Chapter 9.  Principles of Electromechanical
Energy Conversion
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Introduction

For energy conversion between electrical and mechanical forms, electromechanical
devices are developed. In general, electromechanical energy conversion devices can be
divided into three categories:

(1) Transducers (for measurement and control)
These devices transform the signals of different forms. Examples are
microphones, pickups, and speakers.

(2) Force producing devices (linear motion devices)
These type of devices produce forces mostly for linear motion drives, such as
relays, solenoids (linear actuators), and el ectromagnets.

(3) Continuous energy conversion equipment
These devices operate in rotating mode. A device would be known as a
generator if it convert mechanical energy into electrical energy, or asamotor if it
does the other way around (from electrical to mechanical).

Since the permeability of ferromagnetic materials are much larger than the permittivity
of dielectric materials, it is more advantageous to use electromagnetic field as the
medium for electromechanical energy conversion. As illustrated in the following
diagram, an electromechanical system consists of an electrical subsystem (electric
circuits such as windings), a magnetic subsystem (magnetic field in the magnetic cores
and airgaps), and a mechanical subsystem (mechanically movable parts such as a
plunger in alinear actuator and a rotor in a rotating electrical machine). Voltages and
currents are used to describe the state of the electrical subsystem and they are governed
by the basic circuital laws: Ohm's law, KCL and KVL. The state of the mechanical
subsystem can be described in terms of positions, velocities, and accelerations, and is
governed by the Newton's laws. The magnetic subsystem or magnetic field fits between
the electrical and mechanical subsystems and acting as a "ferry" in energy transform and
conversion. The field quantities such as magnetic flux, flux density, and field strength,
are governed by the Maxwell's equations. When coupled with an electric circuit, the
magnetic flux interacting with the current in the circuit would produce a force or torque
on a mechanically movable part. On the other hand, the movement of the moving part
will could variation of the magnetic flux linking the electric circuit and induce an
electromotive force (emf) in the circuit. The product of the torque and speed (the
mechanical power) equals the active component of the product of the emf and current.
Therefore, the electrical energy and the mechanical energy are inter-converted via the
magnetic field.
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Concept map of electromechanical system modeling

In this chapter, the methods for determining the induced emf in an electrical circuit and
force/torque experienced by a movable part will be discussed. The general concept of
electromechanical system modeling will also be illustrated by a singly excited rotating
system.

Induced emf in Electromechanical Systems

The diagram below shows a conductor of length | placed in a uniform magnetic field of
flux density B. When the conductor moves at a speed v, the induced emf in the
conductor can be determined by

e=Ilv’ ' B
The direction of the emf can be determined by the "right hand rule" for cross products.
Inacail of N turns, the induced emf can be calculated by

d

e:-a

where | is the flux linkage of the coil and the minus sign indicates that the induced
current opposes the variation of the field. 1t makes no difference whether the variation
of the flux linkage is aresult of the field variation or coil movement.

In practice, it would convenient if we treat the emf as a voltage. The above express can
then be rewritten as

~d_di . dLdx

= La+l&a

E‘—E—
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if the system is magnetically linear, i.e. the self inductance is independent of the current.
It should be noted that the self inductance is a function of the displacement x since
thereisamoving part in the system.

Example:

Calculate the open circuit voltage between the brushes on a Faraday's disc as shown
schematically in the diagram below.

BN

Shaft

N
U

| Brushes
2 1 N -7

B & L/ S N ;,/ N

+ J

Solution:

Choose a small line segment of length dr at position r (ricr£r,)from the center of the
disc between the brushes. The induced emf in this elemental length isthen

de = Bvdr = Bw,rdr

where v=rw;. Therefore,
I.
. fz\ r2]? I’22 . f12
e:(jjezon,rdr:W,BE ] 2

r rn

Example:

Ketch L(X) and calculate the induced emf in the excitation coil for a linear actuator
shown below.

i
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y
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-0 P e Magnetic g T
/', ' plunger Magnetic
Lossloss noren flux
. Magnetic core
N-turn coil gH s
lal b}

A singly excited linear actuator
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Solution:

