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Chapter 1

Introduction

1.1 Introduction

Quantum mechanics is an important intellectual achievement of the 20th century. It is one
of the more sophisticated field in physics that has affected our understanding of nano-meter
length scale systems important for chemistry, materials, optics, and electronics. The existence
of orbitals and energy levels in atoms can only be explained by quantum mechanics. Quantum
mechanics can explain the behaviors of insulators, conductors, semi-conductors, and giant
magneto-resistance. It can explain the quantization of light and its particle nature in addition
to its wave nature. Quantum mechanics can also explain the radiation of hot body, and its
change of color with respect to temperature. It explains the presence of holes and the transport
of holes and electrons in electronic devices.

Quantum mechanics has played an important role in photonics, quantum electronics,
and micro-electronics. But many more emerging technologies require the understanding of
quantum mechanics; and hence, it is important that scientists and engineers understand
quantum mechanics better. One area is nano-technologies due to the recent advent of nano-
fabrication techniques. Consequently, nano-meter size systems are more common place. In
electronics, as transistor devices become smaller, how the electrons move through the device
is quite different from when the devices are bigger: nano-electronic transport is quite different
from micro-electronic transport.

The quantization of electromagnetic field is important in the area of nano-optics and
quantum optics. It explains how photons interact with atomic systems or materials. It also
allows the use of electromagnetic or optical field to carry quantum information. Moreover,
quantum mechanics is also needed to understand the interaction of photons with materials in
solar cells, as well as many topics in material science.

When two objects are placed close together, they experience a force called the Casimir
force that can only be explained by quantum mechanics. This is important for the un-
derstanding of micro/nano-electromechanical sensor systems (M/NEMS). Moreover, the un-
derstanding of spins is important in spintronics, another emerging technology where giant
magneto-resistance, tunneling magneto-resistance, and spin transfer torque are being used.

Quantum mechanics is also giving rise to the areas of quantum information, quantum

1



2 Quantum Mechanics Made Simple

communication, quantum cryptography, and quantum computing. It is seen that the richness
of quantum physics will greatly affect the future generation technologies in many aspects.

1.2 Quantum Mechanics is Bizarre

The development of quantum mechanicsis a great intellectual achievement, but at the same
time, it is bizarre. The reason is that quantum mechanics is quite different from classical
physics. The development of quantum mechanics is likened to watching two players having
a game of chess, but the watchers have not a clue as to what the rules of the game are. By
observations, and conjectures, finally the rules of the game are outlined. Often, equations are
conjectured like conjurors pulling tricks out of a hat to match experimental observations. It
is the interpretations of these equations that can be quite bizarre.

Quantum mechanics equations were postulated to explain experimental observations, but
the deeper meanings of the equations often confused even the most gifted. Even though
Einstein received the Nobel prize for his work on the photo-electric effect that confirmed
that light energy is quantized, he himself was not totally at ease with the development of
quantum mechanicsas charted by the younger physicists. He was never comfortable with the
probabilistic interpretation of quantum mechanics by Born and the Heisenberg uncertainty
principle: “God doesn’t play dice,” was his statement assailing the probabilistic interpreta-
tion. He proposed “hidden variables” to explain the random nature of many experimental
observations. He was thought of as the “old fool” by the younger physicists during his time.

Schrödinger came up with the bizarre “Schrödinger cat paradox” that showed the struggle
that physicists had with quantum mechanics’s interpretation. But with today’s understanding
of quantum mechanics, the paradox is a thing of yesteryear.

The latest twist to the interpretation in quantum mechanics is the parallel universe view
that explains the multitude of outcomes of the prediction of quantum mechanics. All outcomes
are possible, but with each outcome occurring in different universes that exist in parallel with
respect to each other.

1.3 The Wave Nature of a Particle–Wave Particle Dual-
ity

The quantized nature of the energy of light was first proposed by Planck in 1900 to successfully
explain the black body radiation. Einstein’s explanation of the photoelectric effect further
asserts the quantized nature of light, or light as a photon.1 However, it is well known that
light is a wave since it can be shown to interfere as waves in the Newton ring experiment as
far back as 1717.

The wave nature of an electron is revealed by the fact that when electrons pass through
a crystal, they produce a diffraction pattern. That can only be explained by the wave nature

1In the photoelectric effect, it was observed that electrons can be knocked off a piece of metal only if the
light exceeded a certain frequency. Above that frequency, the electron gained some kinetic energy proportional
to the excess frequency. Einstein then concluded that a packet of energy was associated with a photon that
is proportional to its frequency.
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of an electron. This experiment was done by Davisson and Germer in 1927. De Broglie
hypothesized that the wavelength of an electron, when it behaves like a wave, is

λ =
h

p
(1.3.1)

where h is the Planck’s constant, p is the electron momentum,2 and

h ≈ 6.626× 10−34Joule · second (1.3.2)

When an electron manifests as a wave, it is described by

ψ(z) ∝ exp(ikz) (1.3.3)

where k = 2π/λ. Such a wave is a solution to3

∂2

∂z2
ψ = −k2ψ (1.3.4)

A generalization of this to three dimensions yields

∇2ψ(r) = −k2ψ(r) (1.3.5)

We can define

p = ~k (1.3.6)

where ~ = h/(2π).4 Consequently, we arrive at an equation

− ~2

2m0
∇2ψ(r) =

p2

2m0
ψ(r) (1.3.7)

where

m0 ≈ 9.11× 10−31kg (1.3.8)

The expression p2/(2m0) is the kinetic energy of an electron. Hence, the above can be
considered an energy conservation equation.

The Schrödinger equation is motivated by further energy balance that total energy is equal
to the sum of potential energy and kinetic energy. Defining the potential energy to be V (r),
the energy balance equation becomes[

− ~2

2m0
∇2 + V (r)

]
ψ(r) = Eψ(r) (1.3.9)

2Typical electron wavelengths are of the order of nanometers. Compared to 400 nm of wavelength of blue
light, they are much smaller. Energetic electrons can have even smaller wavelengths. Hence, electron waves
can be used to make electron microscope whose resolution is much higher than optical microscope.

3The wavefunction can be thought of as a “halo” that an electron carries that determine its underlying
physical properties and how it interact with other systems.

4This is also called Dirac constant sometimes.
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where E is the total energy of the system. The above is the time-independent Schrödinger
equation. The ad hoc manner at which the above equation is arrived at usually bothers a
beginner in the field. However, it predicts many experimental outcomes, as well as predicting
the existence of electron orbitals inside an atom, and how electron would interact with other
particles.

One can further modify the above equation in an ad hoc manner by noticing that other
experimental finding shows that the energy of a photon is E = ~ω. Hence, if we let

i~
∂

∂t
Ψ(r, t) = EΨ(r, t) (1.3.10)

then

Ψ(r, t) = e−iωtψ(r, t) (1.3.11)

Then we arrive at the time-dependent Schrödinger equation:[
− ~2

2m0
∇2 + V (r)

]
ψ(r, t) = i~

∂

∂t
ψ(r, t) (1.3.12)

Another disquieting fact about the above equation is that it is written in complex functions
and numbers. In our prior experience with classical laws, they can all be written in real
functions and numbers. We will later learn the reason for this.

Mind you, in the above, the frequency is not unique. We know that in classical physics,
the potential V is not unique, and we can add a constant to it, and yet, the physics of the
problem does not change. So, we can add a constant to both sides of the time-independent
Schrödinger equation (1.3.10), and yet, the physics should not change. Then the total E on
the right-hand side would change, and that would change the frequency we have arrived at
in the time-dependent Schrödinger equation. We will explain how to resolve this dilemma
later on. Just like potentials, in quantum mechanics, it is the difference of frequencies that
matters in the final comparison with experiments, not the absolute frequencies.

The setting during which Schrödinger equation was postulated was replete with knowledge
of classical mechanics. It will be prudent to review some classical mechanics knowledge next.
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Chapter 2

Classical Mechanics

2.1 Introduction

Quantum mechanics cannot be derived from classical mechanics, but classical mechanics
can inspire quantum mechanics. Quantum mechanics is richer and more sophisticated than
classical mechanics. Quantum mechanics was developed during the period when physicists
had rich knowledge of classical mechanics. In order to better understand how quantum
mechanics was developed in this environment, it is better to understand some fundamental
concepts in classical mechanics. Classical mechanics can be considered as a special case of
quantum mechanics. We will review some classical mechanics concepts here.

In classical mechanics, a particle moving in the presence of potential1 V (q) will experience
a force given by

F (q) = −dV (q)

dq
(2.1.1)

where q represents the coordinate or the position of the particle. Hence, the particle can be
described by the equations of motion

dp

dt
= F (q) = −dV (q)

dq
,

dq

dt
= p/m (2.1.2)

For example, when a particle is attached to a spring and moves along a frictionless surface,
the force the particle experiences is F (q) = −kq where k is the spring constant. Then the
equations of motion of this particle are

dp

dt
= ṗ = −kq, dq

dt
= q̇ = p/m (2.1.3)

Given p and q at some initial time t0, one can integrate (2.1.2) or (2.1.3) to obtain p and q for
all later time. A numerical analysist can think of that (2.1.2) or (2.1.3) can be solved by the

1The potential here refers to potential energy.

7
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q

V(q)

q

Figure 2.1: The left side shows a potential well in which a particle can be trapped. The right
side shows a particle attached to a spring. The particle is subject to the force due to the
spring, but it can also be described by the force due to a potential well.

finite difference method, where time-stepping can be used to find p and q for all later time.
For instance, we can write the equations of motion more compactly as

dV

dt
= F(V) (2.1.4)

where V = [p, q]t, and F is a general vector function of V. It can be nonlinear or linear; in
the event if it is linear, then F(V) = A ·V.

Using finite difference approximation, we can rewrite the above as

V(t+ ∆t)−V(t) = ∆tF(V(t)),

V(t+ ∆t) = ∆tF(V(t)) + V(t) (2.1.5)

The above can be used for time marching to derive the future values of V from past values.
The above equations of motion are essentially derived using Newton’s law. However, there

exist other methods of deriving these equations of motion. Notice that only two variables p
and q are sufficient to describe the state of a particle.

2.2 Lagrangian Formulation

Another way to derive the equations of motion for classical mechanics is via the use of the
Lagrangian and the principle of least action. A Lagrangian is usually defined as the difference
between the kinetic energy and the potential energy, i.e.,

L(q̇, q) = T − V (2.2.1)

where q̇ is the velocity. For a fixed t, q and q̇ are independent variables, since q̇ cannot be
derived from q if it is only known at one given t. The equations of motion is derived from the
principle of least action which says that q(t) that satisfies the equations of motion between
two times t1 and t2 should minimize the action integral

S =

∫ t2

t1

L(q̇(t), q(t))dt (2.2.2)
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Assuming that q(t1) and q(t2) are fixed, then the function q(t) between t1 and t2 should
minimize S, the action. In other words, a first order perturbation in q from the optimal
answer that minimizes S should give rise to second order error in S. Hence, taking the first
variation of (2.2.2), we have

δS = δ

∫ t2

t1

L(q̇, q)dt =

∫ t2

t1

δL(q̇, q)dt =

∫ t2

t1

(
δq̇
∂L

∂q̇
+ δq

∂L

∂q

)
dt = 0 (2.2.3)

In order to take the variation into the integrand, we have to assume that δL(q̇, q) is taken
with constant time. At constant time, q̇ and q are independent variables; hence, the partial
derivatives in the next equality above follow. Using integration by parts on the first term, we
have

δS = δq
∂L

∂q̇

∣∣∣∣t2
t1

−
∫ t2

t1

δq
d

dt

(
∂L

∂q̇

)
dt+

∫ t2

t1

δq
∂L

∂q
dt = 0 (2.2.4)

The first term vanishes because δq(t1) = δq(t2) = 0 because q(t1) and q(t2) are fixed. Since
δq(t) is arbitrary between t1 and t2, we have

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 (2.2.5)

The above is called the Lagrange equation, from which the equation of motion of a particle can
be derived. The derivative of the Lagrangian with respect to the velocity q̇ is the momentum

p =
∂L

∂q̇
(2.2.6)

The derivative of the Lagrangian with respect to the coordinate q is the force. Hence

F =
∂L

∂q
(2.2.7)

The above equation of motion is then

ṗ = F (2.2.8)

Equation (2.2.6) can be inverted to express q̇ as a function of p and q, namely

q̇ = f(p, q) (2.2.9)

The above two equations can be solved in tandem to find the time evolution of p and q.
For example, the kinetic energy T of a particle is given by

T =
1

2
mq̇2 (2.2.10)

Then from (2.2.1), and the fact that V is independent of q̇,

p =
∂L

∂q̇
=
∂T

∂q̇
= mq̇ (2.2.11)
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or

q̇ =
p

m
(2.2.12)

Also, from (2.2.1), (2.2.7), and (2.2.8), we have

ṗ = −∂V
∂q

(2.2.13)

The above pair, (2.2.12) and (2.2.13), form the equations of motion for this problem.
The above can be generalized to multidimensional problems. For example, for a one

particle system in three dimensions, qi has three degrees of freedom, and i = 1, 2, 3. (The qi
can represent x, y, z in Cartesian coordinates, but r, θ, φ in spherical coordinates.) But for
N particles in three dimensions, there are 3N degrees of freedom, and i = 1, . . . , 3N . The
formulation can also be applied to particles constraint in motion. For instance, for N particles
in three dimensions, qi may run from i = 1, . . . , 3N − k, representing k constraints on the
motion of the particles. This can happen, for example, if the particles are constraint to move
in a manifold (surface), or a line (ring) embedded in a three dimensional space.

Going through similar derivation, we arrive at the equation of motion

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (2.2.14)

In general, qi may not have a dimension of length, and it is called the generalized coordinate
(also called conjugate coordinate). Also, q̇i may not have a dimension of velocity, and it is
called the generalized velocity.

The derivative of the Lagrangian with respect to the generalized velocity is the generalized
momentum (also called conjugate momentum), namely,

pi =
∂L

∂q̇i
(2.2.15)

The generalized momentum may not have a dimension of momentum. Hence, the equation
of motion (2.2.14) can be written as

ṗi =
∂L

∂qi
(2.2.16)

Equation (2.2.15) can be inverted to yield an equation for q̇i as a function of the other
variables. This equation can be used in tandem (2.2.16) as time-marching equations of motion.

2.3 Hamiltonian Formulation

For a multi-dimensional system, or a many particle system in multi-dimensions, the total
time derivative of L is

dL

dt
=
∑
i

(
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i

)
(2.3.1)
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Since ∂L/∂qi = d
dt (∂L/∂q̇i) from the Lagrange equation, we have

dL

dt
=
∑
i

[
d

dt

(
∂L

∂q̇i

)
q̇i +

∂L

∂q̇i
q̈i

]
=

d

dt

∑
i

(
∂L

∂q̇i
q̇i

)
(2.3.2)

or

d

dt

(∑
i

∂L

∂q̇i
q̇i − L

)
= 0 (2.3.3)

The quantity

H =
∑
i

∂L

∂q̇i
q̇i − L (2.3.4)

is known as the Hamiltonian of the system, and is a constant of motion, namely, dH/dt = 0.
As shall be shown, the Hamiltonian represents the total energy of a system. It is a constant
of motion because of the conservation of energy.

The Hamiltonian of the system, (2.3.4), can also be written, after using (2.2.15), as

H =
∑
i

q̇ipi − L (2.3.5)

where pi = ∂L/∂q̇i is the generalized momentum. The first term has a dimension of energy,
and in Cartesian coordinates, for a simple particle motion, it is easily seen that it is twice the
kinetic energy. Hence, the above indicates that the Hamiltonian

H = T + V (2.3.6)

The total variation of the Hamiltonian is

δH = δ

(∑
i

piq̇i

)
− δL

=
∑
i

(q̇iδpi + piδq̇i)−
∑
i

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
(2.3.7)

Using (2.2.15) and (2.2.16), we have

δH =
∑
i

(q̇iδpi + piδq̇i)−
∑
i

(ṗiδqi + piδq̇i)

=
∑
i

(q̇iδpi − ṗiδqi) (2.3.8)

From the above, we gather that the Hamiltonian is a function of pi and qi. Taking the first
variation of the Hamiltonian with respect to these variables, we have

δH =
∑
i

(
∂H

∂pi
δpi +

∂H

∂qi
δqi

)
(2.3.9)
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Comparing the above with (2.3.8), we gather that

q̇i =
∂H

∂pi
(2.3.10)

ṗi = −∂H
∂qi

(2.3.11)

These are the equations of motion known as the Hamiltonian equations.
The (2.3.4) is also known as the Legendre transformation. The original function L is a

function of q̇i, qi. Hence, δL depends on both δq̇i and δqi. After the Legendre transformation,
δH depends on the differential δpi and δqi as indicated by (2.3.8). This implies that H is a
function of pi and qi. The equations of motion then can be written as in (2.3.10) and (2.3.11).

2.4 More on Hamiltonian

The Hamiltonian of a particle in classical mechanics is given by (2.3.6), and it is a function
of pi and qi. For a non-relativistic particle in three dimensions, the kinetic energy

T =
p · p
2m

(2.4.1)

and the potential energy V is a function of q. Hence, the Hamiltonian can be expressed as

H =
p · p
2m

+ V (q) (2.4.2)

in three dimensions. When an electromagnetic field is present, the Hamiltonian for an electron
can be derived by letting the generalized momentum

pi = mq̇i + eAi (2.4.3)

where e is the electron charge and Ai is component of the vector potential A. Consequently,
the Hamiltonian of an electron in the presence of an electromagnetic field is

H =
(p− eA) · (p− eA)

2m
+ eφ(q) (2.4.4)

The equation of motion of an electron in an electromagnetic field is governed by the Lorentz
force law, which can be derived from the above Hamiltonian using the equations of motion
provided by (2.3.10) and (2.3.11).

2.5 Poisson Bracket

Yet another way of expressing equations of motion in classical mechanics is via the use of
Poisson bracket. This is interesting because Poisson bracket has a close quantum mechanics
analogue. A Poisson bracket of two scalar variables u and v that are functions of q and p is
defined as

{u, v} =
∂u

∂q

∂v

∂p
− ∂v

∂q

∂u

∂p
(2.5.1)
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In this notation, using (2.3.10) and (2.3.11),

du

dt
=
∂u

∂q

dq

dt
+
∂u

∂p

dp

dt
=
∂u

∂q

∂H

∂p
− ∂u

∂p

∂H

∂q

= {u,H} (2.5.2)

which is valid for any variable u that is a function of p and q. Hence, we have the equations
of motion as

q̇ = {q,H}, ṗ = {p,H} (2.5.3)

in the Poisson bracket notation. As we shall see later, similar equations will appear in quantum
mechanics.

The algebraic properties of Poisson bracket are

{u, v} = −{v, u} (2.5.4)

{u+ v, w} = {u,w}+ {v, w} (2.5.5)

{uv,w} = {u,w}v + u{v, w} (2.5.6)

{u, vw} = {u, v}w + v{u,w} (2.5.7)

{{u, v}, w}+ {{v, w}, u}+ {{w, u}, v} = 0 (2.5.8)

These properties are antisymmetry, distributivity, associativity and Jacobi’s identity.
If we define a commutator operation between two noncommuting operator û and v̂ as

[û, v̂] = ûv̂ − v̂û, (2.5.9)

it can be shown that the above commutator have the same algebraic properties as the Pois-
son bracket. An operator in quantum mechanics can be a matrix operator or a differential
operator. In general, operators do not commute unless under very special circumstances.
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Chapter 3

Quantum Mechanics—Some
Preliminaries

3.1 Introduction

With some background in classical mechanics, we may motivate the Schrödinger equation
in a more sanguine fashion. Experimental evidence indicated that small particles such as
electrons behave quite strangely and cannot be described by classical mechanics alone. In
classical mechanics, once we know p and q and their time derivatives (or ṗ, q̇) of a particle at
time t0, one can integrate the equations of motion

ṗ = F, q̇ = p/m (3.1.1)

or use the finite difference method to find p and q at t0 + ∆t, and at all subsequent times.
In quantum mechanics, the use of two variables p and q and their derivatives is insufficient

to describe the state of a particle and derive its future states. The state of a particle has to
be more richly endowed and described by a wavefunction or state function ψ(q, t). The state
function (also known as a state vector) is a vector in the infinite dimensional space.

At this juncture, the state function or vector is analogous to when we study the control
theory of a highly complex system. In the state variable approach, the state of a control system
is described by the state vector, whose elements are variables that we think are important to
capture the state of the system. For example, the state vector V, describing the state of the
factory, can contain variables that represent the number of people in a factory, the number of
machines, the temperature of the rooms, the inventory in each room, etc. The state equation
of this factory can then be written as

d

dt
V(t) = A ·V(t) (3.1.2)

It describes the time evolution of the factory. The matrix A causes the coupling between
state variables as they evolve. It bears strong similarity to the time-dependent Schrödinger

15
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Figure 3.1: The state of a particle in quantum mechanics is described by a state function,
which has infinitely many degrees of freedom.

equation, which is used to describe the time-evolution of the state function or the wavefunction
of an electron. In the wavefunction, a complex number is assigned to each location in space.

In the Schrödinger equation, the wavefunction ψ(q, t) is a continuous function of of the
position variable q at any time instant t; hence, it is described by infinitely many numbers,
and has infinite degrees of freedom. The time evolution of the wavefunction ψ(q, t) is governed
by the Schrödinger equation. It was motivated by experimental evidence and the works of
many others such as Planck, Einstein, and de Broglie, who were aware of the wave nature of
a particle and the dual wave-particle nature of light.

3.2 Probabilistic Interpretation of the wavefunction

The wavefunction of the Schrödinger equation has defied an acceptable interpretation for
many years even though the Schrödinger equation was known to predict experimental out-
comes. Some thought that it represented an electron cloud, and that perhaps, an electron,
at the atomistic level, behaved like a charge cloud, and hence not a particle. The final, most
accepted interpretation of this wavefunction (one that also agrees with experiments) is that
its magnitude squared corresponds to the probabilistic density function. In other words, the
probability of finding an electron in an interval [x, x+ ∆x] is equal to

|ψ(x, t)|2∆x (3.2.1)

For the 3D case, the probability of finding an electron in a small volume ∆V in the vicinity
of the point r is given by

|ψ(r, t)|2∆V (3.2.2)

Since the magnitude squared of the wavefunction represents a probability density function,
it must satisfy the normalization condition of a probability density function, viz.,∫

dV |ψ(r, t)|2 = 1 (3.2.3)
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with its counterparts in 1D and 2D. The magnitude squared of this wavefunction is like some
kind of “energy” that cannot be destroyed. Electrons cannot be destroyed and hence, charge
conservation is upheld by the Schrödinger equation.

Motivated by the conservation of the “energy” of the wavefunction, we shall consider an
“energy” conserving system where the classical Hamiltonian will be a constant of motion. In
this case, there is no “energy” loss from the system. The Schrödinger equation that governs
the time evolution of the wavefunction ψ is

Ĥψ = i~
dψ

dt
(3.2.4)

where Ĥ is the Hamiltonian operator.1 One can solve (3.2.4) formally to obtain

ψ(t) = e−i
Ĥ
~ tψ(t = 0) (3.2.5)

Since the above is a function of an operator, it has meaning only if this function acts on the
eigenvectors of the operator Ĥ. It can be shown easily that if A ·Vi = λiVi,

exp(A) ·Vi = exp(λi)Vi (3.2.6)

If Ĥ is a Hermitian operator, then there exists eigenfunctions, or special wavefunctions,
ψn, such that

Ĥψn = Enψn (3.2.7)

where En is purely real. In this case, the time evolution of ψn from (3.2.5) is

ψn(t) = e−i
En
~ tψn(t = 0) = e−iωntψn(t = 0) (3.2.8)

In the above, En = ~ωn, or the energy En is related to frequency ωn via the reduced Planck
constant ~. The reduced Planck constant is related to the Planck constant by ~ = h/(2π)
and h = 6.626068× 10−34 J s.

Scalar variables that are measurable in classical mechanics, such as p and q, are known as
observables in quantum mechanics. They are elevated from scalar variables to operators in
quantum mechanics, denoted by a “ˆ” symbol here. In classical mechanics, for a one particle
system, the Hamiltonian is given by

H = T + V =
p2

2m
+ V (3.2.9)

The Hamiltonian contains the information from which the equations of motion for the particle
can be derived. But in quantum mechanics, this is not sufficient, and H becomes an operator

Ĥ =
p̂2

2m
+ V̂ (3.2.10)

1Rightfully, one should use the bra and ket notation to write this equation as Ĥ|ψ〉 = i~ d
dt
|ψ〉. In the less

rigorous notation in (3.2.4), we will assume that Ĥ is in the representation in which the state vector ψ is in.

That is if ψ is in coordinate space representation, Ĥ is also in coordinates space representation.
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This operator works in tandem with a wavefunction ψ to describe the state of the particle.
The operator acts on a wavefunction ψ(t), where in the coordinate q representation, is ψ(q, t).
When ψ(q, t) is an eigenfunction with energy En, it can be expressed as

ψn(q, t) = ψn(q)e−iωnt (3.2.11)

where En = ~ωn. The Schrödinger equation for ψn(q) then becomes2

Ĥψn(q) =

(
p̂2

2m
+ V̂

)
ψn(q) = Enψn(q) (3.2.12)

For simplicity, we consider an electron moving in free space where it has only a constant
kinetic energy but not influenced by any potential energy. In other words, there is no force
acting on the electron. In this case, V̂ = 0, and this equation becomes

p̂2

2m
ψn(q) = Enψn(q) (3.2.13)

It has been observed by de Broglie that the momentum of a particle, such as an electron
which behaves like a wave, has a momentum

p = ~k (3.2.14)

where k = 2π/λ is the wavenumber of the wavefunction. This motivates that the operator p̂
can be expressed by

p̂ = −i~ d
dq

(3.2.15)

in the coordinate space representation. This is chosen so that if an electron is described by a
state function ψ(q) = c1e

ikq, then p̂ψ(q) = ~kψ(q). The above motivation for the form of the
operator p̂ is highly heuristic. We will see other reasons for the form of p̂ when we study the
correspondence principle and the Heisenberg picture.

Equation (3.2.13) for a free particle is then

− ~2

2m

d2

dq2
ψn(q) = Enψn(q) (3.2.16)

Since this is a constant coefficient ordinary differential equation, the solution is of the form

ψn(q) = e±ikq (3.2.17)

which when used in (3.2.16), yields
~2k2

2m
= En (3.2.18)

Namely, the kinetic energy T of the particle is given by

T =
~2k2

2m
(3.2.19)

2Forn the Schrödinger equation in coordinate space, V̂ turns out to be a scalar operator.
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where p = ~k is in agreement with de Broglie’s finding.
In many problems, the operator V̂ is a scalar operator in coordinate space representation

which is a scalar function of position V (q). This potential traps the particle within it acting
as a potential well. In general, the Schrödinger equation for a particle becomes[

− ~2

2m

∂2

∂q2
+ V (q)

]
ψ(q, t) = i~

∂

∂t
ψ(q, t) (3.2.20)

For a particular eigenstate with energy En as indicated by (3.2.11), it becomes[
− ~2

2m

d2

dq2
+ V (q)

]
ψn(q) = Enψn(q) (3.2.21)

The above is an eigenvalue problem with eigenvalue En and eigenfunction ψn(q). These
eigenstates are also known as stationary states, because they have a time dependence indicated
by (3.2.11). Hence, their probability density functions |ψn(q, t)|2 are time independent.

These eigenfunctions correspond to trapped modes in the potential well defined by V (q)
very much like trapped guided modes in a dielectric waveguide. These modes are usually
countable and they can be indexed by the index n.

In the special case of a particle in free space, or the absence of the potential well, the
particle or electron is not trapped and it is free to assume any energy or momentum indexed
by the continuous variable k. In (3.2.18), the index for the energy should rightfully be k and
the eigenfunctions are uncountably infinite. Moreover, the above can be generalized to two
and three dimensional cases.

3.3 Simple Examples of Time Independent Schrödinger
Equation

At this juncture, we have enough knowledge to study some simple solutions of time-independent
Schrödinger equation such as a particle in a box, a particle impinging on a potential barrier,
and a particle in a finite potential well.

3.3.1 Particle in a 1D Box

Consider the Schrödinger equation for the 1D case where the potential V (x) is defined to be
a function with zero value for 0 < x < a (inside the box) and infinite value outside this range.
The Schrödinger equation is given by[

− ~2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x) (3.3.1)

where we have replaced q with x. Since V (x) is infinite outside the box, ψ(x) has to be zero.
Inside the well, V (x) = 0 and the above equation has a general solution of the form

ψ(x) = A sin(kx) +B cos(kx) (3.3.2)
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The boundary conditions are that ψ(x = 0) = 0 and ψ(x = a) = 0. For this reason, a viable
solution for ψ(x) is

ψ(x) = A sin(kx) (3.3.3)

where k = nπ/a, n = 1, . . . ,∞. There are infinitely many eigensolutions for this problem.
For each chosen n, the corresponding energy of the solution is

En =
(~nπ/a)2

2m
(3.3.4)

These energy values are the eigenvalues of the problem, with the corresponding eigenfunctions
given by (3.3.3) with the appropriate k. It is seen that the more energetic the electron is
(high En values), the larger the number of oscillations the wavefunction has inside the box.
The solutions that are highly oscillatory have higher k values, and hence, higher momentum
or higher kinetic energy. The solutions which are even about the center of the box are said
to have even parity, while those that are odd have odd parity.

One other thing to be noted is that the magnitude squared of the wavefunction above
represents the probability density function. Hence, it has to be normalized. The normalized
version of the wavefunction is

ψ(x) =
√

2/a sin(nπx/a) (3.3.5)

Moreover, these eigenfunctions are orthonormal to each other, viz.,∫ a

0

dxψ∗n(x)ψm(x) = δnm (3.3.6)

The orthogonality is the generalization of the fact that for a Hermitian matrix system, where
the eigenvectors are given by

H ·Vi = λiVi (3.3.7)

then it can be proven easily that
V†j ·Vi = Cjδij (3.3.8)

Moreover, the eigenvalues are real.

Figure 3.2: The wavefunctions of an electron trapped in a 1D box (from DAB Miller).
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3.3.2 Particle Scattering by a Barrier

In the previous example, it is manifestly an eigenvalue problem since the solution can be
found only at discrete values of En. The electron is trapped inside the box. However, in an
open region problem where the electron is free to roam, the energy of the electron E can be
arbitrary. We can assume that the potential profile is such that V (x) = 0 for x < 0 while
V (x) = V0 for x > 0. The energy of the electron is such that 0 < E < V0. On the left side,
we assume an electron coming in from −∞ with the wavefunction described by A exp(ik1x).
When this wavefunction hits the potential barrier, a reflected wave will be present, and the
general solution on the left side of the barrier is given by

ψ1(x) = A1e
ik1x +B1e

−ik1x (3.3.9)

where (~k1)2/(2m) = E is the kinetic energy of the incident electron. On the right side,
however, the Schrödinger equation to be satisfied is[

− ~2

2m

d2

dx2

]
ψ2(x) = (E − V0)ψ2(x) (3.3.10)

The solution of the transmitted wave on the right is

ψ2(x) = A2e
ik2x (3.3.11)

where
k2 =

√
2m(E − V0)/~ (3.3.12)

Given the known incident wave amplitude A1, we can match the boundary conditions at x = 0
to find the reflected wave amplitude B1 and the transmitted wave amplitude A2. By eye-
balling the Schrödinger equation (3.3.1), we can arrive at the requisite boundary conditions
are that ψ and ∂ψ/∂x are continuous at x = 0.

Since E < V0, k2 is pure imaginary, and the wave is evanescent and decays when x→∞.
This effect is known as tunneling. The electron as a nonzero probability of being found inside
the barrier, albeit with decreasing probability into the barrier. The larger V0 is compared to
E, the more rapidly decaying is the wavefunction into the barrier.

However, if the electron is energetic enough so that E > V0, k2 becomes real, and then
the wavefunction is no more evanescent. It penetrates into the barrier; it can be found even
a long way from the boundary.

It is to be noted that the wavefunction in this case cannot be normalized as the above
represents a fictitious situation of an electron roaming over infinite space. The above example
illustrates the wave physics at the barrier.

3.3.3 Particle in a Potential Well

If the potential profile is such that

V (x) =


V1 if x < −a/2, region 1

V2 = 0 if |x| < a/2, region 2

V3 if x > a/2, region 3

(3.3.13)
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Figure 3.3: Scattering of the electron wavefunction by a 1D barrier (from DAB Miller).

then there can be trapped modes (or states) inside the well represented by standing waves,
whereas outside the well, the waves are evanescent for eigenmodes for which E < V1 and
E < V3.

The wavefunction for |x| < a/2 can be expressed as

ψ2(x) = A2 sin(k2x) +B2 cos(k2x) (3.3.14)

where k2 =
√

2mE/~. In region 1 to the left, the wavefunction is

ψ1(x) = A1e
α1x (3.3.15)

where α1 =
√

2m(V1 − E)/~. The wave has to decay in the left direction. Similar, in region
3 to the right, the wavefunction is

ψ3(x) = B3e
−α3x (3.3.16)

where α3 =
√

2m(V3 − E)/~. It has to decay in the right direction. Four boundary conditions
can be imposed at x = ±a/2 to eliminate the four unknowns A1, A2, B2, and B3. However,
non-trivial eigensolutions can only exist at selected values of E which are the eigenvalues of
the Schrödinger equation. The eigenequation from which the eigenvalues can be derived is a
transcendental equation.

To illustrate this point, we impose that ψ is continuous at x = ±a/2 to arrive at the
following two equations:

A1e
−α1a/2 = −A2 sin(k2a/2) +B2 cos(k2a/2) (3.3.17)

A3e
−α3a/2 = A2 sin(k2a/2) +B2 cos(k2a/2) (3.3.18)

We further impose that ∂ψ/∂x is continuous at x = ±a to arrive at the following two equa-
tions:

α1A1e
−α1a/2 = k2A2 cos(k2a/2) + k2B2 sin(k2a/2) (3.3.19)

−α3A3e
−α3a/2 = k2A2 cos(k2a/2)− k2B2 sin(k2a/2) (3.3.20)
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The above four equations form a matrix equation

M ·V = 0 (3.3.21)

where V = [A1, A2, B2, B3]t, and the elements of M, which depend on E, can be gleaned off
the above equations. Non-trivial solutions exists for V only if

det(M(E)) = |M(E)| = 0 (3.3.22)

The above is the transcendental eigenequation from which the eigenvalues E can be derived.
The nontrivial solutions for V are in the null space of M. Having known V = [A1, A2, B2, B3]t,
the eigenfunctions of the Schrödinger equation can be constructed. Notice that V is known
to an arbitrary multiplicative constant. The normalization of the eigenfunction will pin down
the value of this constant.

When the potential well is symmetric such that V1 = V3 = V0, then the solutions can be
decomposed into odd and even solutions about x = 0. In this case, either A2 = 0 for even
modes, or B2 = 0 for odd modes. Furthermore, A1 = ±B3 for these modes. The problem
then has two unknowns, and two boundary conditions at one of the interfaces suffice to deduce
the eigenequation.

The above problem is analogous to the 1D dielectric waveguide problem in classical elec-
tromagnetics. The plot of the eigenmodes and their energy levels are shown in Figure 3.4. It
is an interesting example showing that a trapped electron exists with different energy levels.
The more energetic the electron is, the higher the energy level. For the case when E > V0,
the wavefunction is not evanescent outside the well, and the electron is free to roam outside
the well.

Modern technology has allowed the engineering of nano-structures so small that a quantum
well can be fabricated. Quantum well technology is one of the emerging nano-technologies.
The energy level of a quantum well can also be engineered so that laser technology of different
wavelengths can be fabricated.

In the case of a hydrogen atom, the Coulomb potential around the proton at the nucleus
yields a potential well described by −q2/(ε4πr). This well can trap an electron into various
eigenstates, yielding different electronic orbitals. The Schrödinger equation has predicted the
energy levels of a hydrogen atom with great success.

3.4 The Quantum Harmonic Oscillator

The pendulum, a particle attached to a spring, or many vibrations in atoms and molecules
can be described as a harmonic oscillator. Hence, the harmonic oscillator is one of the most
important examples in quantum mechanics. Its quantum mechanical version can be described
by the 1D Schrödinger equation.

The classical equation for a harmonic oscillator is given by

d2z

dt2
= −ω2z (3.4.1)
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Figure 3.4: Trapped modes representing the electron wavefunctions inside a 1D potential well
(from DAB Miller).

where ω =
√
K/m where K is the spring constant, and m is the mass of the particle. The

potential energy of a particle attached to a spring is given by

V (z) =
1

2
mω2z2 (3.4.2)

Consequently, the above potential energy can be used in the Schrödinger equation to describe
the trapping of wave modes. The kinetic energy of the particle is described by a term propor-
tional to the square of the momentum operator. Hence, the corresponding 1D Schrödinger
equation is [

− ~2

2m

d2

dz2
+

1

2
mω2z2

]
ψn(z) = Enψn(z) (3.4.3)

with a parabolic potential well. It turns out that this equation has closed-form solutions,
yielding the wavefunction for an eigenstate given by

ψn(z) =

√
1

2nn!

