statements marked // in the margin are left to the reader to

check/prove.

• Some section titles are starred (marked *). A one quarter class will

typically cover most non-starred sections and optionally cover some

starred sections, at the instructor’s discretion.

• Questions are marked according to difficulty:

Question 1.100. – Regular difficulty.

Question 1.100* – Harder.

Question 1.100◦ – Easier.

• For mathematical notation, see the Notation index at the end.
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1 Introduction to Graph Theory

A graph G is a pair (V,E) where V is a set and E is a set of unordered pairs1 of elements

of V . The elements of V are called vertices and V is called the vertex set of the graph,

and the elements of E are called edges , and E is called the edge set of the graph. If G is

a graph, we let V (G) denote its vertex set and E(G) its edge set. If u and v are two vertices

of a graph G = (V,E), then we say u and v are adjacent if {u, v} ∈ E – in other words

{u, v} is an edge of G – and we say that vertex v is incident with edge e if v ∈ e. For

convenience, since the edges are unordered pairs, it is traditional to write the edge {1, 2} as

the list 12. In general, it may be convenient to represent any graph G = (V,E) by drawing

V as a set of points in the plane, and draw a straight line between any two adjacent vertices

in V .

We sometimes consider the following generalizations of graphs: a multigraph is a pair

(V,E) where V is a set and E is a multiset of unordered pairs from V . In other words, we

allow more than one edge between two vertices. A pseudograph is a pair (V,E) where V is

a set and E is a multiset of unordered multisets of size two from V . A pseudograph allows

loops , namely edges of the form {a, a} for a ∈ V . A digraph is a pair (V,E) where V is

a set and E is a multiset of ordered pairs from V . In other words, the edges now have a

direction: the edge (a, b) and edge (b, a) are different, and denoted in a digraph by putting

an arrow from a to b or from b to a, respectively. An orientation of a graph G is a digraph
~G obtained by replacing each edge {a, b} ∈ E(G) with either the arc (a, b) or the arc (b, a).

The graph G is called the underlying graph of ~G.

1.1 Examples of graphs

Example 1. Consider the graph G = (V,E) where V = {1, 2, 3} and E = {12, 13}. Then

the drawing below represents this graph:

1We denote sets using braces, for instance {1, 2, 3} is the set whose elements are 1, 2 and 3, and we write
1 ∈ {1, 2, 3} to say “1 is an element of the set {1, 2, 3}.” Note that a set precludes “repeated elements”.
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Figure 1.1: The graph G = ({1, 2, 3}, {12, 13})

Example 2. Let V = {p1, p2, p3, p4, p5, p6} be a set of six people at a party, and suppose

that p1 shook hands with p2 and p4, p3 shook hands with p4, p5 and p6, and p5 and p6 shook

hands. Let G = (V,E) be the graph with edge set E consisting of pairs of people who shook

hands. Then

E = {p1p2, p1p4, p3p4, p3p5, p3p6, p5p6}.

A drawing of G is given in Figure 1.2 below:

Figure 1.2: The handshake graph G

Example 3. Let Z denote the set of integers2 and let

V = {(x, y) ∈ Z× Z : 0 ≤ x ≤ 2, 0 ≤ y ≤ 2}.
2Thus Z = {. . . ,−2,−1, 0, 1, 2, 3, . . . }. Then Z× Z is the Cartesian product , which is the set of pairs

(x, y) such that x ∈ Z and y ∈ Z.
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Then V is just the set of points in the plane with integer co-ordinates between 0 and 2. Now

suppose G = (V,E) is the graph where E is the set of pairs of vertices of V at distance 1 from

each other. In other words, (x, y) and (x′, y′) are adjacent if and only if (x−x′)2+(y−y′)2 = 1.

We check that the edge set is

E = {(0, 0)(0, 1), (0, 0)(1, 0), (0, 1)(0, 2), (1, 0)(2, 0), (1, 0)(1, 1), (1, 1)(1, 2),

(1, 1)(2, 1), (0, 1)(1, 1), (0, 2)(1, 2), (2, 0)(2, 1), (2, 1)(2, 2), (1, 2)(2, 2)}.

This is a cumbersome way to write the edge set of G, as compared to the drawing of G in

Figure 1.3 below, which is much easier to absorb.

Figure 1.3: The grid graph G

Example 4. Let V be the set of binary strings of length three, so

V = {000, 001, 010, 100, 011, 101, 110, 111}.

Then let E be the set of pairs of strings which differ in one position. Then

E = {{000, 001}, {010, 000}, {100, 000}, . . . , {111, 101}, {111, 110}, {111, 011}}.

The reader should fill in the rest of the edges as an exercise. Once again, this graph Q //

actually has a very nice drawing (which explains why it is sometimes called the cube graph).
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Figure 1.4: The cube graph Q

Example 5. Let G be the graph with vertex set V = {v1, v2, v3, v4, v5, v6, v7} and edge set

E = {v1v4, v1v7, v2v3, v2v6, v2v7, v3v4, v3v5, v3v7, v4v5, v4v6, v5v6, v5v7}.

In Figure 1.5, two drawings of G are shown (the reader should verify that they are both

drawings of G).

Figure 1.5: Two drawings of a graph with seven vertices

1.2 Graphs in practice*

Graphs appear in many theoretic and practical applications, including statistical physics,

chemistry, broadcasting and networks, circuit design, computational complexity, coding and

information theory, algorithm design, probability theory and markov chains, algebra, number

theory and geometry, to mention a few. We give a few examples in this section:
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The web graph. Let V denote the set of websites on the internet, and E the set of pairs

of websites which are linked. The web graph is growing all the time, and due to its size,

difficult to analyze. In Figure 1.6, two induced subgraphs of the web graph are shown.

Figure 1.6: Induced subgraphs of the web graph

Natural questions related to searching are whether the web graph is connected , the ra-

dius and diameter of the web graph, and so on. A famous graph-theoretic ingredient for

searching the web is PageRank – see the book by Bonato [6].

Planar graphs and geometry. [Notes Part 7] A graph is planar if it can be “drawn”

in the plane or on a sphere without any edges crossing. If we consider an abstract map,

then we may represent it as a planar graph by representing each country by a vertex, and

drawing an edge between countries which share a border. If we consider a three-dimensional

polyhedron, then it has a natural embedding on a sphere without crossing edges. Similarly,

we can consider planar lattices such as the integer lattice, hexagonal lattice (honeycomb

lattice) and triangular lattice in the Euclidean plane.

Figure 1.7: Carbon C60 fullerene and hexagonal lattice
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One of the famous problems in graph theory is to color the regions of a map (in other words,

color the vertices of a planar graph) so that no two adjacent regions receive the same color.

A coloring of the world map with four colors is shown below:

Figure 1.8: 4-Coloring of the world map

The famous 4-color theorem says every map can be colored with at most four colors so

that no adjacent countries have the same color. This was proved by Appel and Haken in [2]

and [3] using the aid of a computer, and more recently by Robertson and Seymour [33].

The integer lattice is an example of a unit distance graph : a graph whose vertices are

points in the plane and whose edges are pairs of points at distance 1. Other examples of unit

distance graphs are shown below. The big open problem of Erdős [11] is to determine the

maximum number of edges in an n-vertex unit distance graph. The problem of determining

the minimum number of distinct distances between n points in the plane [11] was recently

solved asymptotically by Guth and Katz [18].

Figure 1.9: Unit distance graphs

Connectivity and matchings. [Notes Parts 2 and 3] Given a graph G, how many vertices

or edges must be removed to disconnected the graph (split it into connected pieces)? This
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is the fundamental connectivity problem in graphs, addressed by Menger’s Theorems [29].

Given a graph G, can we find a set of pairwise vertex-disjoint edges covering all the vertices

(a perfect matching) in the graph? This is addressed by Hall’s Theorem for bipartite

graphs [19], and Tutte’s 1-Factor Theorem in general graphs [38]. Furthermore, the

maximum matching can be found efficiently. The maximum matching problem, for instance,

is very natural in practical applications, such as scheduling and job assignment. Given a set

A = {a1, a2, . . . , ak} of people and a set B = {b1, b2, . . . , bl} of jobs, and for each person a

list of jobs in B that they can do, we would like to assign as many people to jobs without

having one job done by two people or two jobs done by one person. The natural graph has

vertex set A∪B, where ai is joined to bj by an edge if ai can do job bj. Then we are asking

for a maximum matching, and an efficient algorithm exists, even if we put a weight on each

edge {ai, bj} to denote how much ai would like to do job bj. An example is shown below:

Figure 1.10: Maximum matching

The book by Lovász and Plummer [25] is an authority on the theory of matchings in graphs.

Flows in networks. Let G = (V,E), and let s, t ∈ V be vertices designated as source

and sink . Suppose each edge of the graph has a direction and a capacity , denoting the

maximum number of units of fluid that the edge can carry between its ends. If fluid flows

through the network from the source to the sink, we assume that the flow in to each vertex

other than s or t is equal to the flow out of the vertex. Given the capacities, the question is the

maximum flow can be transmitted from s to t (flow occurs simultaneously in all edges). This

is completely answered by the Max-Flow Min-Cut Theorem of Ford and Fulkerson [15],

together with an efficient algorithm for finding a maximum flow (see the book by Ford and

Fulkerson on flows in networks [16]). Many generalizations of this theorem exist, and it is a

special case of duality in linear programming. The theorem has wide applicability, and the

Max-Flow Min-Cut Theorem implies the afore-mentioned Hall’s and Menger’s Theorems on

matchings and connectivity.

Random graphs. The classical Erdős-Rényi model of random graphs takes n vertices

and then for each pair of vertices, we place an edge with probability p and no edge with

probability 1− p (in other words, the edge set are decided by
(
n
2

)
coin flips). In this way we
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generate a graph Gn,p. When p = 0, it is the empty graph, and when p = 1, it is the complete

graph. In the figure below, we show examples of G64,p when p ∈ {0, 1
256
, 1
64
, 1
16
, 1
4
, 1}.

Figure 1.11: Random graphs

There are very many other types of random graphs, for example the preferential at-

tachment graph used to model the web graph, or random regular graphs, or random

geometric graphs . The graph below is a random geometric graph in the unit square: the

vertices are uniformly randomly chosen points in the unit square, and the edges correspond

to pairs of points at most a certain distance from each other. Random graphs are beyond the

scope of this course. The books by Bollobás [4] and Janson,  Luczak and Rucinski [20] are

sources on the theory of random graphs, and Penrose studies random geometric graphs [31].

Figure 1.12: Random geometric graph

Percolation and automata. Let G be the graph whose vertex set is a set of organisms,

and put an edge between two organisms if they can communicate a virus between them. For

each vertex v in the graph, let r(v) denote the minimum number of infected neighbors of

v required in order for v to become infected. If X is the set of vertices initially infected,

one may ask whether the infection spreads to the entire graph. This clearly depends on the

graph, and in particular connectivity of the graph. In addition, perhaps after a certain
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time a vertex v becomes uninfected, and the same question remains. In fact, this is a very

restricted instance of the famous Conway’s game of life . The game of life is on cells of

the integer lattice, according to the following rules, with cells being in two states, infected

or dormant:

• Infected cells with at most one/more than three infected neighbors becomes dor-

mant

• Dormant cells with exactly three infected neighbors becomes infected.

In all other cases, the cells preserve their state. The question is whether the infection dies

out or spreads forever, and what the set of infected cells looks like at any time. For example,

if the cells initially infected form the white cells in the left frame of the picture below, it

takes 130 generations for the infection to die out. Some of these generations are shown in

the figure.

Figure 1.13: Conway’s game of life

These kinds of questions fall into the realm of percolation on graphs and cellular au-

tomata , which we do not study in this course. The books by Grimmett [17] and Bollobás

and Riordan [5] offer comprehensive studies of percolation.

Coding and information theory. For the purpose of this remark, a code is a set C

of binary strings called codewords . A message is sent by first encoding it using a binary

string, sending it over a channel, and then the receiver decodes the message. Both encoding

and decoding should be done efficiently, while the channel may be noisy and bits may be

corrupted or deleted, so the challenge is to design the code so that the original message can

be recovered. A t-error-correcting code is a code C such that if a binary string c ∈ C is

sent over the channel and t bits are corrupted, so that a binary string c′ is received, then c

can be uniquely recovered. An easy guarantee is that any two distinct codewords c1, c2 ∈ C
differ in at least 2t+1 positions : we say that C has minimum distance at least 2t+1. By

constructing certain graphs called expander graphs , one can build good error-correcting

codes : these codes are binary strings of length n that are able to correct linearly many

errors (due to the minimum distance). We have touched extremely briefly on a point in

coding theory, which is the tip of the iceberg. Two relevant books on coding theory are van

Lint [39] and McEliece [28].
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Search algorithms. Let G be a graph, and let v be a vertex of G. A person starts at

an arbitrary vertex u ∈ V (G), and wishes to walk to v in as few steps as possible. This

in itself is not a hard problem to solve, via Dijkstra’s Shortest Path Algorithm . Two

twists on the problem are (1) the use of only local information and (2) the addition of a

few extra edges to speed up the walk. Local information means each vertex has only the

information as to a direction which leads closer to the destination vertex v. The addition

of an edge {u,w} comes with the local information at u and at w. For a concrete example,

let G be the n by n square grid graph. The typical distance between two vertices is roughly

n, so it may take n steps to get from u to v. Can we add few edges (for instance, add one

edge per vertex) so that the number of steps drops dramatically? Kleinberg [22] showed that

using randomness, one can decrease the number of steps to roughly (log n)2, and called the

algorithm decentralized search . This is an example of a highly graph theoretic search

algorithm, and it has been adapted to detect given a general graph G whether it is possible

to speed up the search in a similar way.

1.3 Basic classes of graphs

There are some graphs which we shall encounter very frequently, and we describe these here.

Complete Graphs. The complete graph or clique on n vertices, denoted Kn is the

graph consisting of all possible edges on n vertices (in other words, every pair of vertices is

adjacent). The empty graph on n vertices has no edges. In Figure 1.14, drawings of Kn

for 2 ≤ n ≤ 6 are given:

Figure 1.14: The complete graphs K2 through K6

Since the number of pairs of vertices in Kn is
(
n
2

)
, and every pair is an edge, the number of

edges in Kn is
(
n
2

)
.

Bipartite graphs. Recall a partition of a set V consists of pairwise disjoint non-empty

subsets whose union is V . A bipartite graph is a graph G = (V,E) such that for some

partition of V into two sets A and B such that every edge of G has the form {a, b} with

a ∈ A and b ∈ B (or in other words, no two vertices in A are adjacent, and no two vertices
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in B are adjacent). We call A and B the parts of G and refer to (A,B) as the bipartition

of G. When |A| = r and |B| = s and all possible edges {a, b} with a ∈ A and b ∈ B are

included, then G is called the complete bipartite graph , and denoted Kr,s. In Figure

1.15, we draw the graphs K2,3 and K2,5.

Figure 1.15: Complete bipartite graphs K2,3 and K2,5

Note that the number of edges in a complete bipartite graph Kr,s is exactly rs.

For k ≥ 3, a k-cycle is the graph Ck with vertex set {1, 2, . . . , k} and edge set

{{1, 2}, {2, 3}, {3, 4}, . . . , {k − 1, k}, {k, 1}}.

For k ≥ 1, a k-path is the graph Pk with vertex set {1, 2, . . . , k + 1} and edge set

{{1, 2}, {2, 3}, {3, 4}, . . . , {k − 1, k}, {k, k + 1}}.

Note that a k-cycle has k edges and a k-path has k edges, and we often refer to the number

k as the length of the cycle or path. It is convenient to represent a path as a sequence

of vertices, for instance v1v2 . . . vk represents a path with k vertices consisting of the edges

vivi+1 for i < k. Similarly, a cycle can be represented as a circular sequence v1v2 . . . vkv1. In

Example 1, P2 is drawn, and in Figure 1.16, we draw C3 and C6.
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Figure 1.16: Cycles C3 and C6

1.4 Degrees and neighbourhoods

The neighborhood of a vertex v in a graph G = (V,E), denoted NG(v), is the set of

vertices of G which are adjacent to v. The degree of a vertex v in a graph G, denoted

dG(v), is |NG(v)|. When it is clear which graph G we are referring to, we write d(v) and

N(v) instead of dG(v) and NG(v). The degree sequence of a graph G is the sequence of

degrees of vertices of G in non-increasing order. For example, the degree sequence of the

graph in Figure 1.1 is (2, 1, 1), whereas the degree sequence of the graph in Figure 1.3 is

(4, 3, 3, 3, 3, 2, 2, 2, 2). A vertex of degree zero is called an isolated vertex .

We write δ(G) = min{dG(v) : v ∈ V } and 4(G) = max{dG(v) : v ∈ V } for the minimum

degree and maximum degree of G, respectively. For the examples in the last section, we

note δ(G) = 1 and 4(G) = 2 for Figure 1.1, δ(G) = 2 and 4(G) = 4 for 1.3, δ(G) = 1 and

4(G) = 3 for 1.2, and δ(Q) = 4(Q) = 3 for the cube graph in Figure 1.4. If all vertices in

a graph have the same degree r, then the graph is said to be r-regular . For instance, the

graph Q is 3-regular (all the degrees are 3). Sometimes, 3-regular graphs are also referred

to as cubic graphs.

1.5 The handshaking lemma

An important fact involving the degrees of a graph G, which we will use on numerous

occasions, is the handshaking lemma :

Lemma 1.5.1 (Handshaking Lemma) For any graph G = (V,E),∑
v∈V

dG(v) = 2|E|.

Proof . When we add up the degrees of vertices of G, every edge of G is counted twice, so

the sum of the degrees is twice the number of edges. �
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The handshaking lemma gives an easy way to count the number of edges in a graph: it is

just half the sum of the degrees of the vertices. Note if G is r-regular and has n-vertices,

then the number of edges in G is nr/2, by the handshaking lemma (check this for the cube

graph Q in the last section). A consequence of the handshaking lemma is that the number

of vertices of odd degree in any graph must be even – otherwise the sum on the left above

would be odd whereas the right hand side is even:

Lemma 1.5.2 For any graph G = (V,E), the number of vertices of odd degree is even.

The reader may check that this is satisfied for the graphs in Examples 1 – 4. Consider the //

complete graph Kn. Every vertex of Kn is adjacent to every other vertex of Kn, so the degree

of every vertex of Kn is n− 1 – in other words, Kn is (n− 1)-regular. By the handshaking

lemma, the number of edges in Kn is 1
2
· n · (n − 1) =

(
n
2

)
, as we already knew. Next,

consider Figure 1.3 in the last section (the grid graph). The degree sequence of this graph is

(4, 3, 3, 3, 3, 2, 2, 2, 2). Therefore by the handshaking lemma, the number of edges in the grid

graph is
1

2
(4 + 3 + 3 + 3 + 3 + 2 + 2 + 2 + 2) = 12.

A manual count of the edges in Figure 1.3 confirms this. The reader should check how many

edges the n by n grid graph has (the vertex set is V = {(x, y) ∈ Z×Z : 0 ≤ x < n, 0 ≤ y < n}
and the edge set is the set of pairs of vertices at distance 1 from each other.) //

Example 6. The n-cube , denoted Qn, is the graph whose vertex set is the set of binary

strings of length n, and whose edge set consists of all pairs of strings differing in one position.

The cube graph Q3 in Example 4 is the 3-cube. Let us see how many edges Qn has as a

formula in n. Since there are 2n binary strings of length n, there are 2n vertices in Qn. Now

each vertex v is adjacent to n other vertices – namely flip one position in the string v to get

each string adjacent to v, and there are n possible positions in which to do a flip. So every

vertex of the n-cube has degree n (in other words, it is n-regular), and so the number of

edges in Qn is
1

2

∑
v∈V

dQn(v) =
1

2
· 2n · n = n2n−1.

A manual count of the edges confirms this for Q4, which is drawn below:
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Figure 1.17: The 4-cube Q4

1.6 Digraphs and networks

A digraph or network is a pair ~G = (V, ~E) where V is a set and ~E is a multiset of ordered

pairs of elements of V , which we refer to in this section as arcs . Note that two vertices

can be joined by many arcs in either direction, and we allow loops : a vertex may have an

arc to itself. In a digraph ~G = (V, ~E), let N+(v) and N−(v) denote the sets of vertices

adjacent from v and to v, respectively. These are the out-neighborhood of v and the

in-neighborhood of v respectively. Thus

N+(v) = {u : (v, u) ∈ ~E} N−(v) = {u : (u, v) ∈ ~E}.

For example, in the digraph drawn below, we have N+(x) = {u, v, w}, N−(x) = {v}.

Figure 1.18: A digraph

The in-degree of a vertex v is d−(v) = |N−(v)| and the out-degree is d+(v) = |N+(v)|.
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1.7 Subgraphs

If H and G are graphs and V (H) ⊆ V (G) and E(H) ⊆ E(G), then H is called a subgraph

of G. To denote that H is a subgraph of G, we write H ⊆ G. If in addition V (H) = V (G)

then H is called a spanning subgraph of G.

Example 7. For instance, the reader will check that the graph G = P2 shown in Figure 1.1

is a subgraph of the graphs in Figures 1.2 – 1.4. The graph in Figure 1.2 is not a subgraph //

of any of the others, since it contains a triangle but none of the others contains a triangle.

The graph G in Figure 1.3 is not a subgraph of the cube graph Q in Figure 1.4 since it has

a vertex of degree four, whereas Q is 3-regular. We note that every graph with at most n

vertices is a subgraph of Kn, and every graph with n vertices is a spanning subgraph of Kn.

The path Pk−1 is a spanning subgraph of Ck.

We now define how to remove edges and vertices from a graph G. If X is a set of vertices of

G, we denote by G −X the graph with vertex set V (G)\X and edge set E = {e ∈ E(G) :

e∩X = ∅}. If L ⊆ E(G), we denote by G−L the graph with vertex set V (G) and edge set

E(G)\L. We let e(U, V ) denote the number of edges of a graph with one end in U and one

end in V .

Example 8. For instance, if we remove one edge e from a cycle Ck, we get the path Pk−1,

which we write as Ck−e = Pk−1. If we remove one vertex v from a cycle Ck, we get the path

Pk−2, which we write as Ck−v = Pk−2. If we remove the vertex 1 from the graph in Figure 1.1,

we get a graph consisting of two isolated vertices. If we remove X = {101, 100, 111, 110}
from the graph Q in Figure 1.4, we get C4, so we may write Q − X = C4. If instead we

remove X = {001, 101, 110} we get the graph shown below in Figure 1.19:

Figure 1.19: The graph Q− {001, 101, 110}

The subgraph of G induced by a set X ⊆ V (G), denoted G[X], is precisely G − (V \X).

A subgraph H of G is an induced subgraph if for some X ⊆ V (G), H = G[X]. If L is a
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set of edges of G, then the subgraph of G spanned by L is the graph with edge set L and

vertex set
⋃
e∈L e. The graph in Figure 1.19 is an induced subgraph of the cube graph Q3,

whereas Pk−1 is not an induced subgraph of Ck. //

A more sophisticated operation on graphs is contraction . If G is a graph and X ⊂ V (G)

and Y = V (G)\X, then the contraction of X is the graph G/X obtained from G − X
by adding a new vertex x and all edges between x and N(X). An example is shown below,

where X = {1, 2, 3, 5, 7}.

Figure 1.20: Contraction of X = {1, 2, 3, 5, 7} to x
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1.8 Exercises

Question 1.1◦ In Figure 1.21, a graph G with nine vertices is shown.

Figure 1.21: A graph with nine vertices

(a) How many edges does G have?

(b) Write down N(v1), N(v5), d(v1) and d(v5), and δ(G) and 4(G).

(c) If X = {v3, v6}, how many edges does G−X have?

(d) How many components does G− {v1, v3, v7} have?

(e) Are K4, K1,7 and K2,3 subgraphs of G?

(f) What is the length of a longest cycle in G? What about a longest path?

(g) Draw G/Y where Y = {v1, v4, v5, v6, v7}.

Question 1.2◦ For n ≥ 4, a wheel graph Wn with n vertices consists of a cycle of length

n − 1 plus a vertex adjacent to every vertex in the cycle. Are any of the graphs in Figure

1.22 a drawing of the wheel graph W7? If the graph is a drawing of W7, label the vertices

v1, v2, . . . , v7 so that the edges are {v2, v3}, {v3, v4}, ... , {v7, v2}, and {v1, vi} : 2 ≤ i ≤ 7. If

the graph is not a drawing of W7, prove that it is not a drawing of W7.

Figure 1.22: Two graphs with seven vertices
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Question 1.3◦ For n ≥ 2, let Gn be the grid graph , whose vertex set is

V = {(x, y) ∈ Z× Z : 0 ≤ x < n, 0 ≤ y < n}

and whose edge set is

E = {{(x, y), (x′, y′)} : (x− x′)2 + (y − y′)2 = 1}.

Determine the number of vertices and number of edges in Gn for each n ≥ 2.

Question 1.4◦ In Figure 1.23, the wheel graphs Wn with n vertices are shown for 4 ≤
n ≤ 11.

Figure 1.23: Wheel graphs Wn

(a) Write down the minimum and maximum degree of Wn for all n ≥ 4.

(b) Write down the number of edges in Wn for all n ≥ 4.

(c) For which n ≥ 4 is Kn ⊂ Wn?

(d) Is there a spanning cycle in Wn for n ≥ 4?

(e) How many cycles does Wn have for n ≥ 4?

(f) For which m and n is Wm a subgraph of Wn?

(g) Is Wm ever an induced subgraph of Wn?

Question 1.5◦ Let G be a digraph such that every vertex has positive in-degree. Prove

that G contains a directed cycle – a digraph with vertex set {v1, v2, . . . , vk} and edges

(v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1).

23



D
RA
FT

Question 1.6. The line graph of a graph G = (V,E) is the graph L(G) = (E,F ) whose

vertex set is E and whose edge set is

F = {{e, f} ⊂ E : e ∩ f 6= ∅}.

(a) Draw L(C4) and L(K4).

(b) How many edges does L(G) have in terms of the degrees d(v) : v ∈ V (G) of the

vertices of G?

Question 1.7◦ Suppose initially a set I of squares in the grid is infected with a virus, and

that at any stage in time, a square becomes infected if it has at least two infected neighbors

(sharing two or more sides with infected squares). Determine for which sets I in the pictures

below the virus (infected squares are black squares) spreads to the entire grid.

Question 1.8. Let G be a graph whose vertex set is a set V = {p1, p2, . . . , p6} of six people.

Prove that there exist three people who are all friends with each other, or three people none

of whom are friends with each other.

Question 1.9. Let Kn:r denote the Kneser graph , whose vertex set is the set of r-element

subsets of an n-element sets, and where two vertices form an edge if the corresponding sets

are disjoint.

(a) Describe Kn:1 for n ≥ 1.

(b) Draw K4:2 and K5:2.

(c) Determine |E(Kn:r)| for n ≥ 2r ≥ 1.
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Question 1.10.

(a) Prove that every graph with at least two vertices contains two vertices with

the same degree.

(b) Is (a) true for multigraphs?

(c) For each n ≥ 2 give an example of a graph with n vertices which does not

have three vertices of the same degree.

Question 1.11* Let G be an n-vertex digraph such that

|N+(v)| > 1

2
(3−

√
5)n

for every v ∈ V (G). Prove that G contains a directed cycle of length two or three.

Question 1.12* Consider n people possessing unique items u1, u2, . . . , un of information

that they wish to share with each other. Two people can call each other and share all the

items of information they currently have.

(a) For n ≤ 4, determine the minimum number of calls that can be made so that

all information is shared amongst all n people.

(b) Prove that for n ≥ 5 the minimum number of calls so that all n people have

all items of information is 2n− 4.

25



D
RA
FT

2 Eulerian and Hamiltonian graphs

2.1 Walks

A walk in a graph G = (V,E) is an alternating sequence of vertices and edges, whose

first and last elements are vertices, and such that each edge joins the vertices immediately

preceding it and succeeding it in the sequence. For example,

a{a, d}d{d, e}e{e, a}a{a, d}d

is a walk in the graph in Figure 2.1. Since there is no ambiguity, we denote a walk by a

sequence of vertices, so the above walk is (a, d, e, a, d). Note that if the vertices of a walk

are all distinct, then the walk is a path. The length of a walk is the number of steps taken

in the walk. A closed walk is a walk whose first and last vertices are the same. If a closed

walk has no repeated vertices except the first and the last, then we observe it is a cycle. If

the first and last vertices of a walk are u and v, then we say the walk is a uv-walk . We refer

similarly to a uv-path . The vertices u and v are called the ends of the path or walk.

a

c

b

d

e

Figure 2.1: Walks

Lemma 2.1.1 Let u, v be distinct vertices in a graph G, and let W be a shortest uv-walk in

G. Then W is a path.

Proof . Suppose W = v0e0v1e1 . . . vk−1ek−1vk, where v0, v1, . . . , vk are vertices of G with

v0 = u and vk = v, and e0, e1, . . . , ek are edges of G. If W is not a path, then vi = vj for

some i < j with (vi, vj) 6= (u, v). Define the new walk

W ′ = v0e0v1e1 . . . viejvj+1 . . . ek−1vk.