N2
L(X)_Rg(x)
and
_ 29
Ryl = my(d - X)I
V=N g
29
o b dlx
Cdt dt dxdt
di m,NZI
=L{x )dt 29
L(x)
L(0)
o d ”
Inductance vs. displacement
Iflzldc,
_, MmN
e=-lg 29 v
If i=lSinwt
~ mN?| NI
e= 29 (d- x)wl_ coswt - v _sinwt 29
N2
=1 m’zg [(d - x)w coswt - vsinwt]
_, MmN’ ® Vv
=1, 29 \/(d X)*w? +v?2 cosgvt+arctang(d x)wd"'

Forceand Torqueon a Current Carrying Conductor

The force on a moving particle of electric charge g in a magnetic field is given by the
Lorentz's force law:

F=q(v" B)
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The force acting on a current carrying conductor can be directly derived from the
equation as

F=I1gd B
C

where C is the contour of the conductor. For a homogeneous conductor of length |
carrying current | in auniform magnetic field, the above expression can be reduced to

wherer isthe radius vector from the axis towards the conductor.

Example:

Calculate the torque produced by the Faraday's disc if a dc current |4 flows fromthe
positive terminal to the negative terminal as shown below.

<\

Shaft

N _{
F r J_ —IBrushes
2 1 -7
B |I S N 5/ N
= | =

Solution:

Choose a small segment of length dr at position r (rizr£r) between the brushes. The
force generated by this segment is

dF = (- 1drf)" (Ba,)
= |Bdra,

where aq is the unit vector in q direction. The corresponding torqueis

dT =r " dF = IBrdra,
Therefore,

f2 r.2_r.2
T = (YT = (yBrdra, = IB>——a

n
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Force and Torque Calculation from Energy i FL
+ O Lossless magnetic [~ +
and Coenergy e energy storage x
o | systern L o
. . . Elegtrical Meachanical
A Sngly Excited Linear Actuator terminal - terminat
a
Consider a singly excited linear actuator as i _ Magnetic core
o ) ) N
shown below. The winding resistanceis R. At PASASED o I ¢

/i

-

!

1
a certain time instant t, we record that the — o resistance . 5
terminal voltage applied to the excitation - ¢

winding is v, the excitation winding current i, L,r_:msl_efss magnetic plunger
the position of the movable plunger x, and the g o
force acting on the plunger F with the reference A singly excited linear actuator

direction chosen in the positive direction of the x axis, as shown in the diagram. After a
time interval dt, we notice that the plunger has moved for a distance dx under the action
of the force F. The mechanical done by the force acting on the plunger during this time
interval isthus

dW,, = Fdx

The amount of electrical energy that has been transferred into the magnetic field and
converted into the mechanical work during this time interval can be calculated by
subtracting the power loss dissipated in the winding resistance from the total power fed
into the excitation winding as

dW, = dW, +dW, = vidt - Ri%dt
Because

e—i—v Ri
="
we can write

dW, =dW, - dW, = eidt - Fax
=idl - Fdx

From the above equation, we know that the energy stored in the magnetic field is a
function of the flux linkage of the excitation winding and the position of the plunger.
Mathematically, we can also write

aw, (I ’X):ﬂWf(l ’X)dl +‘”Wf .Y

q x dx

Therefore, by comparing the above two equations, we conclude

™, (I,x) g E e ™, (I,x)

1l X

From the knowledge of electromagnetics, the energy stored in a magnetic field can be
expressed as

W, (1,x) = (1, x)dl
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For a magnetically linear (with a constant permeability or a straight line magnetization
curve such that the inductance of the coil is independent of the excitation current)
system, the above expression becomes

GRS

and the force acting on the plunger is then
W (X)) 161 o d(x) 1., du(x)
% = 2&(x)H dx "2 dx

In the diagram below, it is shown that the magnetic energy is equivalent to the area
above the magnetization or | -i curve. Mathematically, if we define the area underneath
the magnetization curve as the coenergy (which does not exist physicaly), i.e.

|

w,(i,x) =il -w, (1,%)
w0 ¢
. 2
we can obtain
dw, '(i,x) =1 q. +idl - dw, (I ,x) i
= di + Fdx
T .("X)di+ﬂwf L 0 i
T X Energy and coenergy
Therefore,
| :—‘H\Nf'_(i’x) and F :—Mf'(i’x)
[ x

From the above diagram, the coenergy or the area underneath the magnetization curve
can be calculated by

W, (i,x) = ¢ (i, x)al
0
For amagnetically linear system, the above expression becomes
1
w, '(i,x) = o L(x)

and the force acting on the plunger is then

™, (i,x) 1., dL(x)

Ix 2 dx
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Example:

Calculate the force acting on the plunger of a linear actuator discussed in this section.