√
mω

π~
e−

mω
2~ z

2

Hn

(√
mω

~
z

)
(3.4.4)

where Hn(x) is a Hermite polynomial, and the wavefunction is Gaussian tapered. The energy
of the eigenstate is given by

En =

(
n+

1

2

)
~ω (3.4.5)

The energy levels are equally spaced ~ω apart. Even the lowest energy state, the ground state,
has a nonzero energy of ~ω/2. The higher energy states correspond to larger amplitudes of
oscillation, and vice versa for the lower energy states. In order to kick the quantum harmonic
oscillator from the low energy state to a level above, it needs a packet of energy of ~ω, the
quantization energy of a photon. The physics of quantized electromagnetic oscillations (pho-
tons) and quantized mechanical oscillations (phonons) is intimately related to the quantum
harmonic oscillator.
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Figure 3.5: Sketch of the eigenstates, energy levels, and the potential well of a quantum
harmonic oscillator (picture from DAB Miller).
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Chapter 4

Time-Dependent Schrödinger
Equation

4.1 Introduction

Each eigenstate of Schrödinger equation has its own time dependence of exp(−iωnt). When
we consider one eigenstate alone, its time dependence is unimportant, as the time dependence
disappears when we convert the wavefunction into a probability density function by taking
its amplitude square. Moreover, the absolute frequency of an eigenstate is arbitrary. Hence,
the probability density function is quite uninteresting. This is an antithesis to the classical
harmonic oscillator where the position of the particle moves with respect to time.

However, when a quantum state is described by a wavefunction which is a linear superpo-
sition of two eigenstates, it is important that we take into account their individual frequency
value and time dependence. The two eigenstates will “beat” with each other to produce a
difference in frequencies when we take the amplitude square of the wavefunction.

4.2 Quantum States in the Time Domain

Consider a quantum state which is a linear superposition of two eigenstates

ψ(r, t) = cae
−iωatψa(r) + cbe

−iωbtψb(r) (4.2.1)

where ca and cb are properly chosen to normalize the corresponding probability density func-
tion. Then the probability function is

|ψ(r, t)|2 = |ca|2|ψa(r)|2 + |cb|2|ψb(r)|2 + 2<e
[
cac
∗
bψa(r)ψ∗b (r)e−i(ωa−ωb)t

]
(4.2.2)

It is clearly time varying. We are seeing the motion of the particle through the potential well.

27
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Figure 4.1: The time evolution of the linear superposition of the first two eigenstates of the
simple quantum harmonic oscillator. (i) Beginning of a period (solid line). (ii) One quarter
and three quarters way through the period (dotted line). (iii) Half way through the period
(picture from DAB Miller).

4.3 Coherent State

The eigenstates of a quantum harmonic oscillator do not resemble its classical state. In order
to see the classical state emerging from the quantum harmonic oscillator eigenstates, we need
to take a judicious linear superposition of them. Such a state is called the coherent state.1

The coherent state is given by

ψN (ξ, t) =

∞∑
n=0

cNne
−i(n+1/2)ωtψn(ξ) (4.3.1)

where ξ =
√
mω/~z, and cNn =

√
Nne−N/n!.2 It forms a wave packet that emulates the

motion of the classical harmonic oscillators such as a pendulum. The total energy of this
wave packet is given by (N + 1/2)~ω. The larger N is, the more energy the particle has, and
the closer is the coherent state to a classical state.

When a particle is traveling in vacuum, it should be described by a localized wavefunction,
such as a Gaussian wave packet. The study of the Gaussian wave packet is given in Appendix
C. It can be seen that the classical limit emerges when the momentum of the particle becomes
very large.

1The state was derived by R. Glauber who won the Nobel Prize in 2005 for his contribution.
2The coefficient is also written as e−|α|

2/2 αn√
n!

where N = |α|2.
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Figure 4.2: Coherent state for different values of N (picture from DAB Miller).

4.4 Measurement Hypothesis and Expectation Value

The wavefunction of a quantum system can be written as a linear superposition of the sta-
tionary states

ψ(r, t) =
∑
n

cn(t)ψn(r) (4.4.1)

The amplitude square of this wavefunction should integrate to one due to its probabilistic
interpretation. In other words,∫

V

|ψ(r, t)|2dr =

∫
V

∑
n

cn(t)ψn(r)
∑
n′

c∗n′(t)ψ
∗
n′(r) = 1 (4.4.2)

Exchanging the order of integration and summations, we arrive at∫
V

|ψ(r, t)|2dr =
∑
n

∑
n′

cn(t)c∗n′(t)

∫
V

ψn(r)ψ∗n′(r) (4.4.3)

Using the orthonormality of the eigenstates, viz.,
∫
V
ψn(r)ψ∗n′(r) = δnn′ , we arrive at the fact

that ∑
n

|cn(t)|2 = 1 (4.4.4)
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Since the amplitude squares add up to one, they can be assigned probabilistic interpretation
as well. Hence, Pn = |cn(t)|2 represents the probability of finding the electron in eigenstate
n.

The quantum measurement hypothesis states that before the measurement, the electron
lives as a linear superposition of different eigenstates. After the measurement, the electron
collapses into one of the eigenstates, say the n eigenstate, with probability proportional to
|cn(t)|2.

The above can go further by saying that an electron is described by a wavefunction where
its position is indeterminate: it can be found any place where the wavefunction is nonzero.
Its probability of being found is proportional to the amplitude square of the wavefunction.
However, once the measurement is made to determine the location of the electron, the elec-
tron’s position collapses to one location as is discovered by the experiment. Its position is
determinate after the measurement.

Due to this probabilistic interpretation, the expected energy of the quantum system is
given by

〈E〉 =
∑
n

EnPn =
∑
n

En|cn(t)|2 (4.4.5)

The above is the expectation value of E. Notice that for the eigenstate cn(t) ∝ e−iωnt and
hence, |cn(t)|2 is time independent. The above expectation of the energy is a constant. This
means that the quantum system is energy conserving, namely, it cannot lose energy, for
instance, due to radiation. This is because this is an isolated quantum system. In order
for this system to lose energy, it has to be coupled with other quantum systems, which is a
subject of later study.

For the coherent state, the expectation value of E is

〈E〉 =

∞∑
n=0

En
Nne−N

n!
(4.4.6)

= ~ω

[ ∞∑
n=0

n
Nne−N

n!

]
+

~ω
2

(4.4.7)

=

(
N +

1

2

)
~ω (4.4.8)

Hence, the energy of the coherent state is that of N photons. The larger N is, the closer it
is to a classical state.

The above expected energy value can also be found by taking the expectation of the
Hamiltonian operator, viz.,

〈E〉 =

∫
drψ∗(r)Ĥψ(r) (4.4.9)

The above equality can be easily shown by substituting (4.4.1) into the right-hand side and
making use of the fact that ψn(r) is the eigenfunction of the Hamiltonian operator

Ĥ = − ~2

2m
∇2 + V (r) (4.4.10)
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In general, a quantity that is measurable, like the energy E, is replaced by an operator Ĥ
in quantum mechanics. Such operators are called observables, such as momentum, position,
etc. The relation between the classical value of an observable and its quantum mechanical
counterpart, the operator, is via the expectation relation, viz.,〈

Â
〉

=

∫
drψ∗(r)Âψ(r) (4.4.11)

The above reduces to a scalar number. It is also the bridge between classical quantities and
quantum mechanical entities.

4.4.1 Time Evolution of the Hamiltonian Operator

The Schrödinger equation can be written as

dψ(r, t)

dt
= − iĤ

~
ψ(r, t) (4.4.12)

Assuming that Ĥ is a constant (which is not), we can integrate the above to yield

ψ(r, t) = e−
iĤ
~ ψ(r, t = 0) (4.4.13)

The above is a function of an operator which is also an operator. A function of an operator
has meaning only when it acts on the eigenvectors of the operator.

For example, we have a polynomial function

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · · (4.4.14)

If A is an operator, say a matrix operator, then the function of an operator is defined to be

f(A) = a0I + a1A + a2A
2

+ a3A
3

+ · · · (4.4.15)

which is itself an operator as is obvious from the above definition. When the above acts on
an eigenvector of A such that A · vi = λivi, then

f(A) · vi = a0vi + a1A · vi + a2A
2 · vi + a3A3 · vi + · · · (4.4.16)

=
(
a0 + a1λi + a2λ

2
i + a3λ

3
i + · · ·

)
· vi (4.4.17)

= f(λi)vi (4.4.18)

The idea can be extended to operators of infinite dimensions if we know the eigenfunctions of
the operator. If the eigenfunction ψn(r, t) is such that Ĥψn(r, t) = Enψn(r, t) then (4.4.13)
becomes

ψn(r, t) = e−
iĤ
~ tψn(r, t = 0) = e−

iEn
~ tψn(r, t = 0) (4.4.19)

The above is a solution to (4.4.12). When we write

ψ(r, t = 0) =
∑
n

cnψn(r, t = 0) (4.4.20)
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ψ(r, t) = e−
iĤ
~ tψ(r, t = 0) =

∑
n

cne
− iEn~ tψn(r, t = 0) (4.4.21)

It can be easily shown that the above, which is derived from (4.4.13) is a solution to (4.4.12).
Hence, (4.4.13) is the formal solution to (4.4.12).

4.4.2 Uncertainty Principle

The uncertainty principle is asserted by the fact that Fourier transform of a Gaussian function
is another Gaussian function. For instance, if we have a wave packet that is formed by
superposing waves with different k or momentum, we can express it as

ψ(z) =

∫ ∞
−∞

ψ̃(k)eikzdk (4.4.22)

where

ψ̃(k) = Ce−( k−k0
2∆k )

2

(4.4.23)

The above represents a Gaussian-tapered function with a spread of wavenumbers centered
around k = k0. It can be Fourier transformed in closed form yielding that3

ψ(z) = De−(∆k)2z2

(4.4.24)

The probability density functions are proportional to the amplitude square of the above. The
first pulse has a standard deviation of ∆k while the standard deviation of the second pulse is
∆z = 1/(2∆k). The product of these two standard deviations yields

∆k∆z =
1

2
(4.4.25)

or

∆p∆z =
~
2

(4.4.26)

4.4.3 Particle Current

It turns out that even though the state of an electron is defined by a wavefunction, other
equations do not see this wavefunction. For instance, Maxwell’s equations, will produce
electric field from sources, but they will only produce the electric field from the charge cloud
and the current produced by the charge cloud. We see that for stationary states of a trapped
electron in a potential well, the charge cloud is static. Hence, it will not radiate according
to electromagnetic theory. This resolves the conflict in early days as to why the electron,
supposedly “orbiting” around the nucleus of an atom, does not radiate.

3The Fourier transform of a Gaussian is a Gaussian: it can be proved by using the identity that

I =
∫∞
−∞ dxe−x

2
=
√
π. This can be proved by noticing that I2 =

∫∞
−∞ dxe−x

2 ∫∞
−∞ dye−y

2
=∫∫∞

−∞ dxdye−(x2+y2) = 2π
∫∞
0 ρdρe−ρ

2
= π. The last integral can be integrated in closed form.
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However, when an electron is in more than one stationary state, the charge cloud is time
varying, and can potentially couple to an external electric field and radiate.4 For conservation
of charge, we have the relation that

∂ρp
∂t

= −∇ · Jp (4.4.27)

where ρp is the particle density, and Jp is the particle current density. The particle density
ρp(r, t) = |ψ(r, t)|2. We can take the time derivative of ρp to yield

∂

∂t
[ψ∗(r, t)ψ(r, t)] =

∂ψ∗(r, t)

∂t
ψ(r, t) + ψ∗(r, t)

∂ψ(r, t)

∂t
(4.4.28)

We can use Schrödinger equation to replace the time derivatives on the right-hand side to get

∂

∂t
[ψ∗(r, t)ψ(r, t)] = − i

~

(
ψ∗Ĥψ − ψĤ∗ψ∗

)
(4.4.29)

Substituting in for the definition of the Hamiltonian operator, we have further that

∂

∂t
[ψ∗(r, t)ψ(r, t)] =

i~
2m

(
ψ∗∇2ψ − ψ∇2ψ∗

)
(4.4.30)

∂

∂t
[ψ∗(r, t)ψ(r, t)] = − i~

2m
∇ · (ψ∇ψ∗ − ψ∗∇ψ) (4.4.31)

Hence, we can define the particle current as

Jp =
i~
2m

(ψ∇ψ∗ − ψ∗∇ψ) (4.4.32)

When a stationary eigenstate is substituted into the above, due to the product of the function
and its complex conjugate above, the particle current becomes time independent. Hence,
stationary states can only give rise to non-time-varying current (static or DC current), and
such current does not radiate according to electromagnetic theory.

4We will learn how to treat such coupling later on.
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Chapter 5

Mathematical Preliminaries

5.1 A Function is a Vector

A function is actually an equivalence of a vector. In linear algebra, we denote a vector as
v = [v1, v2, v3, . . . vN ]t. A short-hand notation for this vector is vj where j = 1, . . . , N . But
for a function f(x), the countably finite index j in vj is now replaced by an uncountably
infinite (nondenumerable) set of indices denoted by x. Hence, we can think of f(x) as a
vector in an infinite dimensional vector space. An inner product in linear algebra is written
as

V† ·U =

N∑
j=1

V ∗j Uj (5.1.1)

The analogue of the above for functions is

〈f |g〉 =

∫ ∞
−∞

dxf(x)∗g(x) (5.1.2)

The above is the inner product between two functions which are actually vectors.1 The left-
hand side is the compact notation for the inner product between two state vectors known
as Dirac’s bra-ket notation. The 〈f | is the “bra” while |g〉 is the “ket”. The “bra” can be
thought of as the conjugate transpose of a vector, while the “ket” is analogous to an ordinary
vector.

The set of functions, just as a set of vectors, can then span a vector space.2 A vector
space for which an inner product is defined as above is known as an inner product space.
Moreover, an inner product space which is complete is a Hilbert space. Hilbert spaces can be
infinite dimensional. The above inner product facilitates the definition of a norm since 〈f |f〉

1In the mathematics literature, the inner product is often denoted as 〈f, g〉 or (f, g).
2When any vector in the space can be represented as a linear superposition of the set of independent

vectors, the set of vectors are said to span the vector space. They also form the basis set for spanning the
space.

35
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is a positive definite number. Hence, the norm of a vector can be defined to be

‖f‖ = (〈f |f〉)1/2 (5.1.3)

It is the measure of the length of the vector. We can use this norm to define the distance
between two vectors to be

d(f, g) = ‖f − g‖ (5.1.4)

In general, if we have a set of orthonormal eigenfunctions, {ψn(x), n = 1, . . . ∞}, that
spans a linear vector space, we can expand an arbitrary function in the same space as

g(x) =
∑
n

dnψn(x) (5.1.5)

The set {ψn(x), n = 1, . . . ∞} also forms the orthonormal basis or the orthonormal basis set
for spanning the vector space. A member of the set is known as a basis function or a basis
vector.3 Eigenfunctions of an operator can be used as basis functions.

The above can be written using Dirac’s notation as

|g〉 =
∑
n

dn|ψn〉 (5.1.6)

Inner product the above with 〈ψm| from the left, we arrive at that

〈ψm|g〉 =
∑
n

dn〈ψm|ψn〉 (5.1.7)

Using the orthonormality of the eigenfunction such that 〈ψm|ψn〉 = δnm, the above yields
that

dm = 〈ψm|g〉 (5.1.8)

Consequently, we have

|g〉 =
∑
n

|ψn〉〈ψn|g〉 (5.1.9)

We can identify the operator

Î =
∑
n

|ψn〉〈ψn| (5.1.10)

as an identity operator since when it operates on a vector, it returns the same vector. We
can often construct an identity operator of a vector space once we have identify the set
of orthonormal vectors that span the space. The product |ψn〉〈φn| in Dirac’s notation, is
analogous to outer product between two vectors U · V† in linear algebraic notation. This

3We will use “function” and “vector” interchangeably since they are the same.
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outer product produces a matrix, and in the case of infinite dimensional linear vector space,
produces an operator.

For instance, if we are in a 3-space (the short for 3D vector space), the unit vectors that
span the 3-space are {â1, â2, â3}. They are complete and orthonormal. Hence, the identity
operator in a 3-space is4

I =

3∑
i=1

âiâi (5.1.11)

To be strictly correct, the above is an outer product between two vectors, and a transpose sign
should be attached to one of the unit vectors. But it is customary in the physics literature to
ignore this transpose sign. Written in terms of x, y, z notation, the identity operator becomes

I = x̂x̂+ ŷŷ + ẑẑ (5.1.12)

One can easily be convinced that I ·A = A, confirming the above.5

In an N dimensional vector space spanned by a set of orthonormal vectors {Un, n =
1, . . . , N}, the identity operator is formed by their outer products; namely,

I =

N∑
n=1

Un ·U†n (5.1.13)

One can easily show that when I operates on a member of the vector space, it returns the
same member. Namely,

I ·V =

N∑
n=1

Un ·U†n ·V =

N∑
n=1

Un

(
U†n ·V

)
= V (5.1.14)

The last equality follows because the second last term is just an orthonormal eigenvector
expansion of the vector V.

A vector space is also defined by a set of axioms. For u,v,w that belong to a vector
space, the following axioms hold:

Associativity of addition u + (v + w) = (u + v) + w (5.1.15)

Commutativity of addition u + v = v + u (5.1.16)

Identity element of addition v + 0 = v (5.1.17)

Inverse elements of addition v + (−v) = 0 (5.1.18)

Distributivity of scalar multiplication over vectors a(u + v) = au + av (5.1.19)

Distributivity of scalar multiplication by a vector (a+ b)v = av + bv (5.1.20)

Compatibility of scalar multiplication a(bv) = (ab)v (5.1.21)

Identity element of scalar multiplication 1v = v (5.1.22)

4Throughout these lecture notes, the hat (“ˆ”) symbol is used to denote an operator, but here, it denotes
a unit vector.

5It is to be noted that an outer product in matrix notation is U ·V†, while in physics notation for 3 space,
it is often just written as EB. In Dirac notation, an outer product is |ψ〉〈φ|.
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5.2 Operators

An operator maps vectors from one space to vectors in another space. It is denoted mathe-
matically as Â : V → W where Â is the operator, while V and W are two different vector
spaces: V is the domain space, while W is the range space. In linear algebra, the operator is
a matrix operator. In Hilbert spaces, it can be a differential operator such as

g(x) =
d

dx
f(x) (5.2.1)

It can be an integral operator such as a Fourier transform operator

g(k) =

∫ ∞
−∞

dxeikxf(x) (5.2.2)

In Dirac notation,

|g〉 = Â|f〉 (5.2.3)

Linear operators are defined such that

L̂(c1|g1〉+ c2|g2〉) = c1L̂|g1〉+ c2L̂|g2〉 (5.2.4)

It is quite clear that matrix operators satisfy the above, and hence, they are linear. They
are also known as linear maps. In general, like matrix operators, linear operators are not
commutative; namely

ÂB̂ 6= B̂Â (5.2.5)

5.2.1 Matrix Representation of an Operator

An operator equation can be written as6

|g〉 = Â|f〉 (5.2.6)

We can convert the above into a matrix equation by inserting an identity operator on the
right-hand side to give

|g〉 =
∑
n

Â|ψn〉〈ψn|f〉 (5.2.7)

Furthermore, we can multiply the above from the left by the basis vector 〈ψm|,m = 1, . . . ,∞
to yield7

〈ψm|g〉 =
∑
n

〈ψm|Â|ψn〉〈ψn|f〉, m = 1, . . . ,∞ (5.2.8)

6In the mathematics literature, this is often just denoted as Âf = g.
7This process is called testing or weighting, and ψm is called the testing or weighting function.
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The above is an infinite dimensional matrix equation which can be written as

g = A · f (5.2.9)

where [
A
]
mn

= 〈ψm|Â|ψn〉 (5.2.10)

[g]m = 〈ψm|g〉 (5.2.11)

[f ]n = 〈ψn|f〉 (5.2.12)

The matrix equation can be solved approximately by truncating its size to N ×N , or without
truncation, it can be solved iteratively.

The matrix denoted by

Amn = 〈ψm|Â|ψn〉 (5.2.13)

is the matrix representation of the operator Â. By the same token, 〈ψm|g〉 and 〈ψn|f〉 are
the vector representations of the functions g and f respectively.

In the above, we have assumed that the range space and the domain space of the operator
are the same, and hence, they can be spanned by the same basis set. For a Hermitian operator,
this is usually the case. However, for some operators where the range space and the domain
space are different, we may choose to test (5.2.7) with a different set of basis functions.

5.2.2 Bilinear Expansion of an Operator

We have seen how the use of the identity operator allows us to expand a function in terms
of a set of basis functions as in (5.1.9). The same can be done with an operator. Pre- and
post-multiply an operator with the identity operator as given by (5.1.10), we have

Â =
∑
n

∑
m

|ψn〉〈ψn|Â|ψm〉〈ψm| (5.2.14)

The above can be rewritten as

Â =
∑
n

∑
m

|ψn〉Anm〈ψm| =
∑
n

∑
m

Anm|ψn〉〈ψm| (5.2.15)

where Anm is the matrix representation of the operator Â. The above is the bilinear expansion
of the operator in terms of orthonormal functions. Notice that the expansion of an identity
operator given by (5.1.10) is a bilinear expansion.

5.2.3 Trace of an Operator

The trace of a matrix operator is defined to be the sum of its diagonal elements; namely,

tr
(
M
)

=

N∑
i=1

Mii (5.2.16)
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If an operator Â has matrix representation given by 〈ψi|Â|ψj〉, the trace of the operator Â is
defined to be

tr
(
Â
)

=
∑
i

〈ψi|Â|ψi〉 (5.2.17)

It can be shown that the trace of an operator is independent of the basis used for its repre-
sentation. To this end, we insert the identity operator

Î =
∑
m

|φm〉〈φm| (5.2.18)

into (5.2.17) to get

tr
(
Â
)

=
∑
i

∑
m

〈ψi|φm〉〈φm|Â|ψi〉 (5.2.19)

Exchanging the order of summation above, and the order of the two scalar numbers in the
summand, we have

tr
(
Â
)

=
∑
m

∑
i

〈φm|Â|ψi〉〈ψi|φm〉 (5.2.20)

The inner summation reduces to an identity operator which can be removed, and the above
becomes

tr
(
Â
)

=
∑
m

〈φm|Â|φm〉 (5.2.21)

This is the trace of Â using another basis set that is complete and orthonormal. Hence, the
trace of an operator is invariant to the choice of basis.

If we choose a basis function that is the eigenfunction of Â such that Â|ψn〉 = λn|ψn〉,
then (5.2.19) becomes

tr
(
Â
)

=
∑
i

∑
m

λi〈ψi|φm〉〈φm|ψi〉 =
∑
i

λi (5.2.22)

Hence, the trace of an operator is also the sum of its eigenvalues.
It can also be shown that

tr
(
ÂB̂
)

= tr(B̂Â) (5.2.23)

This is quite easy to show for matrix operators since

tr
(
A ·B

)
=
∑
i

∑
j

AijBji =
∑
j

∑
i

BjiAij (5.2.24)

Trace is usually used in quantum mechanics as an alternative way to write the expectation
value of an operator. As mentioned before, for a quantum system in a state defined by the
state function |ψ〉, the expectation value of a quantum operator in such a state is

〈ψ|Â|ψ〉 (5.2.25)
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For denumerable indices, the above is analogous to

U† ·A ·U =
∑
n

∑
m

U∗nAnmUm =
∑
n

∑
m

AnmUmU
∗
n = tr

(
A ·U ·U†

)
(5.2.26)

where UmU
∗
n is the outer product of two vectors Um and Un. Converting the above to Dirac

notation, we have

〈ψ|Â|ψ〉 = tr{Â|ψ〉〈ψ|} (5.2.27)

The operator

ρ̂ = |ψ〉〈ψ| (5.2.28)

is known as the density operator. It is used in quantum mechanics to denote the state of a
quantum system as an alternative to the state vector.

5.2.4 Unitary Operators

Unitary operators satisfy the property that

U
† ·U = I (5.2.29)

Unitary operators are operators that when acted on a vector does not change its length. In
matrix notation, a unitary transform is

U ·V = V′ (5.2.30)

The length square of the new vector V′ is defined to be

V† ·U† ·U ·V = V′† ·V′ (5.2.31)

Making use of (5.2.29), the above implies that

V† ·V = V′† ·V′ (5.2.32)

or that the length of the vector has not changed. For unitary matrix, it is clear that U
†

= U
−1

.
The above can be rewritten using Dirac notation. Since in quantum mechanics, 〈ψ|ψ〉 = 1,
the length of the vector is 1. The time evolution operator by integrating Schrödinger equation
given below

τ̂ = e−
i
~ Ĥt (5.2.33)

where Ĥ is the Hamiltonian operator, is a unitary operator, since the state vector it acts on
cannot change its length.

Since many basis set comprises orthonormal basis vectors, a unitary matrix is needed for
the change of basis from one set to another.
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5.2.5 Hermitian Operators

Hermitian operators appear frequently in quantum mechanics since they have real eigenvalues.
As such, the expectation value of such operators are real valued, so that it can be connected
to measurable or observable quantities in the real world.

A Hermitian matrix is one where its conjugate transpose (also called Hermitian transpose
or Hermitian conjugate) is itself. For operators, the term “adjoint” is often used. A Hermitian
operator is also called a self-adjoint operator. The notation for this is

M̂† = M̂ (5.2.34)

For matrix operator with denumerable indices, the above is the same as

M∗ij = Mji (5.2.35)

For operators with nondenumerable indices, it is better to define the adjoint of the operator
via inner products. Using the rule for conjugate transpose, we have

〈f |M̂ |g〉∗ = 〈f |M̂ |g〉† = 〈g|M̂†|f〉 (5.2.36)

The first equality follows because the above are scalar quantities: hence, the conjugate trans-
pose of a scalar is the same as its conjugation. To obtain the second equality, we have used
the rule that (

A ·B ·C
)t

= C
t ·Bt ·At

(5.2.37)

in linear algebra, where the matrices need not be square. Hence, A and C can be 1×N and
N × 1 respectively representing vectors. This identity immediately implies that(

A ·B ·C
)†

= C
† ·B† ·A† (5.2.38)

These rules can easily be shown to apply to inner product of operators and vectors under
the Dirac notation. Hence, (5.2.36) defines the adjoint of the operator M̂† when f and g are
arbitrary. It does so by using just inner products.

A Hermitian operator has real eigenvalues and their eigenvectors are orthogonal. The
proof is analogous to the proof for matrix operators, for which we will provide next. Given

M · vi = λivi (5.2.39)

M · vj = λjvj (5.2.40)

Dot-multiply the first equation by v†j from the left, and likewise for the second equation with

v†i , we have

v†j ·M · vi = λiv
†
j · vi (5.2.41)

v†i ·M · vj = λjv
†
i · vj (5.2.42)
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We can take the conjugate transpose of the first equation, using the rule in (5.2.38), the left-
hand side becomes the same as that for the second equation after making use of the Hermitian
property of the matrix M. On subtracting the two equations, the following equation ensues:

0 = (λ∗i − λj)v
†
i · vj (5.2.43)

If i = j, on the right-hand side, we have v†i · vi = |vi|2 which is a positive definite number.
The above can be zero only if λ∗i = λi or that λi is real. On the other hand, if λi 6= λj , it is

necessary that v†i · vj = 0. In other words,

v†i · vj = Cnδij (5.2.44)

The above proof can be repeated using Dirac notation, and the conclusion will be the same.
The eigenvectors of a Hermitian operator are also complete in the space that the operator acts
on. It is obvious in the finite dimensional case, but not so obvious in the infinite dimensional
space.

We can use the rule expressed in (5.2.36) to see if an operator is Hermitian. For instance,
the momentum operator is p̂. Using (5.2.36), we have

〈f |p̂|g〉∗ = 〈g|p̂†|f〉 (5.2.45)

The above defines the adjoint of the operator p̂. Writing the above explicitly in 1D space
using coordinate space representation,8 we have on the left-hand side∫ ∞

−∞
dxf(x)i~

d

dx
g∗(x) =

∫ ∞
−∞

dxg∗(x)

(
−i~ d

dx

)
f(x) (5.2.46)

We have arrived at the form of the right-hand side by using integration by parts, and assuming
that the functions are vanishing at infinity. By comparing the above, we identify that

p̂† = −i~ d

dx
(5.2.47)

We see that (p̂)† = p̂ implying that it is Hermitian. The eigenfunction of the momentum
operator is fk(x) ∝ eikx. It is quite clear that p̂fk(x) = ~kfk(x), and hence, its eigenvalues
are also real, as is required of a Hermitian operator. The above can be generalized to 3D. It
can also be shown that the kinetic energy operator

T̂ = p̂2/2m = −~∇̂2

2m
(5.2.48)

is Hermitian. In 3D, p̂2 is proportional to the Laplacian operator ∇2 in coordinate space
representation. We can use integration by parts in 3D to show that the above operator is also
Hermitian. Using the fact that

∇ · [f(r)∇g∗(r)] = f(r)∇2g∗(r) +∇f(r)∇g∗(r) (5.2.49)

8A note is in order here regarding the term “coordinate space”, since there is only one Hilbert space. It is
understood that when the term “coordinate space representation” is used, it means that the Hilbert space is
represented in the space where the basis is the coordinate space basis.
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we have in coordinate space representation∫
V

drf(r)∇2g∗(r) =

∫
V

dr [∇ · (f(r)∇g∗(r))−∇f(r)∇g∗(r)] = −
∫
V

dr∇f(r)∇g∗(r)

(5.2.50)

The last form is symmetric between f and g, and hence, we can easily show that∫
V

drg∗(r)∇2f(r) = −
∫
V

dr∇g∗(r)∇f(r) (5.2.51)

Consequently, we can show that

〈f |∇̂2|g〉∗ =

[∫
V

drf∗(r)∇2g(r)

]∗
=

∫
V

drg∗(r)∇2f(r)

= 〈g|∇̂2|f〉 (5.2.52)

indicating the Hermitian property of the Laplacian operator. Consequently, the T̂ operator
is also Hermitian or self-adjoint.

If we have chosen f = g in the above, (5.2.51) is always negative, implying that the
Laplacian operator is a negative definite operator.

5.3 Identity Operator in a Continuum Space

We have seen the derivation of the identity operator when the basis functions are indexed
by integers, such as the eigenfunctions of an infinite potential well, or those of a harmonic
oscillator in a parabolic potential well. In many situations, we are required to work with
indices that are a continuum (nondenumerable) like the coordinate space indices x, y, z. When
an electron is freely roaming, its energy values are also a continuum.

We have seen how we have used denumerable eigenfunctions, such as ψn to project a
function into its vector representation. Namely,

fn = 〈ψn|f〉 (5.3.1)

Very often, a denumerable basis function is just written as 〈n|, and the above becomes

fn = 〈n|f〉 (5.3.2)

Similar, we can think of a coordinate (or position) basis function 〈px| whose property is that
its inner product with |f〉 yields the value of the function f at position x; namely,

f(x) = 〈px|f〉 (5.3.3)

The above is often abbreviated as

f(x) = 〈x|f〉 (5.3.4)
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Assuming that this basis |x〉 is complete and orthogonal in 0 < x < a, then we can define
an identity operator such that

I =

∫ a

0

dx′|x′〉〈x′| (5.3.5)

so that

|f〉 =

∫ a

0

dx′|x′〉〈x′|f〉 =

∫ a

0

dx′|x′〉f(x′) (5.3.6)

Notice that the above is quite different from the identity operator when the basis functions
are denumerable, which is

I =

∞∑
n=1

|fn〉〈fn| (5.3.7)

Taking the product of (5.3.6) with 〈x|, we have

〈x|f〉 = f(x) =

∫ a

0

dx′〈x|x′〉f(x′) (5.3.8)

Hence, in order for (5.3.5) to be an identity operator, the basis function must satisfy

〈x|x′〉 = δ(x− x′) (5.3.9)

Notice that in the denumerable case, the orthonormal relation of the basis function is ex-
pressed in terms of Kronecker delta function δij , but in the continuum case, the equivalent
relationship is expressed in terms of the Dirac delta function δ(x− x′).

We note that |x〉 is not orthonormal in the strict sense that (5.3.9) is infinite when x = x′.
The identity operator (5.3.5) is different from (5.3.7) because of the extra weight dx in the
integral summation. One may think that |x〉

√
dx′ as analogous to the orthonormal vector of

the countable case.

The inner product between two vectors is written as

〈f |g〉 =

a∫
0

dx〈f |x〉〈x|g〉 =

a∫
0

dxf∗(x)g(x) (5.3.10)

where we have inserted the identity operator (5.3.5) in the first expression above to get the
second expression, and making use of (5.3.4) to get the third expression. Furthermore, we
note that 〈f |x〉 is the complex conjugate of 〈x|f〉, since 〈f | and |x〉 are conjugate transpose
of |f〉 and 〈x|, respectively.

A vector |f〉 can have other representations. For example, we can define a set of “or-
thonormal” vectors 〈k| such that

〈k|f〉 = f(k), (5.3.11)
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where f(k) is the Fourier transform of f(x) via the relationship

f(x) =
1√
2π

∞∫
−∞

dkeikxf(k) (5.3.12)

The above can be written as

f(x) = 〈x|f〉 =

∞∫
−∞

dk〈x|k〉〈k|f〉 (5.3.13)

where we have defined the identity operator

I =

∞∫
−∞

dk|k〉〈k| (5.3.14)

Comparing (5.3.11), (5.3.12) and (5.3.13), we deduce that

〈x|k〉 =
1√
2π
eikx (5.3.15)

In other words, the coordinate space representation of the vector |k〉 is given by (5.3.15).
Since ~k in quantum mechanics is related to the momentum of a particle, f(k) = 〈k|f〉 is also
called the momentum representation of the vector |f〉, while f(x) = 〈x|f〉 is the coordinate
space representation of the vector |f〉.

From the above, we can derive Parseval’s theorem

〈f |g〉 =
a∫
0

dx〈f |x〉〈x|g〉 =
a∫
0

dxf∗(x)g(x)

=
∞∫
−∞

dk〈f |k〉〈k|g〉 =
∞∫
−∞

dkf∗(k)g(k)
(5.3.16)

Parseval’s theorem is the statement that the inner product between two vectors is invariant
with respect to the basis that represent it.

The above can be generalized to 3-space where a position basis function is 〈r|, with the
property that

f(r) = 〈r|f〉 (5.3.17)

The identity operator can then be expressed as

I =

∫
V

dr′|r′〉〈r′| (5.3.18)

And the “orthonormality” relationship is

〈r|r′〉 = δ(r− r′) (5.3.19)

Similar basis can be defined for the 3D k space.
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5.4 Changing Between Representations

If we have an operator equation such as

p̂|ψ〉 = |g〉 (5.4.1)

The above equation is analogous to the equation P · f = g in matrix algebra. The explicit
forms and the representations of the matrix operator P and the vector f are not given. In
order to express the above explicitly, we first insert the identity operator to transform (5.4.1)
to ∫

dxp̂|x〉〈x|ψ〉 = |g〉 (5.4.2)

Then multiply the above from the left by 〈x′|, we have∫
dx〈x′|p̂|x〉〈x|ψ〉 = 〈x′|g〉 (5.4.3)∫
dxp(x′, x)ψ(x) = g(x′) (5.4.4)

The above is the coordinate space representation of (5.4.1). It is valid for any operator in a
1D space. But if p̂ is the momentum operator, we know that the above equation in coordinate
space representation should be

−i~ d

dx
ψ(x) = g(x′) (5.4.5)

Hence we conclude that

p(x′, x) = −i~δ(x′ − x)
d

dx
ψ(x) (5.4.6)

Therefore, a differential operator is a highly localized operator, or a quasi-diagonal operator.
Next, we will study the action of the momentum operator p̂ on a momentum eigenstate

|k〉; namely,

p̂|k〉 (5.4.7)

Transforming the above to coordinate space representation similar to what have been done
above, we have ∫

dxδ(x′ − x)

(
−i~ d

dx

)
〈x|k〉 =

(
−i~ d

dx

)
〈x|k〉 (5.4.8)

The expression for 〈x|k〉 is given in equation (5.3.15). Hence, the above becomes

~k〈x|k〉 (5.4.9)
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Therefore, we see that |k〉 is an eigenvector of the momentum operator p̂. In other words,

p̂|k〉 = ~k|k〉 (5.4.10)

In fact, any function of p̂, when operating on a momentum eigenstate gives

f(p̂)|k〉 = f(~k)|k〉 (5.4.11)

We can repeat (5.4.2) and (5.4.3) using the basis |k〉 to arrive at∫
dk〈k′|p̂|k〉〈k|ψ〉 = 〈k′|g〉 (5.4.12)

Since |k〉 is an eigenvector of p̂, the above becomes∫
dk~k〈k′|k〉〈k|ψ〉 =

∫
dk~kδ(k′ − k)〈k|ψ〉 = ~k′〈k′|ψ〉 = 〈k′|g〉 (5.4.13)

which is just a scalar equation.