Then the length of W ′ is less than the length of W , a contradiction. So W is a path. �
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2.2 Connected graphs

A graph is connected if any pair of vertices in the graph are the ends of at least one path.

If a graph is not connected, we say it is disconnected . The components of a graph

G = (V,E) are the maximal connected subgraphs of G – that is, the connected subgraphs

such that no edge of G not already in the subgraph can be added while still preserving

connectivity. For instance, the graph below in Figure 2.2 has three components:

Figure 2.2: Components

2.3 Eulerian graphs

A multigraph is Eulerian if all its vertices have even degree. A trail in a graph is a walk

with no repeated edges, and a tour in a graph is a closed walk with no repeated edges. An

Eulerian tour in a graph G is a tour which contains every edge of G and an Eulerian

trail is a trail that contains all the edges of G. In the graph shown below, an example of a

tour is the walk (v1, v2, v4, v1, v5, v6, v1). This graph has an Eulerian tour, namely

(v1, v2, v3, v4, v5, v6, v1, v5, v2, v4, v1).

Roughly speaking, the presence of an Eulerian tour in a graph means that the graph can be

drawn on paper without lifting your pen and without retracing edges.

Figure 2.3: Eulerian tours
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The problem of existence of Eulerian tours was first studied by Euler, in his famous bridges

of Königsberg problem . The following theorem [14] is responsible for the existence of an

Eulerian tour in the above graph.

Theorem 2.3.1 Let G be a connected multigraph. Then

1. G has an Eulerian tour if and only if all of the vertices of G have even degree.

2. G has an Eulerian trail if and only if exactly two vertices of G have odd degree.

Proof .We prove the first statement and leave the second as an exercise. IfG has an Eulerian

tour, say (v1, v2, . . . , vm, v1) (in this sequence, note that some vertices can be repeated), let i

denote the first index such that vi = v1. Then the edges {v1, v2}, {v2, v3}, . . . , {vi−1, vi}, {vi, v1}
form a cycle C in G. If i = m, then G = C, and all vertices of G have degree two. Other-

wise, G−E(C) has the Eulerian tour (v1, vi+1, vi+2, . . . , vm, v1), and therefore all degrees of

G−E(C) have degree two. Adding back the edges of C increases degrees by zero or two, so

all degrees in G are even, as required.

Now suppose all vertices of G have even degree. Let τ = (v1, v2, . . . , vk) be the longest

possible trail in G. If vk 6= v1, then as in the first part of the proof given above, the reader

will check that an odd number of edges of τ contain each of v1 and vk, so there is an edge //

{vk, vk+1} of G that is not traversed by τ . Now (v1, v2, . . . , vk, vk+1) is a longer trail than τ ,

a contradiction. We conclude vk = v1 and τ is a tour in G. Since G is connected, there is an

edge e not in the trail τ , say {vi, v} ∈ E(G). If v is not a vertex of the trail, then

(vi, vi+1, . . . , vk, v1, v2, . . . , vi−1, vi)

is a tour of the same length as τ in G. If we add the edge {vi, v}, we get the trail

(vi, vi+1, . . . , vk, v1, v2, . . . , vi−1, vi, v)

which is longer than τ . If v is a vertex on the trail, say v = vj where j < i, then consider

the trail (vi, vi+1, . . . , vk, v1, . . . , vj−1, vj, vi, vi−1, . . . , vj+1, vj) is a trail using the edge e and

is one longer than τ . This contradiction completes the proof. �

There are a number of simple algorithms for finding Eulerian tours in Eulerian graphs; the

one given by the proof of the above theorem is known as Hierholzer’s Algorithm . The

running time of this algorithm is linear in the number of edges of the graph. Pseudocode for //

the algorithm is as follows:
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1: function Hierholzer(Graph)

2: start ← arbitrary node

3: tour ← ∅

4: While there are any unvisited edges

5: start ← node in tour with unvisited edge

6: subtour ← {start}
7: current = start

8: Repeat

9: {current, u} ← take unvisited edge leaving

current

10: subtour ← subtour ∪ {u}
11: current ← u

12: while start 6= current

13: Integrate subtour in tour

14: return tour

2.4 Eulerian digraphs and de Bruijn sequences

An Eulerian digraph is a digraph ~G = (V, ~E) such that for every v ∈ V , d+(v) = d−(v).

In other words, the in-degree of every vertex equals the out-degree of every vertex. A

directed Eulerian tour in a digraph ~G is a (v0, v1, . . . , vm) of vertices with m = | ~E| such

that (vi, vi+1) ∈ ~E for 0 ≤ i < m and no edge is repeated. A digraph is connected if its

underlying graph is connected. The same proof as for Eulerian graphs (see Theorem 2.3.1)

shows the following:

Theorem 2.4.1 A connected digraph ~G = (V, ~E) is Eulerian if and only if it has a directed

Eulerian tour.

This leads us to an application involving de Bruijn sequences. Let k be a positive

integer and let A be an alphabet of size n. A de Bruijn sequence is a cyclic sequence of

letters (a0, a1, a2, . . . , am) from A such that every word of length k appears exactly once as

k cyclically consecutive letters in the sequence. For instance, if n = k = 2 and A = {0, 1},
then 0011 is a de Bruijn sequence, since 00, 01, 11, 10 are the cyclically consecutive pairs of

letters and each word appears once. If n = 2 and k = 3 and A = {0, 1}, then 00010111 is a

de Bruijn sequence. It is convenient to put the letters on a circle:
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Figure 2.4: de Bruijn sequence

Since there are in general nk words of length k from an alphabet of size n – see Theorem

A.2.2 – a de Bruijn sequence must have length nk.

A key way to generate de Bruijn sequences is using directed Eulerian tours. We define the

k-dimensional de Bruijn digraph ~G(n, k) as follows: let the vertex set V of ~G(n, k) be the

set of sequences of k elements from the alphabet A. We place an arc (u, v) in ~G(n, k) if the

last k − 1 letters of u are the first k − 1 letters of v. Note that it is possible that u = v in

this definition, in which case we are placing a loop from u to u. It is also possible to have

both an arc from u to v and from v to u. These possibilities appear in the example below:

Figure 2.5: de Bruijn digraph ~G(2, 3)

Given a vertex u, the out-degree and in-degree of u are both exactly n: for the in-degree/out-

degree we just have to pick a letter from the alphabet A to prepend/append to u and then

remove the last/first letter of u. If n is even, then by Theorem 2.4.1, ~G(n, k) is Eulerian,

and so it has a directed Eulerian tour (v1, . . . , vm) where m is the number of arcs in ~G(n, k).

An arc (vi, vi+1) in this tour corresponds to two words vi and vi+1 of length k such that the

last k − 1 letters of vi are the same as the first k − 1 letters of vi+1. In particular, we can

add the last letter of vi+1 to vi to get a word w(vi, vi+1) of length k + 1. So each arc of the

Eulerian tour corresponds to a word of length k+ 1. Since there are nk+1 arcs in ~G(n, k) by
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the handshaking lemma, we have produced nk+1 words w(v1, v2), w(v2, v3), . . . , w(vm−1, vm)

of length k + 1 using the Eulerian tour. No word can be produced more than once, since if

w(vi, vi+1) = w(vj, vj+1), then vi = vj and vi+1 = vj+1. If ai is the last letter of vi, then the

cyclic sequence a1a2 . . . am of letters is a de Bruijn sequence.

Example 9. Consider the de Bruijn graph in Figure 2.5. An Eulerian tour (v1, v2, . . . , v16, v1)

with vi = i is shown below:

Figure 2.6: Eulerian tour in ~G(2, 3)

To construct a de Bruijn sequence from this tour, let ai be the last letter of vi = i, and write

down a1, a2, . . . , a16: we get the sequence 0010011110101100. A manual check reveals all 16

words of length four appear as cyclically consecutive letters in this sequence.

2.5 Hamiltonian graphs

A spanning cycle in a graph is called a Hamiltonian cycle and a spanning path in a graph

is called a Hamiltonian path . A graph is Hamiltonian if it contains a Hamiltonian cycle

and traceable if it has a Hamiltonian path. While Theorem 2.3.1 gives a simple necessary

and sufficient condition for a graph to have an Eulerian tour, no such simple condition is

available for a graph to be Hamiltonian. In this section, we consider sufficient conditions for

a graph to be Hamiltonian. The first is Dirac’s Theorem [10].

Theorem 2.5.1 (Dirac) Let n ≥ 3, and let G be an n-vertex graph of minimum degree at

least n/2. Then G is Hamiltonian.

Proof . Suppose, for a contradiction, that there is a non-Hamiltonian n-vertex graph of

minimum degree at least n/2. Amongst all such graphs, let G be one with a maximum

number of edges. If we add an edge e = {v1, vn} between non-adjacent vertices of G, then

we have a graph with a Hamiltonian cycle C, and so P = C − e is a Hamiltonian v1vn-path
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in G, say v1v2 . . . vn. Let N(vn)+ = {vi+1 : vi ∈ N(vn)} – this is the set of vertices which

are immediately after neighbors of vn on the path P . Then N(vn)+ ∪ N(v1) ⊆ V (P )\{vn}
as {v1, vn} 6∈ E(G), so

|N(vn)+ ∪N(v1)| ≤ n− 1.

On the other hand, |N(vn)+| + |N(v1)| ≥ n, since G has minimum degree at least n/2.

Therefore

|N(vn)+ ∩N(v1)| = |N(vn)+|+ |N(v1)| − |N(vn)+ ∪N(v1)| > 0.

Let vi+1 ∈ N(vn)+ ∩N(v1). Then v1v2 . . . vivnvn−1 . . . vi+1v1 is a Hamiltonian cycle in G, as

shown in Figure 2.7, a contradiction. So every n-vertex graph of minimum degree at least

n/2 is Hamiltonian. �

Figure 2.7: Finding a Hamiltonian cycle

Let k = b(n − 1)/2c (round (n − 1)/2 down to the nearest integer). Then G = Kk,n−k is

not Hamiltonian, while δ(G) = k < n/2. These examples show that Theorem 2.5.1 is best

possible – the condition on the minimum degree cannot be lowered. The reader can check

as an exercise that for n ≥ 2, every n-vertex graph of minimum degree at least n/2 − 1 is

traceable. The closure of an n-vertex graph G, denoted C(G), consists in adding edges

between any two non-adjacent vertices whose sum of degrees is at least n. The proof of

Theorem 2.5.1 actually gives the following result of Bondy and Chvatal [7]:

Theorem 2.5.2 (Bondy, Chvatal) A graph G is Hamiltonian if and only if C(G) is

Hamiltonian.

If G is an n-vertex graph of minimum degree at least n/2, then C(G) = Kn, which shows

Theorem 2.5.1 follows from Theorem 2.5.2. A major challenge is to find non-trivial sufficient

conditions for graphs of low minimum degree to be Hamiltonian or traceable – for instance,

graphs of minimum degree at least three. It is true, however, that a graph of minimum

degree k has a long cycle:

Theorem 2.5.3 Let k ≥ 2, and let G be a graph of minimum degree at least k. Then G

contains a cycle of length at least k + 1.
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Proof . Let P be a longest path in G, say v1v2 . . . vr. Then N(vr) ⊆ V (P ). Since |N(vr)| ≥
δ(G) ≥ k, r ≥ k+ 1 and vr has a neighbor vi for some i ≤ r−k. Now the cycle vivi+1 . . . vrvi
has length at least k + 1, as required. �

2.6 Postman and Travelling Salesman Problems

Let G be a connected graph whose edges represent roads between points, with a weight

function ω : E(G)→ R denoting the cost of travelling that road. The Postman Problem

or route inspection problem is to finding a minimum cost closed walk in the graph that

traverses every road at least once. In the event that the graph is Eulerian, this problem is

solved by Theorem 2.3.1: an Eulerian tour is a minimum cost closed walk. Otherwise, the

graph has a set X of vertices of odd degree, and |X| is even by Lemma 1.5.2. If P is a

path with ends x and y in X, then by doubling every edge of P , the ends of P now have

even degree and all other vertices of P still have even degree. By repeating this for every

remaining pair of vertices of odd degree, we arrive at a multigraph G′ all of whose vertices

have even degree. By Theorem 2.3.1, this multigraph has an Eulerian tour. The strategy is

to add the paths P such that the cost of that Eulerian tour is a minimum. If we suppose

that all the roads have the same length, and X = {x1, x2, . . . , x2k}, then we are asking for

a partition of X into pairs {v1, w1}, {v2, w2}, . . . , {vk, wk} such that the sum of the lengths

of the shortest viwi-paths is a minimum (the shortest paths can be found via Dijkstra’s

Algorithm). This is a problem in the theory of matchings – finding a minimum weight

matching – which we return to later. An algorithm for finding an Eulerian tour is described

in Question 2.5 in the exercises. Putting everything together gives an algorithm which runs

in time at most roughly n3.

The Travelling Salesman Problem or TSP is a generalization of the problem of finding

a Hamiltonian cycle in a graph. Specifically, we consider a complete graph Kn and a weight

function ω : E(Kn)→ R. The weight of a Hamiltonian cycle C in Kn is defined to be∑
e∈E(C)

ω(e).

Given a weight function ω, the Travelling Salesman Problem asks for a Hamiltonian cycle

of Kn of minimum weight. One might interpret the weights as the cost of travelling across

edges for a salesperson who would like to visit every vertex of Kn once and return to the

starting point, in which case one is looking for a Hamiltonian cycle of minimum cost. If

G is any graph, then we could define a weight function ω on Kn by defining ω(e) = 0 if

e ∈ E(G) and ω(e) = 1 otherwise. Then there is a Hamiltonian cycle of zero cost if and only

if the graph G is Hamiltonian. Methods for solving the TSP are often based on polyhedral

combinatorics and cutting-plane algorithms in integer linear programming , which
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are beyond the scope of this course. The current fastest algorithm for solving TSP on an

n-vertex graph runs in time roughly n22n.

2.7 Uniquely Hamiltonian graphs*

A graph is uniquely Hamiltonian if it has exactly one Hamiltonian cycle. The following

theorem due to Smith for cubic graphs [37] and Thomason in general gives an answer to this

question when all the degrees of the vertices are odd: there are no uniquely Hamiltonian

graphs in which all the vertices have odd degree [35]:

Theorem 2.7.1 Let G be a graph all of whose vertices have odd degree. Then there exist an

even number of Hamiltonian cycles containing any edge e ∈ E(G). In particular, G is not

uniquely Hamiltonian.

Proof . Let e = {u, v}. If there are no Hamiltonian cycles containing e, we are done.

Suppose there is a Hamiltonian cycle C containing e, and let NC(u) = {v, w} and f = {u,w}.
Consider the Hamiltonian uw-path P = C − f , ordered from u to w. Form a new graph

H whose vertices are the Hamiltonian paths of G − f starting with the edge e, where two

Hamiltonian paths in G form an edge of H if they are obtained from one another by rotation

(in Figure 2.8 below, the path P is shown in bold black edges). We observe that if Q is any

Hamiltonian path in H, starting with e and ending at some vertex t, then there are exactly

d(t)− 1 possible rotations, one for each edge containing t and not already used by Q, unless

{u, t} is an edge, in which case there are d(t) − 2 rotations (see Figure 2.8). In the latter

case, Q together with {u, t} forms a Hamiltonian cycle in G containing e. Since d(t) is odd

for every vertex t, d(t) − 2 is also odd. The number of vertices of H of odd degree is even,

by Lemma 1.5.2, so there must be an even number of Hamiltonian paths Q in G− f which

end at a neighbor of u (in Figure 2.8, H has three vertices, one corresponding to the path in

bold black edges, one in dashed black edges, and one in dashed red edges, and H is a path of

length two). Therefore G contains an even number of Hamiltonian cycles containing e. �

Figure 2.8: Finding a second Hamiltonian cycle
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2.8 Exercises

Question 2.1◦ The Bridge of Königsberg Problem is to devise a route through the

city that crosses each of the bridges in the map below exactly once. The starting and ending

point of the route do not need to be the same. Does such a route exist?

Question 2.2◦ Prove that if G is a connected graph such that two vertices u, v ∈ V (G)

have odd degree and all other vertices have even degree, then there is an Eulerian uv-trail

in G. Then find an Eulerian trail in the graphs below, or state why no Eulerian trail exists:
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Question 2.3◦ Find a Hamiltonian cycle in each graph below, or state that none exists:

Question 2.4◦ The line graph3 of a graph G = (V,E) is the graph L(G) = (E,F ) whose

vertex set is E and whose edge set is

F = {{e, f} ⊂ E : e ∩ f 6= ∅}.

Prove that if G is connected and regular, then L(G) is Eulerian.

Question 2.5. Fleury’s Algorithm for finding Eulerian tours is described as follows.

Let G be a graph and v1 ∈ V (G). Having chosen vertices v1, v2, . . . , vk in G such that

{v1, v2}, {v2, v3}, . . . , {vk−1, vk} are edges of G, select an edge e = {vk, vk+1} such that (G−
{v1, v2, . . . , vk})− e is connected4 if such an edge e exists, otherwise stop. Prove that if G is

Eulerian, then the algorithm terminates with an Eulerian tour (v1, v2, . . . , vm) of G.

Question 2.6◦ A driver starting in San Francisco wishes to drive on each road between pairs

of the following major cities in California and end in Sacramento using as short as possible

a routing: Fresno, Los Angeles, Sacramento, San Diego, and San Francisco. The lengths of

the roads the driver wishes to cover are indicated in the table below. 5 Determine the total

length of a shortest route. If instead the driver wishes to visit each city exactly once, what

then is the length of a shortest route?

3See Question 1.6.
4An edge e in a connected graph G such that G− e is disconnected is called a bridge of G. So here e is

not a bridge in G− {v1, v2, . . . , vk}.
5Distances are in both directions.
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Figure 2.9: City Pairs

Question 2.7◦

(a) Draw the de Bruijn graph ~G(3, 2).

(b) Find a de Bruijn sequence for words of length two over the alphabet {0, 1, 2}.

Question 2.8◦ Is it possible to write down a sequence a1a2 . . . am of letters from an alphabet

Σ of size n so that every word of length k appears exactly once as a sequence of k consecutive

letters of a1a2 . . . am?

Question 2.9◦ Let P be a longest path in a connected graph G, and suppose there exists

a cycle C such that P ⊆ C ⊆ G. Prove that G is Hamiltonian.

Question 2.10◦ Prove that if G is a connected graph with m edges such that two vertices

u, v ∈ V (G) have odd degree and all other vertices have even degree, then there exists a

sequence (v0, v1, v2, . . . , vm) of vertices of G with u = v0 and v = vm such that every edge of

G appears exactly once as a pair {vi, vi+1} (an Eulerian trail).

Question 2.11◦ A tournament is an orientation of a complete graph. Prove that every

tournament contains a directed path containing all of its vertices.

Question 2.12◦ For the Heawood graph shown below, draw the graph H from the proof

of Theorem 2.7.1 where P is the Hamiltonian path (1, 2, 3, . . . , 14). Then find a Hamiltonian

cycle different from (1, 2, 3, . . . , 14, 1).
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Figure 2.10: Finding a second Hamiltonian cycle

Question 2.13. Solve the Postman Problem and Travelling Salesman Problem for the

weighted graph below.

Figure 2.11: Postman Problem
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Question 2.14. Let P and Q be longest paths in a finite connected graph G.
(a) Prove that V (P ) ∩ V (Q) 6= ∅.
(b) Is it true that if P,Q and R are longest paths then V (P ) ∩ V (Q) ∩ V (R) 6= ∅?

Question 2.15. Let P1, P2, . . . , Pk be longest paths in a tree T . Prove that V (P1)∩V (P2)∩
· · · ∩ V (Pk) 6= ∅.

Question 2.16. Prove that a graph of minimum degree at least k ≥ 2 containing no triangles

contains a cycle of length at least 2k.

Question 2.17. Let G be an n-vertex graph such that for any non-adjacent vertices u, v ∈
V (G), d(u) + d(v) ≥ n. Prove that G is Hamiltonian.

Question 2.18. Let n ≥ 2. Prove that an n-vertex graph with at least
(
n−1
2

)
+ 1 edges is

traceable. Give an example of an n-vertex graph with
(
n−1
2

)
edges that is not traceable.

Question 2.19. Prove that every graph has an orientation such that the difference between

in and out degrees at each vertex is at most 1.

Question 2.20. Prove that a graph of minimum degree at least k ≥ 2 containing no triangles

or quadrilaterals contains a cycle of length at least 3k − 1.

Question 2.21. The closure of an n-vertex graph G, denoted C(G), consists in adding

edges between any two non-adjacent vertices u and v such that dG(u) + dG(v) ≥ n. Prove

that a graph G is Hamiltonian if and only if C(G) is Hamiltonian.

Question 2.22. Let n ≥ 2. Prove that an n-vertex graph with at least
(
n−1
2

)
+ 2 edges has

a hamiltonian cycle. Give an example of an n-vertex graph with
(
n−1
2

)
+ 1 edges that has no

hamiltonian cycle.

Question 2.23* Let G be a connected graph with an even number of vertices. Prove that

there is a spanning subgraph H ⊆ G such that all vertices of H have odd degree.

Question 2.24* Prove that for every graph G, there exists a partition (X, Y ) of V (G) such

that every component of G[X] and every component of G[Y ] is Eulerian.
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Question 2.25* A graph is 1-tough if for every set X ⊆ V (G), the number of components

of G−X is at most |X|.
(a) Prove that if G is a Hamiltonian graph, then G is 1-tough.

(b) Find a graph that is 1-tough but not Hamiltonian.

Question 2.26. In the graph G below, identify a Hamiltonian cycle. Then draw the graph

H from the proof of Theorem 2.7.1, and use rotation to find a second Hamiltonian cycle in

the graph.

Figure 2.12: A cubic graph

Question 2.27* Let G be an r-regular graph with 2r+ 1 vertices, where r ≥ 2. Prove that

G is Hamiltonian. Then give an example for each r ≥ 2 of an r-regular graph with 2r + 2

vertices that is not Hamiltonian.

Question 2.28* Let G be a Hamiltonian bipartite graph of minimum degree at least three.

Prove that G contains at least two Hamiltonian cycles.

Question 2.29* Let C be a Hamiltonian cycle in an Eulerian graph G, and suppose every

component ofG−E(C) has an even number of vertices. Prove that there exists a Hamiltonian

cycle C ′ in G such that C ′ 6= C. Question 2.23 may be helpful.

Question 2.30* Let G be an r-regular graph with at most 3r vertices, where r ≥ 2. Suppose

G− {v} is connected for every v ∈ V (G). Prove that G is Hamiltonian.

Question 2.31* Prove that if G is an Eulerian digraph with m edges and n vertices, then

G contains a directed path of length at least
√
m/n.
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3 Bridges, Trees and Algorithms

3.1 Bridges and trees

A tree is a connected graph without cycles – a connected acyclic graph. An acyclic graph

is called a forest – thus all components of a forest are trees. To describe the structure of

trees, we define the notion of a bridge. A bridge of a graph G is an edge e ∈ E(G) such that

G− e has more components than G. For example, in Figure 1.2, the edges {p1, p2}, {p1, p4}
and {p4, p3} are bridges, whereas the remaining edges are not bridges. It is easy to spot the

bridges of a graph, using the following lemma:

Lemma 3.1.1 An edge e ∈ E(G) is a bridge of G if and only if e is not contained in any

cycle in G.

Proof . If e is contained in a cycle C of G, then C − e is a path joining the ends of e. But

that means G− e is connected, so e could not have been a bridge. �

Since a tree has no cycles, every edge of a tree must be a bridge. We can now characterize

which graphs are trees in a few ways.

Proposition 3.1.2 Each of the following is equivalent to a graph G being a tree:

1. The graph G is connected and acyclic.

2. The graph G is connected and every edge of G is a bridge.

3. The graph G is connected and has |V (G)| − 1 edges.

Proof . Clearly Part 1 of Proposition 3.1.2 is the definition of G being a tree. Since a

connected graph is acyclic if and only if every edge of the graph is a bridge, by the last

lemma, Part 1 and Part 2 of Proposition 3.1.2 are equivalent. We proved Part 1 implies Part

3 by strong induction on the number of vertices in the tree, so it remains to show that Part

3 of Proposition 3.1.2 implies Part 1 of Proposition 3.1.2. To see that, if G is connected with

|V (G)|−1 edges, we remove an edge of any cycle and that does not disconnect G, by Lemma

3.1.1. We continue removing edges of G in cycles until all the cycles are gone. But then the

remaining graph T is connected and acyclic, so must be a tree. Since it has |V (G)| vertices,

we know it must have |V (G)| − 1 edges. But G itself has |V (G)| − 1 edges, so G = T . �

The last part of the proof of this proposition is important. It says that in any connected

graph G, while there is a cycle, pick an edge of the cycle and remove it. By Lemma 3.1.1, we

did not disconnect the graph, so if we repeat this procedure we eventually obtain a spanning

subgraph of G which is acyclic and connected – a tree. We call this a spanning tree of the

graph. A spanning tree of the cube graph Q is given below in bold edges (the reader should

find other spanning trees of Q): //
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Figure 3.1: Spanning tree

In general, a graph has many spanning trees.

Proposition 3.1.3 Any connected graph contains a spanning tree.

The proof gives a fairly quick way to find a spanning tree of a graph: search for a cycle and

remove an edge of the cycle, and repeat until there are no cycles left. We next discuss an

algorithmic way for finding a spanning tree.

3.2 Breadth-first search

One of the simplest things to check is whether a connected graph is bipartite. Namely, pick

any vertex of the graph and place it in A. Then, all the neighbors of that vertex are forced

to be in B. Then all their neighbors must be in A, and so on. We repeat this procedure on

all components of the graph until all the vertices of the graph have been placed in A and

in B. Applying this procedure to the graphs in Examples 1 – 4, the reader may check that

only the graph in Example 2 is not bipartite. There is a systematic way to check whether //

a graph is bipartite, at the same time as producing a spanning tree in G. To describe this

algorithm, we need the notion of distance in graphs.

The distance between vertices u and v in a connected graph G, denoted dG(u, v), is the

length of a shortest uv-path. For instance, we check in Figure 2.1 that

dG(a, c) = dG(e, c) = dG(b, d) = 2

and any two other vertices are adjacent, so they are at distance 1. The maximum distance

between any two vertices in a connected graph is called the diameter of G. The minimum
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r such that every vertex of G is at distance at most r from some vertex of G is called the

radius of G. For instance, the graph in Figure 1.3 has radius 2 but diameter 4, since every

vertex is at distance at most 2 from (1, 1), whilst the shortest path from (0, 0) and (2, 2) has

length four. Similarly, the graph in Figure 1.2 has radius 2 and diameter 4. For complete

graphs, the radius and diameter are both 1.

If v is a vertex in a connected graph G, we let Ni(v) denote the set of vertices at distance

exactly i from v, so that N1(v) is exactly the neighborhood of v and N0(v) = {v}. Order

the vertices of G. We build a breadth-first search tree T in G as follows. First we add v

to T – the root of the tree. At any stage of the construction, we have a tree T whose vertex

set is ordered (v0, v1, v2, . . . , vk) where v = v0. If V (T ) = V (G), stop. Otherwise, since G

is connected, there exists a smallest integer i such that some neighbor w of vi is not in T .

Choose w to be the smallest neighbor of vi not in T in the ordering of the vertices of G, and

then add the edge {vi, w} to T . The running time of the breadth-first search algorithm is

roughly |V (G)|+ |E(G)|.

Example 10. An example is given in Figure 3.2, where the vertices are in increasing order

1, 2, 3, 4, 5, 6, 7, 8, 9 and v = 1.

Figure 3.2: Breadth-first search

The arrowed edges denote the edges in the breadth-first search tree T rooted at v. Then T can

be encoded by the sequence (1, 3, 9, 2, 6, 8, 4, 7, 5), where N1(v) = {3, 9}, N2(v) = {4, 6, 8}
and N3(v) = {5, 7}.
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Figure 3.3: Breadth-first search

Lemma 3.2.1 Let G be a connected graph and v ∈ V (G). Then T is a spanning tree of G

such that dT (v, w) = dG(v, w) for all w ∈ V (G).

The last statement in this lemma says that T preserves distances from v to all other vertices.

The tree T is called a breadth-first search tree rooted at v. The sets Ni(v) are sometimes

called the layers of T , and the height of T is the maximum distance of any vertex from v.

In Figure 3.3, we have a tree with four layers and height three.

Example 11. The famous Petersen graph is drawn below, with vertices labelled 1

through 10. Let us apply the breadth-first search algorithm to find a spanning tree in G

rooted at vertex 1. Of course, we start by adding 1 to the tree.