I f
T — " /!
4 g—*— -+ , e R
A ] p 1_%1 I e <+ ) g
' [
' oA 47
) y [ ¢ : Magnatic H T .
// 1 plunger et
: we flux
bﬁrﬁoil Magnetic cote
e
“ b} ©
Asingly excited linear actuator
Solution:

Assume the permeability of the magnetic core of the actuator is infinite, and hence the
system can be treated as magnetically linear. From the equivalent magnetic circuit of
the actuator shown in figure (c) above, one can readily find the self inductance of the
excitation winding as

N?  mNZ?I(d- x)
2R, 29

L(x) =

Therefore, the force acting on the plunger is

_E.zdL(X)_ &l N2
F=o T _-4g(NI)

The minus sign of the force indicates that the direction of the force is to reduce the
displacement so as to reduce the reluctance of the air gaps. Snce this force is caused
by the variation of magnetic reluctance of the magnetic circuit, it is known as the
reluctance force.

Sngly Excited Rotating Actuator

. . . . Axial length {perpendicutar
The singly excited linear actuator mentioned above topage)=h

becomes a singly excited rotating actuator if the linearly
movable plunger is replaced by a rotor, as illustrated in
the diagram on the right hand side. Through a derivation
similar to that for a singly excited linear actuator, one
can readily obtain that the torque acting on the rotor can
be expressed as the negative partial derivative of the
energy stored in the magnetic field against the angular
displacement or as the positive partial derivative of the
coenergy against the angular displacement, as
summarized in the following table. A singly excited rotating actuator
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Table: Torque in asingly excited rotating actuator

Energy
In general,
dw, =idl - Tdq
|

w, (1.9)=g( g

0

™, (I ,a)

1
™, (I ,q)

fiq
If the permeability is a constant,
117
Wl ,9)==—=
AR

Doubly Excited Rotating Actuator

Coenergy

dW, ‘=1 di +Tdg

W, '(i.q) = 9 (i,a)d

)

|l
w, (i.a)

The general principle for force and torque calculation discussed above is equaly
applicable to multi-excited systems. Consider a doubly excited rotating actuator shown

schematically in the diagram below as an example.
coenergy functions can be derived as following:

dwW, =dw, - dW,
where

dW, = eji,dt +e,i,dt

_dly

R
and

dW, = Tdq
Hence,

Statar —]

The differential energy and

Rotor i,

|
A doubly excited actuator
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aw, (1,,1,,q) =i,dl, +i,di , - Tdq

SR PR B V) PELIE) B
ﬂll T”z
+ﬂWf(l1,|2,q)dq
Tl

and
de'(il,iz,q):d[il|1+i2|2-Wf(|l,|2,q)]
=1 ,di, +1,di, + Tdq
=ﬂWfI(i.l’iz’q)dil+ﬂwfI(i_l’iz’q)diz
fii, 1ii,
W (i,.i,.9)
g M

Therefore, comparing the corresponding differential terms, we obtain

Cow(1,0,.0)
T Tq

or

W, (iy,.9)

- Tq

T

For magnetically linear systems, currents and flux linkages can be related by constant
inductances as following

or

where Lio=La1, Gii=L2/D, Gio=Gy=- L12/D, Goo=L11/D, and D=Ly1L- L1, The
magnetic energy and coenergy can then be expressed as

1 1
W, (l 1 2’q):§Gh| 12 +§G‘zz| ; +Gp,l

and

. 1 . 1 . ..
W, (Il,lz,q) :ELllllz +§L22|22 + Ll

respectively, and it can be shown that they are equal.