5.4.1 The Coordinate Basis Function

Using the coordinate basis function |r〉, we can write many of our previously derived identities
in coordinate space representation. Say if the functions defined in (5.1.9) and (5.1.10) are
functions of 3-space, indexed by r, then multiplying (5.1.9) from the left by 〈r|,

〈r|g〉 = g(r) =
∑
n

〈r|ψn〉〈ψn|g〉 =
∑
n

ψn(r)〈ψn|g〉 (5.4.14)

We can pre- and post-multiply the identity operator defined in (5.1.10) by 〈r| and |r′〉 respec-
tively, we can identify the operator〈

r
∣∣∣Î∣∣∣ r′〉 = 〈r|r′〉 = δ(r− r′) =

∑
n

〈r|ψn〉〈ψn|r′〉 =
∑
n

ψn(r)ψ∗n(r′) (5.4.15)

where we have noted that 〈ψn|r′〉 = 〈r′|ψn〉∗ since they are conjugate transpose of each other.
The above is the bilinear eigenfunction expansion of the Dirac delta function. We can also
apply the above to the bilinear expansion of an operator given by (5.2.15). Going through
similar operations, we have〈

r
∣∣∣Â∣∣∣ r′〉 = A(r, r′) =

∑
n

∑
m

Anmψn(r)ψ∗m(r′) (5.4.16)

We have let A(r, r′) be the coordinate space representation of the operator Â. The above is
just the bilinear expansion in coordinate space representation.

We can also choose the momentum basis set |k〉 (or any other basis sets) and project the
previously obtained identities in momentum representation (or any other representations).
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5.5 Commutation of Operators

Operators, like matrices, are non-commuting for most parts. In other words,

ÂB̂ 6= B̂Â (5.5.1)

The commutator is defined to be [
Â, B̂

]
= ÂB̂ − B̂Â (5.5.2)

If Â and B̂ are commuting, then [
Â, B̂

]
= 0 (5.5.3)

But for most parts, [
Â, B̂

]
= iĈ (5.5.4)

It can be shown easily that Ĉ is a Hermitian operator if Â and B̂ are Hermitian.
If Â and B̂ are commuting, they share the same set of eigenfunctions, but not the same

eigenvalues. Say if |ψn〉 is an eigenfunction of B̂, with eigenvalue Bn, then

B̂Â|ψn〉 = ÂB̂|ψn〉 = ÂBn|ψn〉 = BnÂ|ψn〉 (5.5.5)

From the above, it is clear that Â|ψn〉 is also eigenfunction of B̂ with the same eigenvalue
Bn. Therefore, Â|ψn〉 is proportional to |ψn〉, or that Â|ψn〉 = Fn|ψn〉. In other words, |ψn〉
is also an eigenfunction of Â, but with a different eigenvalue.

5.6 Expectation Value and Eigenvalue of Operators

The expectation value of a random variable is a concept from probability. In quantum me-
chanics, a measurable quantity or an observable in the real world is a random variable. For
each observable in the real world, there is a corresponding operator in the quantum world.

The expectation value of an operator for a quantum system in state |f〉 is defined to be〈
Â
〉

=
〈
f
∣∣∣Â∣∣∣ f〉 (5.6.1)

It is prudent to understand this expectation value in terms of the eigenstates and eigenvalues
of Â. Letting

|f〉 =
∑
n

|ψn〉fn (5.6.2)

then (5.6.1) can be rewritten as〈
Â
〉

=
∑
n

∑
m

〈
ψn

∣∣∣Â∣∣∣ψm〉 f∗nfm (5.6.3)
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When ψm is the eigenstate of Â with eigenvalue Am, the above can be written as〈
Â
〉

=
∑
n

∑
m

Am〈ψn|ψm〉f∗nfm =
∑
n

An|fn|2 (5.6.4)

where |fn|2 is the probability of finding the state in eigenstate n. Hence, the above is the
statistical average or the expectation value of the eigenvalue An. The eigenvalue An can be
thought of as a random variable. Hence, the expectation value of an operator is the average
value of its eigenvalue when the quantum state is in state f . Therefore, it is customary is
denote 〈

Â
〉

= 〈A〉 =
〈
f
∣∣∣Â∣∣∣ f〉 = Ā (5.6.5)

where the scalar variable A denotes the eigenvalue of Â, which is a random variable, while
the angular brackets on the left-hand side 〈A〉, indicate statistical average. An overbar in the
last equality above is often used as a short-hand for angular brackets to denote an average of
a random variable.

The above indicates that if we prepare a quantum state that is exactly the eigenstate of
the quantum operator Â, then its expectation value in this quantum eigenstate is just the
eigenvalue of the eigenstate. In a sense, we can “measure” the eigenvalue of the quantum
operator through such an experiment. Namely,〈

Â
〉

=
〈
ψn

∣∣∣Â∣∣∣ψn〉 = An (5.6.6)

where An is the eigenvalue of the eigenstate.
We see in the previous section that when two operators commute, they share the same

eigenfunctions but with different eigenvalues. Therefore, if we prepare an eigenstate shared by
these two operators, their respective eigenvalues can be “measured” exactly. In other words,〈

Â
〉

=
〈
ψn

∣∣∣Â∣∣∣ψn〉 = An (5.6.7)〈
B̂
〉

=
〈
ψn

∣∣∣B̂∣∣∣ψn〉 = Bn (5.6.8)

On the other hand, if the two operators do not commute, they do not share the same set
of eigenstates. If we prepare an eigenstate ψn that is the eigenstate of Â, but it is not the
eigenstate of B̂. However, we can expand the eigenstate ψn in terms of the eigenstates of the
operator B̂; namely,

|ψn〉 =
∑
i

ai|φi〉 (5.6.9)

where |φi〉 are the eigenstates of B̂. We now see that the expectation value of B̂ due to the
eigenstate |ψn〉 is 〈

B̂
〉

=
〈
ψn

∣∣∣B̂∣∣∣ψn〉 =
∑
ij

a∗i aj〈φi|B̂|φj〉 =
∑
i

|ai|2Bi (5.6.10)
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The expectation value of B̂ is due to a range of eigenvalues of B̂, and not just due to one
single eigenvalue like before. This is the gist of the uncertainty principle. When two operators
do not commute, the precise measurement of the eigenvalue of one operator implies that the
measurement of the second operator will involve a range of eigenvalues.

5.7 Generalized Uncertainty Principle

We have seen the Heisenberg uncertainty principle expressed for uncertainty in momentum
∆p and position ∆x as ∆p∆x ≥ ~/2. In this case, p and x are both observables in the real
world. In quantum mechanics, all observables are replaced by operators. To connect the
operators to real world observables, we take the expectation values of the operators. That is

Ā = 〈A〉 = 〈f |Â|f〉 (5.7.1)

where A is a scalar variable representing the eigenvalue of Â and f is a state vector that
defines that state the quantum system is in. The expectation value of an operator also
gives the statistical mean of the observable expressed as the mean of the eigenvalue of the
corresponding operator.

We can define the deviation from its mean by the operator

∆Â = Â− Ā (5.7.2)

On the right-hand side, the first term is an operator while the second term is the mean.9 The
above operator has zero expectation value or zero mean.

We can study the variance of the operator
(

∆Â
)2

which has nonzero expectation value.

Namely, 〈
f |(∆Â)2|f

〉
=
〈
f |(Â− Ā)2|f

〉
=
〈
(A− Ā)2

〉
=
〈
A2 − 2ĀÂ+ Ā2

〉
=
〈
A2
〉
− 2Ā〈A〉+ Ā2

=
〈
A2
〉
− Ā2 =

〈
(∆A)2

〉
= (∆A)2 = σ2

A (5.7.3)

The above is just the definition of variance of random variable A as in statistics. The standard
deviation is obtained by taking the square root of the variance to get10

σA =

√
(∆A)2 (5.7.4)

We can derive a similar expression for σB , the standard deviation for B.

9To be strictly correct, we should multiply the second term by the identity operator, but this is usually
understood.

10It is tempting to denote the standard deviation as ∆A but this could be confusing in view of (5.7.2).
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The generalized uncertainty principle is obtained by using the Schwartz inequality:∣∣∣∣∫ f∗gdx

∣∣∣∣2 ≤ (∫ |f |2dx)(∫ |g|2dx) (5.7.5)

We can rewrite the above using Dirac notation to get

|〈f |g〉|2 ≤ 〈f |f〉〈g|g〉 (5.7.6)

The above is the generalization of the cosine inequality we have for 3-vectors11

|A ·B|2 = |A|2|B|2| cos θ|2 ≤ |A|2|B|2 (5.7.7)

It can be generalized to N -vectors or vectors in N dimensional space, and then to vectors
in infinite dimensional space if the integrals converge. If we define, for a quantum system in
state ψ,

|f〉 =
(
Â− Ā

)
|ψ〉 = â|ψ〉 (5.7.8)

|g〉 =
(
B̂ − B̄

)
|ψ〉 = b̂|ψ〉 (5.7.9)

where â = Â− Ā and b̂ = B̂ − B̄. Then

〈f |f〉 =
〈
ψ
∣∣â2
∣∣ψ〉 =

〈
ψ

∣∣∣∣(Â− Ā)2
∣∣∣∣ψ〉 = (∆A)2 (5.7.10)

〈g|g〉 =
〈
ψ
∣∣∣b̂2∣∣∣ψ〉 =

〈
ψ

∣∣∣∣(B̂ − B̄)2
∣∣∣∣ψ〉 = (∆B)2 (5.7.11)

Using the inequality in (5.7.6), we have(
(∆A)2

)(
(∆B)2

)
≥ |〈ψ|âb̂|ψ〉|2 (5.7.12)

It can be shown easily that

[â, b̂] = iĈ (5.7.13)

Furthermore,

âb̂ =
âb̂+ b̂â

2
+
âb̂− b̂â

2
=
âb̂+ b̂â

2
+ i

Ĉ

2
(5.7.14)

Taking the expectation value of the above, we have

〈âb̂〉 =

〈
âb̂+ b̂â

2

〉
+
i

2
〈Ĉ〉 (5.7.15)

11The integral for the inner products above can be generalized to 3D space.
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Since â and b̂ are Hermitian, the first term on the right-hand side is also Hermitian. Hence,
its expectation value is purely real, while the second term is purely imaginary. Therefore, the
amplitude square of the above is

|〈âb̂〉|2 =

∣∣∣∣∣
〈
âb̂+ b̂â

2

〉∣∣∣∣∣
2

+
1

4
|〈Ĉ〉|2 ≥ 1

4
|〈Ĉ〉|2 (5.7.16)

Using the above in (5.7.12), we have(
(∆A)2

)(
(∆B)2

)
≥ 1

4
|〈Ĉ〉|2 (5.7.17)

The above is the generalized uncertainty principle for two observables A and B. We can take
the square root of the above to get

σAσB ≥
1

2
|〈Ĉ〉| (5.7.18)

5.8 Time Evolution of the Expectation Value of an Op-
erator

The expectation value of an operator is given by

〈Â〉 = 〈ψ(t)|Â|ψ(t)〉 (5.8.1)

Taking the time derivative of the above yields

∂t〈Â〉 = 〈∂tψ(t)|Â|ψ(t)〉+ 〈ψ(t)|Â|∂tψ(t)〉 (5.8.2)

Assuming that Â is time independent, and using the fact that

i~∂t|ψ(t)〉 = i~|∂tψ(t)〉 = Ĥ|ψ(t)〉 (5.8.3)

we have

∂t〈Â〉 =
i

~

〈[
Ĥψ(t)

]
|Â|ψ(t)

〉
− i

~
〈ψ(t)|Â|Ĥψ(t)〉

=
i

~
〈ψ(t)|ĤÂ|ψ(t)〉 − i

~
〈ψ(t)|ÂĤ|ψ(t)〉

=
i

~
〈ψ(t)|ĤÂ− ÂĤ|ψ(t)〉 (5.8.4)

or

i~∂t〈Â〉 = 〈ÂĤ − ĤÂ〉 =
〈[
Â, Ĥ

]〉
(5.8.5)

In other words, if Â commutes with Ĥ, its expectation value is time independent, or it is
a constant of motion. The operator Â in this case represents an observable that is con-
served, such as linear momentum or angular momentum. If such an operator commutes with



54 Quantum Mechanics Made Simple

the Hamiltonian of the quantum system, the observable that corresponds to the operator is
conserved.

Furthermore, it can be shown that if Â is time dependent, we need only to augment the
above equation as

i~∂t〈Â〉 =
〈[
Â, Ĥ

]〉
+ i~〈∂tÂ〉 (5.8.6)

5.9 Periodic Boundary Condition

One technique often used to create countably infinite modes is to use periodic boundary
condition. In this method, we require that the wavefunction satisfies the boundary condition
that ψ(x = 0) = ψ(x = L). This can be satisfied easily by a traveling wave

ψ(x) = Ceikx (5.9.1)

The periodic boundary condition implies that

eikL = 1 (5.9.2)

or that

k = kn =
2nπ

L
(5.9.3)

where we have indexed k with subscript n, and n is all integer values on the real line from
−∞ to ∞. Furthermore, we can pick C = 1/

√
L to normalize the above function. It is quite

easy to show that with

ψn(x) =

√
1

L
ei2nπx/L (5.9.4)

then

〈ψn|ψm〉 = δnm (5.9.5)

Hence, given any function f(x) defined between 0 < x < L, we can expand

f(x) =

∞∑
n=−∞

fnψn(x) =

∞∑
n=−∞

fn

√
1

L
ei2nπx/L (5.9.6)

The above is just a Fourier series expansion of the function f(x). The Fourier coefficient fn
can be found by using the orthonormality of ψn, to get

fn = 〈ψn|f〉 =

√
1

L

∫ L

0

dxe−i2nπx/Lf(x) (5.9.7)

In the above, since ψn(x) is a periodic function with period L, f(x) is also a periodic function
with period L.
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Fourier transform can be derived from Fourier series expansion. To this end, we look
at (5.9.3), and note that the kn values are equally spaced by 2π/L on the real k line. The
spacing becomes increasingly small as L→∞. We can define the spacing to be ∆k = 2π/L.
Consequently, in view of changing a summation to an integral, we can rewrite (5.9.6) more
suggestively as

f(x) =

∞∑
n=−∞

∆kfn
L

2π

√
1

L
ei2nπx/L =

1

2π

∞∑
n=−∞

∆kf̃(kn)eiknx (5.9.8)

where we have defined f̃(kn) = fn
√
L. From (5.9.7), we have

f̃(kn) =
√
Lfn =

∫ L

0

dxe−iknxf(x) (5.9.9)

In the limit when L tends to infinity, ∆k → 0, the sum in (5.9.8) becomes an integral; namely

f(x) =
1

2π

∫ ∞
−∞

dkf̃(k)eikx (5.9.10)

The above is just a Fourier inverse transform integral with f̃(k) from (5.9.9)

f̃(k) =

∫ ∞
0

dxe−ikxf(x) (5.9.11)

which is a Fourier transform. Here, f(x) is originally a periodic function, but now the period
L is infinite. Also, if f(x)→ 0 when x→∞, then by its infinite periodicity, f(x)→ 0 when
x→ −∞. We can replace the semi-infinite integral above with an infinite integral:

f̃(k) =

∫ ∞
−∞

dxe−ikxf(x) (5.9.12)

The above, (5.9.10) and (5.9.12), form a Fourier transform pair.
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Chapter 6

Approximate Methods in
Quantum Mechanics

6.1 Introduction

There are many problems in quantum mechanics where closed form or simple solutions cannot
be found. What we have shown as examples are usually problems that have simple solutions,
such a infinite potential well, harmonic oscillator, or a finite potential well. Even the case of
finite potential well requires the solution of a transcendental equation. Nevertheless, these
are called textbook problems, because they are wonderful examples in textbooks to teach
beginning students on the subject matter. But in general, most quantum mechanics problems
do not have closed form solution. We have to resort to approximate or numerical methods to
solve such problems.

6.2 Use of an Approximate Subspace

We have seen that in general, a Schrödinger equation problem can be cast into a matrix equa-
tion by projecting it into a space spanned by countably infinite orthonormal basis functions.
With such a basis, we define an identity operator

Î =

∞∑
n=1

|ψn〉〈ψn| (6.2.1)

Given a general time independent Schrödinger equation, which is

Ĥ|ψ〉 = E|ψ〉 (6.2.2)

we can first insert an identity operator between Ĥ and |ψ〉. Then the above becomes

∞∑
n=1

Ĥ|ψn〉〈ψn|ψ〉 = E|ψ〉 (6.2.3)

57
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Testing the above by multiplying it from the left with 〈ψm|, m = 1, . . . ,∞, we have1

∞∑
n=1

〈ψm|Ĥ|ψn〉〈ψn|ψ〉 = E〈ψm|ψ〉, m = 1, . . . ,∞ (6.2.4)

The above is a matrix equation of the form

∞∑
n=1

Hmnfn = Efm, m = 1, . . . ,∞ (6.2.5)

It corresponds to an infinite dimension matrix, but it can be truncated to form a finite matrix
system

H · f = Ef (6.2.6)

The above is a matrix eigenvalue problem that can be solved numerically. If H is N×N , it will
have N eigenvalues and N eigenvectors. If we choose our basis functions appropriately, and
are only interested in certain eigenvalues, which represent the energy levels of the stationary
states, we need only to pick a small set of basis functions. Therefore, N can be a small
number. This is important because the number of computer operations needed to find the
eigenvectors and eigenvalues of the above problem is proportional to N3.

In solving the above, we will have to form the matrix elements Hmn. For an infinite
potential well, whose well bottom has been distorted, we can use the eigenfunctions of the
flat-bottom well as our basis functions. Then, the matrix elements Hmn are explicitly given
as

Hmn =

∫ L

0

dxψ∗m(x)

(
− ~

2mo

d2

dx2
+ V (x)

)
ψn(x) (6.2.7)

We can use integration by parts to convert the term that involves second derivative to a form
that involves only first derivatives. That is

Hmn =

∫ L

0

dx

(
~

2mo

d

dx
ψ∗m(x)

d

dx
ψn(x) + ψ∗m(x)V (x)ψn(x)

)
(6.2.8)

which is a more symmetric form. In the above, we have used the boundary condition of the
eigenfunctions to remove the extraneous term resulting from integration by parts.

Modern numerical methods have allowed us to use flexible basis set to expand our unknown
functions. For example, we can let

|ψ〉 =

N∑
n=1

an|fn〉 (6.2.9)

where fn(x) need not be orthogonal or complete in Hilbert space, but they can approximate
the unknown function ψ(x) well. Also, fn(x), n = 1, . . . , N spans an N dimensional vector

1This procedure is called testing or weighting in the mathematics literature, 〈ψm| is called the testing or
weighting function.
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space that is the subspace of the Hilbert space. We assume that the solution in the subspace
is a good approximation of the solution in the original infinite dimensional Hilbert space.
Examples of such finite basis set are triangle functions shown in Figure 6.1.

Using (6.2.9) in (6.2.2), we have

N∑
n=1

Ĥ|fn〉an = E

N∑
n=1

an|fn〉 (6.2.10)

Multiplying the above from 〈fm| from the left, we have

N∑
n=1

〈fm|Ĥ|fn〉an = E

N∑
n=1

〈fm|fn〉an (6.2.11)

The above is a matrix system of the form

H̃ · a = EB · a (6.2.12)

In the above, [
H̃
]
mn

= 〈fm|Ĥ|fn〉[
B
]
mn

= 〈fm|fn〉

[a]n = an (6.2.13)

The equation (6.2.12) above is a generalized eigenvalue problem with eigenvalue E and eigen-
vector a. The difference of it from (6.2.6) is that a matrix B is on the right-hand side. But
numerical software to seek the eigenvalues and eigenvectors for such generalized eigenvalue
problems are widely available.

The approximate subspace method is varyingly known as the subspace projection method,
Galerkin’s method, Petrov-Galerkin method, weighted-residual method, and the method of
moments. The finite element method falls under the same category.

6.3 Time Independent Perturbation Theory

Let us assume that we can solve a problem when it is unperturbed, such as the infinite
potential well problem. We like to solve the problem when, say there is a small electric field
in the well indicated by a potential with a gradient, or that the well is imperfect due to some
impurities indicated by a small bump (see Figure 6.2). The Schrödinger equation for the
perturbed system can be written as

(Ĥ0 + γĤp)|φ〉 = E|φ〉 (6.3.1)

where Ĥ0 is the Hamiltonian of the unperturbed system whose solution is known, and γĤp

is due to the small perturbation where γ is a small parameter. Here, Ĥ0 can be the Hamil-
tonian of the infinite potential well, for instance. In the above equation, |φ〉 and E are both
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Figure 6.1: The triangle functions for a piecewise linear approximation of a function. This is
a basis that is not orthogonal but yet can be used to seek approximate solutions to (6.2.12).

Figure 6.2: The infinite potential well on the left represents the unperturbed problem. The
middle figure represents a perturbation due to a tiny electric field. The right figure represents
a perturbation due to imperfection in fabrication or impurities.

unknowns, but we can write them in a perturbation series or expansion, namely

|φ〉 = |φ(0)〉+ γ|φ(1)〉+ γ2|φ(2)〉+ . . . (6.3.2)

E = E(0) + γE(1) + γ2E(2) + . . . (6.3.3)

Upon substituting the above series into (6.3.1), we obtain(
Ĥ0 + γĤp

) (
|φ(0)〉+ γ|φ(1)〉+ γ2|φ(2)〉+ . . .

)
=
(
E(0) + γE(1) + γ2E(2) + . . .

)(
|φ(0)〉+ γ|φ(1)〉+ γ2|φ(2)〉+ . . .

)
(6.3.4)

The left-hand side of (6.3.4) can be expanded and rewritten on a power series in γ

a0 + a1γ + a2γ
2 + ... (6.3.5)

while the right-hand side is similarly written as

b0 + b1γ + b2γ
2 + ... (6.3.6)
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These two power series in γ are equal only if ai = bi, i = 0, 1, ...,∞.2

Equating the coefficients of the power series on both sides of (6.3.4) we have the following
equations:
Zeroth Order:

Ĥ0|φ(0)〉 = E(0)|φ(0)〉 (6.3.7)

First Order:
Ĥ0|φ(1)〉+ Ĥp|φ(0)〉 = E(0)|φ(1)〉+ E(1)|φ(0)〉 (6.3.8)

Second Order:

Ĥ0|φ(2)〉+ Ĥp|φ(1)〉 = E(0)|φ(2)〉+ E(1)|φ(1)〉+ E(2)|φ(0)〉 (6.3.9)

We assume that the zeroth order equation is known in terms of an eigenstate |ψm〉 with energy
Em. In other words

|φ(0)〉 = |ψm〉, E(0) = Em (6.3.10)

We will use this knowledge to solve the first order equation (6.3.8) above.
Before we proceed further, a note is in order regarding the uniqueness of the eigenvalue

problem (6.3.1). An eigenvector is known only within a multiplicative factor. Hence, its
length is indeterminate. This non-uniqueness in its length manifests in the non-uniqueness
of the value of the perturbation series (6.3.2) as we shall see later. To achieve uniqueness, it
is best to pin down the length of the total eigenvector given by (6.3.2). We fix the length of
the eigenvector |φ〉 by requiring that

〈ψm|φ〉 = 1 (6.3.11)

With this requirement, we substitute (6.3.2) into the above. Since 〈ψm|φ(0)〉 = 1, because
|φ(0)〉 = |ψm〉, it is easy to show that 〈ψm|φ(i)〉 = 0, i > 0. As a consequence, |φ(i)〉 is
orthogonal to |ψm〉. The perturbation series is not necessarily normalized, but it can be
normalized later after the series has been calculated.

Next, to find the first order corrections to the eigenvalue and the eigenvector, we move
the unknowns |φ(1)〉 to the left of (6.3.8). We then have(

Ĥ0 − Em
)
|φ(1)〉 = E(1)|ψm〉 − Ĥp|ψm〉 (6.3.12)

where we have made use of (6.3.10). Notice that the above equation is non-unique since the

operator
(
Ĥ0 − Em

)
has a null space with a null space vector |ψm〉.

Testing the above equation with 〈ψm|, we have

〈ψm|Ĥ0 − Em|φ(1)〉 = E(1) − 〈ψm|Ĥp|ψm〉 (6.3.13)

2This can be easily proved by setting γ = 0, which immediately implies that a0 = b0. By differentiating
the power series again and let γ = 0, we prove that ai = bi etc.
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But 〈ψm|
(
Ĥ0 − Em

)
= 0 because Ĥ0|ψm〉 = Em|ψm〉. Hence, the above gives

E(1) = 〈ψm|Ĥp|ψm〉 (6.3.14)

the first order correction to the energy of the perturbed system.
Therefore, one of the two unknowns in (6.3.12) is found. The remaining unknown |φ(1)〉

can be expanded in terms of the eigenfunctions of the unperturbed system, that is

|φ(1)〉 =
∑
n

a(1)
n |ψn〉 (6.3.15)

First, testing the equation (6.3.12) with 〈ψi|, we have

〈ψi|Ĥ0 − Em|φ(1)〉 = E(1)〈ψi|ψm〉 − 〈ψi|Ĥp|ψm〉 (6.3.16)

Upon substituting (6.3.15) into the above, the left-hand side evaluates to

〈ψi|Ei − Em|φ(1)〉 = (Ei − Em)
∑
n

〈ψi|a(1)
n |ψn〉 = (Ei − Em)a

(1)
i (6.3.17)

The right-hand side of (6.3.16), for i 6= m, is just −〈ψi|Ĥp|ψm〉. Hence

a
(1)
i =

〈ψi|Ĥp|ψm〉
Em − Ei

, i 6= m (6.3.18)

When i = m, (6.3.17) evaluates to zero, while the right hand side of (6.3.16) also evaluates

to zero because of (6.3.14). Hence a
(1)
m is undefined. We choose a

(1)
m = 0 for a number of

reasons: It makes the correction term unique since |ψ(1)〉 is orthogonal to |ψ(0)〉. It makes
the normalization of the eigenvector |φ〉 accurate to second order even though the correction
is first order. It will also make the second order corrections much simpler to find.

To find the second order corrections, we rewrite (6.3.9) with the unknown |φ(2)〉 on the
left hand side. Then (6.3.9) becomes(

Ĥ0 − Em
)
|φ(2)〉 = E(1)|φ(1)〉+ E(2)|ψm〉 − Ĥp|φ(1)〉 (6.3.19)

Testing the above with 〈ψm|, the left hand side becomes zero as before.3 Since we have
made |φ(1)〉 orthogonal to |ψm〉, on the right-hand side, only the last two terms remain.
Consequently,

0 = E(2) − 〈ψm|Ĥp|φ(1)〉 (6.3.20)

or

E(2) = 〈ψm|Ĥp|φ(1)〉 (6.3.21)

3Again, the above is non-unique for the same reason cited for (6.3.12).
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Letting

|φ(2)〉 =
∑
n

a(2)
n |ψn〉 (6.3.22)

and substituting it into the left side of (6.3.19), testing with 〈ψi|, we have

(Ei − Em)a
(2)
i = E(1)〈ψi|φ(1)〉+ E(2)δim − 〈ψi|Ĥp|φ(1)〉 (6.3.23)

Therefore, for i 6= m,

a
(2)
i =

〈ψi|Ĥp|φ(1)〉
Em − Ei

− E(1)a
(1)
i

Em − Ei
(6.3.24)

When i = m, both sides of (6.3.23) vanish, and a
(2)
m is undefined. Again, we pick a

(2)
m = 0 to

obtain a unique solution.

The above procedure can be generalized to arbitrary order. By induction, we notice that
the equivalence of (6.3.9) to p-th order is

Ĥ0|φ(p)〉+ Ĥp|φ(p−1)〉 = E(0)|φ(p)〉+ E(1)|φ(p−1)〉+ · · ·+ E(p)|φ(0)〉 (6.3.25)

The above can be rewritten as(
Ĥ0 − E(0)

)
|φ(p)〉 = E(1)|φ(p−1)〉+ · · ·+ E(p)|φ(0)〉 − Ĥp|φ(p−1)〉 (6.3.26)

Testing the above with 〈ψm| gives

E(p) = 〈ψm|Ĥp|φ(p−1)〉 (6.3.27)

Letting

|φ(p)〉 =
∑
n

a(p)
n |ψn〉 (6.3.28)

in (6.3.25), and testing with 〈ψi|, one can easily show, for i 6= m, and after noting that
E(0) = Em, |φ(0)〉 = |ψm〉, that

a
(p)
i =

1

Em − Ei

(
〈ψi|Ĥp|φ(p−1)〉 − E(1)a

(p−1)
i − E(2)a

(p−2)
i + · · · − E(p−1)a

(1)
i

)
(6.3.29)

It is to be noted that with modern advent of computer technology, and given the avail-
ability of numerical methods, the calculation of perturbation theory to very high order is
laborious and not necessary. However, a perturbation correction can give us insight on how
a small change in the Hamiltonian can change the solution.
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Figure 6.3: The tight binding model can be used to find the approximate eigenstates of two
quantum wells that are weakly coupled to each other. The eigenstates of the isolated quantum
wells are known (Figure is from DAB Miller).

6.4 Tight Binding Model

The tight binding model is a way to find the solution to two weakly coupled quantum systems
when the solution to each isolated quantum system is known (see Figure 6.3).

To solve this system, we can use the subspace projection method of nonorthogonal basis
to derive the relevant matrix equation. Given the Schrödinger equation

Ĥ |ψ〉 = E |ψ〉 (6.4.1)

we let

|ψ〉 =

2∑
i=1

ai |ψi〉 (6.4.2)

where |ψ1〉 is the eigenfunction of the ground state of well 1 in isolation and |ψ2〉 is the
eigenfunction of the ground state of well 2. Going through the same procedure we have had
before, we arrive at

2∑
i=1

ai 〈ψj | Ĥ |ψi〉 = E

2∑
i=1

ai 〈ψj | ψi〉 (6.4.3)
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The above is the same as the matrix equation

H · a = EB · a (6.4.4)

where [
H
]
ij

= 〈ψi| Ĥ |ψj〉 (6.4.5)[
B
]
ij

= 〈ψi| ψj〉 (6.4.6)

It is easy to show that H and B are Hermitian matrices.4 In the above, we can assume that
|ψi〉 is quasi-orthonormal, so that

〈ψi| ψj〉 ' δij (6.4.7)

Then we can write the system (6.4.4) as[
E1 ∆E

∆E∗ E1

] [
a1

a2

]
= E

[
1 ∆B

∆B∗ 1

] [
a1

a2

]
(6.4.8)

The off diagonal elements are conjugate of each other because the matrix is Hermitian. More-
over, ∆E � E1 and ∆B � 1. These terms are small because the overlap between the eigen-
functions ψ1 and ψ2 is small. The further apart the wells are, the smaller these terms would
be, as the overlap is smaller. When the wells are infinite far apart, the off diagonal terms
vanish and the two quantum systems are uncoupled from each other. The two eigenvalues
are then degenerate.

The eigenvalue of (6.4.8) above is obtained by solving

det

[
E1 − E ∆E − E∆B

∆E∗ − E∆B∗ E1 − E

]
= 0 (6.4.9)

or

(E1 − E)
2 − |∆E − E∆B|2 = 0 (6.4.10)

Since the E∆B on the left-hand side of the above is small, we do not incur much error by
replacing it with E1∆B. Upon solving the above, we have

E ∼= E1 ± |∆E1 − E∆B|2 (6.4.11)

Note that the degenerate eigenvalues are now split into two non-degenerate eigenvalues. The
corresponding eigenvectors can be found, and the eigenfunctions are of the form

ψ− =
1√
2

(ψ1 + ψ2) , ψ+ =
1√
2

(ψ1 − ψ2) (6.4.12)

The eigenfunctions are due to odd and even coupling between the isolated quantum states of
the two wells as they are brought closer together.

4It can be easily shown that the matrix representation of a Hermitian operator remains Hermitian.
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6.4.1 Variational Method

Given an eigenvalue problem denoted by

Ĥ |φ〉 = E |φ〉 (6.4.13)

we can convert the above into a matrix generalized eigenvalue problem

H · a = E B · a (6.4.14)

We next convert the above into a functional by multiplying it with ā† to obtain

a† ·H · a = E a† ·B · a (6.4.15)

By setting a = a0 + δa, E = E0 + δE, where a0 and E0 are the exact solution to (6.4.14),
and then taking the first variation of (6.4.15) we have

δa† ·H · a0 + a†0 ·H · δa = δE a†0 ·B · a0 + E0 · δa† ·B · a0

+E0a
†
0 ·B · δa

(6.4.16)

If a0 and E0 are exact solution to (6.4.16), they satisfy

H · a0 = E0 B · a0 (6.4.17)

a†0 ·H = E0a
†
0 ·B0 (6.4.18)

Then the term multiplied by δa† and δa cancel each other on both sides and we have, to first
order,

0 = δE a†0 ·B · a0 (6.4.19)

The above implies that δE is zero. It means that if we were to use (6.4.15) to find E by
writing it as

E =
a† ·H · a
a† ·B · a

(6.4.20)

and if we substitute inexact or approximate value for a = a0 + δa, the value we obtain for
E is second order accurate since δE = 0. The above is known as the Rayleigh quotient. To
begin with, we need an estimate of the solution that is quite close to the exact solution so
that δa is small. In other words, it allows one to substitute in approximate value of a that
is just first-order accurate, and yet get an estimate of the eigenvalue or energy E that is
second-order accurate.

A more general form of the Rayleigh quotient is to test (6.4.13) with 〈φ| and convert it
into a functional. The corresponding Rayleigh quotient is

E =
〈φ|Ĥ|φ〉
〈φ|φ〉

(6.4.21)

It assumes that |φ〉 is not normalized. In the above, it can be proved by the same token that
an approximate, first-order accurate value of |φ〉 can yield a second-order accurate estimate
of E. Rayleigh quotient is great for estimating the eigenvalues when only approximate eigen-
functions are known. These eigenfunctions are also called trial functions. A systematic way
to estimate these eigenfunctions is known as the Rayleigh-Ritz method.
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6.4.2 Time Dependent Perturbation Theory

Now, we assume that the perturbating Hamiltonian is a function of time. In other words, we
have a Schrödinger equation where

i~
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 (6.4.22)

and

Ĥ = Ĥ0 + γĤp (t) (6.4.23)

where Ĥp (t) is time varying.5 It can come from an external electric field that is time-harmonic,
for instance. We also assume that we can solve the unperturbed system in terms of stationary
states, namely

Ĥ0 |Ψn〉 = En |Ψn〉 (6.4.24)

The total time dependent wavefunction can be expanded in terms of the stationary states,
namely

|Ψ〉 =
∑
n

an (t) e−iωnt |Ψn〉 (6.4.25)

where ~ωn = En, and an (t) is a function of time.
Substituting the above into (6.4.22), we have

∂

∂t
|Ψ〉 =

∑
n

(ȧn (t)− iωn) e−iωnt |Ψn〉 =
1

i~
Ĥ
∑
n

an (t) e−iωnt |Ψn〉 (6.4.26)

=
1

i~
∑
n

an (t) e−iωnt
(
En |Ψn〉+ γĤp(t) |Ψn〉

)
(6.4.27)

where ȧn (t) = ∂an (t) /∂t.
Since En = ~ωn, the En term on the right-hand side cancels the ωn term on the left-hand

side. Finally we have∑
n

ȧn (t) e−iωnt |Ψn〉 =
γ

i~
∑
n

an (t) e−iωntĤp(t) |Ψn〉 (6.4.28)

To simplify the equation further, we test it with 〈Ψq| to get

ȧq (t) e−iωqt =
γ

i~
∑
n

an (t) e−iωnt 〈Ψq| Ĥp(t) |Ψn〉 (6.4.29)

The above equation is exact as of this point. To solve it further, we expand

an = a(0)
n + γa(1)

n + γ2a(2)
n · · · (6.4.30)

5To be precise, the Hamiltonian of a system has to be a constant of motion, since it represents the
conservation of energy. But when a quantum system is coupled to another quantum system to which energy
is transferred, the first Hamiltonian may not be a constant anymore. But we can assume that the perturbing
Hamiltonian is small.
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Using the above in (6.4.29), and matching terms of like orders, we have

ȧ(0)
q (t) = 0 (6.4.31)

or that a
(0)
q is a constant. By matching terms of the first order, we have

ȧ(1)
q (t) =

1

i~
∑
n

a(0)
n eiωqnt〈ψq|Ĥp(t)|ψn〉 (6.4.32)

where ωqn = ωq−ωn. To make things simpler, we can assume that the electron is in the m-th

stationary state before we turn on the perturbation Ĥp(t). Namely,

|ψ〉 = a(0)
m e−iωmt|ψm〉 = e−iωmt|ψm〉 (6.4.33)

In the above, since if only one state exists, a
(0)
m = 1 by normalization. Then, (6.4.32) becomes

ȧ(1)
q (t) =

1

i~
a(0)
m eiωqmt〈ψq|Ĥp(t)|ψm〉 (6.4.34)

We assume the perturbing Hamiltonian to be of the form:

Ĥp(t) =


0, t < 0

Ĥp0(e−iωt + eiωt), 0 < t < t0

0, t > t0

(6.4.35)

so that it is turned on only for a time window 0 < t < t0. Then for t > t0, by integrating
(6.4.34), we have

a(1)
q =

1

i~

∫ t0

0

〈ψq|Ĥp(t
′)|ψm〉eiωqmt

′
dt′ (6.4.36)

=
1

i~
〈ψq|Ĥp0)|ψm〉

∫ t0

0

(
ei(ωqm−ω)t′ + ei(ωqm+ω)t′

)
dt′ (6.4.37)

= − 1

i~
〈ψq|Ĥp0)|ψm〉

(
ei(ωqm−ω)t0 − 1

ωqm − ω
+
ei(ωqm+ω)t0 − 1

ωqm + ω

)
(6.4.38)

= − t0
i~
〈ψq|Ĥp0)|ψm〉

(
e
i(ωqm−ω)t0

2 sinc

(
(ωqm − ω)t0

2

)
+ e

i(ωqm+ω)t0
2 sinc

(
(ωqm + ω)t0

2

))
(6.4.39)

The probability of finding the state in q-state is

P (q) = |a(1)
q |2 (6.4.40)

or

P (q) ≈ t20
~2
|〈ψq|Ĥp0)|ψm〉|2

(
sinc2

(
(ωqm − ω)t0

2

)
+ sinc2

(
(ωqm + ω)t0

2

))
(6.4.41)
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where we have ignored the cross terms since the sinc functions in (6.4.39) are highly peaked
at ω = ±ωqm when t0 →∞; and hence their cross terms are small.