Figure 3.4: Petersen graph

We then add the neighbors of 1 in increasing order, namely, 2, 5 and then 9. So far our

tree has edges {1, 2}, {1, 5} and {1, 9}. Now we move on to the first vertex added in N1(v),

namely 2. We add first the vertex 6 and then the vertex 7, with edges {2, 6} and {2, 7}.
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Then move to the next added vertex in N1(v), namely 5. We add 3 and 8 and the edges

{5, 3} and {5, 8}. Finally, we move to the vertex 9, and add the vertices 4 and 10 and the

edges {9, 4} and {9, 10}. Then we stop since there are no vertices left to add. The tree

has edge set {{1, 2}, {1, 5}, {1, 9}, {2, 6}, {2, 7}, {5, 3}, {5, 8}, {9, 4}, {9, 10}, and the order in

which vertices were added is (1, 2, 5, 9, 6, 7, 3, 8, 4, 10). The layers of the tree are N0(v) = {1},
N1(v) = {2, 5, 9}, and N2(v) = {6, 7, 3, 8, 4, 10}. The reader can check that the Petersen

graph has diameter and radius equal to two. //

3.3 Characterizing bipartite graphs

We now use breadth-first search to prove a lemma characterizing bipartite graphs. Via this

lemma, the Petersen graph in Figure 3.4 is not bipartite, since it contains a cycle of length

five, for instance with vertex set {1, 2, 7, 3, 5} (in fact there are many cycles of length 5, 7

and 9). //

Lemma 3.3.1 A graph G is bipartite if and only if it does not contain any odd cycles.

Proof . Since an odd cycle is not bipartite, bipartite graphs cannot contain odd cycles.

Conversely, if a graph has no odd cycles, let T be a breadth-first search tree in G, rooted at

some vertex v. We claim that A = N0(v)∪N2(v)∪ . . . and B = N1(v)∪N3(v)∪ . . . do not

contain any edges of G, and therefore they are the parts in a bipartition of G. Suppose there

exists an edge {x, y} in A. Since edges of T connect consecutive layers, {x, y} is not in T .

Let P be a path in T connecting {x, y}. Then P together with {x, y} forms a cycle C. On

the other hand, P must have even length, since if x ∈ N2i(v) and y ∈ N2j(v), for if Nh(v)

is the lowest layer that P intersects, then P has length (2i − h) + (2j − h) = 2i + 2j − 2h.

But then C has odd length, which is a contradiction (this is evident for instance in Figure

3.3, with x = 6 and y = 8, i = j = 2 and h = 0, and P is the path with edge set

{{6, 3}, {3, 1}, {1, 9}, {9, 8}}). Similarly, B does not contain any edges of G, so A and B are

the parts of G. �

3.4 Depth-first search

Another way to generate a spanning tree in a graph G is the depth-first search algorithm.

Let the vertices of G be ordered, and identify a vertex v ∈ V (G) which will be the root of

the depth-first search tree . At any stage, pick a vertex x of the tree so far that is as far

from v as possible in the tree, and has a neighbor w not in the tree. Select the first such

neighbor w in the ordering of the vertices of G, and add the edge {x,w} to the tree. In

words, the algorithm looks for a vertex that is as far from the root as possible at each stage

and has a neighbor that is not in the tree.

Example 12. We consider again the graph in Figure 3.2, where the vertices are ordered
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1, 2, 3, 4, 5, 6, 7, 8, 9 and v = 1. For depth-first search, we first add the edge {1, 3} and then

the edge {3, 2}, followed by {2, 9}, {9, 6}, {6, 4}, {4, 8}, {8, 5} and {5, 7}. So in this case the

depth-first search tree is a spanning path in the graph. The vertices were added in the order

(3, 2, 9, 6, 4, 8, 5, 7).

If we consider the Petersen graph in Figure 3.4, with 1 being the root vertex, then the

depth-first search algorithm gives the ordering (1, 2, 6, 8, 4, 7, 3, 5, 10, 9). Note that after we

add the edge {3, 5} to the tree, the furthest vertex from the root and that has a neighbor

not in the tree is 3, and we add {3, 10}. Then the next furthest vertex from the root which

has a neighbor outside of the tree so far is 4 and we add the edge {4, 10} to complete the

tree.

3.5 Prim’s and Kruskal’s Algorithms

Let G be a graph and let ω be a weight function on the edges of the graph: this is a

function ω : E(G) → [0,∞). In this section, we give algorithms for finding a minimum

weight spanning tree in the graph, namely a spanning tree whose sum of edge weights is

as small as possible. A very simple algorithm, known as Prim’s Algorithm , starts with a

single vertex, and then at any stage, given a tree T constructed so far, adds an edge {u, v}
such that u ∈ V (T ) and v 6∈ V (T ) and ω(u, v) is a minimum, until V (T ) = V (G). When

the algorithm terminates, T is a minimum weight spanning tree in the graph:

Theorem 3.5.1 The output of Prim’s Algorithm is a minimum weight spanning tree.

Proof . We prove by induction on m that a tree T constructed at stage m of Prim’s

Algorithm is a subtree of some minimum weight spanning tree. This is clearly true if m = 0,

so we suppose m ≥ 1. We then have a tree T with m edges contained in some minimum

weight spanning tree T ∗, and an edge e that will be added to T by Prim’s Algorithm. We

have to show T ∪ {e} is contained in some minimum weight spanning tree. If T ∪ {e} is

contained in T ∗, we are done. So suppose T ∪ {e} is not contained in T ∗. Since T ∗ ∪ {e}
contains a cycle C, and e = {u, v} has u ∈ V (T ) and v 6∈ V (T ), there exists an edge

e′ = {u′, v′} in T ∗ such that u′ ∈ V (T ) and v′ 6∈ V (T ). Therefore ω(e′) ≥ ω(e). If we remove

e′ from T ∗ and add e, we get a spanning tree T ′ whose weight is the weight of T ∗ minus

(ω(e′)− ω(e)). But T ∗ was of minimum weight, so we conclude ω(e′) = ω(e) and T ′ has the

same weight as T ∗. Therefore T ′ is a minimum weight spanning tree containing T ∪ {e′}, as

required. �

Another similar algorithm, Kruskal’s Algorithm , maintains two sets E and F of edges

in the graph, starting with E = E(G) and F = ∅ and V = V (G). At any stage of the

algorithm, F is a forest and E is a subset of the edges of the graph. We select an edge of
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minimum weight in E, and remove it from E. If this edge connects different components

of the graph (V, F ) (i.e components of F with respect to all the original vertices of G), we

add it to F . The algorithm terminates when F is a spanning tree of the graph, and in this

case, F is a minimum weight spanning tree. The proof of the correctness of this algorithm

is similar to the proof of correctness of Prim’s Algorithm, and we leave it as an exercise. //

3.6 Dijkstra’s Algorithm

Let G be a graph and let ω be a weight function on the edges of the graph: this is a

function ω : E(G) → [0,∞). For a vertex v ∈ V (G), we seek to find for every u ∈ V (G)

a shortest path from u to v, where the length of a path is the sum of the weights on its

edges. When all weights equal 1, we are finding paths of shortest length from v to every

other vertex, and the breadth-first search algorithm gives all such paths. In general, one

may use Dijkstra’s Shortest Path Algorithm to find the shortest paths in weighted

graphs. There are also algorithms allowing negative weights, such as the Floyd-Warshall

Algorithm and Bellman-Ford Algorithm , but we do not discuss these here.

Dijkstra’s Algorithm on a weighted graph G is as follows. Initially, let P = {v} and T =

V (G)\{v}, and define `(v) = 0 and `(u) =∞ for u ∈ T . At any stage, we have the last vertex

u added to P . For each neighbor w ∈ T of u, replace `(w) with min{`(w), `(u) + ω(u,w)}.
Then add the neighbor w ∈ T of u with the smallest label to P and repeat. If no vertex

of P has a neighbor in T , then set P = V (G). The algorithm terminates when P = V (G).

The pseudocode is as follows:

1: function Dijkstra(Graph, source):

2: for each vertex u in Graph:

3: dist[u] ← infinity

4: previous[u] ← undefined

5: dist[source] ← 0

6: Q ← the set of all nodes in Graph

7: while Q is not empty:

8: v ← node in Q with smallest dist[ ]

9: remove v from Q

10: for each neighbor u of v:

11: alt ← dist[v] + ω(v, u)

12: if alt < dist[u]

13: dist[u] ← alt

14: previous[u] ← v

15: return previous[], dist[]
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Example 13. Use Dijkstra’s Algorithm to find shortest paths from vertex d to all other

vertices in the weighted graph below:

Figure 3.5: Dijkstra’s Algorithm

We first assign all vertices except d the label ∞, whereas `(d) = 0. We also initialize the

‘previous’ array to p(v) = undefined for all vertices.

Then we change the labels of the neighbors of d in T as follows:

`(a) = 6 `(c) = 1 `(e) = 2

and we set the ‘previous’ array to p(a) = p(c) = p(e) = d.

Since c has the smallest label, let P = {c, d}. We change the labels of the neighbors of c in

T as follows:

`(b) = 4 `(a) = 5 and we set p(b) = p(a) = c.

Since e has the smallest label, let P = {e, c, d}. We change the labels of the neighbors of e

in T as follows:

`(a) = 4 and we set p(a) = c.

Since a has the smallest label, let P = {a, c, d, e}. We change the labels of the neighbors of

a in T as follows:

`(f) = 6 and we set p(f) = a.
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Since b has the smallest label, let P = {a, b, c, d, e}. We change the labels of the neighbors

of b in T as follows:

`(g) = 10 and we set p(g) = b.

Since f has the smallest label, let P = {a, b, c, d, e, f}. We finally let `(g) = 8, p(g) = f , and

P = {a, b, c, d, e, f, g} = V (G).

This completes the proof, with the labelling of all the vertices being

`(a) = 4, `(b) = 4, `(c) = 1, `(d) = 0, `(e) = 2, `(f) = 6, `(g) = 10.

These are the weights of the shortest paths from d to each vertex. The ‘previous’ array is

p(a) = e, p(b) = c, p(c) = d, p(d) = undefined, p(e) = d, p(f) = a, p(g) = f.

The shortest paths can be listed by backtracking using this array. For the shortest path from

d to f , work backwards starting from f :

p(f) = a; p(a) = e; p(e) = d.

Reversing those gives the path deaf. Here is a table of the shortest paths:

Pair of vertices Shortest path
d to a d e a
d to b d c b
d to c d c
d to d d
d to e d e
d to f d e a f
d to g d e a f g

Figure 3.6: Shortest paths

We have not invested time in implementation of Dijsktra’s Algorithm. Using minimum

priority queues, the running time can be made to be of order |E(G)|+ |V (G)| log |V (G)|.
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3.7 Exercises

Question 3.1◦ Prove that every tree is bipartite.

Question 3.2◦ Determine which of the graphs below is bipartite, and find a bipartition of

each bipartite graph.

Figure 3.7: Testing bipartiteness

Question 3.3◦ Use the breadth-first and depth-first search algorithm to find spanning trees

of the graph in Figure 1.21, with the root of the tree at v1 and the ordering of the vertices

being (v1, v2, . . . , v9). Show all your work.

(a) Write down the height of each tree.

(b) Write down the radius of the graph.

(c) Write down the diameter of the graph.

Question 3.4◦ Apply Prim’s and Kruskal’s Algorithms to the graph in Figure 3.5 to deter-

mine minimum weight spanning trees in the graph. Apply Dijkstra’s Algorithm to find all

shortest paths from vertex g.
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Question 3.5◦ Find breadth-first search and depth-first search trees in the dodecahedron

graph shown below.

Figure 3.8: Dodecahedron graph

Question 3.6◦ Let G = (V,E) be a graph and d(x, y) the distance between two vertices.

Prove that (V, d) is a metric space .

Question 3.7◦ Give a description of all graphs of radius 1 and diameter 2.

Question 3.8. Prove that the vertices of an n-vertex connected graph can be ordered

(v1, v2, . . . , vn) so that for i > 1, vi has at least one neighbor vj with j < i.

Question 3.9. Let G be a digraph such that every vertex has in-degree at least k ≥ 1.

Prove that G contains a directed cycle of length at least k + 1.

Question 3.10. Prove that any n-vertex graph with m ≥ n edges has at least m − n + 1

cycles.

Question 3.11. Let G = (V,E) be a connected graph. Prove that for 1 ≤ k ≤ |V (G)|, G
has a connected subgraph with exactly k vertices.

Question 3.12. Prove that for every graph G with radius r and diameter d, r ≤ d ≤ 2r.

For each pair of positive integers r and d with r ≤ d ≤ 2r, give an example of a graph with

radius r and diameter d.

Question 3.13. Let G be an n-vertex graph with n ≥ 2 and δ(G) ≥ (n− 1)/2. Prove that

G is connected and that the diameter of G is at most two.
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4 Structure of connected graphs

We just gave three equivalent characterizations of trees in Proposition 3.1.2. In general, we

would like to describe how to build connected graphs: what are the basic building blocks

of graphs? In this section, we visit basic theorems of structural graph theory , including

notions of block decomposition, ear decomposition, and Menger’s Theorems.

4.1 Block decomposition*

The main result in this section will be the block decomposition theorem. We require some

definitions. A cut vertex of a graph G is a vertex G such that G − {x} is disconnected.

A block of a graph is a maximal connected subgraph with no cut vertex – a subgraph with

as many edges as possible and no cut vertex. So a block is either K2 or is a graph which

contains a cycle. For example in a tree, every block is K2. The block decomposition of a

graph is just the set of all the blocks of the graph. An example of a block decomposition is

shown below.

Figure 4.1: Blocks

In the picture, there are fourteen blocks. Seven of the blocks are K2, four of the blocks are

triangles, one of the blocks is K5, and there are two other blocks. The block decomposition

theorem says that block decompositions of graphs have a “tree-like structure”. To make this

precise, given a graph G, we form a new graph B where the vertices of B consist of all cut

vertices of G and also all blocks of G, and where a block is joined to all cut vertices of G

contained in it. An example of this graph is shown below for the figure above:
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Figure 4.2: The graph B

In the figure, the black vertices represent cut vertices of G, and the grey vertices represent

blocks of G. Here is the block decomposition theorem:

Theorem 4.1.1 Let G be a connected graph. Then B is a tree.

Proof . By adding edges inside the blocks of G, we do not change B, so we can assume

every block of G is a complete graph. Since G is connected, clearly B is connected too. Now

we show B has no cycles. The vertices of a cycle C ⊆ B are alternately blocks of G and cut

vertices of G, by definition of B. This is shown in the figure below:

B

B

v

B

v

Figure 4.3: Cycle in B

In the figure, the blocks are shown as grey dots and labelled B and the cut vertices are

black dots labelled v. Let the cut vertices of G in order along C be v0, v1, . . . , vk, v0. Then

v0v1v2 . . . vkv0 is a cycle C ⊆ G. If B ∈ C, then B ∪ C is a subgraph of G consisting of the
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complete graph B together with the cycle C containing an edge of B and at least one edge

not in B. Therefore B ∪ C has no cut vertex, and must be a block of G. However, this

contradicts the definition that B is block. �

Using this theorem, we give a first example of a structure theorem in graph theory. We

say that a uv-path P in a graph G is internally disjoint from a subgraph H of G if

V (P ) ∩ V (H) = {u, v}. Define a theta graph to be any graph consisting of the union of

three pairwise internally disjoint paths between two vertices.

Proposition 4.1.2 Let G be a connected graph containing no theta graph. Then every block

of G is a cycle or K2 and G is a tree of cycles and K2s.

Proof . Let B be a block of G. If B 6= K2, then B contains a cycle, C. If B 6= C, then

there is a path P in B such that P ∪ C is a theta graph: namely, pick a shortest path in

B − E(C) between two vertices of C. Therefore B = K2 or B is a cycle. We know by the

last result that G is then a tree of cycles and K2s. �

Figure 4.4: Tree of cycles and K2s

4.2 Structure of blocks : ear decomposition*

In this section we will give method for decomposing blocks, called ear-decomposition . Let

G 6= K2 be a block and P ⊂ G a path all of whose internal vertices have degree two in G

and whose ends have degree at least three in G. Then P is called an ear of G (see Figure

4.5). Note that an ear can be a single edge.

54



D
RA
FT

P

G

Figure 4.5: Ear decomposition

The main theorem in this section says that blocks can be built from a cycle by adding ears.

More precisely, a graph G has an ear decomposition if there is sequence of subgraphs of G,

say G0 ⊂ G1 ⊂ · · · ⊂ Gt such that G0 is a cycle, Gt = G, and Gi is obtained from Gi+1 by

removing the internal vertices of some ear in Gi+1 or, if the ear is a single edge, deleting this

edge.

Theorem 4.2.1 (Ear decomposition)

A graph G 6= K2 is a block if and only if it has an ear-decomposition.

We prove Theorem 4.2.1 using the notion of equivalence relations.

Definition 4.2.2 An equivalence relation on a set S is a set R of ordered pairs of elements

of S with the following properties:

1. (a, a) ∈ R
2. if (a, b) ∈ R then (b, a) ∈ R.

3. if (a, b), (b, c) ∈ R then (a, c) ∈ R.

The properties 1, 2 and 3 of an equivalence relation are called reflexivity , symmetry and

transitivity , respectively. If (a, b) ∈ R, we say that a and b are equivalent under R.

Example 14. For instance, if G = (V,E) is a graph and

R = {(u, v) ∈ V × V : u and v are joined by a path},

then R is an equivalence relation, and any two vertices in a component of G are equivalent

under R. To prove this, the main thing to check is transitivity: that if u and v are joined

by a path and v and w are joined by a path then also u and w are joined by a path. It is

convenient, rather than writing (u, v) ∈ R, to write u ∼ v.

For the proof of Theorem 4.2.1, we define an equivalence relation ∼ on the edge set of a

graph G = (V,E) as follows: for e, f ∈ E, e ∼ f if and only if e = f or some cycle in G

contains both e and f . The following lemma says that ∼ is indeed an equivalence relation:
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Lemma 4.2.3 For any graph G, the relation ∼ is an equivalence relation on E(G).

Proof . By definition we know e ∼ e for any edge e ∈ E(G), and e ∼ f is clearly the

same as f ∼ e. It remains to verify transitivity: we have to prove that if some cycle C ⊂ G

contains e and f , and some cycle D ⊂ G contains f and g, then some cycle in G contains

both e and g. Consider the path P = D−f . then there is a path Q ⊆ P containing g whose

first and last vertices u, v are in V (C) but with no other vertices in C. Clearly C ∪ Q is a

theta graph containing e and g, consisting of internally disjoint uv-paths Q,R and S such

that R ∪ S = C. Then either Q ∪ S or Q ∪R is the required cycle containing both e and g.

�

e

f
u

gC

D

Q

S

v

R

Figure 4.6: Transitivity of ∼

Theorem 4.2.4

For a graph G with at least three vertices and no isolated vertices, the following three state-

ments are equivalent:

1. G is a block

2. every two edges of E(G) are in a common cycle

3. any two vertices of V (G) are in a common cycle.

Proof . We show first that 1 implies 2. Let e0 = {x0, x1} and ek = {xk, xk+1} be edges

of G. We have to show e0 ∼ ek. Since G is connected, there is a path P ⊂ G of the form

x0e0x1e1x2e2 . . . xkekxk+1. Since G−{xi} is connected, there is a path in G−{xi} from xi−1
to xi+1, which means that ei−1 and ei are contained in a common cycle in G, for all i. In

other words, ei−1 ∼ ei for all i. But by transitivity, this means e0 ∼ ek, as required. So 1

implies 2. To prove that 2 implies 3, let u, v ∈ V (G) and select an edge e containing u and

an edge f 6= e containing v (this edge exists because G has at least three vertices). Then

e ∼ f by assumption, so some cycle in G contains both u and v, as required. So 2 implies 3.

Finally, to show 3 implies 1, G − {x} is connected for any x ∈ V (G), otherwise we get the
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contradiction that two vertices in different components of G− {x} are not on a cycle in G.

�

Proof . of Theorem 4.2.1. Suppose G is a block, and let H be a maximal subgraph of

G with an ear decomposition. Since G contains a cycle, H certainly exists. Suppose, for

a contradiction, that H 6= G. Then there exists an edge e ∈ E(G)\E(H). If e joins two

vertices of H, then H + e has an ear decomposition, contradicting the maximality of H.

Therefore e has an end not in H. Let f be any edge of H. Then e and f are contained in a

common cycle, C, by Theorem 4.2.4 part 2. In particular, C contains at least two vertices

of H, so there is a path P ⊂ C, internally disjoint from H, and with both ends in H. But

then P is an ear of H ∪ P , contradicting the maximality of H. We conclude that H = G.

The proof of the converse statement is left as an exercise. � //

The theorem on ear decomposition is very useful for proving statements about blocks by

induction.

4.3 Decomposing bridgeless graphs*

Here we prove an ear-decomposition theorem for graphs with no bridges. It cannot be the

same as for blocks, since the graph consisting of the union of two cycles sharing exactly one

vertex is not a block and does not have an ear decomposition in the sense of the last section.

The new ear decomposition is described as follows: an ear decomposition of a graph G is

a sequence of subgraphs of G, say G0 ⊂ G1 ⊂ · · · ⊂ Gt such that G0 is a cycle, Gt = G,

and Gi+1 = Gi ∪ P for a path P internally disjoint from Gi with both ends in V (Gi), or

Gi+1 = Gi ∪ C for a cycle C with exactly one vertex in common with Gi.

C

G

Figure 4.7: New ear decomposition

The proof of the ear-decomposition theorem is similar to that of Theorem 4.2.1:

Theorem 4.3.1

A graph is bridgeless if and only if it has an ear decomposition.
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Proof . Suppose G has an ear decomposition. Let e be an edge of G. It is sufficient to

prove that e is contained in a cycle – then e cannot be a bridge of G by Lemma 3.1.1. If e is

not in a cycle, then e is a bridge of G. Let P be an ear of G. Since e is a bridge of G, P can

never contain e, since there is a cycle in G containing all edges of P . Therefore e survives our

procedure, but then e must be in a cycle, a contradiction. So G must be 2-edge-connected.

Now suppose that G is 2-edge-connected. Then G contains a cycle, so G has a subgraph

with an ear decomposition. So we can take a maximal subgraph H of G so that H has an

ear decomposition. We’ll show H = G. If H 6= G, then there is an edge e of G joining a

vertex of H to a vertex of G not in H, otherwise H + e has an ear decomposition. This edge

is in a cycle C, by Lemma 3.1.1. If C contains only one vertex of H, then H ∪ C has an

ear-decomposition, a contradiction. So C contains two vertices in H, and we find a shortest

path between two vertices of H in G to add to H, a contradiction. So H = G. �

4.4 Contractible edges*

A vertex cut of a graph G is a set of vertices whose removal from G gives a disconnected

graph. A graph G is k-connected if every vertex cut has size at least k. In the last

section, we gave a structural characterization of connected graphs via blocks. Using the ear

decomposition theorem, it is possible to prove the following statement. We recall that if G

is a graph and e ∈ E(G), then G/e is the graph obtained by contraction of the edge e.

If G is a k-connected graph and e ∈ E(G), and G/e is also k-connected, then e is called a

contractible edge of G.

Theorem 4.4.1 Let G 6= K3 be 2-connected, and let e ∈ E(G). Then G/e or G − e is

2-connected. Furthermore, G contains a contractible edge.

Tutte proved a similar theorem for 3-connected graphs:

Theorem 4.4.2 Let G 6= K4 be 3-connected, and let e ∈ E(G). Then G/e or G − e is

3-connected. Furthermore, G contains a contractible edge.

This theorem cannot be extended to k-connected graphs with k ≥ 4 : there are infinitely

many k-connected graphs with no contractible edges. In general, there is no good structural //

characterization of k-connected graphs. The next main topic is Menger’s Theorem, which

describes connectivity in terms of internally disjoint paths.

4.5 Menger’s Theorems

Let u and v be vertices in a graph G, and let P and Q be uv-paths. Then P and Q are

internally disjoint if the only vertices they have in common are u and v. A uv-separator
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is a set W ⊂ V (G)\{u, v} such that u and v are in distinct components of G − W . For

non-adjacent vertices u, v ∈ V (G), let κ(u, v) denote the minimum size of a uv-separator.

We prove the vertex form of Menger’s Theorem:

Theorem 4.5.1 (Menger’s Theorem - Vertex Form) The minimum size κ(u, v) of a

uv-separator in a graph G is equal to the maximum number of pairwise internally disjoint

uv-paths in G. In particular, a graph is k-connected if and only if each pair of its vertices is

connected by k pairwise internally disjoint paths.

Proof . For k = 1 the theorem is just the definition of a connected graph. Now suppose

k ≥ 2. If there are k internally disjoint uv- paths in G, then clearly k vertices are required

to separate u from v, as at least one vertex is required to destroy each of the internally

disjoint uv-paths. Now suppose k vertices are required to separate u from v. Let G be a

counterexample to the theorem with the smallest possible value of k, and with the smallest

number of edges. Now N(u) ∩N(v) = ∅ otherwise, for any x ∈ N(u) ∩N(v), G − {x} is a

counterexample to the theorem with k − 1 vertices separating u from v but at most k − 2

internally disjoint uv-paths. Now let W be a set of k vertices separating u from v. We

consider two cases.

Case 1. W 6⊆ N(u) and W 6⊆ N(v). Let Hu and Hv be the components of G − W

containing u and v respectively. Note that Hu and Hv have each at least two vertices, since

N(u) ∩N(v) = ∅, so E(Hu) 6= ∅ and E(Hv) 6= ∅. An illustration is given in Figure 4.8:

Figure 4.8: The components Hu and Hv

Let Gu be obtained from G − V (Hu) by adding a vertex w adjacent to all neighbors of

Hu in W . By the minimality of the number of edges in G as a counterexample, there are k

internally disjoint wv-paths P1, P2, . . . , Pk. Similarly, the graph Gv obtained from G−V (Hv)

by adding a vertex x adjacent to all neighbors of Hv in W has k internally disjoint xu-paths

Q1, Q2, . . . , Qk. Suppose W = {w1, w2, . . . , wk} and Pi starts with the edge {w,wi} and Qi

starts with the edge {x,wi} (see Figure 4.8. Then Qi − {x} together with Pi − {w} is a
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uv-path Ri ⊆ G, and the paths R1, R2, . . . , Rk are internally disjoint, as required (in Figure

4.9, Ri is shown, with Qi − {x} in green and Pi − {x} in blue).

Figure 4.9: The graphs Gu and Gv

Case 2. W ⊆ N(u) or W ⊆ N(v). We reduce this case to Case 1. Let P be a shortest

uv-path with edges {u, u1}, {u1, u2}, . . . , {ui−1, ui}, {ui, v}. Since N(u) ∩ N(v) = ∅, P has

length at least three. In particular, u1 6∈ N(v) and u2 6∈ N(u). Let e = {u1, u2}. Then every

uv-separator in G−e has size at least k−1. If every uv-separator has size at least k then, by

minimality of G, we have k internally disjoint uv-paths in G− e, and therefore in G, which

is a contradiction. So G − e has a uv-separator W0 of size k − 1. Then W1 = W0 ∪ {u1}
and W2 = W0 ∪ {u2} are uv-separators of size k in G. Since N(u) ∩N(v) = ∅, W0 6⊆ N(u)

or W0 6⊆ N(v). If W0 6⊆ N(u), then W1 6⊆ N(u) and W1 6⊆ N(v) since u1 6∈ N(v). If

W0 6⊆ N(v), then W2 6⊆ N(v) and W2 6⊆ N(u) since u2 6∈ N(u). So Case 1 applies to W1 or

W2. �

We next give the edge form of Menger’s Theorem. An edge cut of a graph G is a set of

edges whose removal from G gives a disconnected graph. A graph G is k-edge-connected if

every edge cut has size at least k. A set L ⊂ E(G) is a uv-edge-separator if u and v are in

different components of G−L. Let λ(u, v) denote the minimum size of a uv-edge-separator.

The edge form of Menger’s Theorem for k-edge-connected graphs is as follows:

Theorem 4.5.2 (Menger’s Theorem - Edge Form) The minimum size λ(u, v) of a

uv-edge-separator in a graph G equals the maximum size of a set of pairwise edge-disjoint

uv-paths in G. In particular, a graph is k-edge-connected if and only if each pair of its

vertices is connected by k pairwise edge-disjoint paths.

We will also derive these theorems from the Max-Flow Min-Cut Theorem later in the course.

We leave the following lemma as an exercise: //

Lemma 4.5.3 Let G be a k-connected graph and let A be a set of at least k vertices in

G. Then the graph obtained from G by adding a new vertex adjacent to all vertices in A is

k-connected.
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4.6 Fan Lemma and Dirac’s Theorem*

If A and B are sets of vertices in a graph G, then an AB-path is a path with one end in A

and the other in B. For x ∈ V (G) and |A| = k, an xA-fan is a set of paths P1, P2, . . . , Pk
such that V (Pi) ∩ V (Pj) = {x} for i 6= j and each Pi has one end equal to x and the other

end in A. This is shown in Figure 4.10 with A = {a, b, c, d, e}:

Figure 4.10: An xA-fan

We derive the following from the vertex form of Menger’s Theorem:

Corollary 4.6.1 (Fan Lemma) Let G be k-connected with at least k + 1 vertices. Then

1. for any A ⊂ V (G) of size k and x ∈ V (G)\A, there exists an xA-fan in G.