Therefore, the torque acting on the rotor can be calculated as
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W (1,.05.0) W (i)
g g
_1.du(e) 1,dip(@) . dlu(a)
2" fa 2° g9 7 fa

T=-

Because of the salient (not round) structure of the rotor, the self inductance of the stator
is afunction of the rotor position and the first term on the right hand side of the above
torque expression is nonzero for that dL1;/dgt 0. Similarly, the second term on the right
hand side of the above torque express is nonzero because of the salient structure of the
stator. Therefore, these two terms are known as the reluctance torque component. The
last term in the torque expression, however, is only related to the relative position of the
stator and rotor and is independent of the shape of the stator and rotor poles.

Model of Electromechanical Systems

To illustrate the general principle for modeling of an electromechanical system, we still
use the doubly excited rotating actuator discussed above as an example. For
convenience, we plot it here again. As discussed in the introduction, the mathematical
model of an electromechanical system consists of circuit equations for the electrical
subsystem and force or torque balance equations for the mechanical subsystem, whereas
the interactions between the two subsystems via the magnetic field can be expressed in
terms of the emf's and the electromagnetic force or torque. Thus, for the doubly excited
rotating actuator, we can write

d(l 11 +1 12)
ct
duu(@)dg, | di, . di,(a)dg

o d )
V1:R1|1+d_tl: R1|1+

d
= i.+L _1+' _1 _ <
Rl gy o Tl "2 dg
é dL,(q)d dL,,(a). di, di,
=aR +w 1AW —2 e L4 —2
g r dq lLJJl Wr dq |2 11 dt 12 dt

Rotar iy

Statar —*] i

i
A doubly excited actuator

Page 9-11



48531 EMS— Chapter 9. Electromechanical Energy Conversion

. d o [ {
V2:R2|2+d_t2:R2|2+ (Zldt 22)

di, . di,(@dg, ~di, . d,(@)dg

= +L +
"Rl Lyt T T ag o
dL,,(q ) dL,,(q)u di, di,
=w + +L.,—4+L, —=
I’ dq R2 W dq HZ 12 dt 22 dt
and
dw,
T- Tload =J dt
where
_dqg
W T

is the angular speed of the rotor, Tag the load torque, and J the inertia of the rotor and
the mechanical load which is coupled to the rotor shaft.

The above equations are nonlinear differential equations which can only be solved
numerically. Intheformat of state equations, the above equations can be rewritten as

d, 1 gRﬁdL“(q)WrHl- idLlZ(q)wriz- Ledy 1
dt L, é dq u Ly dg L, dt L
di -idLlZ(q)Wril- 1 SRZ_'_szz(q)WrHZ_ Lpd, 1,
dt L, dg L, & dq u L,, dt Lo,
dw, —ET 1_|_
dt J - J load
dg

d -

nd g W

Together with the specified initial conditions (the state of the system at time zero in
terms of the state variables):

oo ~ 10, i2|t=0 200 Wrl_o =Wros and ql._, =0,
the above state equations can be used to simulate the dynamic performance of the

doubly excited rotating actuator.

Following the same rule, we can derive the state equation model of any electro-
mechanical systems.
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Exercises

1. An electromagnet in the form of a U shape has an air gap, between each pole and an
armature, of 0.05 cm. The cross sectional area of the magnetic coreis5 cm? and it is
uniformly wound with 100 turns. Neglecting leakage and fringing flux, calculate the
current necessary to give a force of 147.2 N on the armature. Assume 15% of the
total mmf is expended on the iron part of the magnetic circuit.

Answer: 5.69 A

2. For a singly excited elementary two pole reluctance motor as shown in Fig.Q2,
sketch the variation of the winding inductance with respect to the rotor position q and
show that the magnitude of the average torqueis

T, =01251(L, - L,)sinzq,

where |, is the peak value of the current, g, the angle between the rotor and the stator
at time zero and Ly and Lq are the inductances in the d and g axes respectively.
Assume the excitation is sinusoidal and the instantaneous rotor position is g=wt- q.

3. For asingly excited elementary two pole reluctance motor under constant current
conditions, calculate the maximum torque developed if the rotor radius is equal to 4
cm, the length of the air gap between a pole and the rotor equal to 0.25 cm, the axid
length of the rotor equal to 3 cm. The pole excitation is provided by a coil of 1000
turns carrying 5 A.