The above equation means that the probability of transition from the m to the q eigenstate
is high only if

ω = ±ωqm = ±(ωq − ωm) (6.4.42)

or that

~ω = ±(~ωq − ~ωm) = ±(Eq − Em) (6.4.43)

The “+” sign corresponds to when the electron jumps from a low energy Em to high energy
Eq requiring the absorption of a photon with energy ~ω = (Eq − Em). The “−” sign in
(6.4.43) corresponds to the electron dropping from a high energy state Em to a low energy
state Eq emitting a photon with energy ~ω = (Em−Eq). This is known as the Fermi’s golden
rule.
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Chapter 7

Quantum Mechanics in Crystals

7.1 Introduction

In a crystal, the atoms are located in a periodic lattice. Hence, when an electron wave
propagates on a lattice, it is propagating in a periodic structure. However, the real world is
not that simple. Usually, there are more than one electron traveling in a lattice. The electrons
see each other’s electric field or potentials. There will be electron-electron interaction that
has to be accounted for. Moreover, electrons are fermions meaning that they obey Pauli’s
exclusion principle. Two electrons cannot be in the same state simultaneously. There are
many-body effects, but we will ignore them here. The many-body effect can be lumped
approximately into an effective potential. We will assume that the effective potential is still
periodic, even though this may not be true.

Another effect is that as an electron moves through a lattice, the attractive force between
the electron and a nucleus of the atoms distort the lattice locations. This gives rise to lattice
vibrations called phonons. We will ignore electron-phonon coupling here.

In a periodic lattice, the atoms are located at the lattice points given by

RL = n1a1 + n2a2 + n3a3 (7.1.1)

where a1, a2, a3 are lattice vectors, and n1, n2, n3 are integers. Every lattice point can be
related to every other lattice point by a proper choice of n1, n2, and n3.

Assuming that an electron sees a periodic potential in a lattice, then

VP (r + RL) = VP (r) (7.1.2)

The single electron sees this periodic potential and its wavefunction satisfies[
− ~2

2me
∇2 + VP (r)

]
ψ(r) = Eψ(r) (7.1.3)

We will study next the kind of wave that can propagate in this periodic potential, known as
Bloch-Floquet waves.1

1In the subsequent discussions, we will replace me with m, with implicit understanding that this is the
effective mass.

71
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7.2 Bloch-Floquet Waves

Let us study the case of a wave propagating in a 1-D periodic structure, where V (x) may
look like that of Figure 7.1.

Figure 7.1: A 1D periodic structure of a potential profile for V (x) where a Bloch-Floquet
wave can travel on it.

The periodicity of the potential is a. Let us assume that the wave that can exist on such
a structure is of the form

ψ(k, x) = eikxup(x) (7.2.1)

This wavefunction must satisfy the 1-D Schrödinger equation that[
− ~2

2m

d2

dx2
+ VP (x)

]
ψ(k, x) = Eψ(k, x) (7.2.2)

In order for ψ(k, x) to satisfy the above, up(x) has to satisfy a certain condition. Since the
above is a periodic structure, if one translate the coordinate such that x ⇒ x + na, then
VP (x) ⇒ VP (x + na) = VP (x) which remains unchanged. Letting x ⇒ x + na in (7.2.1), we
have

ψ(k, x)⇒ ψ(k, x+ na) = eikxeiknaup(x+ na) (7.2.3)

This new wavefunction must be a solution of Schrödinger equation as well. In order for it to
satisfy (7.2.2), we require that

up(x+ na) = up(x), for all n. (7.2.4)

In other words, up(x) is a periodic function of x. Since eikna is just a constant, it is clear
that ψ(x+na) satisfies the same equation as (7.2.2). Hence, the form of (7.2.1) that satisfies
(7.2.2) has to be such that up(x) is a periodic function. Equation (7.2.1) represents a traveling
wave modulated by a periodic function up(x). However, up(x) is more rapidly varying than
eikx. Such a wave is a Bloch wave or a Bloch-Floquet wave.

Noting that the second derivative of (7.2.1) is given by

d2

dx2

[
eikxup(x)

]
= −k2eikxup(x) + 2ikeikxu′p(x) + eikxu′′p(x), (7.2.5)
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substituting (7.2.1) into (7.2.2), and using the above, we have

− ~2

2m

[
−k2up(x) + 2iku′p(x) + u′′p(x)

]
+ Vp(x)up(x) = Eup(x) (7.2.6)

In the above, if Vp(x) = 0, a simple solution to the above is up(x) a constant with E =
(~k)2/(2m). Then the Bloch-Floquet wave becomes a simple traveling wave. Otherwise, we
can rewrite (7.2.6) as{

− ~2

2m

[
d2

dx2
+ 2ik

d

dx
− k2

]
+ Vp(x)

}
up(x) = Eup(x) (7.2.7)

with up(x) satisfying the periodic boundary condition within period a. The above is a simple
eigenvalue problem with eigenvector up(x) and eigenvalue E. We can use matrix method to
convert the above into a matrix equation∑

n

Hmnan = E
∑
n

Bmnan (7.2.8)

by letting up(x) =
N∑
n=1

anφn(x), and testing with φm(x). One also ensures that the choice of

basis is such that the periodic boundary condition is satisfied. Here, φn(x) are not necessarily
orthogonal. In the above,

Hmn = 〈φm|Ĥp|φn〉, Bmn = 〈φm|φn〉 (7.2.9)

where

Ĥp = − ~2

2m

[
d2

dx2
+ 2ik

d

dx
− k2

]
+ Vp (x) (7.2.10)

Notice that Ĥp is a function of k, and so Hmn is a function of k. Therefore, (7.2.8) can be
written as a generalized eigenvalue problem

H(k) · a = EB · a (7.2.11)

In the above, we have explicitly denoted that H(k) is a function of k. Hence, we have to
fix k in order to solve the eigenvalue problem (7.2.7), or the generalized matrix eigenvalue
problem (7.2.11). Therefore, the eigenvalue E obtained is a function of k, the wavenumber
in the Bloch-Floquet wave (7.2.1). In general, a E(k) plot will look like that in Figure 7.2.

For each k value, there are many possible values of E. Also, in (7.2.1), if we let k ⇒ k+ 2pπ
a ,

where p is an integer value, then, (7.2.1) becomes

ψ (k, x)⇒ ψ (k + 2pπ/a, x) = eikxup (x) e
2ipπ
a x = eikxũp (x) (7.2.12)

Notice that e
2ipπ
a x is a periodic function; hence, it can be lumped with up (x) to form a new

ũp (x) periodic function. They satisfy the same equation (7.2.7) with the same k value. There-
fore, up (x) and ũp (x) share the same set of eigenvalues. They are the same eigenfunctions



74 Quantum Mechanics Made Simple

Figure 7.2: The E-k diagram or band structure diagram of a Bloch-Floquet wave propagating
in a 1D periodic structure.

within a multiplicative constant. Consequently, E (k) is a periodic function in k with period
2π
a . Each of this period is called the Brillouin zone. The zone that is centered about the

origin is called the first Brillouin zone.
Furthermore, since everything in the operator of (7.2.2) is real, ψ∗(k, x) is also a solution

of it whenever ψ(k, x) is a solution. But

ψ∗(k, x) = e−ikxu∗p(x) (7.2.13)

is also a Bloch-Floquet wave with −k wavenumber. In fact, u∗p(x) satisfies an equation that
is the conjugate of (7.2.7). But since the operator in (7.2.7) is Hermitian, its matrix repre-
sentation remains Hermitian. Furthermore, the eigenvalues are real, and remain unchanged
even when the equation is conjugated.

Since up(x) is periodic function with period a, it can be expanded as a Fourier series,
namely

up(x) =

∞∑
n=−∞

ane
inπx/(2a) (7.2.14)

7.3 Bloch-Floquet Theorem for 3D

In three dimensions, the Bloch-Floquet wave looks like

ψ(k, r) = eik·rup(r) (7.3.1)

with the property that
up(r + RL) = up(r) (7.3.2)

We can expand up(r) as a generalized Fourier series

up(r) =
∑
G

aGe
iG·r (7.3.3)
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where G represents points on the reciprocal lattice denoted by

G = l1b1 + l2b2 + l3b3 (7.3.4)

with the property that
eiG·RL = 1 (7.3.5)

where

RL = n1a1 + n2a2 + n3a3 (7.3.6)

In the above, li and ni, i = 1, 2, 3 are integers. The above property indicates that up(r) in
(7.3.3) is periodic as indicated by (7.3.2). The summation in (7.3.2) is over all possible values
of G or l1, l2, and l3.

One can solve for b1,b2 and b3 to yield

b1 =
a2 × a3

a1 · (a2 × a3)
2π, b2 =

a3 × a1

a1 · (a2 × a3)
2π, b3 =

a1 × a2

a1 · (a2 × a3)
2π (7.3.7)

for this G. Then by back substitution, (7.3.5) is satisfied. Futhermore,

ψ(k + G, r) = eik·reiG·rup(r) (7.3.8)

where
eiG·(r+RL) = eiG·r (7.3.9)

Since it is a periodic function on the lattice, the eiG·r term can be lumped with the unit cell
function up(r); therefore, the new Bloch-Floquet wave is

ψ(k + G, r) = eik·rũp(r) (7.3.10)

It is of the same form as (7.3.1); and hence will yield the same eigenvalues as ψ(k, r). Con-
sequently, the lattice points are defined by the lattice vector RL, and the reciprocal lattice
points are defined by the reciprocal lattice vector G. The Brillouin zone is defined by the
reciprocal lattice points. The first Brillouin zone is the first unique zone centered around the
origin. These zones in 3D can be quite complicated as shown in Figure 7.3.

The band structure diagram is rather complicated and is usually plot with E versus k
vector along prescribed lines in the first Brillouin zone as shown in Figure 7.4.

We can take yet another viewpoint of the existence of band structure in a crystal. We
have studied the tight-binding model of two identical quantum wells. This can be extended to
two identical atoms as shown in Figure 7.5. The figure shows how the energy of the trapped
modes of the atoms are split versus the spacing of the atoms (as we have found on our tight
binding model in the previous chapter). The closer the spacing, the stronger is the coupling
between the modes, and the larger is the split in the level of the degenerate modes.

If we have a system with billions of atoms, each atom has its energy levels due to trapped
modes in the atom. If the inter-atomic distance is large, there is no interaction between
the atoms, and energy levels will be many billion times degenerate. However, when the
interatomic spacing becomes smaller, the wavefunctions from one atom will overlap with the
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Figure 7.3: The first Brillouin zone of the FCC (face centered cubic) lattice (from Wikipedia).

Figure 7.4: The band structure diagram of Silicon along prescribed lines in the first Brillouin
zone (from Warwich Physics Dept.).
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Figure 7.5: The energy levels of two atoms versus the atomic spacing. (from Seeger, Semi-
conductor Physics).

Figure 7.6: The genesis of band structure as the interatomic spacing of the atoms of the
lattice becomes smaller and smaller. (from Fox, Quantum Optics).
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neighboring atoms through tunneling. The interatomic coupling, like the example of the
tight-binding model, will split the energy levels and make them into a continuous band of
energy. This give rise to energy band where energy states exist and energy band where no
states exist, yielding the band structures we have seen.

As we have seen in the simple case of the tight-binding model study of two quantum wells,
the degenerate modes split into even and odd mode coupling between them. In one case,
the modes are in phase, and the other case, the modes are out of phase with respect to each
other. When multitude of mode coupling prevails, there could be infinitely many possible
phase relations between the atomic modes, giving rise to Bloch-Floquet wave with different
exp(ik · r) across the lattice. The Bloch-Floquet wave establishes the phase relationship
between different trapped modes of the atoms as they couple to each other.

7.4 Effective Mass Schrödinger Equation

The bottom of many conduction band is parabolic. In the vicinity of k = 0, we can write the
E-k relation as

Ek =
~2k2

2me
+ V (7.4.1)

where me is the effective mass chosen to fit the curvature of the parabola, and V is the
energy at the bottom of the conduction band. We can write the Bloch-Floquet wave as a
superposition of waves with different energies or k values, namely

ψ(r, t) =
∑
k

ckuk(r)eik·re−iωkt, k ' 0, ~ωk = Ek (7.4.2)

When k ' 0, we can approximate

uk(r) = u0(r) (7.4.3)

so that

ψ(r, t) = u0(r)
∑
k

cke
ik·re−iωkt

= u0(r)ψe(r, t) (7.4.4)

where ψe(r, t) is the envelope function, namely

ψe(r, t) =
∑
k

cke
ik·re−iωkt (7.4.5)
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We can show that

i~
∂ψe(r, t)

∂t
=
∑
k

ckEke
ik·r−iωkt

=
∑
k

ck

(
~2k2

2me
+ V

)
eik·r−iωkt

=

(
−~2∇2

2me
+ V

)∑
k

cke
ik·r−iωkt (7.4.6)

or

i~
∂ψe(r, t)

∂t
=

(
−~2∇2

2me
+ V

)
ψe(r, t) (7.4.7)

The above is the effective mass Schrödinger equation. It is valid when k is small, or eik·r is
slowly varying compared to the lattice spacing a. In the above, we can assume that V (r) is
slowly varying, and that the effective mass me(r) is also a slowly varying function of r. Then
the above can be correctly written as

−~2

2
∇ · 1

me(r)
∇ψe(r, t) + V (r)ψe(r, t) = i~

∂

∂t
ψe(r, t) (7.4.8)

The essence of the above approximation is that if the material properties are slowly varying
with respect to the lattice spacing, an electron “sees” locally an environment of an infinite
lattice. Consequently, if there are two domains with different V and me, the above equation
induces the boundary conditions at the interface of the domains as

ψe1(r) = ψe2(r), r ∈ S (7.4.9)

1

me1

∂

∂n
ψe1(r) =

1

me2

∂

∂n
ψe2(r), r ∈ S (7.4.10)

where S is the interface separating the two domains and ∂/∂n refers to normal derivative.
Even though V (r) and me(r) have jump discontinuities at such an interface, we assume that
the discontinuities are still slowly varying compared to the lattice spacings.

7.5 Density of States (DOS)

We can use periodic boundary condition to discretize the k vector in the Bloch-Floquet wave
so that it is countable, or that

kL = l1
2π

L1
â1 + l2

2π

L2
â2 + l3

2π

L3
â3 (7.5.1)

In one dimension, it is

kl = l
2π

L
= l∆k (7.5.2)
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where ∆k = 2π
L . When we count the number of discrete modes, we have 1 mode per ∆k on

the kl real line. Or the density of states is

g1D (k) = 1/∆k = L/2π (7.5.3)

The number of states is proportional to the length of L. In 2D, the density of states can be
easily derived to be

g2D (k) = L1L2/ (2π)
2

= A/ (2π)
2

(7.5.4)

In 3D, it becomes
g3D (k) = L1L2L3/ (2π)

3
= V/ (2π)

3
(7.5.5)

We can normalize the density of states with respect to length L, area A, and volume V for
1D, 2D, and 3D, respectively. Then

g1D (k) = 1/2π, g2D (k) = 1/ (2π)
2

, g3D (k) = 1/ (2π)
3

(7.5.6)

E 

k 0    k1     k2    k3     k4 
 

Figure 7.7: If every state on the k line corresponds to a state on the E line, then the density
of states per unit length on the E line is different from that on the k line.

We may want to count the density of states per unit energy instead as shown by the above
E-k diagram. Even though the states are evenly spaced on the k line, they are not evenly
spread on the E line, thereby, altering the density of states per ∆E. In general, we can write,
in 3D,

g (E) dE = 2g (k) d3k = 2g (k) 4πk2dk
= 8πg (k) k2 dk

dE dE
(7.5.7)

where we put a factor of 2 for two electron states per energy state.
Therefore, the relation between DOS on the E line and the k line is

g(E) = 8πg(k)k2 dk

dE
(7.5.8)



Quantum Mechanics in Crystals 81

Since

E =
~2k2

2me
+ V (7.5.9)

for a free electron, we have

k =
√
E − V

√
2me

~
(7.5.10)

dk

dE
=

√
me

2~2

1√
E − V

(7.5.11)

and

g(E) =
1

2π2

(
2me

~2

) 3
2

(E − V )
1
2 (7.5.12)

The above is the DOS in the conduction band of a bulk material.

7.6 DOS in a Quantum Well

In a 1D quantum well, the potential varies as a function of z, but is independent of x and y.
Then the effective mass Schrödinger equation becomes

−~2

2
∇ 1

me(z)
∇ψ(r) + V (z)ψ(r) = Eψ(r) (7.6.1)

We can further separate the z variation from the x and y variations to get

− ~2

2me
∇2
sψ(r)− ~2

2

∂

∂z

1

me

∂

∂z
ψ(r) + V (z)ψ(r) = Eψ(r) (7.6.2)

where ∇2
s = ∂2

∂x2 + ∂2

∂y2 .
By separation of variables, we let

ψ(r) = ψn(z)ψs(rs) (7.6.3)

where rs = x̂x+ ŷy. Then, we can show that

− ~2

2me
∇2
sψs(rs) = Esψs(rs) (7.6.4)

and

−~2

2

d

dz

1

me(z)

d

dz
ψn(z) + V (z)ψn(z) = Enψn(z) (7.6.5)
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In the above

E = Es + En (7.6.6)

Equation (7.6.5) can be solved for the eigenvalues En. For example, it can be the 1-D finite
potential well problem, or the infinite potential well problem. Alternatively, it can have a
complicated V (z) and an me(z) that are amenable to numerical methods only.

In the x-y direction, we let
ψ(rs) ∝ eiks·rs (7.6.7)

where ks = x̂kx + ŷky. Then,

Es =
~2k2

s

2me
(7.6.8)

where k2
s = k2

x + k2
y. Therefore, the total E-ks diagram looks like that shown in Figure 7.8

Figure 7.8: The subband E-ks relation of a quantum well.

In general, g2D(ks) = 1
(2π)2 , and we have

g2D(Es)dEs = 2g2D(ks)2πks
dks
dEs

dEs (7.6.9)

Finally, we get

g2D(Es) =
me

π~2
(7.6.10)

which is a constant independent of Es.
Hence, if we march along the E-line from 0 upward, the DOS as a function of total E is

shown in Figure 7.9.
If the 1D quantum well is an infinite potential well, the energy is given by

En =
~2

2me

(nπ
L

)2

(7.6.11)

But density of states for a 3D bulk material is

g3D(E) =
1

2π2

(
2me

~2

) 3
2

E
1
2 (7.6.12)
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Figure 7.9: The density of states of a 2D quantum well compared to that of a 3D bulk
material.

If we evaluate this at E = En, we have

g3D(En) =
me

π~2

(n
L

)
= g2D

n

L
(7.6.13)

Therefore, g2D

L touches the g3D at En values as shown in Figure 7.9.
When L becomes large, so that the quantization level in the quantum well becomes finer,

the DOS plot versus total E is shown in Figure 7.10. The DOS for a quantum well resembles
that of a bulk material.

Figure 7.10: The density of states of a 2D quantum well compared to that of a 3D bulk
material when the width of the quantum well L is large.
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Chapter 8

Angular Momentum

8.1 Introduction

In quantum mechanics, we learn that travelling wave eikx carries a linear momentum propor-
tional to ~k. Hence, the more oscillatory the wave is, the higher the momentum it carries.
However, when an electron is trapped inside the potential of an atom, the wave is not a lin-
early travelling wave, but a wave that swirls around the nucleus of the atom. Hence, the wave
carries mostly angular momentum. The magnitude of this angular momentum, intuitively, is
proportional to the angular variation of the wavefunction.

If we take Schrödinger’s Equation in free space, it is given by

− ~2

2m0
∇2ψ(r) = Eψ(r) (8.1.1)

We can rewrite this as (
∇2 + k2

0

)
ψ(r) = 0 (8.1.2)

where k2
0 = 2m0E/~2. The above is the Helmholtz wave equation whose solution is well

known. In cylindrical coordinates, it is(
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

∂2

∂φ2
+

∂2

∂z2
+ k2

0

)
ψ(ρ, φ, z) = 0 (8.1.3)

where ρ =
√
x2 + y2, φ = tan−1(y/x). In spherical coordinates, it is(

1

r2

∂

∂r
r2 ∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin θ

∂2

∂φ2
+ k2

0

)
ψ(r, θ, φ) = 0 (8.1.4)

where r =
√
x2 + y2 + z2, θ = cos−1(z/r), φ = tan−1(θ/x).

85
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8.1.1 Electron Trapped in a Pill Box

We will first solve the above equation in cylindrical coordinates to gain physical insight into
the wave-angular momentum relationship. Hence, we study the case of an electron trapped
inside a pill box. The solutions to Helmholtz equation can be found by the separation of
variables. For example, to solve (8.1.3), we let

ψ(ρ, φ, z) = R(ρ)Φ(φ)Z(z) (8.1.5)

Using (8.1.5) in (8.1.3) yields

Φ(φ)Z(z)
1

ρ

∂

∂ρ
ρ
∂

∂ρ
R(ρ) +R(ρ)Z(z)

1

ρ2

∂2

∂φ2
Φ(φ)

+R(ρ)Φ(φ)
∂2

∂z2
Z(z) + k2

0R(ρ)Φ(φ)Z(z) = 0 (8.1.6)

To solve the above, we propose two eigenvalue problems,

∂2

∂z2
Z(z) = −k2

zZ(z) (8.1.7)

∂2

∂φ2
Φ(φ) = −n2Φ(φ) (8.1.8)

The solutions to the above are easily found:

Z(z) = e±ikzz (8.1.9)

Φ(φ) = e±inφ (8.1.10)

By so doing, Equation (8.1.6) becomes

1

ρ

d

dρ
ρ
d

dρ
R(ρ)− n2

ρ2
R(ρ) + k2

ρR(ρ) = 0 (8.1.11)

where

k2
ρ = k2

0 − k2
z (8.1.12)

Equation (8.1.11) is the Bessel equation where solutions are Bessel function Jn(kρρ) and
Neumann function Yn(kρρ). Here, n is the order of these functions. So the general solution
(8.1.5) becomes

ψ(ρ, φ, z) = [AJn(kρρ) +BYn(kρρ)] e±inφe±ikzz (8.1.13)

We can now put an electron in a pill box whose wall is an infinite potential as shown
in Figure 8.1. Since Yn (kρρ) → ∞, when ρ → 0, we set B = 0 to eliminate the Neumann
function. Also, ψ(ρ, φ, z) has to be regular and finite inside the pill box. Matching boundary
conditions at the two ends of the pill box, we have

ψ (ρ, φ, z) = AJn (kρρ) e±inφ sin
(pπ
L
z
)

(8.1.14)
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 ρ 

 

z=L 

Figure 8.1: The geometry of a cylindrical pill box where an electron is trapped.

Table 8.1: The first few zeros of Bessel functions:

m ζ0m ζ1m ζ2m ζ3m ζ4m ζ5m
1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715
2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386
3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002
4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801
5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178

where kz = pπ/L, for all integer p.
The boundary condition at ρ = a is that ψ (a, φ, z) = 0, or that

Jn (kρa) = 0 (8.1.15)

The zeros of Bessel functions are tabulated and given by

Jn (ζnm) = 0 (8.1.16)

The first few zeros are given in Table 8.1. Hence, we obtain that

kρ = ζnm/a (8.1.17)

So (8.1.14) becomes

ψ (ρ, φ, z) = AJn

(
ζnm

ρ

a

)
e±inφ sin

(pπ
L
z
)

(8.1.18)

In the above, we see a standing wave sin (pπz/L) in the z direction, a standing wave repre-
sented by Jn

(
ζnm

ρ
a

)
in the ρ direction, and a travelling wave e±inφ in the φ direction. The
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Figure 8.2: The Bessel function of different order as a function of its argument. Notice that
the higher the order, the smaller the Bessel function is at the origin.

larger n is, the more rapidly varying is the travelling wave as a function of φ, and the more
angular momentum it carries.

In fact, plots of Jn (x) versus x for different n is shown in Figure 8.2.1 We notice that
the larger n is, the more rapidly varying e±inφ is, and the more the Bessel function Jn (x) is
pulled away from the origin. This is characteristic of a particle swirling around in a circle.
The centrifugal force is keeping the particle away from the origin.

From the fact that

k2
0 = k2

ρ + k2
z =

(
ζnm
a

)2

+
(pπ
L

)2

=
2m0E

~2
(8.1.19)

we can derive that the energy levels of the trapped electron are given by

Enmp =
~2

2m0

[(
ζnm
a

)2

+
(pπ
L

)2
]

(8.1.20)

Hence, the energy levels of the trapped electron assume quantized values. This is the char-
acteristic of the wave nature of the electron.

8.1.2 Electron Trapped in a Spherical Box

To obtain different physical insight with different wavefunctions, next, we place the electron
in a spherical box with infinite potential at the wall. We also solve this problem by separation
of variables by letting

ψ (r, θ, φ) = R (r) Θ (θ) Φ (φ) (8.1.21)

1Ways to compute Jn(x) is well documented and is available in programming toolbox like Matlab.
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Figure 8.3: Legendre Polynomial with argument cos θ plotted for l = 5 and different m values.

Using (8.1.21) in (8.1.4), we have

Θ (θ) Φ (φ) 1
r2

∂
∂r r

2 ∂
∂rR (r) +R (r) Φ (φ) 1

r2 sin θ
∂
∂θ

(
sin θ ∂∂θΘ (θ)

)
+R (r) Θ (θ) 1

r2 sin2 θ
∂2

∂φ2 Φ (φ) + k2
0R (r) Θ (θ) Φ (φ) = 0

(8.1.22)

We propose another eigenvalue problem such that

∂2

∂φ2
Φ (φ) = −m2Φ (φ) (8.1.23)

Using the above in (8.1.22), Φ (φ) can be canceled in the equation. Then we propose another
eigenvalue problem such that

1

sin θ

∂

∂θ
sin θ

∂

∂θ
Θ (θ)− m2

sin2 θ
Θ (θ) = −l (l + 1) Θ (θ) (8.1.24)



90 Quantum Mechanics Made Simple

The solution to (8.1.23) is e±imφ while the solution to (8.1.24) is in terms of associated
Legendre polynomials, Pml (x), or in terms of θ,2

Θ (θ) = Pml (cos θ) , −l 6 m 6 l (8.1.25)

Eventually, the equation for R (r) is

1

r2

d

dr
r2 d

dr
R (r) +

[
k2

0 −
l (l + 1)

r2

]
R (r) = 0 (8.1.26)

The last equation is the spherical Bessel equation whose solution is

R (r) = Ajl (k0r) +Bh
(1)
l (k0r) (8.1.27)

In the above, jl (x) represents a spherical Bessel function of order l, which is regular at x = 0,

while h
(1)
l (x) represents a spherical Hankel function of the first kind of order l, which is

singular at x = 0.

When we put this solution inside a spherical box, we set B = 0 since h
(1)
l (k0r) is singular

at r = 0. Then the general solution to (8.1.4) inside a box is

ψ(r, θ, φ) = Ajl(k0r)P
m
l (cos θ)e±imφ, −l 6 m 6 l (8.1.28)

Assuming the radius of the sphere is a, to satisfy the boundary condition, we require that

jl(k0a) = 0, (8.1.29)

Since jl(ζlp) = 0, we deduce that k0 = ζlp/a. The first few zeros of the spherical Bessel
functions are given in Table 8.2.

Table 8.2: The first few zeros of the spherical Bessel functions:

p ζ0p ζ1p ζ2p ζ3p ζ4p
1 3.142 4.493 5.763 6.988 8.183
2 6.283 7.725 9.095 10.417 11.705
3 9.425 10.904 12.323 13.698 15.040
4 12.566 14.066 15.515 16.924 18.301

Therefore, the general solution becomes

ψ(r, θ, φ) = Ajl

(
ζlp
r

a

)
Pml (cos θ)e±imφ, −l 6 m 6 l (8.1.30)

In the above, e±imφ represents a traveling wave in the φ direction, Pml (cos θ) represents a
standing wave in the θ direction. When l becomes large, Pml (x) is a higher order polynomial

2The other solution to (8.1.24) is the associate Legendre function of the second kind, Qnl (cos θ) but this
function is singular for 0 6 θ 6 π, and hence, is not admissible as a solution.
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and Pml (cos θ) is a rapidly varying function of θ. In this case, e±imφ, −l 6 m 6 l could also
be a rapidly varying function of φ implying the presence of high angular momentum. From
Figure 8.3, it is seen that the larger m is, the more slowly varying is the associated Legendre
polynomial. The variations from Pml (cos θ) and e±imφ compensate each other for a fixed l so
as to keep the “sum” of the angular momentum a constant when l is fixed.

The function jl(x) is well known and is plotted in Figure 8.4, showing that when n is
large, the centrifugal force of the particle pulls it away from the origin as in the pill-box case
in cylindrical coordinates. From the fact that

k2
0 =

(
ζlp
a

)2

=
2m0E

~2
(8.1.31)

we deduce that the energy levels of the trapped electron are

Elp =
~2

2m0

(
ζlp
a

)2

(8.1.32)

This is again quantized due to the wave nature of the electron.
The above cases illustrate the trapping of an electron by a pill box and a spherical box.

In nature, the positive charge of a nucleus forms a potential that can trap an electron. In
the case of the hydrogen atom, closed form solutions can be obtained for the trapping of
an electron by the Coulomb potential of the positive nucleus. This has been documented in
many quantum mechanics books.

8.2 Mathematics of Angular Momentum
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Figure 8.4: Spherical Bessel function of different order versus its argument. The higher order
functions are smaller around the origin.
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We have shown previously that an electron trapped inside a pill box or a spherical box
does display angular momentum. Next, we derive the operator that is related to angular
momentum. In classical mechanics, the angular momentum is given by

L = r× p (8.2.1)

where p is the linear momentum. Notice that by taking the cross product of p with r, only
the circumferential component of the linear momentum is extracted. Written explicitly, it is

Lx = ypz − zpy, Ly = zpx − xpz, Lz = xpy − ypx (8.2.2)

We raise these to operators, and write them as, in coordinate space representation,

L̂x = −i~
(
y
∂

∂z
− z ∂

∂y

)
, L̂y = −i~

(
z
∂

∂x
− x ∂

∂z

)
, L̂z = −i~

(
x
∂

∂y
− y ∂

∂x

)
, (8.2.3)

x, y, z can be raised to be operators as well, but in coordinate space representation, they are
just scalars. Actually, we can write (8.2.1) as the operator

L̂ = r̂× p̂ (8.2.4)

The hat signs above indicate that they are operators and not unit vectors. The coordinate
space representation of the r̂ operator is just r. The coordinate space representation rep-
resentation of the momentum operator p̂ has been derived before. Consequently, the above
operators can be shown to satisfy the following commutation relations[

L̂x, L̂y

]
= i~L̂z,

[
L̂y, L̂z

]
= i~L̂x,

[
L̂z, L̂x

]
= i~L̂y (8.2.5)

By transforming to spherical coordinates, the operators become

L̂x = i~
(

sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ

)
(8.2.6)

L̂y = i~
(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)
(8.2.7)

L̂z = −i~ ∂

∂φ
(8.2.8)

The eigenfunction of the L̂z operator is Φ = e±imφ so that

L̂zΦ(φ) = m~Φ(φ) (8.2.9)

8.3 L̂2 Operator

The L̂2 operator is defined as

L̂2 = L̂2
x + L̂2

y + L̂2
z (8.3.1)
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It can be shown that

L̂2 = −~2∇2
θ,φ (8.3.2)

where θ and φ mean only variation in these variables is involved, and

∇2
θ,φ =

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

]
(8.3.3)

The above is just the circumferential variation of the Laplacian operator in (8.1.4). It is quite
easy to show that the above commutes with L̂z. Hence, L̂2 commutes with L̂z. By symmetry,
L̂2 also commutes with L̂x and L̂y. We can find the eigenfunction of the L̂2 operator by first
finding that of ∇2

θ,φ. Traditionally, this eigenfunction and eigenvalue problem is expressed as

∇2
θ,φYlm(θ, φ) = −l(l + 1)Ylm(θ, φ), −l 6 m 6 l (8.3.4)

Its solution is similar to the method of solving for the solution of Helmholtz wave equation
in spherical coordinates. By the separation of variables, the solution is

Ylm(θ, φ) = CPml (cos θ)eimφ, −l 6 m 6 l (8.3.5)

which can be normalized to yield

Ylm(θ, φ) = (−1)m

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ)eimφ, −l 6 m 6 l (8.3.6)

In Hilbert space, this eigenfunction is denoted as |l,m〉. We can define another operator

L̂2
s = L̂2 − L̂2

z = L̂2
x + L̂2

y (8.3.7)

It is quite clear that L̂z commutes with L̂2
s and L̂2

s commutes with L̂2. Hence, L̂z, L̂
2
s and L̂2

share the same eigenfunctions |l,m〉. Therefore,

L̂2
s|l,m〉 = ~2[l(l + 1)−m2]|l,m〉 (8.3.8)

A pictorial illustration of this concept is given in Figure 8.5. It is to be noted that
this picture can be drawn because L̂z commutes with L̂2

s. Thus their eigenvalues can be
“measured” uniquely and simultaneously. However, L̂z does not commute with L̂x or L̂y. In
fact, from the picture of |Ylm|2, the function is completely indeterminate in the φ direction.
Hence, the eigenvalues of L̂x or L̂y are indeterminate or smeared out for a given Ylm with a

determinate eigenvalue of L̂z.
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Figure 8.5: A picture showing the angular momentum components for different tilt angles of
the total angular momentum L (from DAB Miller).



Chapter 9

Spin

9.1 Introduction

Spin is a special property of atomic or subatomic particles that has no classical analogue.
Electron has spin. We can think of it as being due to the self spinning of the electron, but
we should not let our imagination run further than that. Spin of an electron gives it a spin
angular momentum in addition to the orbital angular momentum it possesses. The spin also
endows an electron with a magnetic dipole moment that causes it to interact with a magnetic
field.

The spin of some particles is found to have binary values of “spin up” and “spin down”
experimentally by the famous Stern-Gerlach experiment. This binary nature, as we shall see,
fits nicely in the mathematical structure of angular momentum in quantum mechanics, but
it cannot be described by a wavefunction or wave mechanics. Instead, it can be represented
by matrix mechanics.

9.2 Spin Operators

We have seen that the z component of the orbital angular momentum, represented by the
operator L̂z, is quantized to be m~ where −l 6 m 6 l, l being an integer related to the total
angular momentum square operator L̂2 with eigenvalue l (l + 1)~2.

It can be shown that the relationship between the total angular momentum number l and
the z-component of the angular number m is not restricted to orbital angular momenta. It
can be established for all quantum mechanical angular momenta, as is shown in Appendix A.
A more general framework for angular momentum is that for Ĵ2 = Ĵ2

x + Ĵ2
y + Ĵ2

z , an operator

that represents the square of the total angular momentum, and Ĵx, Ĵy, Ĵz, operators that
represent the x, y, and z components of angular momenta, then

Ĵ2 |L,M〉 = L (L+ 1) ~2 |L,M〉 (9.2.1)

Ĵz |L,M〉 = M~2 |L,M〉 , −L 6M 6 L (9.2.2)
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We have proved the above results for orbital angular momentum by using wave mechanics
and wavefunctions, but they can be proven for general angular momentum by using rotational
symmetry of 3D coordinate space, and mathematics of raising and lowering operators.

Spin angular momentum operators also fit under the framework of general angular mo-
mentum operator, and can be thought of as a special case of the above framework. Hence,
the above can also be applied to spin 1

2 angular momentum where L = 1
2 , − 1

2 6M 6
1
2 . The

values of M has to be spaced by value one apart, hence, M = ± 1
2 .