2. for any A,B ⊂ V (G) of size k, there exist k pairwise vertex-disjoint AB-paths.

Proof . To prove (2), let G∗ be the graph obtained from G by adding a vertex y adjacent

to all vertices in A. Since |A| ≥ k, Lemma 4.5.3 shows G∗ is k-connected. By Menger’s

Theorem, there exist k pairwise internally disjoint paths between x and y in G∗. Removing

y from all of these paths, we have k paths from x to A with only x in common – an xA-fan.

To prove (3), let G∗∗ be obtained from G by adding a vertex a adjacent to all vertices in A

and a vertex b adjacent to all vertices in B. Since |A| ≥ k and |B| ≥ k, G∗∗ is k-connected,

via two applications of Lemma 4.5.3. By Menger’s Theorem, there are k pairwise internally

disjoint ab-paths in G∗∗. Removing a and b from these paths gives k pairwise vertex-disjoint

AB paths in G. �

Dirac’s Theorem says that through any k vertices in a k-connected graph we can find a cycle,

when k ≥ 2.

Theorem 4.6.2 (Dirac’s Theorem) Let G be a k-connected graph, where k ≥ 2, and let

X be a set of k vertices of G. Then there exists a cycle in G containing X.
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Proof . By induction on k. If k = 2, then every pair of vertices of G is joined by two

internally disjoint paths by Menger’s Theorem, so every pair of vertices is contained in a

cycle (this is also Theorem 2.2.4 (3)).

Now let G be a k-connected graph, where k > 2, and let X = {x1, x2, . . . , xk} be a set of k

vertices of G. Since G is also k−1 connected, there is a cycle C containing {x1, x2, . . . , xk−1}.
We can assume that the order in which these vertices appear on C is x1, x2, . . . , xk−1. We

consider first the case that C has length k − 1. Since |V (G)| ≥ k + 1, there is a vertex

x ∈ V (G)\X. By the Fan Lemma (2), there are k paths from xk to {x1, x2, . . . , xk−1, x}
with only the vertex xk in common. Now if Pi is the path from xk to xi, then C ∪ Pi ∪ Pi+1

is a cycle containing X, as required. Next we consider the case |V (C)| ≥ k. If xk ∈ V (C),

we are done, so we assume xk 6∈ V (C). Then for any x ∈ V (C)\{x1, x2, . . . , xk−1}, there

are k paths from xk to {x1, x2, . . . , xk−1, x} with only the vertex xk in common, by the Fan

Lemma (2). Let these paths be P1, P2, . . . , Pk−1, Pk. Let yi denote the first vertex of Pi on C

and let Qi ⊂ Pi denote the path from xk to yi. For some i, j, there is a path P ⊂ C joining

yi to yj containing none of the vertices {x1, x2, . . . , xk−1} (see Figure 4.11). Now delete the

vertices of P between yi and yj from C to get a path Q ⊂ C. Then Q ∪ Qi ∪ Qj is a cycle

containing X (define Qk+1 = Q1). This proves the result. �

xk

Qk

x

y1

x1

yk

yi

yj

Qi

Qj
← P

C

Figure 4.11: Dirac’s Theorem
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4.7 Vertex and edge connectivity

Let G be a graph. We define λ(G), the edge-connectivity of G, to be the minimum size

of an edge cut in G: it is the minimum size of L ⊂ E(G) such that G − L is disconnected.

Thus a graph is `-edge-connected if and only if λ(G) ≥ `, and

λ(G) = min{λ(u, v) : u, v ∈ V (G)}.

If G is not a complete graph, then we define κ(G), the vertex-connectivity of G, to be

the minimum size of a vertex cut in G: it is the minimum size of a set S ⊂ V (G) such that

G− S is disconnected. Thus a graph is k-edge-connected if and only if κ(G) ≥ k, and

κ(G) = min{κ(u, v) : u, v ∈ V (G), {u, v} 6∈ E(G)}.

If G = Kn, we define κ(G) = n − 1. It should be intuitively clear that κ(G) ≤ λ(G) for

every graph G, since we do more “damage” by removing vertices than by removing edges.

The quickest proof is via Menger’s Theorem:

Corollary 4.7.1 For any graph G, κ(G) ≤ λ(G) ≤ δ(G).

Proof . Since the edges containing a vertex of minimum degree form an edge cut, λ(G) ≤
δ(G). Now we prove κ(G) ≤ λ(G). For u, v ∈ V (G), let k(u, v) be the maximum number

of pairwise internally disjoint uv-paths, and `(u, v) be the maximum number of pairwise

edge-disjoint uv-paths. Then by the edge form of Menger’s Theorem:

λ(G) = min{λ(u, v) : u, v ∈ V (G)} = min{`(u, v) : u, v ∈ V (G)}.

Now k(u, v) ≤ `(u, v) for all u, v ∈ V (G), since internally disjoint paths are also edge-disjoint

paths, and therefore

κ(G) = min{κ(u, v) : u, v ∈ V (G), {u, v} 6∈ E(G)}
= min{k(u, v) : u, v ∈ V (G)}
≤ min{`(u, v) : u, v ∈ V (G)} = λ(G).

The reader should check why the first two lines are equal here. � //

This corollary can be proved directly, without Menger’s Theorems. It is also the case that

for any three positive integers d ≥ ` ≥ k, there exists a graph G with κ(G) = k, λ(G) = `

and δ(G) = d. //
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4.8 Exercises

Question 4.1◦ In Figure 1.21, a graph G with nine vertices is shown.
(a) Give the block decomposition of G.

(b) Find an ear decomposition of G.

(c) Determine λ(G) and κ(G).

(d) Is there a subgraph of G with larger vertex-connectivity than G?

(e) Is there a subgraph of G with larger edge-connectivity than G?

Question 4.2◦ Find the value of κ(u, v) for the graph shown in Figure 4.12 below.

Figure 4.12: Find κ(u, v)

Question 4.3◦ Determine the minimum degree δ(G), edge connectivity λ(G) and vertex

connectivity κ(G) for each of the following two graphs. You do not need to justify your

answers.

(a) (b)

Question 4.4◦ Let G be a connected k-regular bipartite graph. Prove that G is a block.
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Question 4.5. Let G be a connected graph with at least two vertices. Prove that if L is a

minimum edge cut of G, then G− L has exactly two components.

Question 4.6. Let G be an Eulerian graph. Prove that λ(G) is even.

Question 4.7. Let G be a graph.

(a) Prove that if G is 3-connected, then G has a cycle of even length.

(b) Prove that if G has maximum degree at most three, then λ(G) = κ(G).

(c) Give an example to show λ(G) > κ(G) when G has maximum degree four.

Question 4.8. Let G be an n-vertex graph with n ≥ k+ 1 and δ(G) ≥ (n+k−2)/2. Prove

that G is k-connected.

Question 4.9.

(a) Let G be an n-vertex block where n ≥ 4, and let a, b ≥ 2 with a + b = n. Prove that

there is a partition A ∪ B of V (G) such that |A| = a and |B| = b and G[A] and G[B] are

connected.

(b) Prove that for n ≥ 2, if G and H are two graphs whose union is Kn, then G is connected

or H is connected.

Question 4.10. Prove that if G is a k-connected graph and A is a set of at least k vertices

in G, then the graph obtained from G by adding a new vertex adjacent to all vertices in A

is k-connected.

Question 4.11. Let T1, T2, . . . , Tk be spanning trees in a graph G, such that E(Ti)∩E(Tj) =

∅ for all i, j : 1 ≤ i < j ≤ k and E(G) = E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk). Prove that G is

k-edge-connected, but not 2k-edge-connected.

Question 4.12. Prove that if G 6= K2 is a block such that for all v ∈ V (G), G− {v} is not

a block, then G has a vertex of degree exactly two.

Question 4.13. An edge e = {u, v} of a 4-connected graph G is contractible if G/{u, v} is

4-connected. Prove that there exist infinitely many 4-connected graphs with no contractible

edges.

Question 4.14. Prove that if G 6= K3 is a 2-connected graph, then for every edge e ∈ E(G),

G/e or G− e is 2-connected.
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Question 4.15*

(a) A critically k-connected graph is a graph G with κ(G) = k such that κ(G−{v}) < k

for every v ∈ V (G). Prove that every critically k-connected graph has a vertex of degree

exactly k.

(b) A critically k-edge-connected graph is a graph G with λ(G) = k such that λ(G−e) <
k for every e ∈ E(G). Prove that every critically k-edge-connected graph has a vertex of

degree exactly k.

Question 4.16* A subdivision of a graph G is obtained by replacing each edge of G with

a path between the ends of the edge, such that all the paths are pairwise internally disjoint.

Two subdivisions of K5 are shown below:

(a) Prove that for 1 ≤ k ≤ 3, every k-connected graph contains a subdivision of Kk+1.

(b) Find a 4-connected graph with at least five vertices that does not contain a subdivision

of K5.

Question 4.17*

(a) Prove that for each tree T with n ≥ 2 edges, there exist trees T1 and T2 such that

T1 ∪ T2 = T , n/3 ≤ |E(T1)| ≤ 2n/3 and n/3 ≤ |E(T2)| ≤ 2n/3, and |V (T1) ∩ V (T2)| = 1.

(b) Prove for each n a multiple of three that there exists a tree T as above such that every

pair of trees T1 and T2 as above has |V (T1)| = 2n/3 and |V (T2)| = 2n/3.

Question 4.18* Prove that for any block G with n vertices and m edges, any two vertices

u, v ∈ V (G) are the ends of at least m− n+ 2 distinct paths.

Question 4.19* Let k ≥ 3 and let G be a k-connected graph such that every set of at least

k vertices of the graph contains an edge of the graph. Prove that G is Hamiltonian.
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5 Matchings and Factors

A matching in a graph is a set of pairwise vertex-disjoint edges of the graph. In this section

we are interested in determining the size of a maximum matching in a given graph and

when a graph has a perfect matching or 1-factor – that is, a matching covering all its

vertices. For bipartite graphs, this question will be completely answered by Hall’s Theorem,

and for general graphs, by Tutte’s 1-Factor theorem.

5.1 Independent sets and covers

An independent set in a graph G is a set X of vertices no pair of which is an edge of

G – in other words the subgraph G[X] induced by X has no edges. The maximum size of

an independent set in a graph G is denoted α(G). The maximum size of a matching in a

graph G is denoted α′(G). A vertex cover of G is a set of vertices X ⊂ V (G) such that

e ∩X 6= ∅ for every edge e ∈ E(G) – in other words, a set of vertices which intersects every

edge of G. The minimum size of a vertex cover of G is denoted β(G). An edge cover of

G is a set of edges covering every vertex of G – that is a set E ⊂ E(G) such that for every

vertex v ∈ V (G), there is an edge of E containing v. The minimum size of an edge-cover is

denoted β′(G).

Example 15. The Petersen graph P is shown in the figure below. This graph has a

perfect matching, for instance the edges {1, 9}, {3, 10}, {2, 6}, {5, 8}, {7, 4} form a perfect

matching. Therefore α′(P ) = 5. An example of a maximum independent set is {2, 4, 5, 10},
and therefore α(P ) = 4. A minimum vertex cover is {1, 3, 6, 7, 8, 9} and so β(P ) = 6. Finally,

a perfect matching is by definition a minimum edge cover, so β′(P ) = 5.6

Figure 5.1: Covers, matchings and independent sets

6Find examples of other perfect matchings, maximum independent sets, and minimum covers in the
Petersen graph.
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Lemma 5.1.1 For any graph G, α(G) + β(G) = |V (G)|.

Proof . If I is an independent set of vertices in G, then V (G)\I is a vertex cover: every edge

of G has at least one end in V (G)\I since no edges have both ends in I. Conversely, if C is

a vertex cover, then every edge is incident with C so no edges have both ends in V (G)\C.

Therefore V (G)\C is an independent set of G. We conclude α(G) + β(G) = |V (G)|. �

Lemma 5.1.2 (Gallai’s Lemma) Let G be a graph with no isolated vertices. Then α′(G)+

β′(G) = |V (G)|.

Proof . Let M be a matching in G of size α′(G) – a maximum matching. Then no edge of

G has both ends in V (G)\V (M), so V (G)\V (M) is an independent set of vertices. Now let

us choose one edge incident with each vertex in V (G)\V (M) and all edges of M . The set

of edges we get, say F , is an edge-cover of size |E(M)| + |V (G)\V (M)| = |V (G)| − α′(G).

Therefore β′(G) ≤ |V (G)| − α′(G).

Conversely, let F be an edge-cover of G of size β′(G) – a minimum edge-cover. Then F − e
is not an edge cover for any e ∈ E(F ). This means that each edge of F must cover one of

its ends uniquely, so every edge of F has an end of degree one in F . In particular, every

component of F is a star – a K1,t for some t ≥ 1 (see Figure 5.2). Pick one edge from each

component of F to get a matching M with |E(M)| equal to the number of components of

F . Since all components of F are stars,

β′(G) = |E(F )| = |V (F )| − |E(M)| = |V (G)| − |E(M)| ≥ |V (G)| − α′(G).

This completes the proof. �

Figure 5.2: Structure of minimal edge-covers

5.2 Hall’s Theorem

Let X be a set of vertices in a graph G. We define N(X) to be the neighborhood of X,

namely

{y ∈ V (G)\X : {x, y} ∈ E(G) for some x ∈ X}.
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In other words, it is the set of vertices not in X adjacent to some vertex in X. Hall’s Theorem

gives a necessary and sufficient condition for a bipartite graph to have a perfect matching

– and in fact a matching covering all vertices of one part. There are many proofs of Hall’s

Theorem; we give two proofs.

Theorem 5.2.1 (Hall’s Theorem) Let G(A,B) be a bipartite graph. Then G has a

perfect matching if and only if for every set X ⊂ A and every set X ⊂ B,

|N(X)| ≥ |X| (Hall’s Condition)

Proof . If G has a perfect matching M , then for every X ⊆ A and X ⊆ B, there are |X|
neighbors of X in M . Therefore the number of neighbors of X in G is at least |X|, which

is Hall’s condition. Now we suppose Hall’s Condition is true, and show how to get a perfect

matching in G. We proceed induction on |A|: we prove that if |N(X)| ≥ |X| for every set

X ⊂ A in a graph G, then G contains a matching saturating all vertices of A. Note that

this proves Hall’s Theorem, since we could apply the same statement to B to get a matching

saturating all vertices of B. If |A| = 1, then the statement is true. Suppose |A| > 1. We

consider two cases. The first case is that |N(X)| > |X| for all non-empty X ⊂ A. In this

case, pick any edge of G and remove both ends of that edge, say a and b. Then we obtain the

bipartite graph H(A\{a}, B\{b}). In this bipartite graph, Hall’s Condition holds in A\{a},
and therefore H has a matching, M , saturating all vertices of A\{a}. Now M ∪ {a, b} is

the required matching in G. The second case is that for some proper subset X of A or B,

|N(X)| = |X|. Let Y = N(X). In this case, consider the graph G1(A1, B1) obtained from G

by removing all vertices of X ∪ Y , and the graph G2(X, Y ) consisting of all edges between

X and Y . Then Hall’s Condition holds in G1 and also in G2. To see that it holds in G1,

take any set S ⊂ A1. Then:

|NG1(S)|+ |NG2(X)| ≥ |NG(X ∪ S)| ≥ |X ∪ S| = |X|+ |S|

and since |NG2(X)| = |NG(X)| = |X|, we have |NG1(S)| ≥ |S| for any S ⊂ A1. By induction

G1 and G2 have matchings, say M1 and M2, saturating all their vertices in A, and M1 ∪M2

is a matching in G saturating all vertices of A. �

A 1-factorization of a graphG is a collection of pairwise edge-disjoint 1-factorsM1,M2, . . . ,Mr

such that G = M1 ∪M2 ∪ · · · ∪Mr. For example, for even values of n, the complete graph

Kn has a 1-factorization.

Corollary 5.2.2 Let G(A,B) be a k-regular bipartite graph, where k ≥ 1. Then G has a

1-factorization.
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Proof . It suffices to prove that G has a perfect matching. We apply Hall’s Theorem. //

For a set X ⊆ A, e(X,B) = k|X| since every vertex of X has degree k. We also have

e(N(X), A) = k|N(X)| for the same reason. The set of edges between X and B is contained

in the set of edges between N(X) and A, and therefore e(X,B) ≤ e(N(X), A). It follows

that k|X| ≤ k|N(X)| and so |X| ≤ |N(X)| for all X ⊆ A. Similarly, |X| ≤ |N(X)| for all

X ⊆ B. Therefore, by Hall’s Theorem, G has a perfect matching. �

5.3 Systems of distinct representatives

Let S1, S2, . . . , Sn be sets. Then the sets have a system of distinct representatives or

transversal if we can select s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn such that s1, s2, . . . , sn are all

different. The problem of determining whether sets S1, S2, . . . , Sn have a system of distinct

representatives can be solved via Hall’s Theorem, as follows.

Let G be a bipartite graph with parts A = {S1, S2, . . . , Sn} and B = S1 ∪ S2 ∪ · · · ∪ Sn, and

where {a, b} ∈ E(G) with a ∈ A and b ∈ B if b ∈ a. In other words, join a set to all the

elements it contains. Then G has a matching covering A if and only if S1, S2, . . . , Sn have a

system of distinct representatives: the edges of the matching tell us which set each element

is a representative for.

Example 16. The sets below have a system of distinct representatives, since the graph G

we construct from these sets is the cube graph Q3, which has a perfect matching: //

S1 = {1, 2, 3} S2 = {2, 3, 4} S3 = {1, 3, 4} S4 = {1, 2, 4}

Halls’ Theorem gives a necessary and sufficient condition for distinct representatives:

Theorem 5.3.1 Sets S1, S2, . . . , Sn have a system of distinct representatives if for every set

I ⊆ {1, 2, . . . , n}, ∣∣∣⋃
i∈I

Si

∣∣∣ ≥ |I|.
5.4 Latin squares

A latin square is a square array of symbols such that every symbol appears exactly once

in every row and exactly once in every column. If the array has n rows and n columns, then

the number of symbols is exactly n, and each column and each row is a permutation of the

symbols. We call this a latin square of order n. An example of a latin square of order 7

is shown in Figure 5.3.
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Figure 5.3: A latin square of order 7

There are many ways to construct latin squares – the reader should construct a latin square //

of order n for each n ≥ 1. Note also that the multiplication table of a group is a latin

square.7

A natural question is whether we can ever get stuck constructing a latin square of order n

after partially filling the array with numbers such that no number appears more than once

in any row or column. For 1 ≤ m ≤ n, a latin rectangle is an m× n array of n numbers

such that every number appears at most once in every row and column. In particular, can

we always extend a latin m× n rectangle to a latin square of order n? The answer is given

by Hall’s Theorem:

Theorem 5.4.1 Let n ≥ m ≥ 0. Then a latin m× n rectangle can always be extended to a

latin square of order n.

Proof . If m = n, then the latin rectangle is a latin square, so we can assume m < n. We

show that a latin m × n rectangle R can be extended to a latin (m + 1) × n rectangle by

induction on m. If m = 0 then we just take a permutation of the n symbols to get a 1× n
rectangle. If m > 0, form a bipartite graph with parts A and B where A represents the set

of n symbols, and B represents the entries of row m+ 1, and where {a, b} is an edge of the

graph with a ∈ A and b ∈ B if symbol a can be placed in the bth entry of row m + 1 – in

other words, symbol a is not used by R in the first m rows of column b. Then each b ∈ B
has degree n −m in the graph, since there are exactly m symbols used by R in column b.

Each a ∈ A has degree n −m, since symbol a is used by exactly m columns of R, so there

are n − m remaining columns such that a can be placed in that column and row m + 1.

In other words, the graph is (n − m)-regular. By Corollary 5.2.2, the graph has a perfect

matching {a1, b1}, {a2, b2}, . . . , {an, bn}. Now place ai in position bi of row m + 1 to get a

latin (m+ 1)× n rectangle. �

7The reader should check that not every latin square is the multiplication table of a group.
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The problem of completing a latin square becomes harder if we are given an arbitrary set

of filled entries in the array. For instance, in an n × n array, it is possible to fill in only n

entries thereby preventing completion to a latin square. It turns out this is the minimum: if //

we fill in any n− 1 entries, then completion to a latin square is possible.

5.5 König-Ore Formula

A vertex not contained by any edge of a given matching is called unsaturated or exposed

by the matching, and those vertices which are contained in edges of the matching are called

saturated by the matching. Hall’s Theorem gives a formula for finding α′(G) in a bipartite

graph. For a bipartite graph G(A,B), define x(G,A) = |A| − α′(G): this is the number of

vertices of A exposed by a maximum matching. Hall’s Theorem gives a formula for x(G,A):

Theorem 5.5.1 (König-Ore Formula) Let G(A,B) be a bipartite graph. Then

x(G,A) = max
S⊂A
{|S| − |N(S)|}.

Proof . Let d be the right hand side of the identity above. Add d vertices to B, all adjacent

to all vertices of A. Then Hall’s Condition – namely |N(X)| ≥ |X| for all X ⊆ A – is satisfied

in this new graph, so it has a matching covering all vertices of A, by Hall’s Theorem. It

follows that G has a matching of size at least |A|−d. Therefore x(G,A) ≤ d. Conversely, if M

is a matching of size |A|−x(G,A), then each set S ⊆ A has at least |S|−x(G,A) neighbours

in B. In other words, |N(S)| ≥ |S| − x(G,A) so d = max{|S| − |N(S)|} ≤ x(G,A). �

As an exercise, one can prove that a bipartite graph G(A,B) of minimum degree δ and

maximum degree 4 contains a matching of size at least δ|A|/4. Another consequence of //

Hall’s Theorem is the following theorem:

Theorem 5.5.2 (König’s Theorem) If G(A,B) is a bipartite graph, then α′(G) = β(G)

and if G has no isolated vertices, then β′(G) = α(G).

To prove this, it is sufficient to show α′(G) = β(G), by Lemmas 5.1.1 and 5.1.2.

5.6 Tutte’s 1-Factor Theorem

There is a natural condition for a graph G to have a perfect matching: if S is a set of vertices

of G and H1, H2, . . . , Hr are the odd components of G− S – that is the components with

an odd number of vertices – then none of the Hi can have a perfect matching, so each sends

at least one edge of a perfect matching to S (see Figure 5.4). In particular |S| ≥ r, so we

have for all S ⊂ V (G), denoting by odd(G - S) the number of odd components of G− S,

|S| ≥ odd(G− S).
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Note that if S = ∅, this asserts that G has an even number of vertices. Tutte’s Theorem

shows, remarkably, that this is also a sufficient condition:

Theorem 5.6.1 (Tutte’s 1-Factor Theorem)

Let G be a graph. Then G has a perfect matching if and only if for every set S ⊂ V (G),

|S| ≥ odd(G− S) (Tutte’s Condition)

Proof . If G has a perfect matching M , then for any S ⊆ V (G), every odd component F of

G− S, there is at least one exposed vertex of F for the matching M ∩E(F ). Each exposed

vertex is adjacent in M to a vertex of S, so |S| ≥ odd(G − S), which is Tutte’s Condition.

Now suppose G satisfies Tutte’s Condition; we show how to find a perfect matching in G.

The proof we give is by induction on |V (G)|, the case |V (G)| = 2 holds since G = K2 in

that case. Suppose |V (G)| > 2, and let S be the largest subset of G such that equality holds

in Tutte’s Condition. Such a set S exists, because |V (G)| is even, and so G − {s} has at

least one odd component for each s ∈ V (G). Let F and H denote generic odd and even

components of G− S.

Claim 1. The graph H has a 1-factor.

For any R ⊂ V (H), we note

odd(G− (R ∪ S)) = odd(H −R) + odd(G− S)

since every odd component ofG−S is an odd component ofG−(R∪S). By Tutte’s Condition,

odd(G−R∪ S) ≤ |R|+ |S|. Since odd(G− S) = |S|, we conclude odd(H −R) ≤ |R| for all

R ⊂ V (H). By induction H has a 1-factor.

Claim 2. The graph F ′ = F − {v} has a 1-factor for any v ∈ V (F ).

By induction, if this is false, then there exists a set Q ⊂ V (F ′) such that odd(F ′−Q) > |Q|.
Now for any set R ⊂ V (F ),

odd(F −R) + |R| ≡ |V (F )| ≡ 1 mod 2

since F has an odd number of vertices (this step is really key to the proof). Therefore

odd(F ′ −Q) ≥ |Q|+ 2. We also observe

odd(G− S ∪ {v} ∪Q) = odd(G− S)− 1 + odd(F ′ −Q)

since F is an odd component of G−S but not of G−S ∪{v}∪Q. If T = S ∪{v}∪Q, then
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by Tutte’s Condition, we get

|T | ≥ odd(G− T )

= odd(G− S)− 1 + odd(F ′ −Q) ≥ |S|+ |Q|+ 1.

This shows odd(G− T ) = |T |, contradicting the maximality of S, and the claim is proved.

Claim 3. Let G(S,C) be the bipartite graph formed from G by contracting each odd compo-

nent of G− S to a single vertex, and taking all edges with one end in S and one end in the

set C of contracted vertices. Then G(S,C) has a perfect matching.

To prove this, we use Hall’s Theorem: for every set X ⊂ C,

|X| = odd(G−N(X)) ≤ |N(X)|

as required. Since |S| = |C| = odd(G− S), there is a 1-factor in G(S,C).

To complete the proof of Tutte’s 1-Factor Theorem, put together all the 1-factors that we

found in Claims 1–3. Let M1,M2, . . . ,Mr be 1-factors in the even components of G. Now

let M be a 1-factor in G(S,C). Then the edges of M form a matching in G, and for each

odd component Hi of G−S, for i ∈ {1, 2, . . . , s} where s = odd(G−S), there is exactly one

vertex of H, say vi, incident with an edge of M . Now Claim 2 gives a 1-factor Ni in H − vi.
Then

M ∪M1 ∪ · · · ∪Mr ∪N1 ∪N2 ∪ · · · ∪Ns

is a perfect matching of G. �

Even components

Matching Mi → Odd components

← Matching Ni

vi

Hi

M

Figure 5.4: The proof of Tutte’s Theorem
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From Tutte’s 1-Factor Theorem, we obtain the following condition for a cubic graph (3-

regular graph) to have a perfect matching:

Theorem 5.6.2 (Petersen’s Theorem) Any cubic bridgeless graph has a 1-factor.

Proof . We have to check Tutte’s Condition. Pick a set S ⊂ V (G). If S = ∅, then Tutte’s

Condition holds since G has an even number of vertices and is connected. Then there are

at least two edges from S to each odd component of G − S. If H is an odd component of

G− S, then it contains an even number of vertices of degree three, so it must send to S an

odd number of edges. It must send at least three edges. So we have 3r edges out of odd

components. On the other hand, G is cubic so |S| ≥ r, as required. �

5.7 Tutte-Berge Formula*

The Tutte-Berge Formula is the analog of the König-Ore Formula for non-bipartite

graphs, and gives a method for finding α′(G) i.e. the size of a largest matching in the graph.

We define x(G) to be the minimum number of vertices of G exposed by a matching of G –

thus x(G) = |V (G)| − 2α′(G).

Theorem 5.7.1 (Tutte-Berge Formula) For any graph G,

x(G) = max
S⊂V (G)

{odd(G− S)− |S|}.

The proof of this theorem is left as an exercise. The theorem can be used to give lower //

bounds on α′(G) for various graphs. For example, we apply the Tutte-Berge Formula to

cubic graphs – graphs where all the vertices have degree three – to get a lower bound on

α′(G):

Theorem 5.7.2

Let G be a cubic graph on n vertices. Then G has a matching of size at least 7n
16

.

Proof . It may be assumed that G is connected, otherwise we pass to the components of G.

We have to find an upper bound for x(G), namely x(G) ≤ n/8. By the Tutte-Berge formula,

this is the same as showing odd(G−X)− |X| ≤ n/8 for all sets X ⊂ V (G). Let X ⊂ V (G)

have size γ, and let α be the number of odd components of G−X with at most three vertices,

and β be the number of odd components of G−X with at least five vertices. Let’s call these

α-components and β-components, respectively. Then odd(G−X)− |X| = α + β − γ. Now

each α-component H of G is K1 or K3 or a path on three vertices. In each case, since G is
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cubic, e(V (H), X) ≥ 3. Each β-component F of G has e(V (F ), X) ≥ 1. On the other hand,

e(X, V (G)\X) ≤ 3|X|, since every vertex of X has degree three. Therefore

3α + β ≤ 3γ.

Next we observe that there are n− γ vertices in G−X, but also at least α+ 5β vertices in

G−X, so

α + 5β ≤ n− γ.

We want to maximize α+ β − γ subject to the above two inequalities. It is not hard to see

that we must have α = 0, β = 3n/16 and γ = n/16, in which case ex(G) = α+β− γ = n/8,

as required. �

Theorem 5.7.2 is best possible: the graph shown in Figure 5.5 is cubic with n = 16 vertices

with no matching of size more than 7 = 7n/16.