Answer: 3.77 Nm
4. Fig.Q4 shows a solenoid where the core section is square. Calculate the magnitude
of the force on the plunger, given that 1=10 A, N=500 turns, g=5 mm, a=20 mm, and

b=2 mm.

Answer: 256.4 N

Stator }
axi [ R l Core

) > Nonmagese

) Core thicknegs (into the paper)=a
Fig.Q2 Fig.Q4

5. Caculate the self inductance of each coil in Fig.Q5 and the mutual inductance M
between the coils. Is M positive or negative? Make appropriate assumptions.
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6. Calculate the self inductance of the coil in Fig.Q6, making appropriate assumptions.
Under what conditions could the iron reluctance be neglected?

7. InFig.Q7, derive an expression for the flux f ,; linking coil 2 due to a current in cail
1, making appropriate assumptions. Calculate the mutual inductance between the
coils by two methods, and calculate the self inductance of each coil. Sketch f 5; vsx.

8. Repeat question 7 using Fig.Q8, and sketch f »1 vs Q.

9. Repeat question 8 using Fig.Q9. Calculate also the mutual inductance between coils
land 3.

10. In Fig.Q10, the flux density isin the Z direction and is given by

X
B= BmsinF:—

Calculate the flux linking the coil.

11. In Fig.Q11, the poles are shaped to give asinusoidal flux density B=Bcosq at the
rotor surface. With appropriate assumptions, calculate the flux linking coil 2 when
the current in coil 1isl;. Calculate the mutual inductance.

Jo Ja
8] 8]
o d o o
(_> C_> (_> g
C_> [\ N, C_> a—1 N
4| C_D 4|
o— —o o—
Permeability: m  Depth: b Permeability: m  Depth: b
Mean length: | Mean length: |
Fig.Q5 Fig.Q6
[a
2 ) ]
R_ectangLIJIar coil
(¢} size: t
t >aandl >b /_

N T—ON,
Dt Xt

=

A|r\r\

o
d
d
q =
—P T 4 \Tp
o_
9
a_—
|
Permeability: m Depth: b (pole arc)
Mean length: | Permeability: "® ¥  Depth: b

Fig.Q7 Fig.Q8
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N turns

T [e]
NNANN

a_
(pole arc)
Permeability: M®¥  Depth: b 0 X
Fig.Q9 Fig.Q10
O p D
»]
N,
g »]
»]
o_
g
(main air gap)

Permeability: "®¥  Depth: b

Fig.Q11

12. (a) Calculate the emf in the rectangular coil shown in Fig.Q12, if it moves in the X
direction with
velocity v and the flux density B=Bsinbx.
(b) What value (or values) of the length a gives the maximum emf?
(c) Calculate the emf if B=B,sin(wt- bx) and the coil movesin the X direction with
velocity v.
(d) What is the emf in (c) when v=w/b?

Y
N turns

B

® b

- w—

Fig.Q12
13. The diagram in Fig.Q13 show a cross section in the direction of motion of a linear

machine (or a developed rotary machine) with (a) a smooth rotor and (b) a slotted
rotor. The flux density shown is the average flux density in the Y direction near the
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rotor surface. Derive expressions for the emf induced in the single coils shown when
the rotor moves with velocity vin the X direction, and plot the emf against time.

B

Y
A, s |

(@) X

Y
AR, s |

X

Fig.Q13

14. Derive an expression for the current induced in the ring shown in Fig.Q14,
neglecting the flux produced by the current itself.

15. Derive an expression for the emf generated in the “Faraday disc” homopolar machine
shown in Fig.Q15. Assume the flux density B is uniform and perpendicular to the
disc between the brushes.

Rsistivity: I

Fig.Ql4 Fig.Q15

16. Derive an expression for the emf in coil in Fig.Q16 and sketch the emf vstime
(@ when i,=0 and i,=I, a constant,
(b) when i,=0 and i,=I, a constant,
(c) when i,=0 and i1=I,Sinwt,
(d) when i;=I; aconstant and i,=I,Sinwt.
In parts (c) and (d), what happensif the rotor speed w,=w? Explain.
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N, er % N, o

\ =1

T o
NANAN

g
a
(pole arc)

Permeability: ™®¥  Depth: b
Fig.Q16

17. Derive an expression for the emf in coil 2 in Fig.Q17 and sketch the emf vs. time,
when
(@) 11.=1, aconstant,
(b) i1=lmSinwit.
If the rotor coil issunk into small slots, isthe emf still the same? Explain.