For spins, we let Ŝ represent the total angular momentum operator, while Ŝz represents
the z component of the spin angular momentum. Applying (9.2.1) and (9.2.2) to spin 1

2
angular momentum, we have

Ŝ2
∣∣ 1

2 ,±
1
2

〉
= 3

4~
2
∣∣ 1

2 ,±
1
2

〉
, L = 1

2 , M = ± 1
2

(9.2.3)

Ŝz
∣∣ 1

2 ,±
1
2

〉
= ± 1

2~
∣∣ 1

2 ,±
1
2

〉
(9.2.4)

As a result, the corresponding z component of the spin angular momentum, represented
by the operator Ŝz, has only two eigenvalues and two eigenstates: an up state with angular
momentum of 1

2~ and a down state with angular momentum of − 1
2~.1

The corresponding x and y components of the spin angular momentum can be represented
by operators Ŝx and Ŝy. Together with Ŝz, they satisfy the following commutation relations,[

Ŝx, Ŝy

]
= i~Ŝz,

[
Ŝy, Ŝz

]
= i~Ŝx,

[
Ŝz, Ŝx

]
= i~Ŝy (9.2.5)

The above is similar to the commutation relations satisfied by L̂x, L̂y, and L̂z, where they
have been motivated by wave mechanics. However, as has been shown in Appendix A, that if
an operator is to represent an angular momentum, then their x, y, and z components have to
satisfy the above commutation relations by rotational symmetry of the 3D coordinate space.

It is expedient at this point to define Pauli spin matrices given by

σ̂x =
2

~
Ŝx, σ̂y =

2

~
Ŝy, σ̂z =

2

~
Ŝz (9.2.6)

with the commutation relation

[σ̂x, σ̂y] = 2iσ̂z, [σ̂y, σ̂z] = 2iσ̂x, [σ̂z, σ̂x] = 2iσ̂y (9.2.7)

Since there are only two spin states, they can be represented by a two dimensional column
vector. The spin operators can in turn be represented by 2× 2 matrices. Hence, we have

|↑〉 =

[
1
0

]
, |↓〉 =

[
0
1

]
(9.2.8)

Then, the matrix representation of σ̂z is

σ̂z =

[
1 0
0 −1

]
(9.2.9)

1This was discovered in silver atoms by the famous Stern-Gerlach experiment.
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such that

σ̂z |↑〉 = |↑〉 , σ̂z |↓〉 = − |↓〉 (9.2.10)

The other Pauli matrices can be found to be

σ̂x =

[
0 1
1 0

]
, σ̂y =

[
0 −i
i 0

]
(9.2.11)

It can be shown that

σ̂2
x = σ̂2

y = σ̂2
z = I =

[
1 0
0 1

]
(9.2.12)

Hence, we can define a σ̂2 operator such that

σ̂2 = σ̂2
x + σ̂2

y + σ̂2
z = 3I (9.2.13)

By the same token, the Ŝ2 operator, from (9.2.6) and the above, can be evaluated to be

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z =

~2

4
σ̂2 =

3

4
~I (9.2.14)

In the above, the quantum mechanics of spin half particle such as an electron is described
by matrix mechanics.

9.3 The Bloch Sphere

We have seen that the eigenstates of σ̂z are

|↑〉 =

[
1
0

]
, |↓〉 =

[
0
1

]
(9.3.1)

In the two dimensional space in which spin states are represented, these two states are or-
thonormal and complete. Hence, the eigenstates of the σ̂x and σ̂y operators can be expanded
as well in terms of |↑〉 and |↓〉 states. Consequently, a general spin state can be written as

|s〉 = a↑ |↑〉+ a↓ |↓〉 = cos

(
θ

2

)
|↑〉+ eiφ sin

(
θ

2

)
|↓〉 (9.3.2)

We have chosen a↑ and a↓ judiciously so that the wavefunction is clearly normalized. The
relative phase between a↑ and a↓ is in eiφ as absolute phase is unimportant. Let

σ = ıσ̂x + σ̂y + kσ̂z (9.3.3)

be an operator that represents a vector of the spin angular momentum, where ı, , and k
are unit vectors in the x, y, and z directions. Then the expectation value of this operator
for a given quantum state |s〉 in (9.3.2) should point in a vectorial direction. This is a basic
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tenet of quantum mechanics since σ represents angular momentum, which is an observable.
Consequently, we find the vector

Ps = 〈s|σ |s〉 = ı 〈s| σ̂x |s〉+  〈s| σ̂y |s〉+ k 〈s| σ̂z |s〉 (9.3.4)

After substituting |s〉 from (9.3.2) into the above, we can show that

Ps = ı sin θ cosφ+  sin θ sinφ+ k cosφ (9.3.5)

The vector Ps maps out a sphere called the Bloch sphere with corresponding θ and φ values
as shown in Figure 9.1.

Figure 9.1: The Bloch sphere showing the vector Ps.

9.4 Spinor

In general, we need a two component vector to describe both the wavefunction and the spin
state of an electron, namely,

|ψ〉 =

[
|ψup〉
|ψdown〉

]
= |ψup〉

[
1
0

]
+ |ψdown〉

[
0
1

]
(9.4.1)

These wave fucntions with two components are known as spinors. The vector space for spinors
consists of the vector space for the electron wavefunction multiplying with the two-dimensional
vector space for the spin. This is known as a direct product space.
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9.5 Pauli Equation

The classical angular momentum of a particle moving in a circle is

L = m0vr (9.5.1)

which can also be written as a vector

L = r× p = r×m0v (9.5.2)

If this particle is an electron, it will complete an orbit in 2πr/v time, and we can denote the
current due to this orbiting electron as

I = − ev

2πr
(9.5.3)

A circulating current loop produces a magnetic dipole moment

µd = Ia (9.5.4)

where |a| is the area of the current loop, the vector a points in the direction normal to the
surface |a|. For circulating electron, this moment is

|µd| = −
ev

2πr
πr2 = −evr

2
(9.5.5)

We can then write

µd = −er× v

2
= − eL

2m0
(9.5.6)

The interaction energy of a magnetic dipole and a background magnetic field B is given by

Eu = −µd ·B (9.5.7)

Assume that B = ẑBz, then

Eu =
e

2m0
BzLz =

e

2m0
Bzm~ (9.5.8)

since the eigenvalue of L̂z is m~ and the expectation value of L̂z can be precisely m~. Equation
(9.5.8) can also be written as

Eu = mµBBz (9.5.9)

where µB is a Bohr magneton defined to be

µB =
e~

2m0
(9.5.10)

The Hamiltonian of quantum mechanics is inspired by the classical Hamiltonian mechanics.
The Hamiltonian represents the total energy of the system. If an applied external magnetic
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field contribution to a small change in the total energy, we can add a perturbation Hamiltonian
in accordance to (9.5.8) and let

Ĥp =
eBz
2m0

L̂z (9.5.11)

Originally, for angular momentum with number l, the z component of the angular momentum
is m~ with (2l + 1) values for m that are degenerate. The applied B field will split this
degeneracy into 2l + 1 distinct energy values. This is known as the Zeeman effect.

Equation (9.5.11) can be written as

Ĥp =
e

2m0
L̂ ·B (9.5.12)

When the spin angular momentum is added, the perturbing Hamiltonian becomes

Ĥp =
e

2m0
(L̂ + gŜ) ·B (9.5.13)

where g is the gyromagnetic factor found to be approximately 2 experimentally.
In general, the Hamiltonian for an electron in the presence of an electromagnetic field is

Ĥp =
1

2m0
(p̂− eA)2 + V +

e

2m0
(L̂ + gŜ) ·B (9.5.14)

The above Hamiltonian is again motivated by the Hamiltonian for classical mechanics for an
electron in the presence of an electromagnetic field, which is

Ĥp =
1

2m0
[p− eA(r)]

2
+ V (r) (9.5.15)

One can show, using the classical equation of motion for Hamiltonian mechanics, that Lorentz
force law emerges from the above. Equation (9.5.14) is motivated by (9.5.15) where the
momentum p in (9.5.15) is elevated to be an operator p̂ in (9.5.14). The vector potential A(r),
however remains as a classical variable. As a result, (9.5.14) is a semi-classical Hamiltonian.



Chapter 10

Identical Particles

10.1 Introduction

The physics of identical particles is another triumph in quantum mechanics where the phe-
nomenon is not observed in the classical world. When particles are identical or indistinguish-
able, their wavefunctions have to assume a certain form to satisfy a certain symmetry when
the positions of the two particles are swapped. In quantum mechanics, it is the magnitude
square of a wavefunction that has physical meaning. If the particles are indistinguishable, the
magnitude square of a wavefunction does not change when the two particles are swapped.

In general, we can write the general wavefunction for two particles as

ψtp(r1, r2) = c12ψa(r1)ψb(r2) + c21ψa(r2)ψb(r1) (10.1.1)

where ψη(ri) is a one-particle wavefunction for a particle in state η described by coordinate
ri.

But when r1 
 r2, the assumption is that the magnitude square of the wavefunction
remains unchanged. Namely,

|ψtp(r1, r2)|2 = |ψtp(r2, r1)|2 (10.1.2)

which means that

ψtp(r1, r2) = γψtp(r2, r1) (10.1.3)

where γ = eiθ. Using (10.1.1) in (10.1.3), we have

c12ψa(r1)ψb(r2) + c21ψa(r2)ψb(r1) = γ [c12ψa(r2)ψb(r1) + c21ψa(r1)ψb(r2)] (10.1.4)

From the above, we get

c21 = γc12, c12 = γc21 (10.1.5)

Consequently,

c12 = γc21 = γ2c12 (10.1.6)
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or γ2 = 1, γ = ±1, c21 = ±c12, and

ψtp(r1, r2) = c12 [ψa(r1)ψb(r2)± ψa(r2)ψb(r1)] (10.1.7)

When the “+” sign is chosen in (10.1.7), it corresponds to the wavefunction of two identical
bosons. When the “−” sign is chosen, it corresponds to the wavefunction of two identical
fermions.

10.2 Pauli Exclusion Principle

For fermions, the two-particle wavefunction is given by

ψtp(r1, r2) = c [ψa(r1)ψb(r2)− ψa(r2)ψb(r1)] (10.2.1)

when a = b, the above vanishes, meaning that two fermions cannot be in the same state.
The above vanishes when r1 = r2, meaning that two fermions cannot be in the same position
simultaneously. This known as the Pauli exclusion principle. No two identical electrons can
be in the same state nor the same position simultaneously. However, two electrons with
different spins, up spin and down spin, are considered different, and they can be in the same
state, like in the same orbital in an atom. Also, the sign of the total wavefunction, ψtp(r1, r2),
changes sign when the positions of the two particles are swapped.

10.3 Exchange Energy

When we have two electrons, each will see the Coulomb potential of the other electron. Hence,
the Hamiltonian is given by

Ĥ = − ~2

2me

(
∇2

1 +∇2
2

)
+

e2

4πε0 |r1 − r2|
(10.3.1)

The two-particle fermion wavefunction can be written as

|ψtp〉 =
1√
2

[|1, a〉 |2, b〉 − |2, a〉 |1, b〉] (10.3.2)

where 1√
2

ensures that |ψtp〉 is also normalized. In the above, |i, η〉 is the Hilbert space

representation of the wavefunction ψη(ri). The above does not solve the Schrödinger equation
corresponding to the above Hamiltonian, but it can be used to estimate the eigenvalue or the
energy of the Hamiltonian in the spirit of the variational method described previously, using
the Rayleigh quotient.

To find the corresponding expectation value of the energy, we evaluate

〈E〉 = 〈ψtp| Ĥ |ψtp〉 (10.3.3)
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Since the function is normalized, the above is also the Rayleigh quotient for the energy. When
expanded to four terms, gives

〈E〉 =
1

2

[
〈1, a| 〈2, b| Ĥ |1, a〉 |2, b〉+ 〈2, a| 〈1, b| Ĥ |2, a〉 |1, b〉

− 〈1, a| 〈2, b| Ĥ |2, a〉 |1, b〉 − 〈2, a| 〈1, b| Ĥ |1, a〉 |2, b〉
]

(10.3.4)

The first two terms above are equal to each other. Specifically,

〈1, a| 〈2, b| Ĥ |1, a〉 |2, b〉

= 〈1, a| 〈2, b| −~
2

2m0
∇2

1 |1, a〉 |2, b〉+ 〈1, a| 〈2, b| −~
2

2m0
∇2

2 |1, a〉 |2, b〉

+ 〈1, a| 〈2, b| e2

4πε0 |r1 − r2|
|1, a〉 |2, b〉

= 〈1, a| −~
2

2m0
∇2

1 |1, a〉+ 〈2, b| −~
2

2m0
∇2

2 |2, b〉

+ 〈1, a| 〈2, b| e2

4πε0 |r1 − r2|
|1, a〉 |2, b〉

= EKE,a + EKE,b + EPE,ab (10.3.5)

EKE,a is the kinetic energy of particle 1 in state a, while EKE,b is the kinetic energy of
particle 2 in state b. The EPE,ab term can be derived explicitly to yield

EPE,ab = e2

∫
drdr′′

|ψa (r)|2 |ψb (r′)|2

4πε0 |r− r′|
(10.3.6)

This is exactly the same as the potential energy from the second term on the right-hand side
of (10.3.4) if we were to write it explicitly. Consequently, we have

EKE,a + EKE,b + EPE,ab =
1

2

[
〈1, a| 〈2, b| Ĥ |1, a〉 |2, b〉+ 〈2, a| 〈1, b| Ĥ |2, a〉 |1, b〉

]
(10.3.7)

However, the third and fourth terms on the right-hand side of (10.3.4) have no classical
analog. They are there because of the presence of the second term in (10.1.7) be it for bosons
or fermions. The second term is needed because the particles are indistinguishable or identical
if we exchange their positions.

Due to the Hermiticity of the Hamiltonian operator, the fourth term on the right-hand
side of (10.3.4) is the complex conjugate of the third term. Consequently, these two terms
can be written as

EEX,ab = −1

2

[
〈1, a| 〈2, b| Ĥ |2, a〉 |1, b〉+

(
〈1, a| 〈2, b| Ĥ |2, a〉 |1, b〉

)∗]
(10.3.8)

= −<e
[∫

drdr′ψ∗a (r)ψ∗b (r′) Ĥψa (r′)ψb (r)

]
(10.3.9)

The exchange energy is proportional to the overlap between the wavefunctions ψa (r) and
ψb (r).
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10.4 Extension to More Than Two Particles

In the following, we will discuss methods to construct basis functions for different kinds of
particles. These basis functions does not solve the Schrödinger equation yet, but they have
to satisfy certain symmetry conditions depending on the kind of particles they represent.

1. Non-identical Particle Case:

Let us assume that we have N particles, and M modes to fit this N particles. We can
construct a state for non-identical particles that looks like

|ψdiff〉 = |1, a〉 |2, b〉 |3, c〉 ... |N,n〉 (10.4.1)

In terms of basis function, we may express the above as

|ψab···n〉 = |1, a〉|2, b〉|3, c〉 · · · |N,n〉 (10.4.2)

or
ψab···n(r1, r2, · · · , rN ) = ψa(r1)ψb(r2) · · ·ψn(rN ) (10.4.3)

We can fit the N particles in n modes, and these n modes can be repeating or non-
repeating. For non-repeating case, it is necessary for M > N .

However, the above wavefunction cannot be used for bosons and fermions, as we will
get a new wavefunction when we swap the positions of two particles. But bosons and
fermions are indistinguishable particles. We will consider them separately.

2. Boson Case:

For the N boson particle case, we can write the legitimate wavefunction, which can be
used as a basis function, as

|ψidentical-bosons〉 ∝
∑
P̂

P̂ |1, a〉|2, b〉|3, c〉 · · · |N,n〉 (10.4.4)

where P̂ is a permutation operator, and the above summation is over all possible per-
mutations of the coordinate ri over the one-particle eigenstates a, b, c, · · · , n. The above
wavefunction remains unchange when we permute the positions of two particles, because
for every |1, a〉 · · · |i, l〉 · · · |j, p〉 · · · |N,n〉, there is a |1, a〉 · · · |j, l〉 · · · |i, p〉 · · · |N,n〉 in the
above summation. Hence, swapping of i and j will not change the sign of the above
wavefunction. The above can also be written as a basis function as

|ψab···n〉 ∝
∑
P̂

P̂ |1, a〉|2, b〉|3, c〉 · · · |N,n〉 (10.4.5)

3. Fermion Case:

For the N fermion case, we can write the wavefunction, which can be used as a basis
function, as

|ψidentical-fermion〉 =
1√
N !

N !∑
P̂=1

±P̂ |1, a〉|2, b〉|3, c〉 · · · |N,n〉 (10.4.6)
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where the “+” sign is chosen for even permutation while the “−” sign is chosen for odd
permutation. A permutation involves a unique pairwise exchange of two particles . The
permutation is even or odd depending on the number of pairwise exchanges that have
taken place.

Therefore, given a term |1, a〉 · · · |i, l〉 · · · |j, p〉 · · · |N,n〉, there always exists another term:
−|1, a〉 · · · |j, l〉 · · · |i, p〉 · · · |N,n〉 in the above summation since they differ by one per-
mutation. If i = j, the two terms cancel each other implying that they cannot be in the
same position. Likewise all the terms in the sum cancel each other since every term that
contains i and j can be paired up with every other terms in the sum. Moreover, If l = p,
all terms in the summation above cancel as well implying that they cannot be in the
same mode or state. Therefore, the above is a legitimate basis function that represents
the fermions as it obeys Pauli’s exclusion principle. Also, there is a sign change when
the position of two particles are swapped.

Another way of writing the fermion case is

|ψidentical-fermion〉 =
1√
N !

∣∣∣∣∣∣∣∣∣
|1, a〉 |2, a〉 · · · |N, a〉
|1, b〉 |2, b〉 · · · |N, b〉)

...
...

. . .
...

|1, n〉 |2, n〉 · · · |N,n〉

∣∣∣∣∣∣∣∣∣ (10.4.7)

The above is known as the Slater determinant. When two particles are in the same
position, two columns are the same, and the above determinant is zero. When two states
are the same, two rows are the same, and the determinant of the above is again zero,
implying that these two cases are not allowed. Also when two columns are swapped,
the sign of the determinant changes, because it corresponds to two particles exchanging
positions. In terms of basis function, we can express the above as

|ψab···n〉 =
1√
N !

N !∑
P̂=1

±P̂ |1, a〉|2, b〉|3, c〉 · · · |N,n〉

=
1√
N !

∣∣∣∣∣∣∣∣∣
|1, a〉 |2, a〉 · · · |N, a〉
|1, b〉 |2, b〉 · · · |N, b〉)

...
...

. . .
...

|1, n〉 |2, n〉 · · · |N,n〉

∣∣∣∣∣∣∣∣∣ (10.4.8)

10.5 Counting the Number of Basis states

Usually, the one particle eigenfucntion has infinitely many possible states. In the finite basis
method, we may want to choose a subset of this eigenstates, say M states. At this point, if
we have N particles and M states to put this N particles in, it may be prudent to count how
many possible basis states there are. Such counting scheme will also be used in the appendix
to derive the thermal distribution functions.

1. Non-identical Particles:
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The first particle has M state to choose from in (10.4.2), the second particle also has M
states to choose from, and eventually, there are MN states possible for (10.4.2), since
repetition of the states is allowed.

Nbasis = MN (10.5.1)

2. Identical Bosons:

In this case, the number of particles that can be put into one state is not limited. Since
we need to permute the state (10.4.2) to arrive at new states to be linear superposed in
the manner of (10.4.5), the ordering of the particles within the states is not important.

We will first derive the number of permutations when ordering is important. One can
imaging the M states to be equivalent to M bins. The first particle has M possible
bins to fit into. However, once the particle is put into one of the bins, since ordering
is important, repetition is allowed, there are two ways to put in the second particle in
the same bin, before or after the first particle. In other words, the first particle splits
the bin into two compartments, allowing two ways to put two particles in the same bin.
Together with the other M − 1 bins, there are M + 1 ways to insert the second particle
into the bins. In other words, adding a new particle always adds a new compartment
for the next particle to fit in. By the same token, the third particle has M + 2 ways to
fit into the bins etc. Finally the number of possible ways is

M(M + 1)(M + 2)...(M +N − 1) (10.5.2)

One can verify that the above gives the correct answer of N ! if only one bin is available
for N particles. Since ordering is unimportant, we have

Nbasis =
(M +N − 1)!

N !(M − 1)!
(10.5.3)

3. Identical Fermions:

For fermions, the first particle has M states to choose from. The second particle has
M − 1 states to choose from, since repetition is not allowed. Also, ordering is not
important since all permutations are used in the summation (10.4.8). Consequently,

Nbasis =
M !

N !(M −N)!
(10.5.4)

10.6 Examples

1. Non-identical Particles:

Say if we have two electrons with different spins, the distinct states are

|1, a〉|2, a〉, |1, b〉|2, b〉, |1, a〉|2, b〉, |1, b〉|2, a〉 (10.6.1)

The above is in agreement with M = 2, N = 2, MN = 22 = 4.
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2. Identical Bosons:

Consider the 4He (helium four) atoms which are bosons. Then the possible boson states
are

|1, a〉|2, a〉, |1, b〉|2, b〉, 1√
2

(|1, a〉|2, b〉+ |1, b〉|2, a〉) (10.6.2)

Again this is in agreement with M = 2, N = 2, (M+N−1)!
N !(M−1)! = 3!

2!1! = 3.

3. Identical Fermions:

If we have two identical fermions, the only state is

1√
2

(|1, a〉|2, b〉 − |1, b〉|2, a〉) (10.6.3)

Again this is in agreement with M = 2, N = 2, M !
N !(M−N)! = 2!

2!0! = 1.

In the above simple examples, we see that for the boson case, there are more states with
particles in the same state compared to the other cases. In the boson case, there are two out
of three states where the particles are in the same state (see (10.6.2)). In the non-identical
particle case, there are two out of four such states. In the fermion case, there is none. This
is indicative of the fact that bosons like to cluster together.

10.7 Thermal Distribution Functions

There are some important thermal distribution functions in understanding semiconductor
physics. These are the Maxwell-Boltzmann distribution, the Fermi-Dirac distribution, and the
Bose-Einstein distribution. These distribution functions are derived via statistical mechanics,
and the results will just quoted here. The first-principles derivations are given in Appendix
B.

1. Maxwell-Boltzmann Distribution:

For this distribution, the number of particles N(E) in a given energy state is given by

N(E) = e
−(E−µ)
kBT (10.7.1)

where µ is the chemical potential, kB is the Boltzmann constant, and T is temperature
in Kelvin.

2. Fermi-Dirac Distribution:

This is given by

N(E) =
1

1 + e
E−µ
kBT

(10.7.2)
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Figure 10.1: Fermi-Dirac Distribution for changing temperature T .

This is the most important distribution function for semiconductors. The chemical
potential µ is loosely called the Fermi level. To be precise, µ is the same as the Fermi
level at absolute zero temperature. When T is zero, the distribution function looks like
as shown in Figure 10.1. The electrons are frozen into the ground state for E < µ.
When T > 0, some of the electrons from the states where E < µ are dislodged by
thermal agitation into states where E > µ. This phenomenon is more pronounced as T
increases. This distribution also explains the physical character of semiconductors.

In semiconductors, the Fermi level is midway in between the valence band and the
conduction band. When T = 0, all the electrons are frozen in the valence band, and the
semiconductor cannot conduct electricity, as there are no free electrons in the conduction
band. When T > 0, some electrons in the valence band are dislodged into the conduction
band. This gives rise to electrons in the conduction band, and holes in the valence band.
They contribute to the flow of electric current and the semiconductor starts to conduct.
The conductivity of the semi-conductor material increases with increasing temperature.

3. Bose-Einstein Distribution:

The Bose-Einstein distribution is for bosons, and it is given by

N(E) =
1

e(E−µ)/(kBT ) − 1
(10.7.3)

This distribution has a divergence when E = µ. It also reflects the fact that bosons
like to cluster together. When the temperature is low, they condense to around the
chemical potential µ.
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Figure 10.2: Comparison of different thermal distribution functions. For high energy states,
they are similar to each other (from DAB Miller).
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Chapter 11

Density Matrix

11.1 Pure and Mixed States

Given a quantum state described by

|ψ〉 = a1|ψ1〉+ a2|ψ2〉 (11.1.1)

which is a linear superposition of two states, the interpretation of quantum mechanics is that
the particle is in a linear superposition of the two states, and one does not know what state
the particle is in until the measurement is done. The measurement collapses the particle into
one of the two quantum states. For instance, the two states could be the spin states of an
atom. The famous Stern-Gerlach experiment separates the spin states into the up state and
the down state. Such a state indicated in (11.1.1) is known as a pure quantum state. The
phase relationship between a1 and a2 is maintained precisely. When the quantum state is in
such a state, we say that the two states are coherent.

However, there are states where the particle has already collapsed into state 1 or state 2
even before the measurement. Or these two states are entirely uncorrelated or incoherent.
The particle is either in state 1 or state 2. The probability of finding the particle in state 1 is
|a1|2 while that for state 2 is |a2|2. The phase relationship between a1 and a2 is completely
random. States for which there is no coherence between a1 and a2 are known as mixed states.
If we take an ensemble average of the measurement outcomes of the mixed states, they satisfy
the aforementioned probability property.

Nevertheless, it is difficult for a particle to be in a pure quantum state if it involves a linear
superposition of many quantum states unless the quantum system is completely isolated.
Coupling to the thermal bath can destroy the coherence between these states. Hence, there
are states for which partial coherence still exists, and the linear superposition of quantum
states de-coheres with respect to each other, before the linear superposition of states becomes
entirely a mixed state. Coherence lifetime is used to measure when a linear superposition of
quantum states, which starts out being a coherent sum, becomes an incoherent superposition.

111
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11.2 Density Operator

An elegant way to represent a quantum state that is either in the pure state, mixed state, or
partial coherent state, is via the density operator

ρ̂ = |ψ〉〈ψ| (11.2.1)

We can easily show that the expectation of the operator Â in this state is

〈Â〉 = 〈ψ|Â|ψ〉 = tr
(
Âρ̂
)

(11.2.2)

This has been shown in Section 5.2.3. Therefore, knowing the density operator is equivalent
to knowing the quantum state of a system which is denoted by state |ψ〉.

Say if we start with (11.1.1) for a quantum state, using it in (11.2.1) will yield

ρ̂ = |a1|2|ψ1〉〈ψ1|+ |a2|2|ψ2〉〈ψ2|+ a1a
∗
2|ψ1〉〈ψ2|+ a2a

∗
1|ψ2〉〈ψ1| (11.2.3)

Notice that only relative phases between a1 and a2 are needed to form the above. Absolute
phase has no meaning in quantum mechanics.

For a mixed state, we assume that the off diagonal terms involving a∗1a2 and a∗2a1 will
either time average or ensemble average to zero since they are incoherent. Hence, we suppose
that

ρ̂ = |a1|2|ψ1〉〈ψ1|+ |a2|2|ψ2〉〈ψ2|
= p1|ψ1〉〈ψ1|+ p2|ψ2〉〈ψ2| (11.2.4)

The form (11.2.4) can be thought of as having been ensemble averaged or time averaged.1

For a general mixed state we can further write the density operator as

ρ̂ =
∑
j

pj |ψj〉〈ψj | (11.2.5)

where |ψj〉 are pure quantum states but not necessarily stationary states, and pj is the
probability of finding the quantum system in state |ψj〉.

When we find the expectation value of an operator Â with a mixed state, it can be thought
of as having been ensemble averaged. For example,

〈Â〉 = tr(Âρ̂) =
∑
j

pjtr(Â|ψj〉〈ψj |)

=
∑
j

pj〈ψj |Â|ψj〉 (11.2.6)

The trace of the matrix representation of an operator is independent of the basis states
chosen to represent the operator as explained in Chapter 5. It will be interesting to see how
the density operator changes under the change of basis state. To this end, we let

|ψj〉 =
∑
n

c(j)n (t)|φn〉 (11.2.7)

1Statistical processes whose time average and ensemble average are equivalent to each other are known as
ergodic processes.
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Using this in (11.2.5), we have

ρ̂ =
∑
j

pj
∑
n,m

cjn|φn〉〈φm|(c(j)m )∗

=
∑
n,m

|φn〉〈φm|
∑
j

pjc
(j)
n (c(j)m )∗ (11.2.8)

We can find the uv element of the matrix representation of ρ̂ as

ρuv = 〈φu|ρ̂|φv〉 =
∑
j

pjc
(j)
u [c(j)v ]∗ = cuc∗v (11.2.9)

where the overbar stands for ensemble average. From the above, it is quite clear that

ρuv = ρ∗vu (11.2.10)

or that the density matrix is Hermitian. The Hermiticity property of the density operator is
obvious from (11.1.1) and (11.2.5).

Since a trace of an operator is independent of the basis state in which it is represented,
the trace of the density operator is defined as

tr(ρ̂) =
∑
u

〈φu|ρ̂|φu〉 (11.2.11)

where φu constitutes an orthonormal basis.
For a pure quantum state,

ρ̂2 = |ψ〉〈ψ|ψ〉〈ψ| = |ψ〉〈ψ| = ρ̂ (11.2.12)

Therefore,

tr(ρ̂2) = tr(ρ̂) = 1 (11.2.13)

The trace of the above is 1 is obviated by setting Â to 1 in Equation (11.2.6).
For a mixed state

ρ̂2 =
∑
i

∑
j

pipj |ψi〉〈ψi|ψj〉〈ψj | (11.2.14)

Taking the trace of the above, we have

tr(ρ̂2) =
∑
n

〈φn|ρ̂2|φn〉 =
∑
n

∑
i

∑
j

pipj〈φn|ψi〉〈ψi|ψj〉〈ψj |φn〉

=
∑
i

∑
j

pipj |〈ψi|ψj〉|2 ≤
∑
i

∑
j

pipj =

(∑
i

pi

)2

= 1 (11.2.15)

In the above, we did not assume that |ψj〉 are orthogonal, but they are normalized. The
inequality follows from that |〈ψi|ψj〉|2 ≤ 1. Hence, the trace of the density operator has the
property that

tr(ρ̂2) < 1, mixed state (11.2.16)

tr(ρ̂2) = 1, pure state (11.2.17)
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11.3 Time Evolution of the Matrix Element of an Oper-
ator

The matrix representation of an operator is given by

Amn(t) = 〈ψm(t)|Â|ψn(t)〉 (11.3.1)

Taking the time derivative of the above,we have

∂tAmn(t) = 〈∂tψm(t)|Â|ψn(t)〉+ 〈ψm(t)|Â|∂tψn(t)〉 (11.3.2)

assuming that Â is time independent, using the fact that

i~∂t|ψm(t)〉 = i~|∂tψm(t)〉 = Ĥ|ψm(t)〉 (11.3.3)

we have

∂tAmn(t) =
i

~

〈[
Ĥψm(t)

]
|Â|ψn(t)

〉
− i

~
〈ψm(t)|Â|Ĥψn(t)〉

=
i

~
〈ψm(t)|ĤÂ|ψn(t)〉 − i

~
〈ψm(t)|ÂĤ|ψn(t)〉

=
i

~
〈ψm(t)|ĤÂ− ÂĤ|ψn(t)〉 (11.3.4)

or

i~∂tAmn(t) = (ÂĤ − ĤÂ)mn =
[
Â, Ĥ

]
mn

(11.3.5)

The above applies to expectation value of Â as well, as shown in Chapter 5, where

〈Â〉 = 〈ψ(t)|Â|ψ(t)〉 (11.3.6)

and

i~∂t〈Â〉 = 〈ÂĤ − ĤÂ〉 =
〈[
Â, Ĥ

]〉
(11.3.7)

In other words, if Â commutes with Ĥ, its expectation value is time independent. In the
above derivation, we have assumed that Â is independent of time.

The time evolution of the density operator can be derived, similar to the time evolution
of the expectation value of an operator. However, the density operator is in general time
dependent, whereas operators considered previously are time indepFendent; and hence, the
derivation is slightly different. Given

ρ̂ = |ψ〉〈ψ| (11.3.8)

then

∂tρ̂ = |∂tψ〉〈ψ|+ |ψ〉〈∂tψ| (11.3.9)
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Using (11.3.3), we have

∂tρ̂ = − i
~
Ĥ|ψ〉〈ψ|+ i

~
|ψ〉〈ψ|Ĥ =

i

~

[
ρ̂Ĥ − Ĥρ̂

]
=
i

~

[
ρ̂, Ĥ

]
(11.3.10)

There is a sign difference between (11.3.7) and (11.3.10). The above holds if ρ̂ is in a mixed
state as well

ρ̂ =
∑
j

pj |ψj〉〈ψj | (11.3.11)

This follows from the linearity of the above equations and that pj is time-independent.

Equation (11.3.10) can be easily generalized to matrix elements when the basis functions
used for seeking the matrix representation are from time-independent basis. Then,

∂tρmn =
i

~

[
ρ̂Ĥ − Ĥρ̂

]
mn

=
i

~

[
ρ̂, Ĥ

]
mn

(11.3.12)

where Amn = 〈ψm|Â|ψn〉, and ψi is from a time-independent basis. By inserting identity
operator defined using the same basis set, we can convert the above into wholly a matrix
form:

∂tρ =
i

~
[
ρ,H

]
(11.3.13)

where ρ and H are the matrix representations of ρ̂ and Ĥ, respectively. We often do not
distinguished the matrix representations ρ and H, and operator representations ρ̂ and Ĥ, as
mathematically, they are the same. The above equation replaces the Schrödinger equation as
the equation of motion for the quantum system.

11.4 Interaction of Light with Two-Level Atomic System

Two-level systems are encountered in nuclear magnetic resonance when the spin states of
a particle interact with a magnetic field. Many more complex systems, for simplicity, can
be approximated by a two-level system. When an electric field (optical field) interacts with
an atom and causes an atomic transition between two energy levels, while the other energy
levels are far away, the system can be approximated by a simpler two-level system. Also,
approximate two-level systems are often use to represent the value “0” and “1” in quantum
computing as we shall see later.

One assumes that before the system is perturbed, the atom is described by a simple
two-level system with two stationary states bearing energies E1 and E2. In this case, the
perturbing Hamiltonian is assumed to be

Ĥp = ezE = −Eµ̂ (11.4.1)
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The matrix representation of the dipole moment in terms of two stationary states before
perturbation is given by2

µmn = −e〈ψm|ẑ|ψn〉 (11.4.2)

where ẑ is the position operator, and(
Ĥp

)
mn

= Hp,mn = −Eµmn (11.4.3)

In the above µ11 = µ22 = 0, so are Hp11 = Hp22 = 0, because ψm and ψn have different
parities. In other words, if one of them has odd parity, the other one has even parity. Then
in the coordinate representation, the function |ψi|2z will have odd parity, and its integral
evaluates to zero. But for the off diagonal elements, the integrands will have even parity,
and their integrals evaluate to nonzero values. The matrix elements above are formed with
stationary states, and µ12 can be made pure real so that µ12 = µ21 = µd. Hence, the
perturbing Hamiltonian becomes

Ĥp =

[
0 −Eµd

−Eµd 0

]
(11.4.4)

The above can be simplified to, and approximated by a two-level system with the use
of simple matrix mechanics. This is also very much in the spirit of a finite-basis method,
where a small number of basis can form a good approximation of the quantum system. The
unperturbed Hamiltonian, Ĥ0 is assumed to have eigenvalues E1 and E2 with respect to these
two stationary states. The total Hamiltonian is then

Ĥ = Ĥ0 + Ĥp =

[
E1 −Eµd
−Eµd E2

]
(11.4.5)

The equation of motion according to Schrödinger equation is

i~∂t|ψ〉 = Ĥ|ψ〉 (11.4.6)

In the above, the perturbing Hamiltonian introduces the off diagonal terms. They are re-
sponsible for causing the transition of eigenstates between state 1 and state 2. If the off
diagonal terms are absent, the stationary states will remain in their respective states with-
out transition. In the above finite basis approximation to the Hamiltonian, the basis used
consists of the two eigenstates of the original unperturbed problem. This is a subspace ap-
proximation method, whereby an infinite dimensional Hilbert space has been replaced by a
two-dimensional subspace.

The density matrix which is the matrix representation of the density operator is

ρ̂ =

[
ρ11 ρ12

ρ21 ρ22

]
(11.4.7)

2This is an approximation since after perturbation, the quantum state is not necessarily describable by just
two stationary states. We saw that in the time-dependent perturbation theory, all eigenstates of the system
was necessary to approximate the perturbed system.
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With the notation of (11.2.3), the density matrix is

ρ̂ =

[
|a1(t)|2 a1(t)a∗2(t)
a2(t)a∗1(t) |a2(t)|2

]
(11.4.8)

In (11.2.3), we assume here that the two states are stationary states (they need not be),
and the time variations of the states have been put into a1(t) and a2(t). Hence, the off
diagonal terms can be rapidly varying functions of time due to the interference between the
two stationary states.