Figure 5.5: A cubic graph with no perfect matching

5.8 Matching Algorithms

In bipartite graphs, König’s Theorem gives a practical way to find a maximum matching,

using the notion of an augmenting path. An alternating path in a graph G with a match-

ing M is a path whose every alternate edge is in M – we call this M-alternating . An

augmenting path for a matching M is an alternating path whose ends are exposed by M –

we call this M-augmenting .8 The following theorem is key to many matching algorithms:

8Recall this means that these vertices are not in any edge of M .
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Theorem 5.8.1 (Berge) A matching M in a graph G is a maximum matching if and only

if M does not admit any augmenting paths.

Proof . If M is a maximum matching, it clearly admits no augmenting path, for if P is an

augmenting path, then the matching M ′ with

E(M ′) = E(M) ∪ (E(P )\E(M))

is larger than M : |E(M ′)| = |E(M)|+ 1.

Conversely, suppose M is a matching which does not admit an augmenting path, and |M | <
|N | for some maximum matching N . Then M ∪ N is a graph of maximum degree at most

two, and so all the components of M ∪N are paths or cycles (this is called a linear forest).

However, since |N | > |M |, and any cycle in M ∪N has as many edges of M as of N , there

must be a path P such that

|E(P ) ∩M | < |E(P ) ∩N |.

This means that the first and last edge of the path are in N , and so the path augments M ,

a contradiction. �

A version of the Hopcroft-Karp Algorithm for finding a maximum matching in bipartite

graphs G with parts A and B is as follows. Using Berge’s Theorem above, the key is to start

with a given matching M in a bipartite graph, and to try to find an M -augmenting path. If

no such path exists, then M is a maximum matching, otherwise, we can use the augmenting

path P to find a matching M ′ with E(M ′) = E(M) ∪ (E(P )\E(M)) which has one more

edge than M i.e. |E(M ′| = |E(M)| + 1 i.e. we take the edges of P in M out, and add the

edges of P not in M to get M ′. Pseudocode for the algorithm is given below:

1: function Hopcroft-Karp(BipartiteGraph,A,B)

2: M ← ∅

3: U ← the set of exposed vertices with respect to M.

4: From each vertex of U, grow M-alternating path

5: If some M-alternating path u1u2 . . . u2k is M-augmenting,

6: Let M ←M ∪ {u1u2, u3u4, . . . , u2k−1u2k}\{u2u3, u4u5, . . . , u2k−2u2k−1}.
7: Return to Step 3.

8: Else M ← maximum matching.

9: return M
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A key step is step 4, which is to grow all M -alternating paths starting with U , the set of

exposed vertices with respect to M . To achieve this, we may do a similar procedure to the

breadth-first search algorithm . For each u ∈ U , we build a layered graph as follows.

First add u and let L0 = {u} be the zeroth layer. At any stage, given a layered graph T

with layers L0, L1, . . . , Li, we consider two cases. If i is odd, then there exists a set Li+1 of

vertices not in T connected by edges of M to vertices of Li, and we add those edges of M to

T to get a new layered graph. If i is even, let Li+1 be the set of vertices not in T connected

by any edge to vertices in Li, and add to T a set of edges between Li and Li+1 to get a new

layered graph. Such a layered graph might look like the graph in Figure 5.6, where the edges

of the matching M are in bold.

Figure 5.6: Layered graph

We continue until a vertex v of U\{u} is added, in which case there is an M -augmenting

path in the layered graph T from u to v (see the dotted path in Figure 5.6), and we proceed

to step 6, or until every vertex of the graph not in U is added, in which case we go to the

next vertex of U and repeat the procedure. If for every u ∈ U , the layered graph rooted at

u contains no vertices of U\{u}, then there is no M -augmenting path and we go to step 8.
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Example 17. Consider the grid graph below. We use the matching algorithm to find

a maximum matching in the grid, starting with the given matching {1, 2}, {5, 6} shown in

bold.

Figure 5.7: A matching in the grid graph

First we identify the parts A and B of the grid graph. We may let A = {1, 3, 5, 7, 9} and

B = {2, 4, 6, 8}, and we are starting with the matching M = {{1, 2}, {5, 6}}.
In step 3 of the pseudocode, the set U of exposed vertices with respect to M is U =

{3, 4, 7, 8, 9}. For step 4, we grow a layered graph from each vertex of U to try to find

an augmenting path, as outlined above. We could start with 7 ∈ U , so the root of the

layered graph is 7, and this is L0. Since 0 is even, we seek edges of the graph between 7 and

the rest of the graph: {7, 8} for instance, and now we stop since 8 ∈ U . So we have steps 5

and 6 done: since {7, 8} is an edge contained in U , it is an M -augmenting path. So we can

add {7, 8} to the matching M to get a new matching M = {{1, 2}, {5, 6}, {7, 8}}. This is

shown in the center panel in Figure 5.7. 9 Now we return to step 3.

Now for step 3, the set U of exposed vertices is {3, 4, 9}. For step 4, we grow layered graphs

starting at vertices of U , as outlined above. Starting at 9 ∈ U , we add the edges {9, 6} and

{9, 8} to the layered graph to get the first layer L1 = {6, 8}. Now since 1 is odd, we add

edges of M to the layered graph and L2 = {5, 7} and so we add {8, 7} and {6, 5} to the

layered graph. Since 2 is even, we add edges with one end in L2 and the other end not in the

layered graph so far. We start with the edge {7, 4}; however since 4 ∈ U , we now stop and

we have the augmenting path with edges {9, 7}, {7, 8} and {7, 4}. So we take {7, 8} out of M

and add the edges {9, 8}, {7, 4} to M for step 6. So now M = {{9, 8}, {7, 4}, {1, 2}, {5, 6}}
(see the right panel in Figure 5.7), and we return to step 3.

We restart the algorithm with this matching M . In step 3, the set U of exposed vertices

is just U = {3}. For step 4, we grow a layered graph starting at 3: first we add the edges

9We could equally have added {7, 4} or even {8, 9} if our layered graph had been rooted at 8.
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{3, 2} and {3, 6} and the first layer is L1 = {2, 6}. Since 1 is odd, we add edges of M to

the layered graph so far, namely {6, 5} and {2, 1}. So the layered graph so far has edges

{3, 2}, {3, 6}, {6, 5}, {2, 1} and L2 = {5, 1}. Now we add edges with one end in L2 and the

other not in the layered graph so far – so we add {1, 4}, {5, 4} and {5, 8}, and L3 = {4, 8}.
Since 3 is odd, we add edges of M to the layered graph, and the only edge we can add is {4, 7}.
There are no vertices of U left (as we knew at the start), so there are no M -augmenting

paths. So we are at step 8, and therefore M is a maximum matching (it was clear since there

are 9 vertices in the graph, so at least one must be exposed by every maximum matching).

The runtime complexity of the Hopcroft-Karp Algorithm is polynomial time in n . An //

algorithm of Micali and Vazirani for maximum matchings in an n-vertex bipartite graphs

with m edges runs in time roughly m
√
n, and is the fastest known deterministic algorithm

for maximum matching. In addition, the Hungarian Algorithm and Kuhn-Munkres

Algorithms are more general than the Hopcroft-Karp Algorithm, and use matrices to

find maximum weighted matchings in bipartite graphs with weights on the edges. There

is an algorithm for maximum matchings in general graphs, called Edmonds’ Matching

Algorithm , but it is beyond the scope of this course.

5.9 Stable matchings*

Suppose we have a set of n candidates for n jobs, with each candidate listing in order of

preference the jobs they would like to do and each job having a hiring committee which lists

candidates in order of preference. Let G be the bipartite graph whose parts are A, the set

of candidates, and B the set of jobs/hiring committees. We join a ∈ A to b ∈ B if candidate

a is able to do job b. If this bipartite graph has a perfect matching, then of course we can

suitably assign all candidates to all jobs. However, this takes no account of the preferences

of the candidates. A stable matching is a perfect matching of candidates to jobs such

that no two candidates would prefer to switch jobs. In other words, if a is matched to job

b and c is matched to job d, then matching a to d and b to c leads to both a and c being

matched to jobs they prefer less than the original jobs they were assigned to. One of the

classical examples is solving medical school students assignments to internships, called the

National Residency Matching Program .10

The Gale-Shapley Algorithm solves the stable matching problem, by showing that there

is always a stable matching and it can be found efficiently, namely with runtime complexity

roughly n2. The algorithm runs as follows: first each candidate chooses a job they most

prefer, and each job is initially assigned the best candidate that has chosen that job. In

subsequent rounds of the algorithm, each candidate chooses a job they most prefer amongst

10See https://en.wikipedia.org/wiki/NRMP and the references therein.
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all the jobs they have not yet chosen in previous rounds, and then each job is assigned the

best candidate, choosing between the current candidate choosing that job, or the candidate

they were provisionally assigned in the preceding round. The process is repeated until all

candidates have been assigned a job and all jobs have been assigned a candidate. The

pseudocode is as follows:

1: function StableMatching(Graph):

2: Initialize M to the empty matching

3: While (some candidate a is unmatched and there

remains a job a is never chosen)

4: b ← first job on a’s list which a has not

yet chosen

5: If (b is unmatched)

6: Add {a, b} to matching M.

7: Else if (hiring committee for b prefers a to

current candidate a′)

8: Replace {a′, b} with {a, b} in matching M.

9: Else hiring committee b rejects a.

10: Return stable matching M.
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5.10 Exercises

Question 5.1◦ For the graphs in Figures 5.5 and 5.7, determine α(G), α′(G), β(G) and

β′(G).

Question 5.2◦ For each graph in Figure 5.8, determine a maximum matching using the

Hungarian Matching Algorithm, starting with the given matching M .

M = {{1, a}, {4, b}, {3, d}} M = ∅

Figure 5.8: Two bipartite graphs

Question 5.3◦ In Figure 1.21, a graph G with nine vertices is shown.
(a) How many components does G− {v3} have?

(b) What is odd(G− {v3})?
(c) Find a set S of vertices such that odd(G− S) > |S|.
(d) Find α(G), α′(G), β(G) and β′(G).

Question 5.4◦ A school with 20 professors forms 10 committees, each containing 6 profes-

sors, such that every professor is on exactly 3 committees. Prove that it is possible to select

a distinct representative from each committee.

Question 5.5◦ A tiling of an m × n chess board is a set of dominoes which cover all the

squares on the chess board exactly once (each domino covers two adjacent squares).

(a) For which m ≥ 1 and n ≥ 1 does an m× n chess board having a tiling?

(b) If we remove two squares from an m × n chessboard, when do the remaining

squares have a tiling?
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Question 5.6◦ Let e be an edge of a connected cubic graph such that G−e is disconnected.

Prove that every perfect matching of G contains e.

Question 5.7. Given an example of an n×n array with n cells filled in with numbers from

{1, 2, . . . , n}, so that no column or row has two of the same number and the array cannot

be completed to a latin square.

Question 5.8. A tiling of an m × n chess board is a set of dominoes which cover all the

squares on the chess board exactly once (each domino covers two adjacent squares). Prove

that if the number of white and black squares are equal, and for each set S of black squares

(respectively, white squares), there are at least as many white squares (respectively, black

squares) adjacent to squares in S.

Question 5.9. Prove that for any graph G, α′(G) ≤ β(G) ≤ 2α′(G)

Question 5.10. Let G be an n-vertex bipartite graph G with δ(G) ≥ d and 4(G) ≤ 4.

Prove that

α′(G) ≥ nd

4
.

Question 5.11. Prove that if k ≥ 1 is odd and G is a k-regular (k − 1)-edge-connected

graph, then G has a perfect matching.

Question 5.12. Let k ≥ 1, and let A be an n×n 0-1 matrix such that every row and every

column has exactly k 1s. Prove that we can pick n entries of A, no two in the same row or

column, such that each entry is a 1.

Question 5.13. Check that the Gale-Shapley Algorithm for a bipartite graph with 2n

vertices runs in time at most n2.

Question 5.14. Check that the Hungarian Matching Algorithm for a bipartite graph with

n vertices runs in polynomial time in n, and give an explicit upper bound on the runtime

complexity.

Question 5.15.

(a) Prove that a tree has at most one perfect matching.

(b) Show that a tree has a perfect matching if and only if odd(T −x) = 1 for every

x ∈ V (T ).
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Question 5.16.

(a) Let G be an n by n bipartite graph of minimum degree more than n/2. Prove

that G has a perfect matching.

(b) Let G be a 2n-vertex graph of minimum degree at least n. Prove that G has

a perfect matching.

Question 5.17. Let Ak be the set of subsets of {1, 2, . . . , n} of size k. Prove that for

k < n/2, there is an injective function f : Ak → Ak+1 such that a ⊆ f(a) for all a ∈ Ak. For

instance, if k = 1 and n = 3 then the function

f({1}) = {1, 2} f({2}) = {2, 3} f({3}) = {1, 3}

is an example of such a function f : A1 → A2.

Question 5.18. Let G be an n-vertex 4-regular multigraph. Prove that G has a matching

with at least n/3 edges, and when n is a multiple of 3, describe 4-regular multigraphs with

no larger matchings.

Question 5.19* Suppose we fill in fewer than n/2 cells in an n×n array with symbols from

{1, 2, . . . , n} so that no symbol appears more than once in every row or column. Prove that

the array can be completed to a latin square.

Question 5.20* Prove that a bipartite graph with minimum degree at least d containing a

perfect matching contains at least d! perfect matchings. Is this best possible?

Question 5.21* Prove that a cubic n × n bipartite graph contains at least (4/3)n perfect

matchings.

Question 5.22* Let n = 2k + 1 and let Ak be the family of subsets of {1, 2, . . . , n} of size

k. Define an injective function f : Ak → Ak+1 such that f(a) ⊆ a for all a ∈ Ak.
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6 Vertex and Edge-Coloring

A proper k-edge-coloring of a graph G is a function χ : E(G) → {1, 2, . . . , k} such that

if e, f ∈ E(G) intersect, then χ(e) 6= χ(f). In other words, any two edges which share a

vertex must receive different colors (it is convenient to refer to the elements of {1, 2, . . . , k}
as colors). The minimum k for which G has a proper k-edge-coloring is denoted χ′(G), and

referred to as the edge-chromatic number of G. Another way of saying it is: χ′(G)

is the minimum number of matchings which partition E(G), since the set of edges of any

particular color is a matching. A graph G is k-edge colorable if χ′(G) ≤ k, and k-edge-

chromatic if χ′(G) = k. It is left as an exercise to verify that χ′(Kn) = n − 1 when n is //

even and χ′(Kn) = n if n is odd. The main theorems we prove on edge coloring are König’s

Theorem and Vizing’s Theorem .

A proper k-coloring of a graph G is a function χ : V (G) → {1, 2, . . . , k} such that if

u, v ∈ V (G) are adjacent, then χ(u) 6= χ(v). So we color the vertices with k colors in such

a way that no two adjacent vertices have the same color. The chromatic number of G

is denoted χ(G), and is the minimum k for which G has a proper k-coloring. Thus χ(G) is

the minimum number of independent sets which partition V (G). For example, χ(Kn) = n,

and a graph G is bipartite if and only if χ(G) ≤ 2. We say that a graph is k-colorable if

χ(G) ≤ k and k-chromatic if χ(G) = k. The main theorem on vertex coloring is Brooks’

Theorem , which states that χ(G) ≤ 4(G) when G is not an odd cycle or a complete graph

(for those graphs one has χ(G) = 4(G) + 1). //

Example 18. Consider the Grötsch graph G below.

Figure 6.1: Proper coloring of the Grötsch graph

We prove that χ(G) = 4. A proper 4-coloring is shown, so χ(G) ≤ 4. To show that 4 colors

are needed, we proceed as follows. Consider the “outer” cycle of length five. We know that

3 colors are needed to color this cycle, and we may assume that the colors around the cycle

are red, blue, red, blue, green. If we are only allowed three colors, then the color of each

vertex adjacent to the central vertex must be the same as its partner on the outer cycle.
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However, that means we used three colors in the neighborhood of the central vertex, so the

central vertex must have a fourth color (purple in the picture).

6.1 König’s Theorem

For any graph, it is clear that χ′(G) ≥ 4(G) – all the edges incident with a vertex of

degree 4(G) must have different colors in a proper coloring. The main theorem we prove on

edge-coloring is Vizing’s Theorem. Before proceeding to Vizing’s Theorem, we discuss edge-

colorings of bipartite graphs. König’s Theorem states that χ′(G) = 4(G) for any bipartite

graph G – thus determining χ′(G) in bipartite graphs is easy:

Theorem 6.1.1 (König’s Theorem) For any bipartite graph G, χ′(G) = 4(G).

Proof . The first proof we give relies on Hall’s Theorem: we know by Corollary 5.2.2 that

every k-regular bipartite multigraph has a k-coloring. So if we can show that G is contained //

in a 4(G)-regular bipartite graph, then we are done. To prove this, take two copies of G,

say G1(A,B) and G2(A,B), and if y ∈ A ∪ B has degree d, add 4(G) − d multiple edges

between the vertex of G1(A,B) corresponding to y and the vertex in G2(A,B) corresponding

to y. Then we obtain a graph J which is 4(G)-regular, so χ′(J) = 4(G) = χ′(G). �

Proof . The second proof we give is by induction on |E(G)|. If |E(G)| = 0 then the theorem

is clear. Suppose |E(G)| > 0 and let e = {x, y} ∈ E(G). By induction, the graph G − e is

4(G)-edge-colorable. If there is a color i which is not used on any edges incident with x or

y, then we can assign color i to {x, y} to get a 4(G)-edge-coloring of G. So we may assume

that the colors at x are 1, 2, . . . ,4(G) − 1 and the colors at y are 2, 3, . . . ,4(G). Let H

be the subgraph of G spanned by edges of colors 1 and 4(G). Then the component of H

containing x is a path or a cycle. It cannot be a cycle, otherwise x would be incident with

an edge of color 1 and color 4(G) in the cycle, contradicting that 4(G) is missing at x. So

the component of H containing x is a path, P . If P ends at y, then since P has odd length

we would have an edge of color 1 at y, a contradiction. So P ends at a vertex z 6= y. Now

z is not incident with any edge of color 1 or 4(G) in G− E(P ), otherwise we could extend

the path or the edge is incident with a vertex w of the path, but then the coloring would not

be a proper edge-coloring. Now interchange colors 1 and 4(G) along the path P , to obtain

a proper coloring of G− e where the color 1 does not appear at x. Finally, assign e color 1

to get a proper coloring of G. �

6.2 Vizing’s Theorem

The next remarkable theorem tells us that χ′(G) is either the maximum degree of G or one

more than that. For example, for the complete graph Kn, we have χ′(Kn) = n − 1 if n is
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even and χ′(Kn) = n if n is odd (the first statement does require a proof – it is equivalent to

saying we can partition Kn into n− 1 pairwise edge-disjoint matchings when n is even – this

is left as an exercise). Perhaps surprisingly, it is known to be difficult to determine whether //

χ′(G) = 4(G) or χ′(G) = 4(G) + 1 for a given graph G. The graphs G with χ′(G) = 4(G)

are called class 1 graphs and those with χ′(G) = 4(G) + 1 are called class 2 graphs.

Theorem 6.2.1 (Vizing’s Theorem) For every graph G of maximum degree 4, χ′(G) =

4 or χ′(G) = 4+ 1.

Proof . Since 4 different colors are needed at a vertex of degree 4 in G, χ′(G) ≥ 4. Now

we prove by induction on |E(G)| that G is (4+ 1)-colorable, which gives χ′(G) ≤ 4+ 1. If

|E(G)| = 0, then the theorem is clearly true. Suppose |E(G)| > 0, and let {x, y1} ∈ E(G)

be any edge of G. By induction, G1 = G − {x, y1} is (4 + 1)-colorable. Now if there is a

color, say color c1, missing at y1 and missing at x, then we can assign edge {x, y1} the color

c1. So we can assume that an edge on x, say {x, y2} has color c1. Let c be a color missing

at x – we know c appears on y1 otherwise {x, y1} could be colored with color c. In general,

we construct a maximal sequence y1, y2, . . . , yk of neighbors of x such that ci is missing at yi
and {x, yi+1} has color ci for all i < k, and color ck is missing at yk and does not appear on

any edge {x, y} for y 6∈ {y1, y2, . . . , yk}.

Case 1. For all i < k, ck 6= ci. In this case, a proper edge-coloring of G is found by recoloring

{x, yj} with color cj for all j ≤ k. Note that the coloring is proper since color cj is missing

at yj for all j ≤ k. An illustration is provided in Figure 6.2.

y1y4

y5

y2y3

yk

c1c2

ck−1

c3

c4

no c1

no c2no c3

no c4

no c5

no ck

y1y4

y5

y2y3

yk

c2c3

ck

c4

c5

c1

Figure 6.2: Rotate colors around x

Case 2. For some i < k, ck = ci. In this case, recolor all edges {x, yj} for j ≤ i with color

cj – so far we still have a proper coloring since color cj is missing at yj for j ≤ i. This
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is shown for i = 4 in the left diagram in Figure 6.3. Then {x, yi+1} is the new uncolored

edge, since the edge {x, y1} has now received color c1. Now let H denote the subgraph of

G consisting of edges of color c and edges of color ck. Then the components of H are paths

and cycles, since H has maximum degree at most two. Also x, yi+1, yk all have degree one

in H, so either x, yi+1 are in different components of H or x, yk are in different components

of H. We consider these cases separately. If x, yi+1 are in different components of H, then

we interchange colors c and ci in the component of H containing yi+1. In this new coloring,

color c is missing at x and missing at yi+1, so we can assign the edge {x, yi+1} the color c

(see Figure 6.3). If x, yk are in different components of H, then recolor the edge {x, yj} for

i < j < k with color cj, so that {x, yk} is the new uncolored edge. Then H is unchanged

(we never recolored edges of color c or ci) so we may interchange the colors c and ck in the

component of H containing yk. In doing so, c becomes a missing color at x and yk, so the

uncolored edge {x, yk} can be colored with color c. This completes the proof. �

y1y4

y5
c

c4

y2y3

yk

c1
c2c3

ck−1

c4 y1y4
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y2y3
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c4

c

c1

c4

c

Figure 6.3: Interchanging colors in components of H

6.3 Brooks’ Theorem

The chromatic number of a graph G is the minimum number of colors which can be assigned

to the vertices of G so that no two adjacent vertices have the same color. This number is

denoted χ(G). Unlike in the case of edge-coloring, χ(G) can be arbitrarily small relative to

4(G): for example χ(G) ≤ 2 if and only if G is a bipartite graph. One also notices that

χ(G) = 4(G) + 1 is possible, since χ(Kn) = n and χ(C) = 3 when C is an odd cycle. In

fact these are the only cases where χ(G) = 4(G) + 1:

Theorem 6.3.1 (Brooks’ Theorem) Let G be a connected graph of maximum degree 4.

Then χ(G) ≤ 4, unless G is an odd cycle or a complete graph.

Proof . If G has no subgraph of minimum degree at least4, then we may repeatedly remove

vertices v1, v2, . . . , vn such that vi has degree at most 4− 1 in Gi = G − {v1, v2, . . . , vi−1}
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until no vertices are left. Let the colors be 1, 2, . . . ,4. Now color vn with color 1, and in

general, color vi with the first available color not used on its neighbors in Gi. Since vi has

degree at most4−1 in Gi, there is always a color from 1, 2, . . . ,4 available to properly color

vi. This completes the proof in this case, so we assume G has a subgraph of minimum degree

at least 4. Since G is connected and has maximum degree 4, this implies G is 4-regular.

If 4 = 2, the proof is complete since even cycles have chromatic number 4 = 2. Suppose

4 > 2.

If G is not complete, then it is possible to find vertices x, y, z in G such that {x, y} and

{x, z} are edges in G but {y, z} is not an edge in G. We order the vertices of G so that x

is first and y and z are last. If G − {y, z} is connected, then we can order the vertices of

G−{y, z} as v1, v2, . . . , vn−2 where v1 = x and for i > 1, vi has at least one neighbor vj with

j < i. Let vn−1 = y and vn = z. Then we color vn and vn−1 with color 1, and color vi for

i > 1 with the first available color from {1, 2, . . . ,4}. Such a color is always available, since

there are at most 4 − 1 colored neighbors vj of vi with j > i. To color v1, we note that

the number of colors used on the neighbors of v1 is at most 4− 1, since vn and vn−1 both

received color 1. Therefore there is an available color for v1 from {1, 2, . . . ,4} to complete

the proper coloring.

Now suppose G−{y, z} is not connected. If there is a vertex v ∈ V (G) such that G−{v} is

disconnected, then G = G1 ∪G2 where V (G1)∩ V (G2) = {v}, and we color G1 and G2 each

with at most 4 colors, making sure the colors match on v. If no such vertex v exists, then

G = H ∪ I where H and I are induced subgraphs of G such that V (H)∩V (I) = {y, z}, and

y and z both have degree at least 1 in H and I. Let e denote the edge {y, z} (not an edge

of G). Then H + e and I + e both have maximum degree at most 4, so both these graphs

can be properly colored with 4 colors, so that y and z receive colors 1 and 2. This means

the union of the proper colorings of H + e and I + e is a proper coloring of the whole graph

G with 4 colors. �

6.4 Degenerate graphs

A graph is called d-degenerate if it has no subgraph of minimum degree more than d. In

this section, we prove a proposition which often gives a better bound for χ(G) than 4(G).

The idea is to remove vertices of small degree from the graph and to notice that whenever

we remove a vertex v of degree at most k from a graph G and obtain a graph with a proper

(k + 1)-coloring, then we can reinsert v and color it with a color not used on any of its

neighbors to obtain a proper (k + 1)-coloring of G.

Proposition 6.4.1 Let G be a d-degenerate graph. Then χ(G) ≤ d+ 1.
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Proof . Order the vertices (v1, v2, . . . , vn) so that vi has at most d neighbors vj with j < i.

Then assign v1 color 1, and in general assign vi the first color from {1, 2, . . . , d+ 1} that has

not appeared on a neighbor vj of vi with j < i. Then this is a proper (d+ 1)-coloring of G,

so χ(G) ≤ d+ 1. �

6.5 Scheduling Problems

The Scheduling Problem (also known as the Timetable Problem or Storage Prob-

lem) is a natural application of vertex coloring: we have a number of events to be scheduled

and a number of participants in those events. We form a graph G whose vertex set is the set

of events, and whenever two events have a participant in common, we put an edge between

those events. The question is to determine the minimum number of time slots into which the

events can be scheduled. This is equivalent to determining χ(G). The Storage Problem

is defined by a number of items which have to be stored in containers, however some pairs

of items cannot be stored in the same container (for instance, chemicals which might react).

We want to minimize the total number of containers that can be used to store the items.

Example 19. Suppose five students {s1, s2, s3, s4, s5} have to write some exams from a

set {t1, t2, t3, t4}. The first three students must write exams t1, t2, t3. Then s4 must write t3
and t4 and s5 must write t2 and t4. The corresponding graph is shown below:

Figure 6.4: Scheduling

This graph is easily 3-colorable: we assign time slot 1 to exams t1 and t4, time slot 2 to exam

t2 and time slot 3 to exam t3.
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6.6 Exercises

Question 6.1◦ Determine χ′(G) and χ(G) for each of the graphs shown below.

Figure 6.5: The Petersen graph Figure 6.6: The dodecahedron graph

Question 6.2◦ A factory wishes to store the following chemicals in storage containers:

hydrogen, helium, oxygen, chlorine, sulfur, and iron. The chemicals must be stored in

separate containers if they are liable to react with one another. Determine the minimum

number of containers to store all these chemicals.

Question 6.3◦ Is it possible for a cubic Hamiltonian graph to have exactly one 3-edge-

coloring?

Question 6.4◦ Classify as class 1 or class 2 all connected graphs with at most five vertices.

Question 6.5. Determine χ′(G) when G is the Grötsch graph , shown in Figure 6.1.

Question 6.6. Let ω(G) be the maximum number of vertices in a complete subgraph of a

graph G.

(a) Prove that for every graph G, χ(G) ≥ ω(G).

(b) Prove that for every graph G, χ(G) ≥ |V (G)|/α(G).

(c) For each k ≥ 2, find a graph G such that χ(G) = k + 1 and ω(G) = k.

Question 6.7. Prove that χ′(Kn) = n if n is odd and χ′(Kn) = n− 1 if n is even without

using Vizing’s Theorem.
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Question 6.8.

(a) Prove that χ′(G)α′(G) ≥ |E(G)| for every graph G.

(b) Let G be a graph obtained by removing less than (n − 1)/2 edges from Kn,

where n ≥ 3 is odd. Show that χ′(G) = n.

Question 6.9. Let G be a bipartite graph of maximum degree 4. Prove that there exists

a 4-regular bipartite graph H containing G as a subgraph.