18. In Fig.Q18 the poles are shaped to give a sinusoidal flux density B=Br,cosq at the
rotor surface. Derive an expression for the emf in coil 2 and sketch the emf vs. time,
when
(@) 11.=I, aconstant,

(b) i11=lpSinwt.

O d D \ZI;\I o . 5
2 W, { »]

Z >N, d Z >N,

d ; > p ;
o N o—!

° .
(polg arc) (main air gap)
Permeability: M®¥  Depth: b Permeability: "®¥  Depth: b
Fig.Q17 Fig.Q18

19. Find the torque on the rotating iron part in Fig.Q19 when the exciting winding has NI
A-turns, the length of both air gaps is g and the reluctance of the rest of the magnetic
circuit is negligible. Neglect fringing effects. The length of the machine is b and the
rotor diameter d.

Answer: T—E E(Nl)2
' _2m’4g

20. Fig.Q20 shows a straight conductor moving between two iron poles of length b.
What is the force in the position shown if the only flux is that produced by the
current | in the conductor? Assume the ratio g/a is small, and the permeability of the
ironisinfinite.

b(a- 2x) 2

1
Answer: F, =—m c
2 ga
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5, -

Nc e
g O
X W
e ¥ Depth: b
a w3 a

Fig.Q19 Fig.Q20

21. If the poles of Fig.Q20 are closed as shown in Fig.Q21, calculate the force on the
conductor.

Answer: F 1 EI2
. x_znlgc

22. If acoil of N turns carrying a current | is wound on the yoke of Fig.Q21, as shown in
Fig.Q22, calculate the force on the moving conductor. Is the force given by the
product of the current in the conductor and flux density produced by the coil ?

b &l 0
Answer: F, =m—¢—=I1_+ NI=l_, No
X rTL ggz C g C
" ¥ ! o ¥
I I
g O ® N g O ®
<L w i L w i
TS 7 o—| -~ 7
Depth: b Depth: b
a w3 a a w3 a
Fig.Q21 Fig.Q22

23.1n the relay (or loudspeaker) shown in Fig.Q23 the cail is circular and moves in a
uniform annular gap of small length g. What is the force on the cail if the total
current in coil cross section is |,

(@ when the exciting winding carries no current, or

(b) when the exciting winding ampere-turns are NI?

Note that, in the latter case, the force is not given by the current in the coil times the
flux density due to the exciting winding.

pd gd

Answer ; F:E IZE F = I +NI9I
' ancg’ mg% bc

2 C

24. A machine of axial length b with a single rotor coil is shown in Fig.Q24. Calculate
the torgue when the rotor coil (of N turns carrying acurrent 1) is placed
(a) on the rotor surface and
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(b) in small rotor dlots.

Is the torque given by the product of the current in the rotor coil and the flux density
produced by the stator coil?

1 bd
wanT=§nyaNmJNW5
Moving Coil Exciting Coil
g | Tl
- D o
d D N d
—i——hi
L] =
Fig.Q23 Fig.Q24

25. The cylindrical iron core C in Fig.Q25 is constrained so as to move axialy in an iron
tube. A coil of NI A-turns is wound in a single peripheral slot as shown in the
diagram. What is the axial force on the core and how does it vary with the position of
the core (making any necessary assumptions)?

_ 1 pd ,a- 2X

Nww.ﬁ—zmg(m) "

26. Fig.Q26 shows in cross section the construction of a “motor” that gives a limited
range of movement reversible according to the direction of current in a coil 1. The
coil 2 isan exciting or polarizing winding, supplied from a constant source. Find the
torque in the position shown, for the same rotor dimensions and assumptions as in
problem 1, when the one coil has N;lI; A-turns and the other Nal».

1 bd
Answer: TZErQENlllNZIZ

L (]

@)

Fig.Q25 Fig.Q26
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