The expectation value of the dipole moment is

〈µ̂〉 = tr(ρ̂µ̂) (11.4.9)

where

ρ̂µ̂ =

[
ρ11 ρ12

ρ21 ρ22

] [
0 µd
µd 0

]
=

[
ρ12µd ρ11µd
ρ22µd ρ21µd

]
(11.4.10)

Hence

〈µ̂〉 = µd(ρ12 + ρ21) = 2µd<e(ρ12) (11.4.11)

because ρ12 = ρ∗21.
Next, we derive the equation of motion for the density matrix. Since

dρ̂

dt
=
i

~

[
ρ̂Ĥ − Ĥρ̂

]
=
i

~

([
ρ11 ρ12

ρ21 ρ22

] [
E1 −Eµd
−Eµd E2

]
−
[
E1 −Eµd
−Eµd E2

] [
ρ11 ρ12

ρ21 ρ22

])
=
i

~

[
−Eµd(ρ12 − ρ21) −Eµd(ρ11 − ρ22) + (E2 − E1)ρ12

−Eµd(ρ22 − ρ11) + (E1 − E2)ρ21 −Eµd(ρ21 − ρ12)

]
(11.4.12)

From the above

dρ21

dt
=
i

~
[(ρ11 − ρ22)Eµd − (E2 − E1)ρ21] = −iω21ρ21 + i

µdE

~
(ρ11 − ρ22) (11.4.13)

where ~ω21 = E2 − E1. We need not write down the equation for ρ12 since ρ12 = ρ∗21.
From (11.4.12)

dρ11

dt
= − i

~
Eµd(ρ12 − ρ21),

dρ22

dt
= − i

~
Eµd(ρ21 − ρ12) (11.4.14)

From them, we get

d

dt
(ρ11 − ρ22) = − i

~
Eµd(ρ12 − ρ21 − ρ21 + ρ12) =

2i

~
Eµd(ρ21 − ρ∗21) =

−4

~
Eµd=m(ρ21)

(11.4.15)
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since ρ12 = ρ∗21. The above equations, (11.4.13) and (11.4.15), form two coupled equations
from which the unknowns, ρ11 − ρ22 and ρ12 can be solved for.

At his point, we are going to add phenomenological terms to the above equations to make
them agree with experimental observations. The above two level system, so far, has been
isolated from a thermal bath. It more aptly describes the two level system of a single atom in
isolation. In actuality, there will be a collection of atoms that will be similarly excited by the
electric field. These atoms will be coupled to other thermal sources such as by collision with
other atoms or with the wall of the container. The density matrix can be used to represent
the ensemble averaged state of the collection of these atoms. Here, for a collection of atoms,
ρ11− ρ22 is the fractional population difference in electrons of the atoms between state 1 and
state 2. But when coupled to a thermal bath, there will be some electrons excited to level 2
even in the absence of an external electric field. Hence, we modify (11.4.15) to account for
the coupling to a thermal bath to become

d

dt
∆ρ =

2i

~
Eµd (ρ21 − ρ∗21)− ∆ρ−∆ρo

T1
(11.4.16)

where ∆ρ = ρ11 − ρ22, ∆ρo = (ρ11 − ρ22)o is the quiescent steady state value of ∆ρ in the
absence of external driving field. The transient value ∆ρ is assumed to relax to the quiescent
value ∆ρo in time T1.

Also, ρ21 = C e−iω21t in the absence of external driving field. But if the two level system
is coupled to an external heat bath the phase coherence between the two energy states will
be lost and average to zero. We can describe this by adding a term to (11.4.13) to account
for dephasing, or

dρ21

dt
= −iω21ρ21 + i

µd
~
E ∆ρ− ρ21

T2
(11.4.17)

T2 is the dephasing time which is usually shorter than T1.

At this point, it is prudent to discuss the role of the exciting field, which is of the form

E (t) = Eo cosωt =
Eo
2

[
eiωt + e−iωt

]
(11.4.18)

When ∆ρ is slowly varying in (11.4.17), the driving term, which is the second term on the
right-hand side in (11.4.17) has two rotating signals eiωt and e−iωt. The response, ρ21 will
have two rotating signals as well. Hence, ρ21 = C e−iωt + c.c.3 when driven by a sinusoidal
source (11.4.18). Therefore, we define

β21 (t) = ρ21 (t) eiωt = C + C∗e2iωt (11.4.19)

where C is slowly varying so that β21 (t) is slowly varying when we ignore the rapid term.
Using this in (11.4.16), we have

d

dt
∆ρ =

i

~
Eoµd (β21 − β∗12)− ∆ρ−∆ρo

T1
(11.4.20)

3where c.c. stands for complex conjugate.
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In the above, we have kept only the slowest varying term of the first term on the right-hand
side. The rapid term is assumed to only result in a small response in ∆ρ. This is known as
the rotating wave approximation.

From (11.4.18), we deduce that

dρ21 (t)

dt
=

[
d

dt
β21 (t)

]
e−iωt − iωβ21 (t) e−iωt (11.4.21)

Consequently, (11.4.13) becomes

d

dt
β21 = i ∆ω β21 + i

µdEo
2~

∆ρ− β21

T2
(11.4.22)

where ∆ω = ω − ω21, and we have kept only the slowly varying terms.
Previously, we have found that

〈µ̂〉 = µd (ρ12 + ρ21) = µd
(
β12e

iωt + β21e
−iωt) (11.4.23)

after using (11.4.19). Therefore

〈µ̂〉 = 2µd [<e (β21) cosωt+ =m (β21) sinωt] (11.4.24)

since β21 = β∗12.
In steady state, d∆ρ/dt = 0 in (11.4.20). Furthermore, ∆ρ in (11.4.22) is a constant

in steady state, and hence, β2, must tend to a constant in steady state with dβ21/dt = 0.
Defining Ω = µdEo/ (2~), we have from (11.4.20) and (11.4.22) that

0 = i∆ωβ21 + iΩ∆ρ− β21/T2 (11.4.25)

0 = −∆Ω=m (β21)− (∆ρ−∆ρo) /T1 (11.4.26)

Taking the real and imaginary parts of (11.4.25), we arrive at

0 = −∆ω=m (β21)−<e (β21) /T2 (11.4.27)

0 = ∆ω<e (β21) + Ω∆ρ−=m (β21) /T2 (11.4.28)

Equations (11.4.26)-(11.4.28) constitute three equations with three unknowns ∆ρ, =m (β21),
<e (β21), from which they can be solved for. Therefore

∆ρ = ∆ρo
1 + ∆ω2T 2

2

1 + ∆ω2T 2
2 + 4Ω2T1T2

(11.4.29)

<e (β21) = − ∆ωΩT 2
2 ∆ρo

1 + ∆ω2T 2
2 + 4Ω2T1T2

(11.4.30)

=m (β21) = − ΩT2∆ρo
1 + ∆ω2T 2

2 + 4Ω2T1T2
(11.4.31)
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If there are N atoms, then we define

∆N = N∆ρ, ∆No = N∆ρo (11.4.32)

and

∆N = ∆No
1 + ∆ω2T 2

2

1 + ∆ω2T 2
2 + 4Ω2T1T2

(11.4.33)

In electromagnetics, we have
P = εoχE (11.4.34)

in phasor representation. In time domain

P = <e
[
εo (χ′ + iχ′′)Eoe

−iωt]
= εo (χ′ cosωt+ χ′′ sinωt)Eo (11.4.35)

But
P = N 〈µ̂〉 (11.4.36)

From (11.4.24), we have

P = 2Nµd [<e (β21) cosωt+ =m (β21) sinωt] (11.4.37)

Comparing (11.4.35) and (11.4.37), we have

χ′ =
2Nµd
εoEo

<e (β21)

= −µ
2
dT2∆No
εo~

∆ωT2

1 + (∆ω)
2
T 2

2 + 4Ω2T1T2

(11.4.38)

χ′′ =
2Nµd
εoE

=m (β21)

=
µ2
dT2∆No
εo~

1

1 + (∆ω)
2
T 2

2 + 4Ω2T1T2

(11.4.39)

When the applied electric field is small, we can ignore the 4Ω2T1T2 term to get

χ′ (ω) =
µ2
dT2∆No
εo~

(ω21 − ω)T2

1 + (ω − ω21)
2
T 2

2

(11.4.40)

χ′′ (ω) =
µ2
dT2∆No
εo~

1

1 + (ω − ω21)
2
T 2

2

(11.4.41)

Note that in this analysis, the perturbing field need not be small. The approximation we
have made is the two-state approximation. This is a decent approximation if the other eigen-
states are far away from these two states in terms of energy levels. The other approximation
is the rotating wave approximation which is good if the exciting frequency of the electric field
is high and is much faster than the relaxation times T1 and T2, and that it is close to ω21.
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Figure 11.1: Plots of χ′ and χ′′ according to (11.4.40) and (11.4.41) (from DAB Miller).

Also, this analysis is not a small perturbation analysis since the exciting field need not
be weak. In fact, Ω above, which is proportional to the exciting electric field, can be large.
When it is large, we note from (11.4.29) and (11.4.33) that the fractional population dif-
ference approaches zero, or that ρ11 = ρ22. In this case, the absorption transition is equal
to the stimulated emission. From (11.4.39), when ∆ω = 0, or ω = ω21 we can express the
denominator as

1 + 4Ω2T1T2 = 1 +
I

Is
(11.4.42)

where I is the field intensity, and Is is the saturation intensity, since I is proportional to the
square of the electric field. The saturation intensity is defined to be the intensity at which
the absorption peak of χ′′ will drop to half of its value compared to the weak excitation case
where I is very small.

Equations (11.4.20) and (11.4.22) are also known as the optical Bloch equations. These
equations were first used to analyze another two-state system, the nuclear magnetic resonance
system. With a magnetic field pointing in the z direction, when the nuclear spins are pointing
upward and aligned with the magnetic field, they are in the lower energy state. However,
when they are pointing anti-parallel to the magnetic field, they are in a higher energy state.
RF (radio frequency) field can be used to flip the spin states, and similar equations as above
can be derived to describe the spin dynamics.
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Chapter 12

Quantization of Classical Fields

12.1 Introduction

The quantum harmonic oscillator is extremely important for the quantization of classical
fields, be it electromagnetic, acoustic, or elastic in nature. Classical fields can be thought of
as due to a set of coupled classical harmonic oscillators. In the case of electromagnetics field,
these classical harmonic oscillators are dipoles in space polarized by the electric field. In the
case of acoustic or elastic field, they are due to coupled atomic or molecular vibration in a
medium. Many experimental evidence suggest that there are photon particles associated with
electromagnetic field, and phonon particles associated with vibrations of atoms or molecules
in crystalline solids.

When the classical harmonic oscillators are replaced by quantum harmonic oscillators,
the classical field becomes quantized as shall be seen. The energy that can propagate and
associated with the field is quantized, as in the case of the quantum harmonic oscillator. In
classical electromagnetics when we calculate energy, e.g. as stored energies

We =
1

2
ε |E|2 , Wh =

1

2
µ |H|2 (12.1.1)

we think of We and Wh as a continuum, capable of assuming all values from zero to a large
value. Also, the power flow by a plane wave

S =
1

2η0
|E|2 (12.1.2)

assumes continuous values in classical electromagnetics. As shall be shown, this cannot be the
case if electromagnetic field consists is due to a set of coupled quantum harmonic oscillators.
The energy carried by a plane wave is also quantized corresponding to packets of energy.

The quantized nature of electromagnetic radiation has been observed historically. This
was first suggested for and used to deriving the Planck radiation law. Later, it was used by
Einstein to explain experimental findings in the photoelectric effect. From the experimental
data, it was deduced that the packet of energy associated with electromagnetic field is

Ephoton = ~ω (12.1.3)

123



124 Quantum Mechanics Made Simple

This quantized energy is very small when ω is small but sizeable in the optical regime. The
grainy nature of electromagnetic field is unimportant at radio frequency (RF), and microwave
frequencies, but is important at optical frequencies. We shall show that this is the case when
electromagnetic field is quantized when the classical harmonic oscillators are replaced by
quantum harmonic oscillators.

To introduce the quantized nature of electromagnetic field, one way is to regard electro-
magnetic field to be in a resonant cavity or a box with periodic boundary condition. The
electromagnetic field in such a system oscillates harmonically. We can replace the classical
harmonic oscillators associated with such a system with the quantum harmonic oscillator;
and hence, quantize the amplitude and the associated energy of the electromagnetic field.

A prevailing view is to think of a photon as a particle, but is associated with a wave field
that satisfies Maxwell’s equations. This is analogous to an electron being a particle and is
associated with a wavefunction as its “halo”. As photons are bosons, we can have a collection
of photons described by the same wave field, with different amplitudes, since this wave field
is now endowed with more energy. As shall be seen, the wave field associated with photons is
quite different from the wave field associated with electrons, or other boson particles obeying
Schrödinger equation.

We will first revisit the quantum harmonic oscillator due to its importance here. Next we
study the wave on a linear atomic chain, first as a classical wave, and then as a set of coupled
quantum harmonic oscillators. Then we study the quantization of electromagnetic wave field
along similar spirit.

12.2 The Quantum Harmonic Oscillator Revisited

The governing equation for the quantum harmonic oscillator is

Ĥψ =

(
− ~2

2m

d2

dz2
+

1

2
mω2z2

)
ψ = Eψ (12.2.1)

Letting ξ =
√

mω
~ z, we have

1

2

(
− d2

dξ2
+ ξ2

)
ψ =

E

~ω
ψ (12.2.2)

The above looks almost like A2 −B2 with the exception that operators are involved instead
of scalars. We can look at

1√
2

(
− d

dξ
+ ξ

)
1√
2

(
d

dξ
+ ξ

)
=

1

2

(
− d2

dξ2
+ ξ2

)
− 1

2

(
d

dξ
ξ − ξ d

dξ

)
(12.2.3)

One can show easily that (
d

dξ
ξ − ξ d

dξ

)
= Î (12.2.4)
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Hence,

1

2

(
− d2

dξ2
+ ξ2

)
=

1√
2

(
− d

dξ
+ ξ

)
1√
2

(
d

dξ
+ ξ

)
+

1

2
(12.2.5)

We define

â† =
1√
2

(
− d

dξ
+ ξ

)
, creation or raising operator (12.2.6)

â =
1√
2

(
d

dξ
+ ξ

)
, annihilation or lowering operator (12.2.7)

It can easily be shown by integration by parts that â† is in fact the conjugate transpose
operator of â.

Consequently, from (12.2.1) and (12.2.2), we have(
â†â+

1

2

)
ψ =

E

~ω
ψ (12.2.8)

and

Ĥ = ~ω
(
â†â+

1

2

)
(12.2.9)

Since

En =

(
n+

1

2

)
~ω (12.2.10)

we conclude that
â†â |ψn〉 = n |ψn〉 (12.2.11)

In other words, if |ψn〉 is an eigenstate of (12.2.1) or (12.2.8), the above must be true. We
can define a number operator

n̂ = â†â (12.2.12)

such that
n̂ |ψn〉 = n |ψn〉 (12.2.13)

One can also show by direct substitution using (12.2.6) and (12.2.7) that[
â, â†

]
= ââ† − â†â = Î (12.2.14)

One can easily show, using the commutation relation, that

â†ââ |ψn〉 =
(
ââ† − 1

)
â |ψn〉 = (n− 1) â |ψn〉 (12.2.15)

Therefore
â |ψn〉 = An |ψn−1〉 (12.2.16)

Similarly, using the commutation relation,

â†ââ† |ψn〉 = â†
(
1 + â†â

)
|ψn〉 = (n+ 1) â† |ψn〉 (12.2.17)
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Therefore
â† |ψn〉 = Bn+1 |ψn+1〉 (12.2.18)

Testing (12.2.16) with 〈ψn−1|, and (12.2.18) with 〈ψn+1|, we have

〈ψn−1| â |ψn〉 = An , 〈ψn+1| â† |ψn〉 = Bn+1 (12.2.19)

By comparing the two equations in (12.2.19), and that

〈ψn−1| â |ψn〉 = B∗n (12.2.20)

it is clear that
An = B∗n (12.2.21)

Since

â†â |ψn〉 = Anâ
† |ψn−1〉 = AnBn |ψn〉 (12.2.22)

= |An|2 |ψn〉 = n |ψn〉 (12.2.23)

We conclude that
An =

√
n (12.2.24)

For simplicity, we assume that An and Bn are both real. Therefore

â |ψn〉 =
√
n |ψn−1〉 (12.2.25)

â† |ψn〉 =
√
n+ 1 |ψn+1〉 (12.2.26)

12.2.1 Eigenfunction by the Ladder Approach

With the raising operators, we can construct the requisite eigenfunctions if we only know the
ground state eigenfunction. The ground state eigenfunction satisfies

â |ψ0〉 = 0 (12.2.27)

Written explicitly in coordinate space representation we have

1√
2

(
d

dξ
+ ξ

)
ψ0 (ξ) = 0 (12.2.28)

We can solve the above ordinary differential equation to get

ψ0 (ξ) =
1

π1/4
e−ξ

2/2 (12.2.29)

(We can also verify that ψ0 (ξ) satisfies (12.2.28) by direct substitution.) Consequently, one
can show that (

â†
)n |ψ0〉 =

√
n! |ψn〉 (12.2.30)

or that the n-th eigenstate is

|ψn〉 =
1√
n!

(
â†
)n |ψ0〉 (12.2.31)
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12.3 Quantization of Waves on a Linear Atomic Chain–
Phonons

When a particle is in simple harmonic motion, quantum mechanics allows us to quantize its
motion using Schrödinger equation for the harmonic oscillator. When we have an atomic
chain, there will be coupling forces between the atoms. When one of the atoms is set into
simple harmonic oscillation, the whole chain will be in simple harmonic oscillation due to
coupling between them. Since the energy of one single particle is quantized in the quantum
realm, we expect that harmonic oscillation of the whole chain to be quantized in energy as
well. This is a much easier notion to accept if we accept that the energy of one particle is
quantized.

Figure 12.1: The linear atomic chain (from Haken).

For atoms on a linear atomic chain, assuming only nearest neighbor forces between the
particles, the equation of motion is

m0q̈`(t) = f [q`+1(t)− q`(t)]− f [q`(t)− q`−1(t)]

= f [q`+1(t)− 2q`(t) + q`−1(t)] (12.3.1)

We impose the periodic boundary condition so that

q` = q`+N (12.3.2)

Assuming that

q`(t) =
1√
N
eikν`aBk(t) (12.3.3)

where

kν =
2νπ

Na
(12.3.4)

where ν is an integer ranging from −∞ to∞. Since kν is countable, we will drop the subscript
ν and use k as an index. Using (12.3.3) in (12.3.1), we have

B̈k(t) = g
(
eika + e−ika − 2

)
Bk(t) (12.3.5)
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with

g =
f

m0
(12.3.6)

We let

Bk(t) = Bk(0)e±iωkt (12.3.7)

Using (12.3.7) in (12.3.5) yields

−ω2
k = 2g [cos (ka)− 1] (12.3.8)

or

ωk = ±2
√
g sin

(
ka

2

)
(12.3.9)

The kinetic energy of the system is

T =

N∑
`=1

m0

2
q̇2
` (12.3.10)

while the potential energy

V =
1

2
f

N∑
`=1

(q` − q`+1)
2

(12.3.11)

such that the force on the `-th atom is

F` = − ∂

∂q`
V (12.3.12)

The classical Hamiltonian of the system is then

H =
N∑̀
=1

p2
`

2m0
+

1

2
f
N∑̀
=1

(q` − q`+1)
2

(12.3.13)

The equation of motion (12.3.1) can be derived from the above using Hamiltonian equations
of motion, yielding

q̇` (t) =
1

m0
p` (t) , ṗ` (t) = f [q`+1 (t)− 2q` (t) + q`−1 (t)]

q` (t) =
1√
N
eik`aBk (t) + c.c. (12.3.14)

p` (t) =
1√
N
eik`aAk (t) + c.c. (12.3.15)
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so that

Ḃk (t) =
1

m0
Ak (t) (12.3.16)

Ȧk (t) = f
[
eika + e−ika − 2

]
Bk (t) (12.3.17)

In the above, “c.c.” stands for “complex conjugate”. Equation (12.3.17) can be written as

Ȧk (t) = −ω2
kmBk (t) (12.3.18)

where

ω2
k =

f

m0

[
eika + e−ika − 2

]
(12.3.19)

Combining (12.3.16) and (12.3.18), we have

Äk (t) = −ω2
kAk (t) (12.3.20)

B̈k (t) = −ω2
kBk (t) (12.3.21)

To have a travelling wave, we let

Ak (t) = Ak (0) e−iωkt (12.3.22)

Bk (t) = Bk (0) e−iωkt (12.3.23)

From the above, we see that
Ak (t) = −iωkm0Bk (t) (12.3.24)

We also find that

p2
`(t) =

2

N
|Ak(t)|2 +

[
1

N
e2iklaA2

k(t) + c.c.

]
(12.3.25)

where the second term is an oscillatory function of `. Also

(q` − q`+1) =
1√
N
eik`a(1− eika)Bk(t) + c.c.

= − 1√
N
eik`a2i sin

(
ka

2

)
eik

a
2Bk(t) + c.c. (12.3.26)

Hence

(q` − q`+1)2 =
8

N
sin2

(
ka

2

)
|Bk(t)|2 + O.F. (12.3.27)

where “O.F.” stands for “oscillatory functions of `”. The oscillatory terms sum to zero over
` when we plug (12.3.25) and (12.3.27) into (12.3.13). Therefore,

H =
1

m0
|Ak(t)|2 + 4f sin2

(
ka

2

)
|Bk(t)|2

=
1

m0
|Ak(t)|2 +m0ω

2
k|Bk(t)|2

= 2m0ω
2
k|Bk(t)|2 (12.3.28)
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after using (12.3.24).1 If we let

4m0ωk|Bk(t)|2 = p2
k(t) + q2

k(t) (12.3.29)

then

H =
ωk
2

[
p2
k(t) + q2

k(t)
]

(12.3.30)

which is identical to the Hamiltonian of a classical harmonic oscillator. The reason why the
above simple form ensues is:

1. By imposing periodic boundary condition on the linear atomic chain, only countable,
discrete modes with wavenumber k are allowed to propagate on the linear atomic chain;

2. Only a single mode is allowed to propagate on the linear atomic chain so as to make
the solution and the corresponding Hamiltonian very simple.

The physical picture we shall have of the above is that because only one mode exists, all
the atoms on the chain are oscillating at the same frequency and in unison except for a phase
lag. So each of them is in a simple harmonic motion. Since we have learned how to convert
a classical harmonic oscillator to a quantum harmonic oscillator, the same principles can be
applied to turn the above into a chain of coupled quantum harmonic oscillators.

To convert the above into a quantum harmonic oscillator, we elevate the above amplitudes
to operators, namely

Ĥ =
ωk
2

[
p̂2
k + q̂2

k

]
(12.3.31)

where

p̂k = −i~ d

dqk
, q̂2

k = q2
k (12.3.32)

in coordinate space representation. We can further let

ξk = qk/
√
~, Π̂k = p̂k/

√
~ = −i d

dξk
(12.3.33)

so that

Ĥ =
~ωk

2

[
− d2

dξ2
k

+ ξ2
k

]
=

~ωk
2

(Π̂2
k + ξ2

k) (12.3.34)

(12.3.35)

1It is to be noted that because of the assumption of a right traveling wave in (12.3.22) and (12.3.23),
|Ak(t)|2 and |Bk(t)|2 in the above are constants. What this means is that both the kinetic energy and the
potential energy parts of the Hamiltonian are constants of motion. However, had we assumed that both right
and left traveling waves exist in (12.3.22) and (12.3.23), this would not have been true: both |Ak(t)|2 and
|Bk(t)|2 are time varying. However, it can be proved that their sum in the Hamiltonian is a constant.
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The above is the quantum analogue of (12.3.30). Furthermore, we can show that

â†k =
1√
2

(
−iΠ̂k + ξk

)
âk =

1√
2

(
iΠ̂k + ξk

)
(12.3.36)

Hence,

Ĥ =
~ωk

2

[
â†kâk + âkâ

†
k

]
(12.3.37)

We can rewrite (12.3.28) more suggestively as

H = m0ω
2
k (B∗k(t)Bk(t) +Bk(t)B∗k(t)) (12.3.38)

The quantum analogue of the above is

Ĥ = m0ω
2
k

(
B̂†kB̂k + B̂kB̂

†
k

)
(12.3.39)

We can identify that

B̂k =

√
~

2m0ωk
âk

B̂†k =

√
~

2m0ωk
â†k (12.3.40)

Also, the above analogue is in the spirit of the Schrödinger picture where the time dependence
is relegated to the state vector and the operators are time independent. An arbitrary phase
factor can be added to the above but this result in a time shift for the field. With the above
analogue, we can elevate the field to become operators, namely,

q̂` =

√
~

2m0ωkN
eik`aâk + c.c. (12.3.41)

p̂` = −i
√

~m0ωk
2N

eik`aâk + c.c. (12.3.42)

These field operators are time independent because they are in the Schrödinger picture. Notice
that it is the Hamiltonian of the total system involving N atoms, or the total energy of the
total system, that is quantized with with energy proportional to ~ωk. This quantized energy
per atom is then proportional to ~ωk/N . This spread of the quantized energy per atom
becomes smaller as N becomes larger, which becomes unphysical, unless we keep N finite.
Hence, to be more realistic, one will have to consider a localized wave packet. We will return
to this point later.

If we had assumed that the solutions are summation of different k modes, then (12.3.14)
and (12.3.15) become

q` (t) =
1√
N

∑
k

eik`aBk (t) + c.c. (12.3.43)
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p` (t) =
1√
N

∑
k

eik`aAk (t) + c.c. (12.3.44)

Consequently, (12.3.38), after using Parseval’s theorem, becomes

H = m0

∑
k

ω2
k (B∗k(t)Bk(t) +Bk(t)B∗k(t)) (12.3.45)

and (12.3.41) and (12.3.42) become

q̂` =
∑
k

√
~

2m0ωkN
eik`aâk + c.c. (12.3.46)

p̂` =
∑
k

−i
√

~m0ωk
2N

eik`aâk + c.c. (12.3.47)

The above represents a multitude of propagating modes with different k values. They can
come together to form a wave packet that more realistically represent a wave that propagates
on an infinite linear atomic chain.

12.4 Schrödinger Picture versus Heisenberg Picture

At this juncture, it is prudent to discuss the difference between the Schrödinger picture
versus the Heisenberg picture of quantum mechanics. In the Schrödinger picture, the time
dependence is in the wavefunction or the state vector; whereas in the Heisenberg picture, the
time dependence is in the operator that represents an observable.

The Schrödinger equation is given by

Ĥ|ψ〉 = i~∂t|ψ〉 (12.4.1)

The formal solution to the above can be written as

|ψ〉 = e−
i
~ Ĥt|ψ0〉 (12.4.2)

where |ψ0〉 is the state vector at t = 0 and is independent of time. The expectation value of
an operator Ô is

〈Ô〉 = 〈ψ|Ô|ψ〉 = 〈ψ0|e
i
~ ĤtÔe−

i
~ Ĥt|ψ0〉 (12.4.3)

Hence, in general, the relationship between an operator in the Schrödinger picture and in the
Heisenberg picture is given by

ÔH = e
i
~ ĤtÔSe

− i
~ Ĥt (12.4.4)

where the subscripts “H” and “S” mean the Heisenberg picture and the Schrödinger picture
respectively. It can be shown easily that

dÔH
dt

=
i

~

[
Ĥ, ÔH

]
(12.4.5)
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For the simple quantum harmonic oscillator,

Ĥ = ~ω
(
â†â+

1

2

)
(12.4.6)

It can be shown easily that [
Ĥ, â

]
= −~ωâ (12.4.7)

or that

dâ

dt
= −iωâ (12.4.8)

Consequently, solving give

â(t) = â(0)e−iωt (12.4.9)

Similarly, one can show that

â†(t) = â†(0)eiωt (12.4.10)

The above are the annihilation and creation operators in the Heisenberg picture. Using the
above in (12.3.46) and (12.3.47), we have

q̂`(t) =
∑
k

√
~

2m0ωkN
eik`a−iωtâk + c.c. (12.4.11)

p̂`(t) =
∑
k

−i
√

~m0ωk
2N

eik`a−iωtâk + c.c. (12.4.12)

The above are the field operators in the Heisenberg picture. They are time dependent.

12.5 The Continuum Limit

In the continuum limit, we let

m0 = ρa (12.5.1)

Then (12.3.1) becomes

ρaq̈(x, t) = fa2 ∂
2

∂x2
q(x, t) (12.5.2)

or

ρq̈(t) = g
∂2

∂x2
q(x, t) (12.5.3)
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where g = fa. Assume a traveling wave

q(x, t) =
1√
L
eikxBk(t) + c.c. (12.5.4)

with periodic boundary condition; then

kν =
2πν

L
(12.5.5)

We define the momentum density to be

π(x) = ρq̇(x) (12.5.6)

Then a Hamiltonian that will lead to (12.5.3) is

H =
1

2ρ

∫ L

0

π2(x)dx+
g

2

∫ L

0

(
∂q(x)

∂x

)2

dx (12.5.7)

We let

q(x, t) =
1√
L
eikxBk(t) + c.c. (12.5.8)

π(x, t) =
1√
L
eikxAk(t) + c.c. (12.5.9)

Then

Ḃk(t) =
1

ρ
Ak(t) (12.5.10)

Ȧk(t) = −gk2Bk(t) (12.5.11)

From the above, we have

B̈k(t) = −gk
2

ρ
Bk(t) = −ω2

kBk(t) (12.5.12)

where ω2
k = gk2/ρ, or

Bk(t) = Bk(0)e−iωkt (12.5.13)

Ak(t) = −iωkρBk(t) (12.5.14)

From (12.5.9), we obtain that

π2(x, t) =
2

L
|Ak(t)|2 + O.T. (12.5.15)
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(
∂q(x, t)

∂x

)2

=
2k2

L
|Bk(t)|2 + O.T. (12.5.16)

where O.T. stands for oscillatory term. When substituted into (12.5.7), the oscillatory terms
integrate to zero, and

H =
1

ρ
|Ak(t)|2 + k2g|Bk(t)|2 = 2ρω2

k|Bk(t)|2

= ρω2
k [B∗k(t)Bk(t) +Bk(t)B∗k(t)] (12.5.17)

Defining

4ρωk|Bk(t)|2 = p2
k(t) + q2

k(t) (12.5.18)

the above becomes

H =
ωk
2

[
p2
k(t) + q2

k(t)
]

(12.5.19)

which is the classical Hamiltonian of a simple harmonic oscillator. The above can be quantized
to yield

Ĥ =
~ωk

2

(
â†kâk + âkâ

†
k

)
(12.5.20)

and (12.5.17) can be elevated to quantized form giving

Ĥ = ρω2
k

[
B̂†kB̂k + B̂kB̂

†
k

]
(12.5.21)

Hence, we conclude that

B̂k =

√
~

2ρωk
âk (12.5.22)

up to an arbitrary phase. With this, we can elevate the fields to operators, namely,

q̂(x, t) =

√
~

2ρωkL
eikx−iωktâk + c.c. (12.5.23)

π̂(x, t) = −i
√

~ωkρ
2L

eikx−iωktâk + c.c. (12.5.24)

The above are in Heisenberg picture where operators are functions of time. With multi-mode
field, the above generalize to

q̂(x, t) =
∑
k

√
~

2ρωkL
eikx−iωktâk + c.c. (12.5.25)

π̂(x, t) = −i
∑
k

√
~ωkρ
2L

eikx−iωktâk + c.c. (12.5.26)
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12.6 Quantization of Electromagnetic Field

For electromagnetic field, the harmonic oscillators are dipoles in a medium that are polarized
by an electric field. In general, the electric flux in a medium is given by

D = ε0E + P (12.6.1)

The first term is the contribution to the electric flux D due to vacuum, while the second term
is the polarization density contributed from dipoles polarized in a material medium by an
electric field. It is customary to write P = ε0χE to indicate that the polarization density is
proportional to the electric field.

The time variation of the electric flux, ∂tD, is instrumental in giving rise to displacement
current, and hence, yielding a propagating wave. This electric flux exists even in vacuum.
Hence, we can imagine that even vacuum is polarized by an electric field to produce dipole
density.2 In other words, the oscillating electric dipole will produce a magnetic field creating
an inductive effect. Together, they can form a resonating system behaving like a harmonic
oscillator. They resemble a tiny LC tank circuit.

As seen previously, the quantization of electromagnetic field is most easily described by
the quantization of a modal field. A mode can be formed by a periodic boundary condition
or a metallic perfect electric/magnetic conductor boundary condition. In this manner, the
number of modes is countably infinite. In view of this, we can write

Ez = α(t)Deikx + c.c. (12.6.2)

By using periodic boundary condition, we get

kν =
2νπ

L
(12.6.3)

making it countably infinite. (We will drop the subscript ν subsequently.) The associated B
field is

By = β(t)
D

c
eikx + c.c. (12.6.4)

where c is the velocity of light. The relation between α(t) and β(t) can be derived from
Maxwell’s equations. From

∇×E = −∂tB (12.6.5)

we have

∂xEz = ∂tBy (12.6.6)

Using (12.6.2) and (12.6.4) in the above, we have

ikα(t)Deikx + c.c. = β̇
D

c
eikx + c.c. (12.6.7)

2It is debatable as to what gives rise to these dipoles in vacuum. In my opinion, it could be electron-
positron pairs that are embedded in vacuum. When vacuum is bombarded with an energetic photon, it is
known to produce an electron-position pair.
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From the above, we gather that

β̇ = iωα (12.6.8)

using

∇×B = µ0ε0∂tE (12.6.9)

or more specifically

∂xBy = µ0ε0∂tEz (12.6.10)

Finally, we find that

α̇ = iωβ (12.6.11)

or that

α̈ = −ω2α (12.6.12)

β̈ = −ω2β (12.6.13)

A traveling wave solution is that α = α0e
−iωt, β = β0e

−iωt. From (12.6.8) and (12.6.11), we
deduce that α0 = β0

12.6.1 Hamiltonian

The Hamiltonian of the electromagnetic system is given by the total energy of the system
which is

H =

∫ L

0

W (x)dx (12.6.14)

where

W (x) =
1

2

(
ε0|E|2 +

1

µ0
|B|2

)
(12.6.15)

From (12.6.2), we derive that for a propagating mode,

E2
z = 2|α(t)|2|D|2 + O.T. (12.6.16)

B2
y = 2|β(t)|2 |D|

2

c2
+ O.T. (12.6.17)

where “O.T.” stands for “oscillatory terms”. When substituted into (12.6.14) and integrated,
the oscillatory terms disappear; we have

H = L|D|2ε0|α(t)|2 +
L|D|2

µ0c2
|β(t)|2

= L|D|2ε0[|α(t)|2 + |β(t)|2] (12.6.18)
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Defining

D =

√
ω

4Lε0
(12.6.19)

the above can be written as

H =
ω

4
[|α|2 + |β|2] =

ω

2
|α|2 (12.6.20)

By letting α = p± iq, it becomes

H =
ω

2
(p2 + q2) (12.6.21)

The above resembles the Hamiltonian for a classical harmonic oscillator. Again, the reason
for its simplicity is that we have assumed a single propagating mode. This single propagating
mode is causing all the dipoles in the system to be oscillating time-harmonically in unison,
but with a phase lag between them.3

But p and q are observables with Hermitian operators. Therefore, the quantum analogue
is

Ĥ =
ω

2
(p̂2 + q̂2) (12.6.22)

In coordinate space representation,

p̂ = −i~ d
dq
, q̂ = q (12.6.23)

As in the linear atomic chain case, we can show that

Ĥ =
~ω
2

(
â†â+ ââ†

)
= ~ω

(
â†kâk +

1

2

)
(12.6.24)

12.6.2 Field Operators

Alternatively, we can rewrite (12.6.20) as

H =
ω

4
[α(t)α∗(t) + α(t)α∗(t)] (12.6.25)

The above can be elevated to be quantum mechanical operators so that

Ĥ =
ω

4

[
α̂α̂† + α̂α̂†

]
(12.6.26)

Comparing the above with (12.6.24), we infer that

α̂ =
√

2~â (12.6.27)

3Notice that there is no radiation damping in these dipoles as the periodic boundary condition wraps the
wave around, and energy is never lost from the system.
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to within an arbitrary phase. Hence, α in (12.6.2) can be elevated to be a field operator to
yield, in the Heisenberg picture,

Êz =

√
~ωk
2Lε0

âke
ikx−iωkt + c.c. (12.6.28)

B̂y =

√
~ωk
2Lε0

1

c
âke

ikx−iωkt + c.c. (12.6.29)

The above can be generalized to a plane wave mode propagating in arbitrary direction, namely,

Ê =
∑
k,s

√
~ωk
2V ε0

esâk,se
ik·r−iωkt + c.c. (12.6.30)

B̂ =
∑
k,s

√
~ωk
2V ε0

1

c
k̂× esâk,se

ik·r−iωkt + c.c. (12.6.31)

where es is a unit vector denoting the polarization of the electric field. It is orthogonal to the
k vector. It can be either linearly polarized or circularly polarized. In the linearly polarized
case, es is either vertical or horizontal. In the circularly polarized case, es is either right-hand
or left-hand circularly polarized. In the above, we have defined the Hamiltonian as an integral
over a volume V , and hence, the normalization above is with respect to V .

A photon is a packet of energy that propagates due to coupled quantum harmonic oscilla-
tors. This is similar to the phonon case which is a packet of energy due to coupled quantum
harmonic oscillators of mechanical origin. A photon can also propagate in a dielectric medium,
and it is quite clear then that in this case, the photon is due to coupled quantum harmonic
oscillators of dipolar origin (or electronic origin).