Question 6.10. Let k ≥ 2 and let G be a graph of chromatic number k such that χ(G −
{v}) < k for every v ∈ V (G) (these are called k-critical graphs).

(a) If k = 2, 3, describe the graph G.

(b) Prove that δ(G) ≥ k − 1.

(c) Show that G is a block.

Question 6.11. Show that the maximum number of edges in an n-vertex graph of chromatic

number k is at most (k − 1)n2/2k.

Question 6.12. Let G1 and G2 be graphs with vertex set V , and define the graph G1 ∪G2

to consist of vertex set V and edge-set E(G1) ∪ E(G2). Let c1 : V → {1, 2, . . . , k} and

c2 : V → {1, 2, . . . , `} be proper vertex colorings of G1 and G2, respectively. Let c : V →
{(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ `} be a vertex coloring of G1 ∪G2 defined by c(v) = (c1(v), c2(v))

for v ∈ V .

(a) Prove that c is a proper coloring of G1 ∪G2.

(b) Prove that χ(G1 ∪G2) ≤ χ(G1)χ(G2).

(c) Is it possible to express K9 as a union of three bipartite graphs?

Question 6.13. Let G be a bipartite graph and let H be the graph with V (H) = V (G)

and E(H) = {{x, y} : {x, y} 6∈ E(G)} – this is the complement of G. Prove that χ(H) =

max{r : Kr ⊆ H}.

Question 6.14. Let G be a 3-regular graph.

(a) Show that if G is Hamiltonian, then χ′(G) = 3.

(b) Prove that χ′(G) = 3 if and only if there exists a set C of pairwise vertex-

disjoint even cycles such that V (G) =
⋃
C∈C V (C).

(c) Find a 3-regular graph with χ′(G) = 4.
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Question 6.15. Let k ≥ 1. Prove that if G is a 2k-regular graph, then there exists a set C
of pairwise vertex-disjoint cycles such that V (G) =

⋃
C∈C V (C).

Question 6.16. Let G be a graph of chromatic number four such that for any vertices

x, y ∈ V (G), χ(G− {x, y}) is bipartite. Prove that G = K4.

Question 6.17. Prove that if G is any graph and a, b ≥ 1 satisfy a+ b = χ(G), then there

exists a partition (X, Y ) of V (G) such that χ(G[X]) = a and χ(G[Y ]) = b.

Question 6.18. Prove that if χ(G) = k+1 and χ(G−{e}) < χ(G) for every edge e ∈ E(G),

then G is k-edge-connected.

Question 6.19. Construct for each n ≥ 1 a graph G with 4n vertices and at least n2 edges

and χ(G) = 4 such that χ(G− {x}) = 3 for every x ∈ V (G).

Question 6.20* Find for each 4 ≥ 4 a multigraph G such that χ′(G) = b34/2c and

4(G) = 4. Then prove that χ′(G) ≤ b34(G)/2c for every multigraph G.

Question 6.21* Let k ≥ 2 and n ≥ 1, and let G1, G2, . . . , Gk be pairwise vertex-disjoint

complete graphs on n vertices. Let Gn,k be the graph obtained by joining every vertex of Gi

to every vertex of Gi+1 for i < k and every vertex of Gk to every vertex of G1. The graph

G2,13 is shown below. Determine χ′(Gn,k) and χ(Gn,k).

Figure 6.7: Graph G2,13
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Question 6.22* Let G be a graph. An orientation of G is a digraph ~G obtained by

replacing each edge {a, b} ∈ E(G) with either the arc (a, b) or the arc (b, a). Prove that

if χ(G) ≥ k, then every orientation ~G of G contains a directed path of length at least

k – a digraph with vertex set {v1, v2, . . . , v`} and edges (v1, v2), (v2, v3), . . . , (v`−1, v`) where

` ≥ k + 1.
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7 Planar graphs

Roughly speaking, a graph is planar if and only if it can be drawn in the plane without

any two of its edges crossing. More formally, an embedding of a graph G = (V,E) is a

function f : V ∪ E → R2 ∪ C, where C is the set of continuous curves in R2, such that f is

one-to-one, f(v) is a point in R2 for each v ∈ V , and f({u, v}) is a continuous curve in R2

with ends u and v when {u, v} ∈ E. The graph G is planar if we can choose f so that the

curves f(e) : e ∈ E meet only at their ends – that is no curve meets itself and any point in

the intersection of two distinct curves is an endpoint of both of the curves. A drawing of G

without crossings is called a plane embedding of G, or a plane graph . Thus a graph is

planar if and only if it has a plane embedding.

The main theorem of this section, due to Kuratowski [23], is a necessary and sufficient

condition for a graph to be planar – and a characterization of planar graphs. A subdivision

of a graph G is any graph obtained from G by replacing each edge of G with a path with

the same ends as the edge, such that paths may meet only at their ends.

Theorem 7.0.1 (Kuratowski’s Theorem) A graph is planar if and only if it contains

no subdivision of K5 and no subdivision of K3,3.

7.1 Euler’s Formula

Throughout this section, we deal only with connected graphs. If G is a plane graph, then

R2\G consists of a union of disjoint connected plane regions, which are called faces of G.

The boundary of a face F of G is the set of points in the topological closure of F which are

not in the interior of F . Each plane graph has a face which is infinite, which we refer to as

the infinite face . The boundary walk of a face F with a connected boundary, denoted

by ∂F , is the shortest closed walk consisting of edges and vertices in the boundary of F . We

denote by F(G) the set of faces of a plane graph G. The degree of a face F ∈ F (G) is the

length of the walk ∂F , and denoted deg(F ).

Figure 7.1: Faces of a plane graph
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The graph on the left in Figure 7.1 has six faces, all boundary walks of which are cycles of

length four – so every face has degree four. The tree in the centre has only one face – the

infinite face – and since a tree on n vertices has n − 1 edges and the boundary walk goes

through each edge twice, the degree of the infinite face is 2(n−1). In the graph on the right,

there are two faces, one of degree six and one of degree ten.

The degrees of the faces in a plane graph depend very much on the way the graph is drawn

in the plane: for example, the graph on the right in Figure 7.1 can be redrawn as a new

plane graph by flipping one of the bridges into the infinite face, thereby producing two new

faces, both of degree eight.

There is a very useful analog of the handshaking lemma for face degrees in a plane graph.

If we add up the degree of every face F ∈ F (G), we observe that every edge of the graph is

counted exactly twice. This is true since an edge in a cycle is counted once for each of the

faces on either side of it, and an edge which is not in a cycle is a bridge (Lemma 3.1.1), and

therefore counted twice in one boundary walk. These observations give the following useful

fact, which is the analog of the handshaking lemma for face degrees:

Lemma 7.1.1 Let G be a plane graph. Then∑
F∈F (G)

deg(F ) = 2|E(G)|.

In general, note the a bridge on the boundary of a face is counted twice in the boundary

walk of that face, whereas all other edges in the boundary are counted once in the boundary

walk.

Lemma 7.1.1 is very useful in conjunction with Euler’s Formula and the handshaking lemma

for proving non-existence of planar graphs with given face and vertex degrees. Euler’s For-

mula [8] relates |F (G)|, |E(G)| and |V (G)| as follows:

Theorem 7.1.2 (Euler’s Formula) Let G be a connected plane graph. Then

|V (G)| − |E(G)|+ |F (G)| = 2.

Proof . Proceed by induction on |E(G)|. The minimum value of |E(G)| is |V (G)| − 1, by

Proposition 3.1.2. In that case, |F (G)| = 1 and Euler’s Formula is satisfied. So we may

assume that |E(G)| > |V (G)| − 1 and G contains a cycle C. Let e be an edge of C. By

Lemma 3.1.1, G− e is connected, since e is not a bridge. By induction,

|V (G− e)| − |E(G− e)|+ |F (G− e)| = 2.
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We now observe |E(G − e)| = |E(G)| − 1 and |F (G − e)| = |F (G)| − 1 and |V (G − e)| =

|V (G)|. It follows that //

|V (G)| − (|E(G)| − 1) + (|F (G)| − 1) = 2

and this gives Euler’s Formula. �

A useful application is to give a sufficient condition for non-planarity:11

Theorem 7.1.3 Let G be a planar graph containing a cycle. Then |E(G)| ≤ g
g−2(|V (G)|−2),

where g is the length of a shortest cycle in G. In particular, for any planar graph G,

|E(G)| ≤ 3|V (G)| − 6, and therefore G is 5-degenerate.

Proof . Since every face has degree at least g, Theorem 7.1.1 gives g|F (G)| ≤ 2|E(G)|.
Putting this in Euler’s Formula, we get

|V (G)| − |E(G)|+ 2

g
|E(G)| ≥ 2

which, rearranged, gives the required bound on |E(G)|. The right side of the formula is

maximized when g = 3, in which case we get |E(G)| ≤ 3|V (G)| − 6 for all planar graphs G.

By the handshaking lemma, if all vertices ofG had degree at least six, then |E(G)| ≥ 3|V (G)|,
a contradiction to what we just proved. So every planar graph has a vertex of degree at

most five. Since every subgraph of G is also planar, this means that every subgraph of G

has a vertex of degree at most five, so G is 5-degenerate. �

By Theorem 7.1.3, any graph satisfying |E(G)| > g
g−2(|V (G)| − 2) can’t be planar. In

particular, K5 is not planar since |E(K5)| = 10 and g = 3, and K3,3 is not planar since

|E(K3,3)| = 9 and g = 4. A maximal planar graph is a graph that is planar but the

addition of any edge results in a non-planar graph. A maximal plane graph is a plane

drawing of a maximal planar graph. Evidently, every face of a maximal plane graph with

at least three vertices is a triangle, and using Lemma 7.1.1 one can show that a maximal

planar graph with n ≥ 3 vertices has exactly 3n− 6 edges and 2n− 4 faces. //

7.2 Platonic solids

A platonic solid is a connected plane graph where all vertices have the same degree r

and all faces have the same degree s. It has been known for millenia that there are only

five platonic solids, as shown in Figure 7.2. We use Euler’s Formula to determine the five

possible pairs (r, s) for which such graphs exist:

11Trying to draw the graph in every possible way is inefficient.
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Theorem 7.2.1 Let r ≥ 3 and s ≥ 3. Then there exists a connected plane graph with all ver-

tices of degree r and all faces of degree s if and only if (r, s) ∈ {(3, 3), (3, 4), (4, 3), (5, 3), (3, 5)}.

Proof . Figure 7.2 shows that the plane graphs exist for those values of r and s. Now we

show that these are the only values for which they exist. By the handshaking lemma, if G

is such a plane graph then |E(G)| = r|V (G)|/2. By Lemma 7.1.1, |E(G)| = s|F (G)|/2. By

Euler’s Formula, and since G is connected,

|V (G)| − |E(G)|+ |F (G)| = 2|E(G)|/r − |E(G)|+ 2|E(G)|/s = 2.

So |E(G)| = 2rs/(2s − rs + 2r). Since |E(G)| is positive, rs < 2(s + r) and this is only

possible for the pairs (r, s) listed in the theorem. �

Figure 7.2: The platonic solids

7.3 Coloring planar graphs

Euler’s Formula also can be applied to vertex-coloring of planar graphs. Recall that a graph

is d-degenerate if every subgraph of G (including G itself) has minimum degree at most d.

Also, any d-degenerate graph is (d + 1)-colorable, by Proposition 6.4.1. By Theorem 7.1.3,

every planar graph is 5-degenerate, so this means that every planar graph is 6-colorable.

Here is another example: suppose we have a planar graph G of girth at least six. Then

|E(G)| ≤ 3
2
(|V (G)| − 2) by Theorem 7.1.3, so every subgraph of G must have a vertex of

degree at most two, by the handshaking lemma. Therefore G is 2-degenerate, which means

that G is 3-colorable. We prove the 5-color theorem here, using the notion of contraction of

edges.

Recall the contraction of a pair of vertices {a, b} ⊂ V (G) is the graph G/{a, b} obtained

from G by identifying the vertices a and b and joining the new vertex ab to all neighbors of a

and all neighbors of b. It is not hard to show that if G is a planar graph and {a, b} ∈ E(G),

then G/{a, b} is planar. A key point in the proof of the 5-color theorem is that if {a, b} 6∈ //

E(G) and if there is a proper coloring c : V (G/{a, b}) → {1, 2, . . . , k}, then the coloring
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c′ : V (G) → {1, 2, . . . , k} defined by c′(v) = c(v) if v 6∈ {a, b} and c′(a) = c′(b) = c(ab) is a

proper coloring of G.

Theorem 7.3.1 Every planar graph is 5-colorable.

Proof . Proceed by induction on |V (G)|. If |V (G)| ≤ 5, then the theorem is true: just

assign all vertices different colors. Now suppose |V (G)| > 5. If G has a vertex v of degree

at most four, then G − {v} is 5-colorable by induction, and we can extend this coloring to

v by assigning to v a color which does not appear on any of its neighbors, since there were

five colors but at most four neighbors of v. So now we assume G has no vertex of degree at

most four.

Since G is 5-degenerate, by Theorem 7.1.3, G has a vertex v of degree exactly five. If all

neighbors of v are adjacent to each other, then they form a K5, but K5 is not planar (as

we saw from Theorem 7.1.3), so that is a contradiction. Therefore we can pick neighbors

a and b of v which are not adjacent. We contract the set {a, b, v} to a new vertex w:

consider the graph H = G/{a, b, v} and let w be the vertex of H joined to every vertex in

N(a) ∪ N(b) ∪ N(v) – see Figure 7.3. This graph H is still planar. By induction, H has

a 5-coloring c : V (H) → {1, 2, 3, 4, 5}. For each u ∈ V (G)\{a, b, v}, let c′(u) = c(u). Let

c′(a) = c′(b) = c(w) – we can do that since a and b are not adjacent. Finally, the number of

colors used by neighbors of v in G in the coloring c′ is at most four, since a and b got the

same color. So there is a color i not used by any neighbor of v, and we let c′(v) = i. Then

c′ is a proper 5-coloring of G. �

Figure 7.3: Proof of the 5-Color Theorem
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Perhaps the most famous theorem in graph theory is the 4-color theorem, proved by Appel

and Haken (1976): every planar graph is 4-colorable. Unfortunately, there is no proof known

which is not computer assisted. The shortest proof is currently the one in Robertson and

Seymour (1997).

Theorem 7.3.2 (4-Color Theorem)

Every planar graph is 4-colorable.

7.4 Drawing planar graphs*

We remarked earlier that there are many plane embeddings for a given planar graph G; even

the degrees of the faces can change with different embeddings (see Figure 7.1). In fact, we

can go from any plane embedding of G to any other plane embedding of G using the notion

of stereographic projection. In particular, we can make any face of a plane embedding the

infinite face:

Proposition 7.4.1 Every face of a plane embedding G0 of a graph G is the infinite face of

some plane embedding of G. Furthermore, if every edge of G0 is a straight line, then we can

ensure that every edge of the new embedding is also a straight line.

Proof . Let S denote a sphere of diameter one placed so that the xy-plane is tangent to

S at the origin. Then wrap the plane embedding G0 of G around the sphere. Formally,

consider the function f which maps a point (x, y) to the point (x, y, z) ∈ S which is at height

z = 1 − 1/(1 + x2 + y2) in the plane defined by the line through the origin and (x, y) and

the z-axis. Note that f is a bijection between R2 and S\N , where N = (0, 0, 1) denotes the

north pole of S. Let H be the image of G0 under f . Keeping H fixed, rotate the sphere

until some face F of H contains the north pole of S. Now apply f−1 to get an embedding

of G, namely f−1(H), with the property that the face F of f−1(H) is the infinite face. The

second statement of the theorem is left as an exercise. � //

Figure 7.4: Stereographic projection

100



D
RA
FT

Perhaps the most natural embedding would be to try to draw the edges as striaght lines.

This can be done, by the following theorem:

Theorem 7.4.2 (Fary’s Theorem) Every planar graph has a plane embedding in which

all edges are straight line segments.

Proof . By Theorem 7.1.3, every planar graph is 5-degenerate. Now we proceed by induction

on |V (G)|, the number of vertices in a planar graph G. If |V (G)| ≤ 3, then the result is

obvious. Suppose G is a planar graph with |V (G)| > 3. We may assume that G is maximal

planar – so G+ e is not planar anymore for any edge e. Then if G0 is a plane embedding of

G, all faces of G0 have degree three, otherwise we could add a diagonal edge in some face.

Now let v be a vertex of degree at most five in G0. Then G0 − v has a plane embedding,

call it H, such that all the edges are straight lines. Let v1, v2, . . . , vk be the neighbors of v,

where k ≤ 5. Then there is a cycle C ⊂ H such that V (C) = {v1, v2, . . . , vk} – since every

face of G0 is of degree three, every face of H containing non-neighbors of v on its boundary

is a triangle. This means that C is the boundary of a face of H. By Proposition 7.4.1, we

can make C the boundary of a finite face of H. Now place v in the interior of C so that v

sees all vertices of C – that is, we can draw a straight line segment from v to each vertex

v1, v2, . . . , vk. This is an embedding of G in which all edges are straight lines. �

Concerning properties of the drawing of a planar graph, we have seen that there are, in

general, plane embeddings with different face degrees (see Figure 7.1). Furthermore, we can’t

ensure that the faces are convex, even for 2-connected planar graphs, for example K2,3 has

no embedding in which all faces are convex. However, Tutte showed that every 3-connected

planar graph can be drawn with convex faces and straight line edges, and Whitney’s Theorem

states that the embedding is unique.

Theorem 7.4.3 (Tutte-Whitney Theorem)

Every 3-connected planar graph has a unique embedding in the plane in which every face is

a convex polygon and every edge is a straight line segment.

A natural physical interpretation is to nail down the edges of a cycle which is a face in

a plane embedding of G, and replace the edges with rubber bands. Then, allowing this

dynamical system to reach equilibrium in terms of the laws of physics, Tutte proved that

the plane embedding at equilibrium is a convex straight line embedding. We do not prove

this or Theorem 7.4.3 here.

7.5 The Art Gallery Theorem*

Let R be a connected region in the plane bounded by an n-sided polygon (we include here

the boundary in R, so R is a closed region). Two points of R are mutually visible if there
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exists a straight line segment between the two points that is entirely contained in R. The

art gallery problem is to determine the minimum size f(R) of a set S of points in R such

that for any point x ∈ R, there is a point y ∈ S such that x and y are mutually visible.

We say that every point in R is visible from S. Evidently, if S is the set of vertices of the

n-sided polygonal boundary of R, then every point in R is visible from S, so f(R) ≤ n for

any region R bounded by an n-sided polygon. The art gallery theorem of Chvatal [9] gives

the optimal value of f(R):

Theorem 7.5.1 (Art Gallery Theorem)

Let n ≥ 3. For every n-sided polygonal region R, f(R) ≤ bn/3c. Furthermore, there exists

an n-sided polygonal region R such that f(R) = bn/3c.

Proof . Let us triangulate the region R. In other words, we add straight lines between

vertices of the boundary to obtain a plane graph G where every face other than the infinite

face is a triangle inside R. We prove by induction on n that χ(G) = 3. For n = 3, this

is clear, since G = K3. Suppose n ≥ 4. Then some edge e = {u, v} of G is not on the

boundary of the infinite face of G. Then {u, v} is a 2-vertex cut of G, so G = G1 ∪ G2

where G1 is a triangulation of a region R1 and G2 is a triangulation of a region R2 such that

R1 ∪R2 = R. Since both G1 and G2 have at least three vertices, χ(G1) = 3 and χ(G2) = 3.

If ci : V (Gi) → {1, 2, 3} is a proper 3-coloring of Gi, we can ensure ci(u) = 1 and ci(v) = 2

for i ∈ {1, 2}. Now let c(x) = ci(x) if x ∈ V (Gi). Then c : V (G) → {1, 2, 3} is a proper

3-coloring of G, so χ(G) ≤ 3. Since G contains a triangle, we conclude χ(G) = 3.

If c : V (G) → {1, 2, 3} is a proper 3-coloring of G, then for some i ∈ {1, 2, 3}, there are at

most bn/3c vertices of color i. If S is the set of vertices of that color, then |S| ≤ bn/3c and

every triangle in G contains exactly one vertex of S, since each triangle uses all three colors

on its vertices. Now in a triangular region, any two points are mutually visible, so since R

is a union of triangular regions, every point in R is visible from S, as required.

To find R such that f(R) = bn/3c, consider first the region R bounded by a polygon with

vertices at

(0, 0), (1, 1), (2, 0), (3, 1), (4, 0), (5, 1), . . . , (4k − 1, 1), (4k, 0) and (0,−0.1), (4k,−0.1)

– see Figure 7.5. If S = {(2, 0), (6, 0), (10, 0), . . . , (4k− 2, 0)} then every point in R is visible

from S and f(R) = |S| = k whereas n = 3k+ 2. Therefore f(R) = bn/3c. By removing one

or two boundary points from R, we get a region R′ bounded by an n-gon with n = 3k + 1

and n = 3k and f(R′) = k. � //
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Figure 7.5: Art gallery R with 3k + 2 sides and f(R) = k

7.6 Duality*

Let G be a plane graph, and let G∗ denote the pseudograph obtained by placing a vertex vf
in the interior of each face f ∈ F (G) and whose edges are defined as follows: (1) for each

bridge on the boundary of a face f ∈ F (G), join vf to vf with a loop in G∗ passing through

the bridge. (2) for each edge e ∈ E(G) on the boundary of distinct faces f, g ∈ F (G), join

vf and vg by an edge in G∗ which crosses e. Then G∗ is referred to as the plane dual or

combinatorial dual of G. Examples of duals are shown in Figure 7.6:

Figure 7.6: Duality

There are many uses of duality in planar graphs, but for brevity we mention one example

in coloring. The map coloring problem is to color the faces of a plane graph in such a way

that whenever two faces share an edge, they have different colors. Now by drawing the dual

of a planar graph, we see that the map coloring problem on a plane graph is equivalent

to the vertex coloring problem in the dual, except that we have to remove all loops in the
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dual. By the 4-color theorem, this means that the regions of any map can be colored in four

colors in such a way that adjacent regions have different colors. In fact, even more is true:

if we want to prove the 4-color theorem for plane graphs, it is sufficient to consider maximal

plane graphs on at least three vertices (i.e. if we add any edge we get a non-planar graph).

In a maximal plane graph, all faces are bounded by triangles, and therefore the dual of a //

maximal plane graph is a cubic graph. It can also be checked that every maximal plane

graph, except a triangle, is 3-connected, and that the dual is therefore also 3-connected.

The oldest approach to the 4-color theorem is to try to prove that every cubic graph is

3-edge-colorable: in fact this is equivalent to the 4-color theorem.

Theorem 7.6.1 Every planar graph is 4-colorable if and only if every cubic planar 3-

connected graph has edge-chromatic number three.

Proof . Let G be a planar graph and let G0 be a plane embedding of G. Then G0 is contained

in a maximal plane graph G1. If every planar graph is 4-colorable, then G1 is 4-colorable

which means that the map G∗1 is 4-face-colorable and cubic. Since G1 is 3-connected, no

edge of G∗1 is a bridge so every edge of G∗1 is on the boundary of exactly two faces. Now

assign edge-color 1 to those edges of G∗1 on the boundary of faces of color 1 and 2, or color

3 and 4, assign edge-color 2 to those edges of G∗1 on the boundary of faces of colors 1 and 3,

or colors 2 and 4, and assign edge-color 3 to all remaining edges of G. One checks that this

is a proper 3-edge-coloring of G∗, as required.

Define G,G0, G1, G
∗
1 as in the first part of the proof. If every cubic planar graph is 3-edge-

colorable, then G∗1 has a proper 3-edge-coloring, with colors 1, 2 and 3. That is to say that

G∗1 = M1 ∪M2 ∪M3 where Mi is the perfect matching consisting of edges of color i. Then

H1 = M1 ∪M2 is a plane graph and H2 = M1 ∪M3 is a plane graph. Color the faces of H1

with colors 1 and 2, and color the faces of H2 with colors 1’ and 2’. To get a coloring of the

faces of G∗1, and hence a color of G, color a face F with color (i, j′) if it is contained in a

region of color i in H1 and a region of color j′ in H2. Then the number of colors we used is

four, and one checks that this a proper coloring of the faces of G∗1. �

Tait [34] conjectured in the 19th century that all 3-connected cubic planar graphs are Hamil-

tonian – but this is false, as a counterexample of Tutte [37] on forty-six vertices showed

(Figure 7.7). Tutte’s counterexample is shown below, as well as a smallest counterexample,

with 38 vertices (there are six examples with 38 vertices). If Tait’s conjecture had been true,

then we could color the Hamiltonian cycle red and blue, and the remaining matching with

green to get a proper 3-coloring of every cubic 3-connected graph.
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Figure 7.7: Non-Hamiltonian cubic planar graphs

7.7 Kuratowski’s Theorem*

In this section, we’ll give a proof of Kuratowski’s Theorem [23]. There are many proofs of

this theorem; we give a fairly short proof by Makarychev [26]. First, recall from Proposition

4.1.2 that a graph G which does not contain a theta-graph is a tree of cycles and bridges.

We refer to a cycle or bridge containing only one cutvertex of G as an endblock – these

correspond to the leaves of the tree in the block decomposition of G – see Theorem 4.1.1.

The second ingredient is the following lemma, whose slightly technical proof is left as an

exercise. Let S denote the set of all graphs containing a subdivision of K5 or K3,3. //

Lemma 7.7.1 For any graph G and e ∈ E(G), G/e ∈ S implies G ∈ S.

The final notion is the following: if C is a cycle in a plane graph G, then int(C) denotes the

set of vertices of G inside C, and ext(C) denotes the set of vertices of G outside C.

Proof . of Kuratowski’s Theorem. If G is planar then G 6∈ S. Now let G 6∈ S be a

minimal non-planar graph. By case checking, we see that |V (G)| > 6. Furthermore, every

proper subgraph of G is planar, and G/e is planar, by Lemma 7.7.1. Clearly d(v) ≥ 2 for

all v ∈ V (G), otherwise G − {v} is planar which implies G is planar. Also, d(v) > 2 for

all v ∈ V (G): otherwise with N(v) = {u,w}, the graph G/{u, v} is planar. Since G is a

subdivision of G/{u, v} – we insert v into {u,w} – G is also planar, a contradiction.

Part 1 For {u, v} ∈ E(G), Guv := G− {u} − {v} contains no theta-graph.

Suppose T ⊆ Guv is a theta-graph and let C ⊂ T be a cycle. By Proposition 7.4.1, G/{u, v}
has a plane embedding H with u, v ∈ int(C) and ext(C) 6= ∅. Now H − int(C) = G− int(C)

is a plane graph in which C is a face boundary. Also H − ext(C) is a plane graph with C
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as the infinite face boundary, and since G− ext(C) is planar, there is a plane embedding I

of G − ext(C) in which C is the infinite face boundary (careful : this key step is subtle).

Gluing I and H − int(C) along C, we get a plane embedding of G, a contradiction.

Part 2 For {u, v} ∈ E(G), Guv has at most one leaf.

Let X be a set of two leaves of Guv and Y = V (Guv)\X. Notice that e(X, Y ) = 2 and since

|V (G)| > 6, |Y | > 2. Since d(x) ≥ 3 for x ∈ X, u, v ∈ N(x) for x ∈ X. This implies G− Y
contains a theta-graph, and Part 1 shows E(G[Y ]) = ∅. Since d(y) ≥ 3 for y ∈ Y , and y

sends at most two edges to {u, v}, e(X, Y ) ≥ |Y | > 2, a contradiction.

Now we complete the proof. Part 1 and Proposition 4.1.2 show that Guv is a tree of cycles

and bridges. By Part 2, Guv has at most one leaf, so some endblock C ⊆ Guv is a cycle. Let

P ⊆ C be a path of length two; if |V (C)| > 3 then P can be chosen to contain no cutvertex

of Guv. Since |V (G)| > 6 and Guv has at most one leaf, we can find an edge {w, x} ∈ Guv

(see Figure 7.8) vertex-disjoint from P . Now each vertex of P is adjacent to u or v, since G

has minimum degree at least three. This implies G[V (P ) ∪ {u, v}] contains a theta-graph,

vertex-disjoint from {w, x}. This contradicts Part 1 applied to Gwx. �

Figure 7.8: The path P ⊂ C and edge {w, x}

7.8 Graphs on Surfaces*

In this section, we study drawing graphs on general surfaces without crossings. Rather

than assume background in general topology, we will define everything in elementary terms,

keeping in mind that everything can be made rigorous through topology. The surfaces we

look at will all be orientable : these are closed surfaces which consist of a sphere with a finite

number of handles (or tubes) attached. For example, the torus consists in attaching one

handle to the sphere, and the double torus consists in attaching two handles to the sphere.