The quantization of energy is with respect to the entire Hamiltonian which describes a
set of coupled quantum harmonic oscillators. For the purely monochromatic photon, as is
seen before, if the quantization energy is ~ωk, it will be shared among all the coupled har-
monic oscillators. This is untenable physically as the number of coupled harmonic oscillators
becomes large. Hence, it is more appropriate to think of a photon as quasi-monochromatic
as a linear superposition of wavenumbers k, allowing a localized wave packet to be formed.
A photon can be thought of as a “particle” possessing a packet of energy ~ωe, but it exists
as a linear superposition of different modes with different k’s. Each mode can have a energy
~ωk associated with it, but as the particle is a linear superposition of different modes, ~ωe is
the expectation value of the photon energy when the photon is in a superposition of different
quantum states.4

12.6.3 Multimode Case and Fock State

When polarization is considered, we may write the Hamiltonian for a single mode photon as

Ĥk =
∑
s

Ĥk,s =
∑
s

~ωk
(
â†k,sâk,s +

1

2

)
(12.6.32)

4This is my personal opinion.
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where s stands for either horizontal or vertical polarization. The above can be easily derived
by considering the electric field with both polarizations present.

In the above, we can denote eigenstate of the Hamiltonian as5

|ψ〉 = |nv〉|nh〉 (12.6.33)

where v stands for vertical polarization and h stands for horizontal polarization. In the
above, there are nv photons in the vertical polarization state and there are nh photons in the
horizontal polarization state.

When many modes are considered simultaneously, it can be shown that the corresponding
Hamiltonian is

Ĥ =
∑
k,s

Ĥk,s =
∑
k,s

~ωk

(
â†k,sâk,s +

1

2

)
(12.6.34)

The eigenstate of the above Hamiltonian can be written as

|ψ〉 =
∏
k,s

|nk,s〉 (12.6.35)

The above can be written alternatively as

|ψ〉 =
∏
s

|nk1,s〉|nk2,s〉|nk3,s〉 · · · =
∏
s

|nk1,s, nk2,s, nk3,snk4,s · · ·〉 =
∏
s

|{nk,s}〉 (12.6.36)

The above state is known as a Fock state or the occupational number state. It is customary
to leave out the states where the occupational number is zero, listing only the states with
non-zero number of photons. For example

|ψ〉 = |3k1,v, 2k2,h, 1k3,v〉 (12.6.37)

indicates a quantum state with three V (vertical) polarized photons in k1 mode, two H
(horizontal) polarized photons in k2 mode, and one V polarized photon in k3 mode.

12.6.4 One-Photon State

The understanding of the one-photon state is important because of its usefulness in quantum
information, quantum communication, and quantum cryptography. It is prudent to elaborate
on it further. For example, when only one k mode is present, to denote a photon in the vertical
polarization state, and no photons in the horizontal polarization state, the state vector should
be

|ψ〉 = |1v〉|0h〉 (12.6.38)

Often, this is just written as

|ψ〉 = |1v〉 (12.6.39)

5When the Hamiltonian consists of sum of the Hamiltonians of two quantum systems, the states of the
Hamiltonian operator can be represented by the product space of the states of the individual quantum system.
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where the second part is understood. For a photon in arbitrary polarization, it is written as

|ψ〉 = av|1v〉+ ah|1h〉 (12.6.40)

The above denotes a one-photon state where the photon is in the linear superposition of two
orthonormal one-photon states. Hence,

|av|2 + |ah|2 = 1 (12.6.41)

Often, photons are generated by atomic transitions whereby the electron changes from a
high energy state to a low energy state giving rise to one or more photons. Since this is a
causal event, the wave field associated with a photon is a localized wave in space time.6 The
localized wave is formed by linear superposing wave field with different k values. For instance,
a localized one-photon, vertically polarized state is a linear superposition of a number of one-
photon states with different k values as follows:

|ψ〉 =
∑
k

ak,v|1k,v〉 (12.6.42)

The wave field associated with the above state can be localized in space time, and the wave
field satisfies causality.

It is to be noted that (12.6.34) is a quantum mechanical Hamiltonian involving the sum
over individual Hamiltonians of different quantum systems. The quantum system arises from a
set of coupled quantum harmonic oscillators. The choice of appropriate modes “diagonalizes”
the system, giving rise to apparently uncoupled systems. When a photon is in a quantum
state, it can be in a linear superposition of different quantum states of these different quantum
systems. Therefore, one-photon states (12.6.40) and (12.6.42) should be thought of as a linear
superposition of different quantum states, subject to the quantum interpretation of quantum
mechanics. The particle is in a linear superposition of states before the measurement, and it
collapses to one of the states after the measurement.

Even though a photon is associated with a packet of energy, when it is detected with a
polarizer (that detects it either in the vertical or horizontal polarized state), it is found either
in one state or the other. The packet of energy is never split between the two states indicated
by (12.6.40). Hence, experiment evidence suggests that a photon is a quantum particle in the
sense that an electron is a quantum particle at the quantum level. The same interpretation
applies to (12.6.42). The subject of quantum interpretation will be discussed later.

12.6.5 Coherent State Revisited

The expectation value of the annihilation and creation operators with respect to the photon
number states is always zero. Therefore, the expectation value of the field operators, which
are proportional to the annihilation and creation operators, is always zero. Hence, the number
states are non-classical. To arrive at an expectation value of field operators that are non-zero,
and resemble a classical field, one has to work with the coherent states.

6See the appendix for a discussion on localized wave packets.
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We have studied the coherent state previously. It is defined to be the eigenstate of the
annihilation operator. Namely, if |α〉 represents a coherent state, then

â|α〉 = α|α〉 (12.6.43)

where we have used the eigenvalue α to index the coherent state. Since the number state |n〉
is complete, we can expand the coherent state in terms of the number state, or

|α〉 =

∞∑
n=0

Cn|n〉 (12.6.44)

When the annihilation operator is applied to both sides, we obtain

â|α〉 =

∞∑
n=0

Cnâ|n〉 =

∞∑
n=0

Cn
√
n− 1|n− 1〉 =

∞∑
n=0

Cn+1

√
n|n〉 (12.6.45)

Equating the above with α|α〉, we have

∞∑
n=0

Cn+1

√
n|n〉 = α

∞∑
n=0

Cn|n〉 (12.6.46)

By the orthogonality of the number states, matching the coefficients, we have Cn+1 =
αCn/

√
n+ 1, or

Cn = Cn−1α/
√
n = Cn−2α

2/
√

(n(n− 1)) = C0α
n/
√
n! (12.6.47)

Consequently,

|α〉 = C0

∞∑
n=0

αn√
n!
|n〉 (12.6.48)

The above can be normalized to show that C0 = exp(−|α|2/2).
The photon number operator is n̂ = â†â. It can be shown that the average number of

photons associated with a coherent state is given by

〈n̂〉 = n̄ = 〈α|n̂|α〉 = 〈α|â†â|α〉 = |α|2 (12.6.49)

Moreover

〈n̂2〉 = 〈α|n̂2|α〉 = 〈α|â†ââ†â|α〉 = 〈α|â†â † ââ+ â†â|α〉 = |α|4 + |α|2 = n̄2 + n̄ (12.6.50)

Then

∆n =
√
〈n̂2〉 − 〈n̂〉2 = n̄1/2 (12.6.51)

The above is characteristic of a Poisson process. The probability of detecting n photons in a
coherent state is

Pn = |〈n|α〉|2 = e−|α|
2 |α|2n

n!
= e−n̄

n̄n

n!
(12.6.52)
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typical of a Poisson distribution.7 The fractional uncertainty in the photon number is

∆n

n̄
=

1√
n̄

(12.6.53)

Figure 12.2: Two typical Poisson distributions. Case (a) has n̄ = 50 while case (b) has
n̄ = 200 (from Haus).

Time Evolution of the Coherent State

In the Schrödinger picture, the time dependence is with the eigenfunctions; hence, the time
dependence of the coherent state is

|α, t〉 = e−
1
2 |α|

∞∑
n=0

αnei(n+1/2)ωt

√
n!

|n〉 (12.6.54)

The above can be written as

|α, t〉 = eiωt/2e−
1
2 |α|

∞∑
n=0

(αeiωt)n√
n!
|n〉 = eiωt/2|αeiωt〉 (12.6.55)

In the Heisenberg picture, the coherent state is time independent, and time-dependent
eigenstate can be obtained by applying the operator

|α, t〉 = e−iĤt/~|α〉 =

∞∑
n=0

αn√
n!
e−iĤt/~|n〉

=

∞∑
n=0

αn√
n!
e−i(n+1/2)ωt|n〉 =

∞∑
n=0

(αeiωt)n√
n!
|n〉 = eiωt/2|αeiωt〉 (12.6.56)

7An example of a Poisson distribution is a shot noise source, producing n̄ photons in interval τ . The
probability of find n photons in this time interval follows the Poisson distribution.
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It can be further shown that the above can be summed in terms of a “Gaussian pulse”8

indicating that this pulse evolves in time without shape distortion.

Figure 12.3: The time evolution of the coherent state. It follows the motion of a classical
pendulum or harmonic oscillator (From Gerry and Knight).

The expectation value of the field operator in the Heisenberg picture with respect to the
coherent state is then

E = 〈α|Ê|α〉 =
∑
k,s

√
~ωk
2V ε0

es〈α|âk,s|α〉eik·r−iωkt + c.c. =
∑
k,s

√
~ωk
2V ε0

esαk,se
ik·r−iωkt + c.c.

(12.6.57)

Similarly,

B = 〈α|B̂|α〉 =
∑
k,s

√
~ωk
2V ε0

1

c
k̂× esαk,se

ik·r−iωkt + c.c. (12.6.58)

The above certainly look like a classical field where αk,s are complex numbers.

8It is to be noted that the Gaussian pulse we refer to is with respect to the displacement of the quantum
harmonic oscillator, not with respect to the direction of propagation of the photon.



Chapter 13

Schrödinger Wave Fields

13.1 Introduction

We notice that electromagnetic field can be viewed as a collection of photons each with an
field attached. These photons collectively form the coherent state that produces a wave field
that is analogous to the classical electromagnetic wave field. Photons are bosons whose wave
field satisfies Maxwell’s equations.

Similarly, if a boson wavefunction satisfies Schrödinger equation, a collection of bosons
gives rise to a wave field that satisfies Schrödinger equation. Similarly, a collection of fermions
gives rise to a wave field that satisfies Schrödinger equation if each individual particle wave-
function satisfies the same equation. We will call such fields Schrödinger wave fields.

We have seen that the number of bosons in an electromagnetic wave field can be tracked by
the annihilation and creation operators; similar operators are needed for tracking the particle
of a Schrödinger wave field. The wave field can be a collection of bosons or a collection of
fermions. Eventually, the bookkeeping of the many-particle system becomes simpler.

For Schrödinger equation, this is the second quantization. The first quantization was the
discovery that electrons can be associated with a wavefunction, and the trapped modes in
potential well are quantized. The second quantization refers to the fact that the Schrödinger
wave field, which can be treated as a continuum, can be made granular or quantized. This is
the advanced way of expressing the wave-particle duality concept inherent in a wave field.1

13.2 Fock Space for Fermions

For fermions, each eigenmode or eigenstate is either occupied or unoccupied. In general, there
will be infinitely many modes that the fermions can occupy. We could denote a two-particle
state as

|ψ2p〉 = | · · · , 0, 1m, 0, · · · , 0, 1v, 0, · · · 〉 (13.2.1)

1The quantization of classical fields is also known as first quantization for them.
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where only the m and v modes are occupied and the rest of the modes are unoccupied. The
notation above is cumbersome, and it is common to denote the two-particle fermion Fock
state as

|ψ2p〉 = |m, v〉 (13.2.2)

where for fermions, it is necessary that

|m, v〉 = −|v,m〉 (13.2.3)

We define a fermion creation operator such that

b̂†k|m,n〉 = |k,m, n〉 (13.2.4)

The newly created particle always occupies the first space in the Fock state vector. By
definition then

b̂†l b̂
†
k| · · · 〉 = |l, k, · · · 〉 (13.2.5)

b̂†k b̂
†
l | · · · 〉 = |k, l, · · · 〉 = −|l, k, · · · 〉 = −b̂†l b̂

†
k| · · · 〉 (13.2.6)

Therefore

b̂†k b̂
†
l + b̂†l b̂

†
k = 0 (13.2.7)

Similarly, we can show that

b̂k b̂l + b̂lb̂k = 0 (13.2.8)

or that the above is the Hermitian conjugate of (13.2.7). To show (13.2.8) more rigorously,
we start with a fermion Fock state

|ψ〉 = | · · · , l, k, · · · 〉 (13.2.9)

This state acquires a minus sign when we permute two of the particles. Finally, we can have
a state such that

|ψF 〉 = |l, k, · · · 〉 = −|k, l, · · · 〉 (13.2.10)

An annihilation operator can be defined such that

b̂l|l, k, · · · 〉 = |k, · · · 〉 (13.2.11)

It can be shown that

b̂k b̂l|ψF 〉 = b̂k b̂l|l, k, · · · 〉 = b̂k|k, · · · 〉 = | · · · 〉 (13.2.12)

Similarly,

−b̂lb̂k|ψF 〉 = b̂lb̂k|k, l, · · · 〉 = b̂l|l, · · · 〉 = | · · · 〉 (13.2.13)
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Therefore,

b̂k b̂l + b̂lb̂k = 0 (13.2.14)

The above equations (13.2.7) and (13.2.14) imply that if k = l,

b̂†k b̂
†
k = 0 (13.2.15)

b̂k b̂k = 0 (13.2.16)

It means that no two particles can be created in the same mode k or no two particles can be
annihilated from the same mode k.

By the same token, we can show that for k 6= l,

b̂†k b̂l + b̂lb̂
†
k = 0 (13.2.17)

When k = l, we have a state |k, · · · 〉 and then

(b̂†k b̂k + b̂k b̂
†
k)|k, · · · 〉 = b̂†k b̂k|k, · · · 〉+ b̂k b̂

†
k|k, · · · 〉

= b̂†k| · · · 〉+ 0|k, · · · 〉 = b̂†k| · · · 〉 = |k, · · · 〉
= Î|k, · · · 〉 (13.2.18)

In conclusion,

b̂†k b̂l + b̂lb̂
†
k = δklÎ (13.2.19)

In summary, [
b̂†k, b̂l

]
+

= b̂†k b̂l + b̂lb̂
†
k = δklÎ (13.2.20)[

b̂†k, b̂
†
l

]
+

= b̂†k b̂
†
l + b̂†l b̂

†
k = 0 (13.2.21)[

b̂k, b̂l

]
+

= b̂k b̂l + b̂lb̂k = 0 (13.2.22)

where [A,B]+ = AB +BA.

13.3 Field Operators

Just as in the case of electromagnetic field operators that represent many photons which
are bosons, we can define field operators for fermions and bosons in general. A one-particle
Schrödinger field operator is defined such that

ψ̂(r) =
∑
j

b̂jφj(r) (13.3.1)
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where φj is an eigenmode from a complete set of orthonormal functions. It may or may not be
the j-th eigenstate of the quantum system governed by the one-particle Schrödinger equation.
The above field operator acts on a state vector in the Fock space. For instance,

ψ̂(r)|m〉 = ψ̂(r)b̂†m|0〉

=
∑
j

φj(r)b̂j b̂
†
m|0〉

=
∑
j

φj(r)(δjm − b̂†mb̂j)|0〉

= φm(r)|0〉 (13.3.2)

Notice that the above field operator, when operating on a Fock vector with a m-th mode
occupied, produces a vector tagged with the spatial dependence of the m-th eigenmode.

After using the completeness property of the orthonormal basis, plus the use of commu-
tation relations for the annihilation and creation operators, the field operator can be shown
to satisfy the following commutation relations:[

ψ̂†(r), ψ̂(r′)
]

+
= ψ̂†(r)ψ̂(r′) + ψ̂(r′)ψ̂†(r) = δ(r− r′) (13.3.3)[

ψ̂†(r), ψ̂†(r′)
]

+
= ψ̂†(r)ψ̂†(r′) + ψ̂†(r′)ψ̂†(r) = 0 (13.3.4)[

ψ̂(r), ψ̂(r′)
]

+
= ψ̂(r)ψ̂(r′) + ψ̂(r′)ψ̂(r) = 0 (13.3.5)

As an extension, one can define two-particle field operator

ψ̂ (r1, r2) =
1√
2

∑
n1,n2

b̂n2
b̂n1

φn1
(r1)φn2

(r2) (13.3.6)

where the factor 1/
√

2 is needed for normalization. Here, φn1
(r1) and φn2

(r2) may or may
not be one-particle eigenstates of the Schrödinger equation. The requirements on them are
that they are complete and orthonormal. In the above, the n1 = n2 terms vanish because
b̂nb̂n = 0. It can be shown easily that

ψ̂ (r1, r2) |l,m〉 = ψ̂ (r1, r2) b̂†l b̂
†
m |0〉 =

1√
2

[φl (r1)φm (r2)− φl (r2)φm (r1)] |0〉 (13.3.7)

It is to be noted that the above is zero when r1 = r2. It is a consequence of the field
operator operating on the two-particle Fock state, and not the property of the field operator.
A three-particle field operator is defined to be

ψ̂ (r1, r2, r3) =
1√
3!

∑
n1,n2,n3

b̂n3
b̂n2

b̂n1
φn1

(r1)φn2
(r2)φn3

(r3) (13.3.8)

In the above, none of the n1, n2, n3 can be repeated for the reasons of (13.2.15) and (13.2.16).
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Then, it can be shown that

ψ̂ (r1, r2, r3) |l,m, n〉 = ψ̂ (r1, r2, r3) b̂†l b̂
†
mb̂
†
n |0〉

=
1√
3!

[φl (r1)φm (r2)φn (r3) + φl (r2)φm (r3)φn (r1)

+ φl (r3)φm (r1)φn (r2)− φl (r1)φm (r3)φn (r2)

−φl (r2)φm (r1)φn (r3)− φl (r3)φm (r2)φn (r1)] |0〉 (13.3.9)

In general, an N -particle field operator is

ψ̂ (r1, r2, · · · , rN ) =
1√
N !

∑
n1,n2,··· ,nN

b̂nN · · · b̂n2 b̂n1φn1 (r1)φn2 (r2) · · ·φnN (rN ) (13.3.10)

In the above sum, only terms where n1, n2, · · · , nN are distinct are contributing for the same
reason given in (13.3.8). It is seen that

ψ̂NP (r1, r2, · · · , rN ) =
1√
N !

ψ̂1P (rN ) · · · ψ̂1P (r2) ψ̂1P (r1) (13.3.11)

where ψ̂1P is a one-particle field operator while ψ̂NP is the N -particle field operator. However,
the used of such factorized form has to be handled with caution, as each one-particle operator
has to operate on distinct modes in order for the product of factors to be non-zero.

A general Fock state for N fermion particles can be written as

|ΦN 〉 = b̂†n1
b̂†n2

b̂†n3
· · · b̂†nN |0〉 = |n1, n2, n3, · · · , nN 〉 (13.3.12)

In the above, the state vector changes sign when any two of the annihilation operators swap
position, and that the state vector is zero if any two of the modes are identical.

When the Fock state is operated on by the N -particle annihilation operator, the coordinate
space representation of the N -particle fermion state is obtained as shown by (13.3.7). This
approach avoids the cumbersome use of Slater determinant in the book-keeping of the N -
particle fermion states.

13.4 Similarity Transform

It is prudent to note from the above that one can change between coordinate space basis
and Fock space basis via the algebra shown. This allows us to effect a change of basis for a
complex quantum system. Some quantum systems, when expressed in the Fock space basis, is
a lot simpler than the coordinate space basis. This was first shown for electromagnetic field.
It can be shown for other quantum fields. Hence, it is worthwhile to review the mathematics
of similarity transform next.

We can view the change of basis as a similarity transform when we change from eigenfunc-
tion space or coordinate space representation to Fock space representation. Given a matrix
equation

A · x = λx (13.4.1)
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we can define a new representation for the unknowns as

x = S · y (13.4.2)

In the above, S is unitary since the length of the vectors does not change. The above equation
becomes

A · S · y = λS · y (13.4.3)

Multiplying the above by S
†
, we have

S
† ·A · S · y = λS

† · S · y = λy (13.4.4)

where the unitary property of the S operator has been used. Hence,

As · y = λy (13.4.5)

where

As = S
† ·A · S (13.4.6)

Equation (13.4.6) is in the form of a similarity transform.

13.5 Additive One-Particle Operator

We can consider a simple identical many particle Hamiltonian where the particles do not
interact with each other, say via the Coulomb potential. For instance, for fermions, the only
way they interact is via Pauli’s exclusion principle. An example of such a Hamiltonian for N
particles, in coordinate space representation, is

Ĥr =

N∑
i=1

Ĥri (13.5.1)

where

Ĥri = − ~
2m
∇2
i + V (ri) (13.5.2)

As an example, consider the three particle case. The three-particle wavefunction in coordinate
space representation is

ψ3P (r1, r2, r3) =
1√
3!

[φl (r1)φm (r2)φn (r3) + φl (r2)φm (r3)φn (r1)

+ φl (r3)φm (r1)φn (r2)− φl (r1)φm (r3)φn (r2)

−φl (r2)φm (r1)φn (r3)− φl (r3)φm (r2)φn (r1)] (13.5.3)

If the eigenmodes above are the eigenmodes of the Ĥri operator, then

Ĥrψ3P (r1, r2, r3) =

N∑
i=1

Ĥriψ3P (r1, r2, r3) = (El + Em + En)ψ3P (r1, r2, r3) (13.5.4)
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The above approach gets unwieldy as the number of particles increases.
For a simpler approach, we can perform a change of basis or similarity transform on the

original Hamiltonian. The new Hamiltonian is

Ĥ =

∫ N∑
i=1

ψ̂†NP (r1, r2, · · · , rN ) Ĥriψ̂NP (r1, r2, · · · , rN ) dr1dr2 · · · drN (13.5.5)

The operator above now acts on a vector in the Fock space, and transforms it to another
vector in the same space.

Equation (13.5.5) can be written, after using (13.3.11), as

Ĥ =
1

N !

∫
ψ̂†1P (rN ) · · · ∼ · · · ψ̂†1P (r1)

[
N∑
i=1

∫
driψ̂

†
1P (ri) Ĥriψ̂1P (ri)

]
ψ̂1P (r1) · · · ∼ · · · ψ̂1P (rN ) dr1 · · · ∼ · · · drN (13.5.6)

where the ∼ sign implies that ri is excluded from the sequence.

13.5.1 Three-Particle Case

It is quite complex to sort out the algebra of the above system. Much insight, however,
can be gotten by studying a simpler three-particle case. In this case, a typical term of the
transformed Hamiltonian is

Ĥ =
1

3!

∫
ψ̂†1P (r3) ψ̂†1P (r2)

[∫
dr1ψ̂

†
1P (r1) Ĥr1ψ̂1P (r1)

]
ψ̂1P (r2) ψ̂1P (r3) dr2dr3 + · · · (13.5.7)

where the + · · · above refers to other two terms where ri = r2 and ri = r3, and ri here refers
to the coordinates for the term inside the square brackets.

The space-dependent parts involving φni(ri) in the field operators can be grouped together
and the spatial integrations can be performed first. These modes are orthonormal giving rise
to δn2n′2

and δn3n′3
which can be used to reduce double summations into single summations.

Finally, one obtains

Ĥ =
1

6

∑
n2,n3

b̂†n3
b̂†n2

∑
n′1,n1

b̂†n1
H

(1)
n′1,n1

b̂n1

 b̂n2
b̂n3

+ · · · (13.5.8)

The general case where φn1
(r1) is not an eigenstate of the Hamiltonian Ĥr1 is assumed here.

Hence,

H
(1)
n′1,n1

= 〈φn′1 |Ĥr1|φn1〉 (13.5.9)

In the event that φn1
(r1) is an eigenstate, the above becomes

H
(1)
n′1,n1

= En1
δn′1n1

(13.5.10)
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Figure 13.1: The three annihilation operators b̂n1 b̂n2 b̂n3 acting on the three-particle state
|l,m, n〉 produces six threads that eventually gives rise to six terms.

To evaluate the action of the above operator on the three-fermion-particle state |l,m, n〉 =

b̂†l b̂
†
mb̂
†
n|0〉, one needs to show

b̂n1
b̂n2

b̂n3
|l,m, n〉 = b̂n1

b̂n2
b̂n3

b̂†l b̂
†
mb̂
†
n|0〉

= (δln3
δmn2

δnn1
− δln3

δmn1
δnn2

− δln2
δmn3

δnn1

+δln1
δmn3

δnn2
+ δln2

δmn1
δnn3

− δln1
δmn2

δnn3
) |0〉 (13.5.11)

A total of six terms is found. In the above b̂n3
, operating on the three-particle state, produces

three terms each of which is a two-particle state as shown in Figure 13.1. Next, b̂n2
operating

on them will produce two terms per each term of the two-particle state, producing a net of
six terms of one-particle states. The final operation b̂n1 produces one term for each particle.

In general, if we start with an N -particle state, the operation of b̂n1
· · · b̂nN on it will produce

N ! terms.
The b̂† operators in (13.5.8) anti-commute with each other. Hence, b̂†n3

b̂†n2
can be moved

to the right of the H
(1)
n′1,n1

element, together with the summations. Therefore, we finally need

to evaluate ∑
n2,n3

b̂†n3
b̂†n2

b̂n1 b̂n2 b̂n3 |l,m, n〉 (13.5.12)

The above can be shown to evaluate to∑
n2,n3

b̂†n3
b̂†n2

b̂n1
b̂n2

b̂n3
|l,m, n〉 = 2

(
δnn1

b̂†l b̂
†
m + δln1

b̂†mb̂
†
n + δmn1

b̂†nb̂
†
l

)
|0〉

= 2b̂n1
b̂†l b̂
†
mb̂
†
n|0〉 = 2b̂n1

|l,m, n〉 (13.5.13)

The first equality above can be obtained by using (13.5.11). The second equality follows from

working backward by expanding b̂n1
b̂†l b̂
†
mb̂
†
n|0〉. Consequently,

Ĥ|l,m, n〉 =
1

3

∑
n′1,n1

b̂†n′1
H

(1)
n′1,n1

b̂n1
|l,m, n〉+ · · · (13.5.14)
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The other two terms indicated by the + · · · would contribute to exactly the same expression
as they are from indistinguishable particles. Finally, we have

Ĥ|l,m, n〉 =
∑
n′1,n1

b̂†n′1
H

(1)
n′1,n1

b̂n1 |l,m, n〉 (13.5.15)

In general, the additive one-particle operator in Fock space is

Ĥ =
∑
n′,n

b̂†n′H
(1)
n′,nb̂n′ (13.5.16)

The above can be used for the N -particle case as long as they are indistinguishable. For the
case when the one-particle eigenstates are also the eigenstates of the Ĥri operator, the above
matrix becomes diagonal yielding,

Ĥ =
∑
n

Enb̂
†
nb̂n (13.5.17)

The above means that if we have an N -particle fermion field, it can be represented by the
physics of one-particle Hamiltonian if the eigenstates chosen for the similarity transform are
also the eigenstates of the one-particle Hamiltonian. Also, the above Hamiltonian is very
similar to the Hamiltonian for photons derived in the previous chapter, except that photons
are bosons and the above derivation is for fermions. A similar derivation for bosons shows
that the Hamiltonian is similar to the above.

The above Hamiltonian does not distinguish between one particle or N particles. This
difference of the quantum systems is expressed by the Fock states of the particles.

13.6 Additive Two-Particle Operator

In general, the N particles in a Schrödinger wave field will interact with each other. They may
interact pair-wise, for instance, via Coulomb potential other than just the Pauli’s exclusion
principle. An example of an additive two particle operator in coordinate space is

V (r1, r2) =
e2

4πε0 |r1 − r2|
(13.6.1)

This will be part of a two-particle Hamiltonian

Ĥr(r1, r2) = − ~
2m

(
∇2

1 +∇2
2

)
+ V (r1, r2) (13.6.2)

When N -particle Hamiltonian is considered, the Coulomb interaction appears as

V =
∑
i<j

V (ri, rj) =
1

2

∑
i6=j

V (ri, rj) (13.6.3)
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For N particles, there are N(N−1) terms in the above summations. Again, we can transform
the above from coordinate space representation to Fock-space representation as before arriving
at

V̂ =
1

2

N∑
i=1

N∑
j=1,j 6=i

1

N !

∫
ψ̂†1P (rN ) · · · ∼ · · · ψ̂†1P (r1)

[∫
dridrjψ̂

†
1P (ri)ψ̂

†
1P (rj)V (ri, rj)ψ̂1P (ri)ψ̂1P (rj)

]
ψ̂1P (r1) · · · ∼ · · · ψ̂1P (rN ) dr1 · · · ∼ · · · drN (13.6.4)

where the ∼ indicates that ri and rj are excluded from the sequence. Without loss of gener-
ality, we can focus on the term where ri = r1 and rj = r2. Then, the above becomes

V̂ =
1

2N !

∫
ψ̂†1P (rN ) · · · ψ̂†1P (r3)

[∫
dr1dr2ψ̂

†
1P (r2)ψ̂†1P (r1)V (r1, r2)ψ̂1P (r1)ψ̂1P (r2)

]
ψ̂1P (r3) · · · ψ̂1P (rN ) dr1 · · · drN + · · ·

(13.6.5)

where + · · · above implies the rest of the terms; there are altogether N(N − 1) terms. Per-
forming the dr1 · · · drN integrations first, making use of mode orthonormality, we arrive at

V̂ =
1

2N !

∑
n3,··· ,nN

b̂†nN · · · b̂
†
n3 ∑

n′1,n1,n′2,n2

b̂†n2
b̂†n1

V
(1,2)
n′1,n

′
2,n1,n2

b̂n1

 b̂n2
· · · b̂nN + · · · (13.6.6)

where

V
(1,2)
n′1,n

′
2,n1,n2

=

∫
dr1dr2φ

∗
n′1

(r1)φ∗n′2(r2)V (r1, r2)φn1
(r1)φn2

(r2) (13.6.7)

The above needs to operate on an N -particle Fock state, namely,

V̂ |l1, · · · , lN 〉 =
1

2N !

∑
n3,··· ,nN

b̂†nN · · · b̂
†
n3 ∑

n′1,n1,n′2,n2

b̂†n2
b̂†n1

V
(1,2)
n′1,n

′
2,n1,n2

b̂n1

 b̂n2
· · · b̂nN |l1, · · · , lN 〉+ · · · (13.6.8)

The right-most term that acts on the Fock state is of the form

b̂n1
b̂n2
· · · b̂nN |l1, · · · , lN 〉 (13.6.9)
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The above yields N ! terms similar to (13.5.11). But b̂†nN · · · b̂
†
n3

commutes with b̂†n2
b̂†n1

in

(13.6.6) above. We can then move b̂†nN · · · b̂
†
n3

to the right of V
(1,2)
n′1,n

′
2,n1,n2

. Then we need to

evaluate∑
n3,··· ,nN

b̂†nN · · · b̂
†
n3
b̂n1 b̂n2 · · · b̂nN |l1, · · · , lN 〉 = (N − 2)!b̂n1 b̂n2 |l1, · · · , lN 〉 (13.6.10)

The above equality can be proved by induction from the three-particle case or Equation
(13.5.13). As a result,

V̂ |l1, · · · , lN 〉 =
1

2N(N − 1)

∑
n′1,n1,n′2,n2

b̂†n2
b̂†n1

V
(1,2)
n′1,n

′
2,n1,n2

b̂n1
b̂n2
|l1, · · · , lN 〉+ · · · (13.6.11)

There are N(N −1) terms of the similar kind in the + · · · above. Summing them up, we have

V̂ |l1, · · · , lN 〉 =
1

2

∑
n′1,n1,n′2,n2

b̂†n2
b̂†n1

V
(1,2)
n′1,n

′
2,n1,n2

b̂n1 b̂n2 |l1, · · · , lN 〉 (13.6.12)

In general, the additive two-particle operator in an N -particle fermion field is given by

V̂ =
1

2

∑
n′1,n1,n′2,n2

b̂†n2
b̂†n1

V
(1,2)
n′1,n

′
2,n1,n2

b̂n1
b̂n2

(13.6.13)

The above derivations for fermions can be repeated for the boson case. In this case, we
will have a field of bosons. It is pleasing that by starting out with the N -particle coordi-
nate space representation of the Schrödinger equation, one arrives at a much simpler Fock
space representation of the same equation. It allows one to treat N -particle problems more
succinctly using such a representation.

13.7 More on Field Operators

The above shows that the one-particle additive operator is independent of the number of
particles. So what distinguishes one-particle quantum system from a two-particle one is in
the Fock state: the first one will have a Fock state for one particle while the latter will have
a Fock state for two particles.

A general one-particle Fock state is

|ψ〉 =
∑
µ

cµb̂
†
µ|0〉 (13.7.1)

When the one-particle field operator acts on the above, it projects the coordinate space
representation of the one-particle wavefunction. Namely,

ψ̂(r)|ψ〉 =
∑
µ

cµφm(r)|0〉 = ψ(r)|0〉 (13.7.2)
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The above one-particle state is in a linear superposition of different eigenstates. Hence, it can
constitute a wave packet.2

Also, from (13.3.1), we can easily show that

b̂†µ =

∫
φµ(r)ψ̂†(r)dr (13.7.3)

On combining with (13.7.3), we have

|ψ〉 =
∑
µ

cµ

∫
φµ(r)ψ̂†(r)dr|0〉

=

∫ [∑
µ

cµφµ(r)

]
ψ̂†(r)dr|0〉

=

∫
f(r)ψ̂†(r)dr|0〉 (13.7.4)

Therefore, a general one-particle state can be written as a linear superposition of the one-
particle field operator ψ̂†(r) weighted by f(r). It is clear that f(r) satisfies the one-particle
Schrödinger equation.

For a general two-particle state in Fock space,

|ψ〉 =
∑
µ1,µ2

cµ1,µ2
b̂†µ1

b̂†µ2
|0〉 (13.7.5)

upon substituting (13.7.3) into the above, we have

|ψ〉 =

∫ (∑
µ1µ2

φµ1(r1)φµ2(r2)cµ1,µ2

)
ψ̂†(r1)ψ̂†(r2)dr1dr2|0〉

=

∫
f(r1, r2)ψ̂†(r1)ψ̂†(r2)dr1dr2|0〉 (13.7.6)

where

f(r1, r2) =
∑
µ1,µ2

φµ1
(r1)φµ2

(r2)cµ1,µ2
. (13.7.7)

For fermions, it can be easily shown, using the commutation relations for the field operators,
that

f (r1, r2) = −f (r2, r1) (13.7.8)

The above implies that cµ1,µ2
= −cµ2,µ1

. The above satisfies the two-particle Schrödinger
equation. It can be generalized to N particles, yielding

|ψ〉 =

∫
f (r1, r2, · · · , rN ) ψ̂† (r1) ψ̂† (r2) · · · ψ̂† (rN ) dr1dr2 · · · drN |0〉 (13.7.9)

2See the appendix for a discussion of wave packets.
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13.8 Boson Wave Field

The results for fermion wave field in the previous section can also be derived for boson wave
field. The difference is that more than one boson can occupy a given state: The Pauli exclusion
principle does not apply to bosons. A boson state involving two modes can be denoted as:

|ψ〉 = |nm, nv〉 (13.8.1)

where there are nm particles in mode m, and nv particles in mode v. Since ordering is
unimportant, it is necessary that

|nm, nv〉 = |nv, nm〉 (13.8.2)

A boson creation operator can be defined such that

â†k|nk, nm, nv〉 = Cnk+1|nk + 1, nm, nv〉 (13.8.3)

It raises the number of bosons in state k by one. By definition,

â†l â
†
k|nk, nl, · · · 〉 = Cnk+1Cnl+1|nk + 1, nl + 1, · · · 〉 (13.8.4)

â†kâ
†
l |nl, nk, · · · 〉 = Cnl+1Cnk+1|nl + 1, nk + 1, · · · 〉 = â†l â

†
k|nk, nl, · · · 〉 (13.8.5)

The last equality follows since ordering is unimportant. Consequently,

â†kâ
†
l − â

†
l â
†
k = 0 (13.8.6)

Similarly, one can define annihilation operators for bosons that have the opposite effect as
the creation operators. Hence, going through a similar process, one also has

âkâl − âlâk = 0 (13.8.7)

From definition,

â†|n〉 = Cn+1|n+ 1〉 (13.8.8)

â|n〉 = Bn|n− 1〉 (13.8.9)

Furthermore, from (13.8.9), we have

〈n+ 1|â†|n〉 = Cn+1, C∗n+1 = 〈n|â|n+ 1〉 = Bn+1 (13.8.10)

Then, we can show that

â†l âk|nk, nl, · · · 〉 = C∗nkCnl+1|nk − 1, nl + 1, · · · 〉 (13.8.11)

âkâ
†
l |nl, nk, · · · 〉 = C∗nl+1Cnk |nl + 1, nk − 1, · · · 〉 (13.8.12)

If Cn is a real number, then when l 6= k,

âkâ
†
l − â

†
l âk = 0 (13.8.13)
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For the case when l = k, we can drop the subscripts k and l and look at

â†â|n〉 = C2
n|n〉 (13.8.14)

ââ†|n〉 = C2
n+1|n〉 (13.8.15)

If C2
n+1 − C2

n = 1, then

ââ† − â†â = Î (13.8.16)

Then above implies that C2
n = n, since C0 =0. Also, Cn =

√
n. In summary, for bosons,

â†kâ
†
l − â

†
l â
†
k = 0 (13.8.17)

âkâl − âlâk = 0 (13.8.18)

âkâ
†
l − â

†
l âk = Îδkl (13.8.19)

The above is derived without resorting to the use of the quantum harmonic oscillator, but
the assumption that Cn is real and that C2

n = n. One can further conclude that

â†â|n〉 = n|n〉 (13.8.20)

which is the number operator, which has been derived using a different approach.