The number of handles attached to S is called the genus of S, and denoted γ(S). The Euler

characteristic of S is χ(S), defined by 2− 2γ(S). For example, the Euler characteristic of

the sphere is two, whereas the euler characteristic of the torus is zero. Let G = (V,E) be a
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graph. An embedding of G without crossings on a surface S is a function f : V ∪E → S∪C,
where C is the set of continuous curves in S, such that f is one-to-one, f(v) is a point in S
for each v ∈ V , and f({u, v}) is a continuous curve in S with ends u and v when {u, v} ∈ E,

and none of the curves in C cross internally. Generally we identify G with the image of V ∪E
under f . Throughout this section, we assume that the connected regions (the faces) of S\G
are homeomorphic to discs. For example, an embedding of K5 on the torus is shown below,

where all faces are homeomorphic to discs. It is convenient to call a graph a toroidal graph

if it can be embedded on the torus without crossings. As an exercise, find an embedding of //

K4 on the torus with two faces, but such that one of the faces is not homeomorphic to an

open disc.

Figure 7.9: Toroidal embedding of K5

Thus the definition of faces in a drawing of a graph on a surface S without crossings is

the same as in plane graphs. The degree of a face is again the shortest closed walk which

traverse every edge on the boundary of the face (since the faces are essentially discs these

definitions are the same as for plane graphs, but we could define it even if the faces were not

discs). For example, in the toroidal embedding of K5 in Figure 7.9, there are five faces, four

having degree three and one having degree four. It is a good exercise to try to embed other

graphs, for example K4,4, in the torus. A note on drawings: take a square [0, 1]× [0, 1] and //

identify (0, a) with (1, a) and identify (b, 0) with (b, 1) for all a, b ∈ [0, 1]. Then we obtain

the torus (the reverse procedure corresponds to cutting a torus along a cross section and

then cutting the resulting cylinder along its height). A drawing of a graph without crossings

in the rectangle with opposite points identified then gives a toroidal drawing of the graph.

Roughly speaking, an edge can pass through the top (respectively, left) of the square and

emerge from the vertically opposite (respectively, horizontally opposite) point at the bottom

(respectively, right).
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The genus of a graph G, denoted γ(G), is the minimum possible value of γ such that G

embeds without crossings in a surface of genus γ. So γ(K5) = 1. The Euler characteristic

of G is χ(G) = 2 − 2γ(G) (not to be confused with the chromatic number). The Euler-

Poincaré Formula is an analog of Euler’s Formula for surfaces, and it says that the number

of faces in any embedding of a graph on a surface of characteristic χ does not depend on the

embedding (again with the proviso that the faces behave like discs):

Theorem 7.8.1 (Euler-Poincaré Formula) Let G be a connected graph of Euler char-

acteristic χ embedded without crossings in a surface S of characteristic χ, where all faces of

G are homeomorphic to discs. Then

|V (G)| − |E(G)|+ |F (G)| = χ.

The proof of this theorem can be achieved by induction on e, similar to Euler’s Formula.

Actually it is convenient rather to prove that |V (G)| − |E(G)| − |F (G)| = χ(G) + c(G)− 1

where c(G) is the number of components of G. For instance, if G has a bridge e, then

χ(G) = χ(G − e) and |F (G)| = |F (G − e)| and c(G − e) = c(G) + 1 so the induction step

works. Now suppose G has no bridges. Then for an edge e ∈ E(G) such that χ(G − e) =

χ(G), we have |F (G − e)| = |F (G)| − 1 and again the induction step works. Finally if

χ(G− e) = χ(G)− 1, then e must have been the only edge on some handle of S. Then one

verifies that |F (G− e)| = |F (G)|+ 1, so the induction step works. The details are left to the

reader. The formula is called the Euler-Poncaré formula since Poincaré gave a very general

topological generalization of it, where edges are replaced by simplices. The first proof of the

Euler-Poincaré Formula for general χ was given by Lhuillier [24].

A natural consequence of the Euler-Poincaré Formula is that |E(G)| ≤ 3|V (G)|−3χ whenever

G is a graph which can be embedded in a surface of characteristic χ without crossings.

This shows, for example, that K8 cannot be embedding on the torus without crossings,

since |E(K8)| =
(
8
2

)
= 28 whereas 3|V (K8)| − 3χ = 24. Another consequence is that the

degeneracy of a graph G embedded in S without crossings satisfies

d(G) ≤
⌊
6− 6χ

|V (G)|

⌋
.

So we can extend our result about planar graphs being 6-colorable to higher genus surfaces,

via Heawood’s Map Coloring Theorem :

Theorem 7.8.2 (Heawood’s Map Coloring Theorem)

The chromatic number of a graph embedding without crossings in a surface of characteristic

χ ≤ 0 is at most

h(χ) =
⌊1

2
(7 +

√
49− 24χ)

⌋
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Furthermore, if G is a minimal h(χ)-chromatic graph drawn on a surface of characteristic

χ 6= −2, then G = Kh(χ).

Proof . First we prove the upper bound h(χ) ≤ b1
2
(7 +

√
49− 24χ)c. Let G be embedded

on a surface S of characteristic χ without crossings. We may assume that G is a minimal

k-chromatic graph on S, where k = h(χ). By Proposition 6.4.1 (or by just deleting a vertex

of small degree) it follows that δ(G) ≥ k − 1. Therefore |E(G)| ≥ k−1
2
|V (G)|, by the

handshaking lemma. On the other hand |E(G)| ≤ 3|V (G)| − 3χ, by the Euler-Poincaré

Formula. Therefore

k − 1

2
|V (G)| ≤ 3|V (G)| − 3χ

which is the same as

(k − 7)|V (G)|+ 6χ ≤ 0.

Since we assumed χ ≤ 0, k ≥ 7 follows from the fact that K7 can be embedded on the torus.

Now |V (G)| ≥ k since δ(G) ≥ k − 1, so

k2 − 7k + 6χ ≤ 0.

This gives 2k ≤ 7 ±
√

49− 24χ, and we clearly must take the positive square root. This

proves the upper bound on h(χ).

The second part of the proof is to show G = Kk. If G 6= Kk then |V (G)| ≥ k + 2, and it is

an exercise to prove that if |V (G)| = k+2, then G consists of a pentagon disjoint from Kk−3

together with all edges between the pentagon on the Kk−3. In particular, |E(G)| =
(
k+2
2

)
−5.

This is greater than 3(|V (G)| − χ), contradicting the Euler-Poincaré Formula. Therefore

|V (G)| ≥ k + 3. Now δ(G) ≥ k − 1 ≥ 6, and by Brook’s Theorem, G is not k − 1 regular,

otherwise it would be k − 1 colorable. Therefore

|E(G)| > |V (G)|(k − 1)

2
.

This gives k2 − 4k − 20 + 6χ ≤ 0 and so k ≤ 2 +
√

24− 6χ. This is not possible unless

χ = −2. �

Note that we do not include the case of plane graphs, where h(χ) = 4. Surprisingly, this

case also agrees with the above formula for h(χ). Also, we avoided χ = −2. The full

classification, for all χ and even for all surfaces (not only orientable ones) was given by

Ringel and Youngs [32]. It should be noted that better results can be obtained for a graph

of girth g > 3: in that case Euler’s Formula can be used to give

|E(G)| ≤ g

g − 2
(|V (G)| − χ)
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and then one can color these graphs with fewer colors, by repeating the pattern of the proof

above.

We give the following quote from the book of Mohar and Thomassen [30]:

“Graphs on surfaces form a natural link between discrete and continuous

mathematics. They enable us to understand both graphs and surfaces bet-

ter. It would be difficult to prove the celebrated classification theorem for

(compact) surfaces without the use of graphs. Map color problems are usu-

ally formulated and solved as problems concerning graphs.”

Which graphs are embedded in a surface of genus γ without crossings? A consequence of one

of the deepest theorems in mathematics, called the Graph Minors Theorem, due to Robertson

and Seymour, is that for any γ, there exists a finite list of graphs Hγ such that any graph

which does not embed on a surface of genus γ contains a graph inHγ as a minor. Kuratowski’s

Theorem [23] is such a result for planar graphs, where H0 = {K5, K3,3}. Unfortunately, for

surfaces of higher genus, the known list is prohibitively long, and the smallest possible list

is not known. The shortest proof that there is a finite list is due to Thomassen (it is much

simpler than the graph minors theorem).

A very natural question on embedding graphs is the following: in the last section, we gave

embeddings of graphs on surfaces where some of the faces were a bit unorthodox: they are not

homeomorphic to plane disks. While it is true that every 2-connected planar graph has an

embedding where every face is homeomorphic to a disk, it is not known if every 2-connected

graph can be embedded in some surface in such a way that all faces are homeomorphic to

disks. This is known as the strong embeddability conjecture, and it remains open It has many

other consequences in graph theory; for example, does every 2-connected graph contain a set

of cycles such that every edge is in either one or two of the cycles? For planar graphs, this

is clear: the boundaries of the faces will do, and then every edge is in exactly two cycles.

The conjecture also has implications for the existence of nowhere zero 5-flows. For more

information on graphs on surfaces, see Archdeacon or Mohar and Thomassen.

110



D
RA
FT

7.9 Exercises

Question 7.1◦ Which of the graphs in the figure below planar? Justify your answers.

Question 7.2. Show that there is no cubic bipartite planar graph with ten vertices.

Question 7.3◦ Prove or disprove the existence of a plane multigraph with

(a) all vertices having different degrees

(b) minimum degree at least two whose faces all have different degrees

(c) minimum degree at least three whose faces all have different degrees?

Question 7.4. A maximal plane graph is a plane graph G = (V,E) with n ≥ 3 vertices

such that if we join any two non-adjacent vertices in G, we obtain a non-plane graph.

(a) Draw a maximal plane graph on six vertices.

(b) Show that a maximal plane graph on n points has 3n− 6 edges and 2n− 4 faces.

(c) A triangulation of an n-gon is a plane graph G whose vertex set is the vertex set

of a convex n-gon, whose infinite face boundary is the convex n-gon, and whose

other faces are all triangles. Determine |E(G)|.

Question 7.5. Show that every triangle-free planar graph is 4-colorable.

Question 7.6.

(a) Give an example of a connected cubic planar graph that is not Hamiltonian.

(b) Give an example of a cubic planar multigraph with no 3-edge-coloring.

(c)* Prove that the graphs in Figure 7.7 are not Hamiltonian.
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Question 7.7. For which r does there exist a 3-regular plane graph with r faces of degree

five and all other faces of degree six? Examples of such plane graphs are drawn below.

Question 7.8. Suppose a person is standing in a room which has a painting on each of its

walls. Prove that if the room has at most five walls, then the person can find a place to

stand so as to see all the paintings at once. Prove that if the room has six walls or more,

then it is possible that the person cannot find a place to stand so as to see all the paintings

at once.

Figure 7.10: A five sided room

Question 7.9.

(a) Give an example of a 2-connected cubic planar graph that is not Hamiltonian.

(b) Give an example of a 3-connected cubic graph that is not Hamiltonian.
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Question 7.10. The crossing number of a graph G is the minimum number ν(G) such

that the graph can be drawn in the plane with ν(G) pairs of crossing edges. Determine ν(G)

when G is the Petersen graph (see Figure 7.11).

Figure 7.11: A drawing of the Petersen graph

Question 7.11. Prove that a maximal planar graph with at least three vertices is 3-colorable

if and only if it is Eulerian.

Question 7.12* Let G be a planar graph with degree sequence (d1, d2, . . . , dn) where n ≥ 3.

Prove that
n∑
i=1

(6− di) ≥ 12.

Prove that a planar graph of minimum degree five has at least twelve vertices of degree five.

Question 7.13* Let G be a planar graph with degree sequence (d1, d2, . . . , dn) where n ≥ 3.

Prove that for 3 ≤ m ≤ n.
m∑
i=1

di ≤ 2n+ 6m− 16.

Question 7.14* Prove that n/4 guards suffice to guard a rectilinear art gallery with n sides.

Question 7.15* Prove that the Petersen graph is toroidal.
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8 The Max-Flow Min-Cut Theorem

8.1 Flows

Let ~G = (V, ~E) be a digraph and s, t ∈ V . We shall refer to s as the source vertex and t as

the sink vertex in what follows. Let R≥0 denote the non-negative real numbers. We want

to define what it means for the network to have a flow from s to t. A static st-flow is a

function f : ~E → R≥0 such that for all x ∈ V \{s, t}:∑
y∈N+(x)

f(x, y) =
∑

y∈N−(x)

f(y, x)

The flow in arc (u, v) is denoted f(u, v). This last requirement is known as Kirchoff’s

Law , in words it states that the flow into a vertex must be equal to the flow out of a vertex,

and that this must be true for all vertices apart from s and t. The flow in an arc e ∈ ~E is

denoted f(e). The value of a flow f from s to t is defined by

v(f) =
∑

y∈N+(s)

f(s, y)−
∑

y∈N−(s)

f(y, s).

This is the net amount of flow leaving the source s. An example of all these concepts is

given below in Figure 8.1. The flows f through the arcs in the networks equals the number

of arrows on each arc. So f(s, v) = 2 = f(v, w) = f(u, x), f(s, u) = 3, f(w, t) = 4,

f(u,w) = f(x,w) = f(x, t) = 1, f(v, u) = 0. The value of the flow is

v(f) = f(s, v) + f(s, u) = 5.

Figure 8.1: Flows
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8.2 Capacities

The capacity of an arc e ∈ ~E is a non-negative real number and denoted c(e), and is the

maximum possible amount of flow in the arc. An example of a network with capacities is

shown below. Here c(s, u) = c(v, w) = c(x,w) = c(v, u) = 1 and c(s, v) = c(u,w) = 4 and

c(w, t) = 3 and c(u, x) = c(x, u) = c(x, t) = 2.

Figure 8.2: Capacities

We require that if f is a flow in the network, then f(e) ≤ c(e) for every arc e ∈ ~E. The flow

in Figure 8.1 is impossible in Figure 8.2, since f(s, u) = 3 > c(s, u) = 1. However a valid

flow would be to define f(s, u) = f(v, w) = f(v, u) = 1 and f(s, v) = f(u,w) = f(w, t) = 2,

and the value of this flow is 3. A maximum flow in a network with capacities is a flow f ∗

such that for every flow f , v(f ∗) ≥ v(f) – it is a flow with largest value.

8.3 Cuts

If S ⊂ V and s ∈ S and t 6∈ S, then the cut induced by S is the set of arcs from S to

V \S – this is the set of arcs leaving S. This set of arcs is denoted (S, S), and is called an

st-cut or simply a cut. For example, {(s, u), (v, u), (v, w)} in Figure 8.2 is the cut induced

by S = {s, v}. The capacity of a cut (S, S) is defined by

c(S, S) =
∑

e∈(S,S)

c(e).

It is clear that if f is a flow in the network, then v(f) ≤ c(S, S) for any cut (S, S). In Figure

8.2, we found a flow with v(f) = 3, and also a cut (S, S) with c(S, S) = 3 – namely when

S = {s, v}. A cut (S, S) minimum cut is a cut (S, S) such that c(T, T ) ≥ c(S, S) for every

cut (T, T ) – so it is a cut with a minimum value of c(S, S). Our main theorem says that
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the minimum capacity of a cut equals the maximum value of a flow – as already verified for

the specific network in Figure 8.2. The proof will give us a way of finding a maximum flow.

First we need a lemma:

Lemma 8.3.1 For any flow f and any cut (S, S),

v(f) =
∑
x∈S

∑
y 6∈S

f(x, y)−
∑
x∈S

∑
y 6∈S

f(y, x).

Proof . By Kirchoff’s Law, for all x 6∈ {s, t},∑
y∈N+(x)

f(x, y) =
∑

y∈N−(x)

f(y, x)

Summing over x ∈ S\{s} we get∑
x∈S\{s}

∑
y∈N+(x)

f(x, y) =
∑

x∈S\{s}

∑
y∈N−(x)

f(y, x).

All those f(x, y) with x, y ∈ S cancel out: they are counted once in the left sum, and again

once in the right sum. So we get∑
x∈S\{s}

∑
y 6∈S

f(x, y) =
∑

x∈S\{s}

∑
y 6∈S

f(y, x).

By definition of v(f), this means∑
x∈S

∑
y 6∈S

f(x, y)−
∑
x∈S

∑
y 6∈S

f(y, x)− v(f) = 0

and this is the required result. �

The definition of the value of the flow is for the specific cut (S, S) with S = {s}, but this

lemma says we can measure the value of a flow in any network by just looking at the net

flow across a cut in the network. The main theorem we prove is the following:

Theorem 8.3.2 (Max-Flow Min-Cut Theorem)

In any network with capacities, the maximum value of a flow equals the minimum value of a

cut.

Proof . Let f be a maximum flow.12 Then v(f) ≤ c(S, S) for every cut (S, S) so v(f) ≤
min c(S, S). To prove the theorem, we define a set S ⊂ V with c(S, S) = v(f). First put

12Why does a maximum flow even exist? Prove that a maximum flow exists.
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s, the source, into S. Then for every arc (x, y) such that x ∈ S and c(x, y) > f(x, y), put

y ∈ S, and for every arc (y, x) with x ∈ S and f(y, x) > 0, put y ∈ S. We claim t 6∈ S and

c(S, S) = v(f). Suppose that t ∈ S. Then there exists a path x1x2 . . . xr where xi ∈ S for

all i and x1 = s and xr = t and, by definition of S,

c(xi, xi+1)− f(xi, xi+1) > 0 or f(xi+1, xi) > 0

for each i. Let ε be the smallest of all these positive numbers. Define a new flow g by

taking g(xi, xi+1) = f(xi, xi+1) + ε if c(xi, xi+1) − f(xi, xi+1) > 0, and taking g(xi+1, xi) =

f(xi+1, xi) − ε if f(xi+1, xi) > 0. Then v(g) = v(f) + ε, contradicting the maximality of f .

We conclude t 6∈ S. Finally, since f(y, x) = 0 for every x ∈ S and y 6∈ S, by Lemma 8.3.1

we have

v(f) =
∑
x∈S

∑
y 6∈S

f(x, y)−
∑
x∈S

∑
y 6∈S

f(y, x) =
∑

(x,y)∈(S,S)

c(x, y) = c(S, S).

This completes the proof. �

8.4 Max-Flow Min-Cut Algorithm

As we stated, the proof of the Max-Flow Min-Cut Theorem gives an algorithm for finding a

maximum flow as well as a minimum cut. To construct a maximum flow f ∗ and a minimum

cut (S∗, S
∗
), proceed as follows: start by letting f be the zero flow and S = {s} where s is

the source. Construct a set S as in the theorem: whenever there is an arc (x, y) such that

f(x, y) < c(x, y) and x ∈ S and y 6∈ S, or an arc (y, x) such that f(y, x) > 0 and x ∈ S and

y 6∈ S, add y to S. If at the end of this procedure, t 6∈ S, then let S∗ = S to get a minimum

cut and the current flow is a maximum flow. If at the end of this procedure t ∈ S, then there

must be a path x0x1x2, . . . xr where s = x0 and t = xr, along which f can be augmented by

some value ε > 0. The value of ε is given in the proof above: it is

ε = min{c(xi, xi+1)− f(xi, xi+1), f(xi+1, xi)|0 ≤ i < r}.

Now restart with the augmented flow which is f(xi, xi+1) + ε and c(xi, xi+1) > f(xi, xi+1)

and f(xi+1, xi)− ε if f(xi+1, xi) > 0, for each i : 0 ≤ i < r. Now we start again with S = {s}
and the new flow as input.

Example 20. Consider the network with capacities in Figure 8.2. According to the

algorithm, start by letting f be the zero flow and S = {s}:
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arc flow capacity

(s, u) 0 1

(s, v) 0 4

(v, w) 0 1

(x, u) 0 2

(u, x) 0 2

(u,w) 0 4

(x, t) 0 2

(w, t) 0 3

Since f(s, v) = 0 < c(s, v) = 4, we put v into S. Since c(v, w) > f(v, w) we put w into

S. Then put t into S since c(w, t) > f(w, t). We stop since we have placed t in S. By the

algorithm, there is a way to augment f : we consider the path svwt. We have the smallest

difference between capacities and flows in the arcs of this path equal to 1. So we augment f

to f(s, v) = f(v, w) = f(w, t) = 1. Now we start again with S = {s} and the new flow.

arc flow capacity

(s, u) 0 1

(s, v) 1 4

(v, w) 1 1

(v, u) 0 1

(x, u) 0 2

(u, x) 0 2

(u,w) 0 4

(x, t) 0 2

(w, t) 1 3

Since c(s, u) = 1 and f(s, u) = 0, we add u ∈ S. Since c(u, x) = 2 and f(u, x) = 0, add

x ∈ S. Since c(x, t) = 2 and f(x, t) = 0, add t ∈ S. So S = {s, u, x, t} and since t ∈ S, we

stop and we augment f by min{1, 2, 2} = 1 along the path suxt to get

arc flow capacity

(s, u) 1 1

(s, v) 1 4

(v, w) 1 1

(v, u) 0 1

(x, u) 0 2

(u, x) 1 2

(u,w) 0 4

(x, t) 1 2

(w, t) 1 3
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Let S = {s}. Since c(s, v) = 4 and f(s, v) = 1, we can put v ∈ S. We cannot put w ∈ S
since c(v, w) = 1 = f(v, w). But we can put u ∈ S since c(v, u) = 1 and f(v, u) = 0. Then

we can put x ∈ S since c(u, x) = 2 and f(u, x) = 1. Finally we put t ∈ S since f(x, t) = 1

and c(x, t) = 2. Since t ∈ S, we stop and augment f by min{3, 1, 1, 1} = 1 along the path

svuxt to get

arc flow capacity

(s, u) 1 1

(s, v) 2 4

(v, w) 1 1

(v, u) 1 1

(x, u) 0 2

(u, x) 2 2

(u,w) 0 4

(x, t) 2 2

(w, t) 1 3

Let S = {s}. Since c(s, v) = 4 and f(s, v) = 2, we put v ∈ S. But now c(v, w) = f(v, w) = 1,

c(v, u) = f(v, u) = 1 and c(s, u) = f(s, u) = 1. So S = {s, v} and this induces a minimum

cut (S, S). The flow we have just defined is a maximum flow, with value three, and notice

c(S, S) = 3, as expected.

8.5 Proof of Hall’s Theorem

The Max-Flow Min-Cut Theorem gives an alternative proof of Hall’s Theorem, as follows.

We have a bipartite graph G with parts A and B satisfying Hall’s Condition, |N(X)| ≥ |X|
for all X ⊆ A and all X ⊆ B. Orient all edges of G from A to B, add a vertex a joined to

all vertices in A and a vertex b joined from all vertices in B, and assign all arcs capacity 1.

Here a and b play the rôle of source and sink. Let S ⊂ V (G) ∪ {a, b} contain a but not b.

We claim c(S, S) = |A|. Let X = A\S and Y = B\S. Then |N(A\S)| ≥ |A| − |S ∩ A| and

|N(B\S)| ≥ |B| − |S ∩B| by Hall’s Condition. It follows that

c(S, S) ≥ |A| − |S ∩ A|+ |B| − |S ∩B| ≥ |A|+ |B| − |S| ≥ |A|.

A minimum cut therefore has S = {a}, and by max-flow min-cut, there is a flow of value

|A|. The edges of G with unit flow form a perfect matching of G. � //

8.6 Proof of Menger’s Theorems

The Max-Flow Min-Cut Theorem gives a short proof of Menger’s Theorems. Here we give

a proof of the edge-form of Menger’s Theorem: let G be a graph and let s and t be distinct
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vertices of G. Then the minimum size of an st-edge-cut equals the maximum number of

pairwise edge-disjoint st-paths.

To apply the Max-Flow Min-Cut Theorem, we replace each edge of G with two arcs in both

directions, and designate s and t as the source and sink vertices, respectively. We assign

every arc capacity 1 to this digraph ~G. A key point in the proof of the Max-Flow Min-Cut

Theorem with positive integer capacities is that in a maximum flow f , the flow in each arc

is an integer, and therefore if the value of f is k, then there are k paths carrying unit flow

from source s to sink t. This follows from the fact that the value ε by which successive flows

are augmented in the Max-Flow Min-Cut Algorithm is an integer.

To prove Menger’s Theorem, the minimum capacity of an st-cut in ~G equals the value of a

maximum st-flow in ~G. Let the value of this flow be k. Then every st-edge-cut L ⊆ E(G)

in G has at least k edges, since the capacity of the st-cut L = {(a, b) : {a, b} ∈ L} is exactly

|L|. Since some st-cut has capacity k, a minimum st-edge-cut in G has size exactly k. Since

the value of a maximum st-flow in ~G is k, the above remarks show there are k paths from s

to t each carrying unit flow. Furthermore, no arc is shared by any two of these paths, since

each arc has capacity 1. If there exists a path P and a path Q such that P uses an arc

(a, b) and Q uses the arc (b, a), then we can remove (a, b) and (b, a) from P and Q to obtain

two new paths P ′ and Q′, each carrying unit flow from s to t. By repeatedly removing such

pairs (a, b) and (b, a), we arrive at a set of k paths P1, P2, . . . , Pk in ~G, each carrying unit

flow from s to t, and such that the paths Qi = {{a, b} : (a, b) ∈ Pi} are edge-disjoint in

G. Consequently, we have found k edge-disjoint paths Q1, Q2, . . . , Qk in G, and the proof is

complete. �
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8.7 Exercises

Question 8.1. Find a maximum st-flow in the network shown in Figure 8.3, starting with

the given flow f consisting of unit flow in the st-path of length four at the top of the diagram.

Also find a minimum cut in the network. The capacities of the arcs are denoted by numbers

next to each arc.

5

1

3

1

1

2

2

1

1

1

41

1

2

3

2

s t

Figure 8.3: Network

Question 8.2. Find a maximum st-flow in the network shown in Figure 8.4, starting with

the zero flow. Also find a minimum cut in the network. The capacities of the arcs are shown

as numbers next to each arc.

Figure 8.4: Network

121



D
RA
FT

Question 8.3. Find a maximum st-flow and minimum st-cut in the network below with

source s and sink t by applying the Max-Flow Min-Cut Algorithm. The capacities of each

arc are shown alongside the arcs as numbers below and the current flow is zero.

3

4

2

3
2

1

3

2

2

3

3

2

2

3

3

2

2

1

s t
X

Y
Z

C D

U V

A

B

Figure 8.5: Network

Question 8.4. Find a maximum st-flow and minimum st-cut in the network shown below

using the Max-Flow Min-Cut Algorithm. The current flow in the network is zero, and the

capacities are shown as numbers next to the arcs.

Figure 8.6: Network
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Question 8.5. In a network with a set Σ of sources and a set T of sinks, explain how you

would find a maximum flow and minimum cut from Σ to T .

Question 8.6. Explain how to use the Max-Flow Min-Cut Theorem to find a maximum

matching in a bipartite graph G = (A ∪B,E).

Question 8.7. Use Max-Flow Min-Cut to find a maximum matching in the bipartite graph

below.

Question 8.8. Let G be a digraph with source s and sink t and integer capacities. Prove

that if f is a maximum flow, then f(e) is an integer for each arc e of G.
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9 Introduction to Extremal Graph Theory*

If F and G are graphs, then we say G is F -free if G does not contain F as a subgraph.

The central problem in extremal graph theory is to determine the maximum number of

edges in an n-vertex graph that does not contain F has a subgraph. Let ex(n, F ) denote

the maximum number of edges that an n-vertex F -free graph can have: these are known as

the extremal numbers or Turán numbers for F . An F -free graph on n vertices with

exactly ex(n, F ) edges is called an extremal graph . We begin with some basic examples.

Example 21. Let F = K1,2. Any F -free n-vertex graph G consists of a set of isolated

vertices plus a matching. Therefore |E(G)| ≤ bn/2c, and so ex(n, F ) = bn/2c, and the

extremal graphs Gn on n vertices are matchings of size bn/2c plus an isolated vertex if n is

odd. These are shown for n ≤ 5 in the figure below.

Figure 9.1: The K1,2-free extremal graphs

If F is a graph with r vertices, then we observe ex(n, F ) =
(
n
2

)
for 1 ≤ n < r, since the

complete graph Kn does not contain F , and is the unique extremal F -free graph.

Example 22. Let us consider another example, where F is a matching of size two. As

stated above, if n ≤ 3, then ex(n, F ) =
(
n
2

)
. If n ≥ 4, then we claim ex(n, F ) = n−1 and the

unique extremal n-vertex F -free graphs Gn are isomorphic to K1,n−1. The complete picture

is therefore shown below for 1 ≤ n ≤ 5:

Figure 9.2: Extremal graphs with no two disjoint edges
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We prove ex(n, F ) ≤ n − 1 for n ≥ 4. If G is an n-vertex graph and |E(G)| ≥ n ≥ 4, then

by Proposition 3.1.2, G is not a tree so G contains a cycle, C. If C has length at least four,

then C contains F . So C has length three. Since n ≥ 4, there is an edge e in G that is not

on the cycle C. But then we may pick an edge of the cycle disjoint from e, so that e and f

form a copy of F in G. Therefore F ⊂ G, and so ex(n, F ) ≤ n− 1.

9.1 Mantel’s Theorem

How many edges can a graph on n vertices have if it contains no triangle? Evidently, for

1 ≤ k ≤ n − 1, a complete bipartite graph Kk,n−k does not contain a triangle and has n

vertices and exactly k(n−k) edges. First year calculus shows the maximum value of k(n−k)

for 1 ≤ k ≤ n−1 is bn2/4c which occurs when the parts of the complete bipartite graph have

size k = bn/2c and n−k = dn/2e.13 Therefore the maximum number of edges in an n-vertex

graph with no triangle is at least bn2/4c. Mantel [27] showed more than one hundred years

ago that in fact this is the answer: Mantel’s Theorem shows ex(n,K3) = bn2/4c for n ≥ 2,

and the extremal K3-free graphs are complete bipartite graphs whose parts have sizes as

equal as possible.

Theorem 9.1.1 (Mantel’s Theorem) Let n ≥ 2 and let G be an n-vertex triangle-free

graph. Then |E(G)| ≤ bn2/4c. Furthermore, equality holds if and only if G = Kk,n−k where

k = bn/2c.

Proof . We prove by induction on n that if G is a triangle-free n-vertex graph with at

least bn2/4c = |E(Kk, n − k)| edges, then G = Kk,n−k. For n = 2, this is clear since

G = K2 = K1,1. Now suppose n > 2. Let H be a subgraph of G with exactly bn2/4c edges.

By the handshaking lemma,

bn2/4c = |E(H)| = 1

2

∑
v∈V (G)

d(v)

and therefore δ(H) ≤ 2bn2/4c/n. If n is even, this gives δ(H) ≤ n/2. If n is odd, this gives

δ(H) ≤ (n−1)/2. We conclude δ(H) ≤ k. Let v be a vertex of H of minimum degree. Then

we check //

|E(H − {v})| = |E(H)| − δ(H) ≥ |E(Kk,n−k)| − k = |E(K`,n−`)

where ` = b(n−1)/2c. Note that removing a vertex of degree k from Kk,n−k gives Kk,n−k−1 =

K`,n−`. By induction, H−{v} = K`,n−` and d(v) = k. Let X and Y be the parts of H−{v},
13For a real number x, bxc is the largest integer that is at most x, and dxe is the smallest integer that is

at least x.
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where |X| = ` and |Y | = n − `. If there exist vertices x ∈ N(v) ∩ X and y ∈ N(v) ∩ Y ,

then {v, x, y} is the vertex set of a triangle in G, a contradiction. Therefore N(v) ⊆ X or

N(v) ⊆ Y . Since d(v) = k, N(v) = X or N(v) = Y , and this implies H = Kk,n−k. Now

H ⊆ G, and since the addition of any edge to H gives a triangle, G = H. �

9.2 Turán’s Theorem

Turán’s Theorem generalizes Mantel’s Theorem to determining ex(n,Kr) for all r ≥ 3. To

go about constructing a Kr+1-free graph on n vertices with many edges, take disjoint sets

V1, V2, . . . , Vr, where |V1| + |V2| + . . . |Vr| = n and join all vertices in Vi to all vertices in Vj
for all i 6= j and i, j ∈ {1, 2, . . . , r}. This graph is called a complete r-partite graph or

Turán graph . For r = 2 it is a complete bipartite graph as in Mantel’s Theorem. Note

that a complete r-partite graph cannot possibly contain Kr+1, since χ(Kr+1) = r + 1. The

number of edges an r-partite graph is ∑
i 6=j

|Vi||Vj|.

Since |V1|+ |V2|+ · · ·+ |Vr| = n, this expression is maximized when all the Vis are as equal

in size as possible, so |Vi| = bn/rc or |Vi| = dn/re for all i ∈ {1, 2, . . . , r}.

The Turán graph , denoted Tr(n), is the unique r-partite graph all of whose parts have sizes

as equal as possible. For r = 2, this corresponds to a complete bipartite graph with parts of

size bn/2c and dn/2e. So the number of edges in T2(n) is exactly bn2/4c. In general, we let

tr(n) denote the number of edges in Tr(n) – it is not a very nice number to determine, but

it is roughly (1 − 1
r
)
(
n
2

)
. Turán’s Theorem [36] states that ex(n,Kr+1) = tr(n) when n ≥ r. //

But it says even more: the only graph with tr(n) edges and no Kr+1 is Tr(n) – so Tr(n) is the

unique extremal graph. The inductive proof we give is fairly subtle. It relies on two facts:

first that we can’t add any edges to Tr(n) without creating a Kr+1, and second, the degrees

of Tr(n) are as close together as possible amongst all n-vertex graphs with tr(n) edges.

Theorem 9.2.1 (Turán’s Theorem) Let n ≥ 1 and let G be an n-vertex graph containing

no Kr+1. Then |E(G)| ≤ tr(n), with equality if and only if G = Tr(n).

Proof . We prove the theorem by induction on n, the number of vertices in G, starting

with n = r. The statement we prove is that if G is an n-vertex graph with no Kr+1 and

|E(G)| ≥ tr(n), then G = Tr(n). This proves the theorem: if |E(G)| > tr(n) then delete

edges until tr(n) edges remain, but then the graph is Tr(n), and we can’t add any edges to

Tr(n) without creating a Kr+1. If n = r, then tr(n) = tr(r) =
(
r
r

)
, and clearly |E(G)| ≥

(
r
2

)
implies G = Kr = Tr(r), as required. Now suppose n > r, and let G be a graph on n vertices

containing no Kr+1 and with at least tr(n) edges. Delete edges from G until |E(G)| = tr(n).
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Now Tr(n) is a graph with tr(n) edges with the largest minimum degree amongst all graphs

with tr(n) edges. Therefore δ(G) ≤ δ(Tr(n)). Now every vertex of Tr(n) has degree n−bn/rc
or n− dn/re, so δ(Tr(n)) = n− dn/re. Furthermore, if x has degree δ(Tr(n)) in Tr(n), then

Tr(n) − {x} = Tr(n − 1). Therefore tr(n) − δ(Tr(n)) = tr(n − 1). This shows that if v is a

vertex of smallest degree in G, then

|E(G− {v})| = |E(G)| − δ(G) ≥ tr(n)− δ(Tr(n)) = tr(n− 1).

By induction, G−{v} = Tr(n−1). This means that v has degree exactly δ(Tr(n)) = n−en/re.
Now since G has no Kr+1, v is joined to vertices in r− 1 parts of Tr(n− 1). But since v has

degree exactly n − dn/re, v must be joined to the r − 1 smallest parts of Tr(n − 1), which

means that G = Tr(n), as required. �

9.3 Kövari-Sós-Turán Theorem

We consider the extremal function for F = Kr,s, the complete bipartite graph with parts

of sizes r and s. Before we prove the main theorem, we state a special case of a real

number inequality, called Jensen’s Inequality . It is based on the fact that the function

f(x) =
(
x
r

)
= x(x− 1) . . . (x− r + 1)/r! for x ≥ r − 1 and f(x) = 0 for x < r − 1 is convex

on R, and therefore nf(a) ≥ f(a1) + f(a2) + · · · + f(an) where a = (a1 + a2 + · · · + an)/n

and the ai are real numbers.

Lemma 9.3.1 Let a1, a2, . . . , an and r be positive integers and let a = 1
n

∑n
i=1 ai. If a ≥ r−1

then
n∑
i=1

(
ai
r

)
≤ n

(
a/n

r

)
.

The following was proved by Kövari, Sós and Turán [21]:

Theorem 9.3.2 (Kövari-Sós-Turán Theorem) Let r, s be positive integers, and sup-

pose r ≤ s. Then

ex(n,Kr,s) ≤ ( s−1
2

)1/rn2−1/r + 1
2
(r − 1)n.

Proof . Let G be an n-vertex graph not containing Kr,s. If |E(G)| ≤ (r − 1)n/2, then we

are done, so we assume |E(G)| ≥ (r−1)n/2. The number of sets of r vertices of G is exactly(
n
r

)
. Suppose the vertices are the elements of {1, 2, . . . , n} and the degree of vertices i is ai.

Then there are exactly
(
ai
r

)
sets of size r in the neighborhood of i. So the total number of

sets of size r which are in the neighborhood of some vertex is

n∑
i=1

(
ai
r

)
.
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Note that we might have counted some sets of size r more than once in this sum. But what

we do know is that no set of size r could have been counted at least s times, otherwise that

set of size r would be in the neighborhood of s vertices in V (G), and that would give a Kr,s

in G. So
n∑
i=1

(
ai
r

)
≤ (s− 1)

(
n

r

)
.

Applying Lemma 9.3.1, and noting a = 2|E(G)|/n ≥ r − 1 via the handshaking lemma,

n

(
a

r

)
≤ (s− 1)

(
n

r

)
.

We now use the fact that for x ≥ r,

(x− r)r

r!
≤
(
x

r

)
= x(x− 1) . . . (x− r + 1)/r! ≤ (x− r + 1)r

r!
.

It follows that

n
(a− r + 1)r

r!
≤ (s− 1)

nr

r!
.

This gives (an− (r − 1)n)r ≤ (s− 1)n2r−1 and therefore since an = 2|E(G)|,

|E(G)| ≤ ( s−1
2

)1/rn2−1/r + 1
2
(r − 1)n.

This proves the theorem. �

9.4 The Erdős-Gallai Theorem*

The famous Erdős-Sós Conjecture [12] states that if T is any tree with k edges and G is

any graph not containing T , then G has average degree at most k − 1:

Conjecture 9.4.1 (Erdős-Sós Conjecture)

If T is any tree with k edges, then ex(n, T ) ≤ (k − 1)n/2.

A clique with k vertices does not contain any tree T with k edges, and therefore according

to the conjecture a graph whose components are all cliques with k vertices is an extremal

T -free graph, and ex(n, T ) = (k − 1)n/2 when k|n. A proof of this conjecture was claimed

by Ajtai, Komlós, Simonovits and Szemerédi [1]. The special case where the tree is a path

is the Erdős-Gallai Theorem , which we study next. Erdős and Gallai [13] proved the

following theorem, which verifies the Erdős-Sós Conjecture for paths:

Theorem 9.4.2 (Erdős-Gallai Theorem)
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Let k ≥ 1 and let G be an n-vertex Pk-free graph. Then |E(G)| ≤ (k − 1)n/2, with equality

if and only if k|n and every component of G is Kk.

Proof . Let G be an n-vertex graph with at least (k− 1)n/2 edges. We prove by induction

on n + k that G contains Pk unless every component of G is Kk. If G is disconnected,

then some component of G contains a path of length k or equals Kk, by induction. If some

component is Kk, we remove it and get a graph with n − k vertices and (k − 1)(n − k)/2

edges. By induction, that graph is a union of Kk or contains a path of length k, and we

are done. Therefore we may assume G is connected. The theorem is clear for k = 1, since

a single edge forms a path P1, and if there are no edges then every component of G is K1.

Suppose k ≥ 2. If G contains a vertex v of degree less than k/2, then G− {v} has at least

(k − 1)(n− 1)/2 edges. By induction, G− {v} contains a path of length k, unless k|(n− 1)

and G−{v} is a union of cliques Kk. Since G is connected, v has a neighbor in one of these

cliques, and this gives a path of length k ending with v. So we may assume every vertex of

G has degree at least k/2. By induction, G contains a path P of length k − 1. The ends u

and w of that P have all their neighbors on the path. As in Dirac’s Theorem, there exists

a neighbor of u that comes after a neighbor of w on the path from u to w, and this gives a

cycle C of length k containing P . If there is a vertex x not in C, then since G is connected,

there is a path from x to C, and in particular by adding an edge {w, x} with w ∈ V (C), we

get a path of length k ending with x. So V (C) = V (G), and so |V (G)| = k and G = Kk, as

required. �
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9.5 Exercises

Question 9.1◦ Prove that an n-vertex graph G with at least 3n/2 edges contains a cycle of

length at least four.

Question 9.2◦ Determine for all n ≥ 1 the value of ex(n,M) where M is a matching with

two edges.

Question 9.3. Let k ≥ 1. Prove that an n-vertex bipartite graph containing no matching

of size k has at most (k − 1)(n− k + 1) edges for n ≥ 2k.

Question 9.4. Let n > k ≥ 1, and let G be a k-degenerate n-vertex graph. Prove that

|E(G)| ≤ k(n− k) +
(
k
2

)
. Is this best possible?

Question 9.5. A bowtie is a graph B consisting of two triangles sharing exactly one vertex.

Determine ex(n,B) for all n ≥ 1.

Question 9.6. Let G be a bipartite graph with parts of sizes m and n, not containing a

4-cycle. Prove that

|E(G)| ≤ m
√
n+ n.

Question 9.7. Let G be an n-vertex graph not containing a 4-cycle. Prove that

|E(G)| ≤ n

2
(1 +

√
4n− 3).

Question 9.8. Let G be an n-vertex d-regular graph. Prove that the number of triangles

in G is at least
1

3
d2n− 1

6
dn2.

Question 9.9. Let r be a positive integer, and let f : R→ [0,∞) be defined by f(x) = 0 if

x < r − 1 and f(x) = x(x− 1) . . . (x− r + 1) if x ≥ r − 1. Prove that f is convex on R and

then show if a = 1
n
(a1 + a2 + · · ·+ an) ≥ r − 1 for positive integers a1, a2, . . . , an, then

1

n

n∑
i=1

(
ai
r

)
≥
(
a

r

)
.
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Question 9.10. Let q be an odd prime number, and let G be the pseudograph with vertex

set Zq × Zq such that (x1, x2) is adjacent to (y1, y2) whenever

x2 + y2 = x1y1.

Prove that G does not contain any quadrilaterals. Suppose the equation x2 = 2 has no

solution. Determine the number of edges of G after loops are removed.

Question 9.11* Draw n + 1 line segments between a set of n points in the plane. Prove

that two of the line segments do not intersect. Is this best possible?

Question 9.12* A pentagon is a cycle C of length five. Prove that the extremal C-free

graphs are either complete bipartite graphs with bn2/4c edges or n ≤ 7 and the extremal

C-free graphs consist of a clique of size min{4, n} and a clique of size n − min{4, n} + 1

sharing exactly one vertex.

Question 9.13* Let G be an n-vertex d-regular graph. Prove that the number of cycles of

length four in G is at least

1

4
n(n− 1)

(d(d−1)
n−1
2

)
.

Question 9.14* Let n ≥ r ≥ 1 and let G be an n-vertex graph with 1
r

(
n
2

)
edges. Prove that

G contains a subgraph with m ≥
√
n/r vertices and minimum degree at least 1

r
(m− 1).
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A Appendix*

A.1 Sets and sequences

Sets. A set is an unordered collection of distinct objects. The objects are called elements

of the set. We use braces to denote a set, for example, the set with elements 1, 2 and 3 is

denoted {1, 2, 3}. Since the elements are not ordered, we can rearrange the elements in the

representation to get the same set, so {1, 2, 3} and {3, 2, 1} are the same set. The set with

no elements is denoted {} or ∅, and is called the empty set . A set A is a subset of a set

B, denoted A ⊂ B, if every element of A is also an element of B. We write a ∈ A to denote

that a is an element of set A. If A is a set with finitely many elements, we write —A—

for the number of elements of the set A. Some standard infinite sets include Z, the set of

integers, Z≥0 the set of non-negative integers, and R, the set of real numbers. Recall that if

A and B are sets, then A ∩B = {a : a ∈ A and a ∈ B}, and A ∪B = {a : a ∈ A or a ∈ B}.
These are the intersection and union of the sets A and B respectively. Two sets A and

B are disjoint if A ∩ B = ∅. Sets Ai : i ∈ S are pairwise disjoint if Ai ∩ Aj = ∅ for all

i, j ∈ S with i 6= j. We write
⋃
i∈S Ai to denote the union of all sets Ai such that i ∈ S. For

sets A and B, A×B = {(a, b) : a ∈ A, b ∈ B} is the Cartesian product of A and B.

Sequences. A sequence is an ordered collection of (not necessarily distinct) objects. The

objects are called entries of the sequence. We use brackets to denote a sequence, for example

(1, 1, 2) denotes the sequence with entries 1, 1 and 2. Since the entries are ordered, we can

rearrange the elements in the representation to get a new sequence, so (1, 1, 2) and (1, 2, 1)

are different sequences. When the entries are required to be distinct, the sequence is called a

permutation of the set of its entries. For example, (1, 2, 3) and (2, 3, 1) are permutations of

{1, 2, 3}. If a and b are sequences, then a is a subsequence of b if we can delete entries of b to

get a. For example, (1, 2, 3, 4) is a subsequence of (1, 1, 2, 1, 3, 1, 4) obtained by deleting 1s.

The length of a sequence with finitely many entries is the number of entries in the sequence.

Here is some notation involving products and sums of elements of sets and sequences: when

we want to sum up the values of a function f(i) for i ∈ S, where S is a set or a sequence,

we write
∑

i∈S f(i). The symbol we use for products is Π, so the product of f(i) over i ∈ S
is denoted

∏
i∈S f(i). We will be making extensive use of this notation.

A.2 Counting sets and sequences

Basic combinatorial questions involve counting sequences of finite length and sets of finite

size. The following theorem tells us the total number of subsets of an n-element set:

Theorem A.2.1 The number of subsets of an n-element set is 2n.
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The next natural question is how many sequences of length n can be formed from a k-element

set? For example, from the set {a, b}, we can form the sequences (a, a), (a, b), (b, a) and (b, b)

of length two. The answer is as follows:

Theorem A.2.2 The number of sequences of length n from a k-element set is kn.

It should already be plain why this theorem is true: there are k choices for each entry of the

sequence, and so kn choices to fill up the sequence. By this logic, counting permutations is

just as easy:

Theorem A.2.3 The number of permutations of a set of size n is n! := n(n−1)(n−2) . . . 1.

There are (n)k := n(n− 1) . . . (n− k+ 1) sequences of k distinct elements in a set of size n.

The notation n! is read n factorial , and denotes the product of all integers from 1 to n.

Again, there are n choices for the first entry of a permutation, but then only n − 1 for the

next, n− 2 for the next, and so on until the last entry, since all the entries are distinct. The

last thing to count is the number of subsets of size k in an n-element set. The answer in

general is given by the following theorem

Theorem A.2.4 The number of sets of size k in an n-element set is(
n

k

)
:=

n(n− 1)(n− 2) . . . (n− k + 1)

k!
=

(n)k
k!

=
n!

k!(n− k)!
.

The numbers
(
n
k

)
defined in this theorem are called binomial coefficients , for reasons

which we shall see shortly.

A.3 Multiplication and summation principles

All of the basic theorems in the last section have the same organizing principle, known as

the multiplication principle . Informally, the multiplication principle says that if we want

to know how many sequences (x1, x2, . . . , xk) there are given that the number of choices for

xi is known, all we have to do is multiply together the number of choices (or decisions) for

each xi when x1, x2, . . . , xi−1 have already been chosen.

Principle A (The Multiplication Principle) The number of sequences (x1, x2, . . . , xk)

with ai choices for xi after having chosen x1, x2, . . . , xi−1 for each i = 1, 2, . . . , n is exactly

a1a2 . . . an.

The proofs of Theorems A.2.1, A.2.2 and A.2.3 come from this principle. Our argument for

proving Theorem A.2.1 uses the multiplication principle with two choices for each xi, namely
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xi ∈ {0, 1} for all i, in which case the number of choices is 2n. The assignment xi = 1 means

i is placed in the set, and xi = 0 means i is not placed in the set. So we have represented

sets by binary sequences and there are 2n binary sequences.

A second principle we use often is to break down a counting problem into a number of disjoint

parts which are easier to deal with. We will refer to this as the summation principle:

Principle B (The Summation Principle) Let A1, A2, . . . , An be pairwise disjoint finite

sets. Then ∣∣∣ n⋃
i=1

Ai

∣∣∣ =
n∑
i=1

|Ai|.

A.4 Inclusion-exclusion principle

A basic course in mathematics confirms |A∪B| = |A|+|B|−|A∩B|. This is a special instance

of the inclusion-exclusion formula , or combinatorial sieve . Let [n] = {1, 2, . . . , n}.

Principle C (Inclusion-Exclusion) Let A1, A2, . . . , An be sets of finite size. Then

∣∣∣ n⋃
i=1

Ai

∣∣∣ =
∑
∅6=S⊆[n]

(−1)|S|+1
∣∣∣⋂
i∈S

Ai

∣∣∣.
Note that the sum is over all non-empty subsets of [n], and when n = 2 it reduces to

|A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2|. When the sets Ai are pairwise disjoint (they share no

elements – meaning Ai ∩ Aj = ∅ for all i, j), we get the summation principle.

A.5 Bijections and combinatorial proofs

Let A and B be sets. A function f : A → B is called an injection (or one-to-one) if

whenever x, y ∈ A are distinct, then f(x) 6= f(y). The function f is a surjection (or onto

B) if for every b ∈ B there exists x ∈ A such that f(x) = b. Finally, f : A → B is a

bijection if f is an injection and a surjection. How would we check, given two sets A and

B of finite size, that |A| = |B|? For each element a ∈ A, we would associate in some way an

element b ∈ B, so that no other element of A is associated with b. In other words, we would

element-by-element find a matching or pairing of the elements of A with the elements of B.

This is exactly a bijection f : A→ B.

Combinatorial identities are often proved by interpreting each side combinatorially, and then

establishing a bijection between the two objects. For instance, the number of subsets of an
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n-element set is 2n, so by the summation principle and Theorem A.2.4,

n∑
k=0

(
n

k

)
= 2n.

Combinatorial identities can generally be hard to prove by finding bijections, since it often

hard to see what each side of the identity actually represents. Another general example is

the binomial theorem :

Theorem A.5.1 Let a be a rational number and x ∈ (−1, 1) a real number. Then

(1 + x)a =
∞∑
k=0

(
a

k

)
xk.

A.6 Mathematical induction

Let P (n) denote a logical statement for each positive integer n. Thus for each integer n,

we can determine whether P (n) is true or P (n) is false. For example, P (n) might be the

statement that there is a prime larger than n, and so on. In the most basic form, the principle

of mathematical induction can be stated as follows:

Principle D (Mathematical Induction) Let P (n) be a statement for each positive in-

teger n, and suppose that P (1) is true, and P (n) → P (n + 1) for each positive integer n.

Then P (n) is true for every positive integer.

There are two steps in any induction. First one establishes the base case (in the terms above,

one proves P (0)). Then, under the assumption that P (n) is true, one attempts to prove that

P (n + 1) must also be true (it is very important to get the order correct here – we are to

show P (n)→ P (n+ 1) and not P (n+ 1)→ P (n)).

In some instances, the following stronger form of induction is necessary:

Principle E (Strong Induction) Let P (n) be a statement for each positive integer n,

and suppose that P (1) is true, and P (n)∧P (n−1)∧ · · ·∧P (1)→ P (n+ 1) for each positive

integer n. Then P (n) is true for every positive integer.

A.7 The pigeonhole principle

One of the most fundamental principles in combinatorics is the pigeonhole principle . It

is entirely straightforward:

Principle F (Pigeonhole Principle) Let A and B be finite sets and f : A → B an

injection. Then |B| ≥ |A|.
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If we have a set of n+ 1 objects of n different types, then the pigeonhole principle says there

exist two objects of the same type. We simply note that if A is the set of objects and f(a)

is the type of object a ∈ A, then f : A→ B where B is the set of types and A is the set of

objects. Since |A| = n+ 1 and |B| = n, f is not an injection, which means f(a) = f(a′) for

some a, a′ ∈ A. It is often in this form that the pigeonhole principle is used.
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cut vertex, 52

cutting-plane algorithms, 33

de Bruijn digraph, 30

de Bruijn sequence, 29

de Bruijn sequences, 29

decentralized search, 15

degree, 17, 95

degree sequence, 17

depth-first search, 45

depth-first search tree, 45

diameter, 10, 42

digraph, 6, 19

Dijkstra’s Algorithm, 33

Dijkstra’s Shortest Path Algorithm, 15, 47

directed cycle, 23, 51

directed Eulerian tour, 29

directed path, 94

disconnected, 27

disjoint, 132

distance, 42

dodecahedron graph, 51

double torus, 106

ear-decomposition, 54

edge cover, 67

edge cut, 60

edge set, 6

edge-chromatic number of G, 85

edge-connectivity, 63

edges, 6

Edmonds’ Matching Algorithm, 80

elements, 132

embedding, 95

empty graph, 15

empty set, 132

endblock, 105

ends, 26

equivalence relations, 55

Erdős-Gallai Theorem, 128

Erdős-Rényi model, 12

Erdős-Sós Conjecture, 128

Euler characteristic, 106

Euler-Poincaré Formula, 108

Eulerian, 27

Eulerian digraph, 29

Eulerian tour, 27

Eulerian trail, 27, 37

expander graphs, 14

exposed, 72

extremal graph, 124

extremal numbers, 124

faces, 95

Fleury’s Algorithm, 36

Floyd-Warshall Algorithm, 47

forest, 41

from v, 19

Gale-Shapley Algorithm, 80

genus, 106

Grötsch graph, 85, 91

graph, 6

grid graph, 23

Hall’s Theorem, 12

Hamiltonian, 31
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Hamiltonian cycle, 31

Hamiltonian path, 31

handles, 106

handshaking lemma, 17

Heawood graph, 37

Heawood’s Map Coloring Theorem, 108

height, 44

Hierholzer’s Algorithm, 28

Hopcroft-Karp Algorithm, 77

Hungarian Algorithm, 80

in-degree, 19

in-neighborhood, 19

incident, 6

inclusion-exclusion formula, 134

independent set, 67

induced, 20

induced subgraph, 20

induced subgraphs, 10

infinite face, 95

injection, 134

integer linear programming, 33

internally disjoint, 54

intersection, 132

isolated vertex, 17

isolated vertices, 20

Jensen’s Inequality, 127

König’s Theorem, 85

König-Ore Formula, 75

Kirchoff’s Law, 114

Kneser graph, 24

Kruskal’s Algorithm, 46

Kuhn-Munkres Algorithms, 80

latin rectangle, 71

latin square, 70

latin square of order n, 70

layered graph, 78

layers, 44

length, 16, 26, 132

line graph, 24, 36

linear forest, 77

loops, 6, 19

matching, 67

matchings, 33

Max-Flow Min-Cut Theorem, 12

maximal planar, 97

maximal plane, 97

maximum degree, 17

maximum flow, 115

maximum matching, 67

metric space, 51

minimum cut, 115

minimum degree, 17

minimum distance, 14

minimum priority queues, 49

minimum weight spanning tree, 46

multigraph, 6

multiplication principle, 133

multiplication table of a group, 71

multiset, 6

mutually visible, 101

National Residency Matching Program, 80

neighborhood, 17

neighborhood of X, 68

network, 19

odd components, 72

one-to-one, 134

onto, 134

orientable, 106

orientation, 6, 94

out-degree, 19

out-neighborhood, 19

PageRank, 10
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pairwise disjoint, 132

partition, 15

parts, 16

pentagon, 131

percolation on graphs, 14

perfect matching, 12, 67

permutation, 132

Petersen graph, 44

pigeonhole principle, 135

planar, 95

plane dual, 103

plane embedding, 95

plane graph, 95

platonic solid, 97

polyhedral combinatorics, 33

Postman Problem, 33

preferential attachment, 13

Prim’s Algorithm, 46

proper k-coloring, 85

proper k-edge-coloring, 85

pseudograph, 6

radius, 10, 43

random geometric graphs, 13

random regular graphs, 13

reflexivity, 55

root, 43, 45

route inspection problem, 33

saturated, 72

Scheduling Problem, 90

sink, 12

source, 12

spanned by L, 21

spanning, 41

spanning subgraph, 20

stable matching, 80

static st-flow, 114

Storage Problem, 90

structural graph theory, 52

structure theorem, 54

subdivision, 66, 95

subgraph, 20

subset, 132

surjection, 134

symmetry, 55

system of distinct representatives, 70

theta graph, 54

tiling, 82, 83

Timetable Problem, 90

to v, 19

toroidal graph, 107

torus consists, 106

tour, 27

tournament, 37

traceable, 31

trail, 27

transitivity, 55

transversal, 70

Travelling Salesman Problem, 33

tree, 41

triangulate, 102

triangulation, 111

TSP, 33

Turán graph, 126

Turán numbers, 124

Tutte’s 1-Factor Theorem, 12

Tutte-Berge Formula, 75

underlying graph, 6

union, 132

uniquely Hamiltonian, 34

unit distance graph, 11

unsaturated, 72

value of a flow, 114

vertex cover, 67

vertex cut, 58

vertex set, 6
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vertex-connectivity, 63

vertices, 6

Vizing’s Theorem, 85

walk, 26

weight, 33

weight function, 33, 46, 47

wheel graph, 22

wheel graphs, 23
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[7] Bondy, J. A., and Chvátal, V. A method in graph theory. Discrete Math. 15, 2

(1976), 111–135.
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[9] Chvátal, V. A combinatorial theorem in plane geometry. J. Combinatorial Theory

Ser. B 18 (1975), 39–41.

[10] Dirac, G. A. Some theorems on abstract graphs. Proc. London Math. Soc. (3) 2

(1952), 69–81.
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