13.9 Boson Field Operators

Similar to fermions, we can define field operators for bosons, so that

ψ̂(r) =
∑
j

âjφj(r) (13.9.1)

In gereral, for N particles,

ψ̂(r1, r2, · · · , rN ) =
1√
N !

∑
n1,n2,··· ,nN

ânN · · · ân1φn1(r1)φn2(r2) · · ·φnN (rN ) (13.9.2)

We can illustrate with a three-particle field operator:

ψ̂(r1, r2, r3) =
1√
3!

∑
n1,n2,n3

ân3
ân3

ân1
φ̂(r1)φ(r1)φ(r2)φ(r3) (13.9.3)

When this operates on |1l, 1m, 1n〉 where the three particles are in different modes, we get
(13.3.9) except that − signs are now replaced by + signs. If we have a state denoted by

|2l, 1m〉 =
1√
2!

(
â†l

)2

am|0〉 (13.9.4)
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then

ψ̂(r1, r2, r3)|2l, 1m〉

=
1√
2!3!

[2φl(r1)φm(r2)φl(r3) + 2φl(r2)φm(r3)φl(r1) + 2φl(r3)φm(r1)φl(r2)] |0〉 (13.9.5)

It can be shown that the above is the correctly normalized wavefunction. If the state is

|3l〉 =
1√
3!

(
â†l

)3

|0〉 (13.9.6)

then

ψ̂(r1, r2, r3)|3l〉 =
6

3!
φl(r1)φl(r2)φl(r3)|0〉 (13.9.7)

The above is in fact normalized.

13.10 Additive One-Particle Operator

In this case, we can illustrate with the three-particle case for bosons, arriving at an expression
similar to (13.5.8)

Ĥ =
1

6

∑
n2,n3

â†n3
â†n2

∑
n′1,n1

â†n′1
H

(1)
n′1,n1

ân1

 ân2
ân3

+ · · · (13.10.1)

where

H
(1)
n′1,n1

= 〈φn′1 |Ĥr1 |φn1〉 (13.10.2)

When the three particles are in the |1l, 1m, 1n〉 state, (13.5.11) follows for bosons except that
we replace − signs with + signs. Equation (13.5.13) follows similarly for bosons, so does
(13.5.14) and (13.5.15). When two of the particles are in the same state as (13.9.4), we have

ân1 ân2 ân3 |2l, 1m〉 =
√

2!(δln3δmn2δln1 + δln3δmn1δln2 + δln2δmn3δln1)|0〉 (13.10.3)

Similar to (13.5.13), we need to evaluate∑
n2,n3

â†n3
â†n2

ân1 ân2 ân3 |2l, 1m〉

=
√

2!
(

2δln1
â†l â
†
m + δmn1

â†l â
†
l

)
|0〉

=
√

2!ân1

(
â†l

)2

â†m|0〉 = (2!)ân1
|2l, 1m〉 (13.10.4)

The first equality is established using (13.10.3), while the second equality is obtained by

working backward using commutation relations to expand ân1

(
â†l

)2

â†m|0〉. When the three

particles are in the same state as indicated by (13.9.6), we have

ân1
ân2

ân3
|3l〉 = (3!)3/2δln3

δln2
δln1
|0〉 (13.10.5)
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and ∑
n2n3

â†n3
â†n2

ân1
ân2

ân3
|3l〉

= (3!)
3/2

δln1

(
â†l

)2

|0〉 =
1

3
(3!)3/2ân1

(
â†l

)3

|0〉 = (2!)ân1 |3l〉 (13.10.6)

In general, ∑
n2,n3

â†n3
â†n2

ân1
ân2

ân3
|ψ3p〉 = (2!) ân1

|ψ3p〉 (13.10.7)

where |ψ3p〉 is the three-particle Fock state of either

|1l, 1m, 1n〉 , |2l, 1m〉 , |3l〉 (13.10.8)

or other combinations. The proof for the rest follows that of fermion particles of (13.5.14) to
(13.5.17). In general, the Hamiltonian for N bosons is given by

Ĥ =
∑
n′,n

Hn′,nâ
†
n′ ân (13.10.9)

For the diagonal case, it becomes

Ĥ =
∑
n

Enâ
†
nân (13.10.10)

13.11 The Difference between Boson Field and Photon
Field

The above is the Hamiltonian for a boson field or gas in Fock space. It looks strikingly similar
to the Hamiltonian for photon field or electromagnetic field. However, it is to be noted that
a boson field is quite different from the field of N photons.

1. A coordinate ri can be associated with every boson particle, but not with every photon;

2. All photons share the same electromagnetics field function in its field operator repre-
sentation, but N bosons will have product of N one-particle field operator;

3. The Hamiltonian of a boson gas has no zero-point energy, but for photons, there exists
the zero-point energy of 1

2~ω.

A photon should be thought of as a quantized energy packet due to coupled quantum
harmonic oscillation of “space” or “vacuum”, similar to the case of a phonon, which is coupled
quantum harmonic oscillation of crystalline lattice.



Chapter 14

Interaction of Different Particles

14.1 Introduction

In the previous chapter, it was shown that the Hamiltonian of a many particle system can
be written succinctly using Fock space representation. This opens up the study of com-
plex systems, such as excitons that involve the interaction of electron-hole pair, as well as
superconductivity that involves the interaction of electrons with phonons. In this chapter,
we will study the interaction of the electron of an atom with photons of a cavity using the
many-particle formalism.

14.2 Interaction of Particles

Say if we have two quantum systems that are initially non-interacting, their individual quan-
tum systems can be described by eigenstates that satisfy

Ĥ1 |ψ1〉 = E1 |ψ1〉 (14.2.1)

Ĥ2 |ψ2〉 = E2 |ψ2〉 (14.2.2)

Even though the two systems are entirely non-interacting with each other, nevertheless, we
can combine the two systems together and write

Ĥ0 |ψ〉 =
(
Ĥ1 + Ĥ2

)
|ψ1〉 |ψ2〉 = (E1 + E2) |ψ1〉 |ψ2〉 = E |ψ〉 (14.2.3)

where |ψ1〉 |ψ2〉 represents a state in the direct product space. It can be used to represent
the eigenstates of the combined system. Equation (14.2.3) is entirely equivalent to (14.2.1)
and (14.2.2). In the above, Ĥ1 acts only on |ψ1〉 and Ĥ2 acts on |ψ2〉. The above allows
us to add an interaction term between system 1 and system 2, and the same direct product
space can be used to span the solution space. By using Fock space representation, the above
Hamiltonians can be written in terms of annihilation and creation opeartors for a system
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consisting of fermions and bosons,

Ĥ1 =
∑
j

Ej b̂
†
j b̂j , Ĥ2 =

∑
λ

~ωλâ†λâλ (14.2.4)

where Ĥ1 can be the Hamiltonian for electrons, and Ĥ2 can be the Hamiltonian for photons
where the 1

2~ωλ term or the zero-point energy has been ignored. This term will just introduce
a phase shift in the solution.

When electric dipole interaction exists between the electron of an atom and the electro-
magnetic field, the interaction Hamiltonian may be written as

Ĥed,r = eE · r (14.2.5)

The above has been added as a perturbation to the unperturbed equation (14.2.3) where the
electric field is treated classically in a previous chapter. We have enough knowledge now
to treat both E and r quantum mechanically. For the electron in the i-th atom, the above
becomes

Ĥed,ri = ie
∑
λ

(
âλ − â†λ

)√ ~ω
2ε0

uλ (ri) · ri (14.2.6)

We have used a quantized cavity mode electric field in (14.2.5) to arrive at the above. Also,
r in coordinate space representation remains unchanged. When N atoms are present,

Ĥed,r =

N∑
i=1

ie
∑
λ

(
âλ − â†λ

)√ ~ω
2ε0

uλ (ri) · ri (14.2.7)

A similarity transform of the above Hamiltonian can be performed with the N particle field
operator to yield

Ĥed =

∫
ψ̂†NP (r1, · · · , rN )Ĥed,rψ̂NP (r1, · · · , rN )dr1 · · · drN (14.2.8)

As mentioned in the previous chapter, since only one-particle interaction is involved, the
above can be transformed with the one-particle field operator yielding

Ĥed =
∑
j,k,λ

Hed,λ,j,k b̂
†
j b̂k

(
âλ − â†λ

)
(14.2.9)

where

Hed,λ,j,k = ie

√
~ω
2ε0

∫
drφ∗j (r)uλ(r) · rφk(r) (14.2.10)

14.3 Time-Dependent Perturbation Theory

In the time-dependent perturbation theory, we first seek the solution of the unperturbed
system. The eigenstate of the unperturbed system is defined as

Ĥ0 |Nfm;Nbm〉 = Em |Nfm;Nbm〉 (14.3.1)
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where |Nfm;Nbm〉 stands for a vector in the direct product space of fermions and bosons:
Nfm stands for the m-th state of the fermions, while Nbm stands for the m-th state of the
bosons.

When the system is perturbed, we denote the solution |ψ〉 as a linear superposition of the
eigenstates of the unperturbed solution. That is

|ψ〉 =
∑
m

cm (t) e−iωmt |Nfm;Nbm〉 (14.3.2)

where ~ωm = Em. The state |ψ〉 evolves in time according to the equation

i~
∂

∂t
|ψ〉 =

(
Ĥ0 + Ĥp

)
|ψ〉 (14.3.3)

Applying the time-dependent perturbation method as we have done previously, and testing
the equation with 〈Nfq;Nbq| gives

ċ(1)
q (t) =

1

i~
∑
m

c(0)
m e−i(ωm−ωq)t 〈Nfq;Nbq| Ĥp |Nfm;Nbm〉 (14.3.4)

If the starting state is assumed such that c
(0)
s = 1, and all other states are zero, then the

above becomes

ċ(1)
q (t) =

1

i~
ei(ωq−ωs)t 〈Nfq;Nbq| Ĥp |Nfs;Nbs〉 (14.3.5)

with

Ĥp = Ĥed =
∑
j,k,λ

Hed,λ,j,k b̂
†
j b̂k

(
âλ − â†λ

)
(14.3.6)

14.3.1 Absorption

The electron in an atom is assumed to have two states: a lower energy state E1, and an upper
energy state E2. We assume a photon in mode λ1 in the cavity. Then the starting state can
be written as

|Nfs;Nbs〉 = b̂†1â
†
λ1
|0〉 (14.3.7)

with energy

Es = E1 + ~ωλ1 (14.3.8)

Consequently,

Ĥp |Nfs;Nbs〉 =
∑
j,k,λ

Hed,λ,j,k b̂
†
j b̂k

(
âλ − â†λ

)
b̂†1â
†
λ1
|0〉 (14.3.9)

It can be shown that

b̂†j b̂k

(
âλ − â†λ

)
b̂†1â
†
λ1
|0〉 = δk1δλλ1

b̂†j |0〉 − δk1b̂
†
j â
†
λâ
†
λ1
|0〉 (14.3.10)
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In order for 〈Nfq;Nbq| Ĥp |Nfs;Nbs〉 to be nonzero, it is necessary that |Nfq;Nbq〉 contains

b̂†j |0〉 or b̂†j â
†
λâ
†
λ1
|0〉. If

|Nfq;Nbq〉 = b̂†j |0〉 (14.3.11)

then Eq = Ej , and

ċ(1)
q (t) =

1

i~
ei(ωj−ω1−ωλ1)t

∑
k,λ

Hed,λ,j,kδk1δλλ1
〈0| b̂j b̂†j |0〉 (14.3.12)

=
1

i~
ei(ωj−ω1−ωλ1)tHed,λ1,j,1 (14.3.13)

where ~ωj = Ej . The above is an oscillatory function of t unless ωj − ω1 − ωλ1
= 0. When

this happens, ċ
(1)
q (t) will integrate to a large value, indicating the high likelihood of transition

to his eigenstate. Therefore, for this to happen, we need

E2 − E1 = ~ωλ1
(14.3.14)

In this process, we start with the electron in E1 and a photon in the cavity, and end up with
the electron in E2 and no photon as indicated by (14.3.11).

If we integrate the above equation, a sinc function results, which can be approximated by
a delta function for long integration time, as was done previously. One can show that

|c(1)
q |2 =

2π

~
t0 |Hedλ1,j,1|

2
δ(E2 − E1 − ~ωλ1

) (14.3.15)

One can derive the transition rate as before to arrive at

wq =
2π

~
| Hedλ1,j,1 |2 δ(E2 − E1 − ~ωλ1

) (14.3.16)

In the above, the other possibility is for the final state to be

|Nfq;Nbq〉 = b̂†j â
†
λâ
†
λ1
|0〉 (14.3.17)

with energy

Eq = Ej + ~ωλ + ~ωλ1
(14.3.18)

Hence

Eq − Es = Ej − E1 + ~ωλ (14.3.19)

and Eq−Es = 0 in order for transition to occur or c
(1)
q to be large. However, (14.3.19) cannot

be zero. If Ej = E2, Eq −Es > 0 always. If Ej = E1, then ~ωλ > 0. What this means is that
it is not possible to start with an electron in the ground state and a photon in the cavity to
end up with the electron in the excited state with the emission of a photon.
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14.4 Spontaneous Emission

In the case of spontaneous emission, we assume that the starting state of the electron is in
the excited state with energy E2. Then, Es = E2 initially and

|Nfs;Nbs〉 = b̂†2|0〉 (14.4.1)

Then

Ĥp|Nfs;Nbs〉 =
∑
j,k,λ

Hed,λ,j,k b̂
†
j b̂k

(
âλ − â†λ

)
b̂†2|0〉 (14.4.2)

The above can be reduced to

Ĥp|Nfs;Nbs〉 = −
∑
j,k,λ

Hed,λ,j,k δ2k b̂
†
j â
†
λ|0〉 (14.4.3)

Therefore, for 〈Nfq;Nbq|Ĥp|Nfs;Nbs〉 to be nonzero, we need

|Nfq;Nbq〉 = b̂†j â
†
λ|0〉 (14.4.4)

with

Eq = Ej + ~ωλ (14.4.5)

Therefore

Eq − Es = Ej − E2 + ~ωλ (14.4.6)

In order for a sizeable c
(1)
q , we need Ej = E1, and then

E2 − E1 = ~ωλ (14.4.7)

Then electron starts with the excited state E2, spontaneously emits a photon, and drops to
lower state E1. Then energy of the emitted photon satisfies (14.4.7) by energy conservation.

14.5 Stimulated Emission

In this case, the electron in an atom is in the excited state. The presence of a photon in the
cavity stimulates the emission of another photon from the electron. The initial state is

|Nfs;Nbs〉 = b̂†2â
†
λ1
|0〉 (14.5.1)

with

Es = E2 + ~ωλ1
(14.5.2)
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We can show that

Ĥp|Nfs;Nbs〉 =
∑
j,k,λ

Hed,λ,j,k b̂
†
j b̂k

(
âλ − â†λ

)
b̂†2â
†
λ1
|0〉 (14.5.3)

=
∑
j,k,λ

Hed,λ,j,k δk2

(
δλλ1 b̂

†
j − b̂

†
j â
†
λâ
†
λ1

)
|0〉 (14.5.4)

In order for the above to transition to the final state, or one requires a non-zero result for

〈Nfq;Nbq|Ĥp|Nfs;Nbs〉

it is necessary that

|Nfq;Nbq〉 = b̂†j â
†
λâ
†
λ1
|0〉 (14.5.5)

with energy

Eq = Ej + ~ωλ + ~ωλ1
(14.5.6)

or

Eq − Es = Ej − E2 + ~ωλ = 0 (14.5.7)

In other words, the only possibility is for Ej = E1, yielding

E2 − E1 = ~ωλ (14.5.8)

The above is just the spontaneous emission of a photon with the above energy, regardless if
we already have a photon with energy ~ωλ1

in the cavity.
Next we consider the case when λ = λ1. Then

|Nfq;Nbq〉 =
1√
2!
b̂†j

(
â†λ1

)2

|0〉 (14.5.9)

with

Eq = Ej + 2~ωλ1
(14.5.10)

Consequently,

〈Nfq;Nbq|Ĥp|Nfs;Nbs〉 = Hed,λ1,j,2〈0|
1√
2!

(âλ)2b̂j b̂
†
j

(
â†λ1

)2

|0〉

=
√

2!Hed,λ1,j,2〈0|
1√
2!

(âλ)2b̂j
1√
2!
b̂†j

(
â†λ1

)2

|0〉

=
√

2Hed,λ1,j,2 (14.5.11)

The
√

2 factor is important implying that the transition is two times more likely to occur
compared to the previous case. This is peculiar to stimulated emission where the emission of
a photon is enhanced by the presence of a photon of the same frequency.
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14.6 Multi-photon Case

In the multi-photon case, the transition rate for stimulated emission can be shown to be

wq =
2π

~
(nλ1

+ 1)|Hed,λ1,1,2|2δ(E1 − E2 + ~ωλ1
) (14.6.1)

implying that the presence of nλ1
photons in the cavity enhances the emission by (nλ1

+ 1)
times.

The spontaneous emission, however, is not affected by the presence of photons of other
frequencies in the cavity. For the absorption case, it can be shown that the formula is

wq =
2π

~
nλ1
|Hed,λ1,1,2|2δ(E2 − E1 − ~ωλ1

) (14.6.2)

14.7 Total Spontaneous Emission Rate

When an electron emits a photon into the cavity, there are many modes with the same
frequency that the emission can occur. In general, the total spontaneous emission rate is

Wspon =
∑
q

wq =
2π

~
∑
λ

|Hed,λ,1,2|2δ(E1 − E2 + ~ωλ) (14.7.1)

In the above

Hed,λ,1,2 = ie

√
~ωλ
2ε0

∫
φ∗j (r)[uλ(r) · r]φk(r)dr

' ie
√

~ωλ
2ε0

uλ(r0) · rjk (14.7.2)

where

rjk =

∫
φ∗j (r)rφk(r)dr (14.7.3)

We have assumed here that uλ(r0) is slowly varying compared to φl(r), l = j, k, and that
φl(r) is highly localized around an atom.

The modes in the cavity can be made countable by imposing a periodic boundary condition
arriving at

uλ(r) = e
1√
Vb
eik·r (14.7.4)

The summation over different electromagnetic modes then becomes∑
λ

→
∑
pol

∑
k

→
∑
pol

∑
k

Vb
(2π)3

∆k =
∑
pol

∫
Vb

(2π)3
dk (14.7.5)
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Figure 14.1: The vectors in the polarization of the emitted photon are aligned to simplify the
calculation (from DAB Miller).

We can also pick the polarization such that one of them is always orthogonal to r12, so that

u(r0) · r12 = uλ(r0)r12 sin θ (14.7.6)

Consequently,

Wspon =
2π

~

∫
Vb

(2π)3

∣∣∣∣∣ie
√

~ωk
2ε0

1√
Vb
eik·r0r12 sin θ

∣∣∣∣∣
2

δ(E1 − E2 + ~ωk)dk (14.7.7)

or

Wspon =
e2|r12|2

8π2ε0

∫
ωk sin2 θδ(E1 − E2 + ~ωk)dk

=
e2|r12|2

8π2ε0

∫ ∞
k=0

∫ π

θ=0

ωkδ(E1 − E2 + ~ωk)2π sin3 θk2dθdk (14.7.8)

In the above, ωk = ck, or ~ck = ~ωk. Then

Wspon =
e2|r12|2

4πε0c3~4

∫ ∞
k=0

∫ π

θ=0

(~ωk)δ(E1 − E2 + ~ωk) sin3 θdθ(~ωk)2d(~ωk) (14.7.9)

Since ∫ π

θ=0

sin3 θdθ = −
∫ 1

−1

(1− cos2 θ)d cos θ =
4

3
(14.7.10)

then,

Wspon =
e2|r12|2ω3

12

3πε0~c3
(14.7.11)

where ~ω12 = E2 − E1. The life time of a state is then τ = W−1
spon.



Chapter 15

Quantum Information and
Quantum Interpretation

15.1 Introduction

One important tenet of quantum mechanics is that one does not know what the state of the
system is until one performs a measurement. After the measurement, the system collapses to
the state that is “discovered” by the measurement. Before the measurement, the quantum
system is described by a state that is in a linear superposition of different states. It is the
existence as a linear superposition of states that greatly enriches the information content of
a quantum system. The possibility of a system to be simultaneously in different states is
peculiar to quantum mechanics. Objects in the classical world cannot be in such a state.
In puts quantum systems in the realm of “ghosts” and “angels” where in fairy tales and
ghost and angel stories of different cultures, they can be simultaneously in many places or
in different states. It is because of these “ghost-angel” states, that we can have quantum
cryptography, quantum communication, quantum circuits, and quantum computing.

15.2 Quantum Cryptography

Quantum cryptography can be used for secure quantum communication. It is secure because
a quantum state cannot be replicated without disturbing the quantum state. Hence, whoever
wants to replicate a quantum state to steal the data will be easily detected. The property of
non-replication follows from the no-cloning theorem.

15.2.1 No-cloning Theorem

First we assume that a quantum operator can be designed such that it can clone a quantum
state without measuring it. But such a capability will violate the principle of linear superpo-
sition, as we shall show. Therefore, such an operator cannot be designed. This is a proof by
contradiction.
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A quantum system is described by a quantum state that evolves from an initial state to
a final state following the laws of quantum mechanics. An example of such an evolutionary
operator is

T̂ = e−i
Ĥ
~ t (15.2.1)

The above quantum operator is a unitary operator as well as a linear operator. First, assume
that it has the capability of replicating a quantum state in system 2 to be identical to the
state in system 1 after acting on such a quantum system. It does so without altering the
quantum state of system 1, e.g., by a measurement. We denote this by

T̂ |Ψs〉2|Ψa〉1 = |Ψa〉2|Ψa〉1 (15.2.2)

By the same token, it should replicate

T̂ |Ψs〉2|Ψb〉1 = |Ψb〉2|Ψb〉1 (15.2.3)

Now if the state to be replicated is

|Ψc〉1 =
1√
2

[|Ψa〉1 + |Ψb〉1] (15.2.4)

Then

T̂ |Ψs〉2|Ψc〉1 =
1√
2

[
T̂ |Ψs〉2|Ψa〉1 + T̂ |Ψs〉2|Ψb〉1

]
=

1√
2

[|Ψa〉2|Ψa〉1 + |Ψb〉2|Ψb〉1] 6= |Ψc〉2|Ψc〉1 (15.2.5)

Clearly, the above violates the principle of linear superposition if the last equality is true.
Hence, such a cloning operator is impossible due to the violation of the principle of linear
superpostion. The above proves the no-cloning theorem.

15.2.2 Entangled States

A multi-mode photon can be described by the following field operator

E(r) =
∑
k,s

√
~ωk
2V ε0

esâk,se
ik·r−iωt + c.c (15.2.6)

The single photon state can be denoted by

|ψ〉 = |1k,v〉 (15.2.7)

The above denotes a photon in a pure k state with polarization v. It has a packet of energy
E = ~ωk. However, a photon with a pure k state is not localized. But a photon generated by a
source like an atomic transition must be causal, and hence, localized. A localized wave packet
describing this photon field can be constructed by using a linear superposition of wavenumber
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k or frequencies. For high frequency photons, this localized state can have a center frequency
with a small spread of frequencies around the center frequency. The single-photon Fock state
can hence be written as

|ψ〉 =
∑
k

ck|1k,v〉 (15.2.8)

For quasi-monochromatic photons, the above will be dominated by one term and we can
denote this photon approximately with the state vector (15.2.7).

Figure 15.1: Two photons traveling in different directions.

With the above picture in mind, we can think of two localized photons traveling in different
directions. A direct product space can be used to represent the state of these two photons:

|ψ〉ab = |1ka,v〉a|1kb,v〉b (15.2.9)

where we have assumed quasi-mono-chromatic photons. For simplicity, we denote a two-
photon state as

|ψ〉12 = |V 〉1|V 〉2 (15.2.10)

If the two photons are generated from the same source, entangled photon states may
result. Entangled two-particle states are those that cannot be written as a product (outer
product or tensor product) of simpler states. An example is the EPR (Einstein, Podolsky,
and Rosen) pair

|Φ+〉12 =
1√
2

(
|H〉1|H〉2 + |V 〉1|V 〉2

)
(15.2.11)

Other entangled states are

|Φ−〉12 =
1√
2

(
|H〉1|H〉2 − |V 〉1|V 〉2

)
(15.2.12)

|Ψ+〉12 =
1√
2

(
|H〉1|V 〉2 + |V 〉1|H〉2

)
(15.2.13)

|Ψ−〉12 =
1√
2

(
|H〉1|V 〉2 − |V 〉1|H〉2

)
(15.2.14)

The above four states are also called the Bell states. They are usually generated due to the
particle pair needing to satisfy conservation of angular momentum. For instance, two photons
are generated by atomic transitions where the initial angular momentum of the system is zero.
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An angular momentum conserving state with two counter-propagating photon is

|Φ〉 =
1√
2

(
|R〉1|R〉2 + |L〉1|L〉2

)
(15.2.15)

where R and L stand for right-handed and left-handed circular polarizations, respectively.
But a change of basis allows the above to be written as

|Φ〉 = − 1√
2

(
|H〉1|H〉2 − |V 〉1|V 〉2

)
(15.2.16)

one of the Bell states.
The entangled states are bewildering because it means that for two counter-propagating

photons, if one measures one photon is in |H〉 state, the other photon immediately collapses
to an |H〉 state as well, regardless of how far apart the two photons are. Whereas before the
measurement, the photons are in a linear superposition of a |H〉 and |V 〉 states.

15.2.3 A Simple Quantum Encryption Algorithm

Let us assume that Alice and Bob communicate by the use of simple photon polarizers. When
Alice sends out a |V 〉 state photon, it represents a “1” and similarly, an |H〉 state photon
represents a “0”. If Bob receives with a similarly aligned polarizer, he receives the information
correctly. (We call this the VH mode.) If Alice aligns her polarizer at 45◦ and Bob follows
suit, he continues to receive the information correctly.

However, if Alice aligns her polarizer vertically, and Bob aligns his at 45◦, the bit infor-
mation received by him is only correct only 50% of the time. This is because the |+45〉 state
and |−45〉 state are expressible as a linear superposition of the |H〉 and |V 〉 states. Normally,

|+45〉 =
1√
2

(|H〉+ |V 〉) (15.2.17)

|−45〉 =
1√
2

(|H〉 − |V 〉) (15.2.18)

By the tenet of quantum measurement, these states are measured with equal likelihood
of being |H〉 or |V 〉. Similarly, if Alice transmits with her polarizer aligned in the 45◦ angle,
and Bob receives with polarizers with H and V polarization, he receives the polarization of
|H〉 and |V 〉 with equal likelihood (50% chance) regardless of what polarization Alice sends.
This is because

|H〉 =
1√
2

(|+45〉+ |−45〉) (15.2.19)

|V 〉 =
1√
2

(|+45〉 − |−45〉) (15.2.20)

Now if Alice decides to use her polarizer randomly, and Bob receives with the polarizer
randomly so that they are equally likely to use VH mode or 45◦ mode. The probability that
their polarizers are aligned is correctly 50%. During this time, they communicate with no
error. The other 50% time, when their polarizers are misaligned, they communicate with 50%
error. Hence, 25% of the data are wrong.
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Figure 15.2: Communication between Alice and Bob using single-photon source and simplified
polarizer measurement schemes (from DAB Miller).

After a preliminary quantum communication, Alice and Bob can communicate the infor-
mation about the alignments of their polarizers, say, by a phone call. Bob will retain only
the data when their polarizers are correctly aligned and discard the rest. For the preliminary
communication, they can compare their data over the aligned case, and there should be error
free in principle.

If an eavesdropper, Eve, attempts to steal the information, she does so by using a polarizer
to intercept the photon. If Eve knows that Alice is using the VH mode, Eve aligns her polarizer
in the VH mode. After Eve has received the data, she can retransmit the data to Bob, thus
stealing the data. However, if the polarization used by Alice is random, Eve’s polarizer is
not aligned with Alice’s half the time. Eve would have corrupted her data making the wrong
transmission 50% of the time. This would increase the error in transmission of the data from
Alice to Bob making it wrong 25% of the time. If Alice and Bob communicate by a phone
call to check the security of their data transmission and found that it is wrong approximately
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25% of the time, they would have suspected an eavesdropper.
Notice that Eve has to collapse the state of the photon sent out by Alice into one of the

two states of Eve’s polarizer before she can duplicate the photon and send it to Bob. Because
of the no-cloning theorem, Eve cannot duplicate the state of the photon that Alice has sent
without measuring it.

In a secure communication system, Alice and Bob do not send the real message in pre-
liminary testing of the security of time channel. Alice will first send Bob the secret key and
test if the channel is secure. If it is a secure channel, then she would send the rest of the
information. The above is known as the BB84 protocol, attributed to Bennett and Brassard’s
work in 1984.

Also, notice that the above secure communication system does not work in a classical
optical communication channel where a bunch of photons is sent. If a bunch of photon is sent
by Alice to denote a V or an H polarization to send “1” and “0”, when Eve eavesdrops with
her misaligned polarizer by 45◦, she would have noticed that equal number of photons are
emerging from her two orthogonal polarizations. By checking the phase of the two streams
of photons, she can easily duplicate a classical photon bunch and send it to Bob, meanwhile
stealing the data off the communication channel. Hence, the security of the quantum com-
munication channel comes from the interpretation of quantum mechanics: a particle is in the
linear superposition of quantum states before the measurement. A measurement collapses
the quantum state into one of the states “discovered” by the measurement.

The above discussion of a secure channel is based on ideal single-photon sources. In prac-
tice, non-ideality will give rise to communication errors. Quantum error correction schemes
have been devised to minimize the errors in a quantum communication channel.

15.3 Quantum Computing

The distinguishing feature of quantum computing is quantum parallelism. Again, this follows
from the tenet of quantum measurement. A quantum state can be in a linear superposition of
many states before the measurement. After the measurement, the quantum state collapses to
one of the quantum states. The prowess of quantum computing, as mentioned before, comes
from the “ghost-angel” state of a quantum system.

15.3.1 Quantum Bits (Qubits)

A quantum bit or a qubit is a bit in a quantum state that is in the linear superposition of
two states representing the |0〉 bit and the |1〉 bit. Namely,

|ψ〉 = C0 |0〉+ C1 |1〉 (15.3.1)

where |C0|2 + |C1|2 = 1. The two states |0〉 and |1〉 can be the vertical and horizontal
polarization of a photon. Alternatively, it can be the up and down state of a spin, or any two
energy levels of a multi-level system.

The richness of quantum information is already manifested in this very simple example.
Unlike classical bits in classical computers, which can only have binary values, a qubit can
have multitudes of possible values depending on the values of C0 and C1. A two-state quantum



Quantum Information and Quantum Interpretation 175

system, as has been shown in the spin case, can be represented by a Bloch sphere. Every
point on the Bloch sphere represents a possible quantum state, depending on C1 and C2, and
there could be infinitely many states.

15.3.2 Quantum Gates

Analogous to classical logic gates, there are quantum gates that manipulate the |0〉 and |1〉
states of a qubit. A qubit as indicated by (15.3.1) can be represented by a column vector of
length two. For example, the qubit in (15.3.1) can be represented by [C0, C1]

t
. A quantum

gate transforms the quantum state [C0, C1]
t

to another state [C ′0, C
′
1]
t
. Such a matrix[

C ′0
C ′1

]
=

[
M11 M12

M21 M22

] [
C0

C1

]
(15.3.2)

has to be unitary since all quantum gates must operate by the time evolution according to

M̂ = e−i
Ĥ
~ t (15.3.3)

Figure 15.3: Single qubit gates showing their input and output states.

Examples of quantum gates, expressed in their matrix representations with a slight abuse
of notation, are

X̂ =

[
0 1
1 0

]
(15.3.4)

Ẑ =

[
1 0
0 −1

]
(15.3.5)

Ĥ =
1√
2

[
1 1
1 −1

]
(15.3.6)

X̂ represents the NOT gate while Ẑ represents one that flips the sign of |1〉 bit. Ĥ is called
the Hadamard gate that is almost like a “square root” gate.
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When these quantum gates operate on the qubit denoted by (15.3.1), the results are as
follows:

X̂|ψ〉 = C1|0〉+ C0|1〉 (15.3.7)

Ẑ|ψ〉 = C0|0〉 − C1|1〉 (15.3.8)

Ĥ|ψ〉 =
C0√

2
(|0〉+ |1〉) +

C1√
2

(|0〉 − |1〉) (15.3.9)

Moreover, one can show that

Ĥ2 = Î (15.3.10)

When expressed in terms of matrix algebra,

X̂

[
C0

C1

]
=

[
C1

C0

]
(15.3.11)

Ẑ

[
C0

C1

]
=

[
C0

−C1

]
(15.3.12)

Ĥ

[
C0

C1

]
=

[
C0+C1√

2
C0−C1√

2

]
(15.3.13)

In addition to one qubit gate, there are also two qubit gates. A very important one is the
CNOT gate shown in Figure 15.4. Its transformation matrix is given by

ÛCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (15.3.14)

The above can also be implemented with a unitary transform.

Figure 15.4: A quantum circuit of a two-qubit gate representing the CNOT gate. It takes
two input streams, and has two output streams. The ⊕ symbol represents an exclusive or
operation, or addition modulus 2.

15.3.3 Quantum Computing Algorithms

As mentioned before, the most important aspect of quantum computing algorithm is quantum
parallelism. We will illustrate this with the Deutsch algorithm. It can be implemented with
the quantum circuit shown below:
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Figure 15.5: The implementation of the Deutsch algorithm with quantum gates and circuits.

We start with a state

|ψ0〉 = |0, 1〉 (15.3.15)

At stage |ψ1〉, we have

x = Ĥ · q1 =
1√
2

(|0〉+ |1〉) (15.3.16)

y = Ĥ · q2 =
1√
2

(|0〉 − |1〉) (15.3.17)

Hence,

|ψ1〉 =
1

2
(|0〉+ |1〉) (|0〉 − |1〉) =

1

2
(|0, 0〉 − |0, 1〉+ |1, 0〉 − |1, 1〉) (15.3.18)

The unitary operator ûf has no effect on the x qubit, but performs the operation y⊕ f(x) on
the y qubit. The function f(x) takes input x which is either 0 or 1. It produces an output
which is either constant or balanced, but the output is either 0 or 1.

Hence, according to the rules above,

|ψ2〉 =
1

2
(|0, f(0)〉 − |0, 1⊕ f(0)〉+ |1, f(1)〉 − |1, 1⊕ f(1)〉) (15.3.19)

If f(x) is a constant function, then f(0) = f(1), and the above becomes

|ψ2〉const =
1

2
(|0, f(0)〉 − |0, 1⊕ f(0)〉+ |1, f(0)〉 − |1, 1⊕ f(0)〉)

=
1

2
(|0〉+ |1〉) (|f(0)〉 − |1⊕ f(0)〉) (15.3.20)

With the Hadamard operation on the upper qubit, we have

|ψ3〉const = |0〉 1√
2

(|f(0)〉 − |1⊕ f(0)〉) (15.3.21)
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If for the balanced case, f(0) 6= f(1), hence f(1) = 1⊕ f(0). Then

|ψ2〉bal =
1

2
(|0, f(0)〉 − |0, 1⊕ f(0)〉+ |1, 1⊕ f(0)〉 − |1, f(0)〉)

=
1

2
(|0〉 − |1〉) (|f(0)〉 − |1⊕ f(0)〉) (15.3.22)

After the H gate operation, we have

|ψ3〉bal = |1〉 1√
2

(|f(0)〉 − |1⊕ f(0)〉) (15.3.23)

The above shows the prowess of quantum parallelism with just one operation, one can
determine if a function f(x) is balanced or constant. More sophisticated algorithms exploiting
quantum parallelism, such as the Shor’s algorithm and the Grover’s algorithm, have been
devised. The Shor’s algorithm can perform a Fourier transform in (logN)2 operations rather
than the classical N logN operations. The Grover’s algorithm can search a data base with
N data in

√
N operations rather than the classical N operations. Because of quantum

parallelism, quantum computer can also perform quantum simulation of quantum system
which is not possible on classical computers.

15.4 Quantum Teleportation

Quantum teleportation is the idea of Alice being able to send a photon of unknown state to
Bob, without having to perform a measurement on this photon, nor disturb its state. We
denote the photon, called photon 1, in the unknown state by

|ψ〉1 = C0 |0〉1 + C1 |1〉1 (15.4.1)

In the beginning, this photon is only accessible to Alice. Alice, however, is accessible to
another photon, called photon 2, of an entangled Bell state. The other photon of the Bell
state, photon 3, is not accessible to Alice but is accessible to Bob.

We can define the state of the three photons by the direct product state

|Ψ〉123 =
1√
2

(C0 |0〉1 + C1 |1〉1) (|0〉2 |1〉3 − |1〉2 |0〉3) (15.4.2)

where the Bell state is assumed to be∣∣Ψ−〉
23

=
1√
2

(|0〉2 |1〉3 − |1〉2 |0〉3) (15.4.3)

Expanding (15.4.2) gives rise to

|Ψ〉123 =
1√
2

(C0 |0〉1 |0〉2 |1〉3 − C0 |0〉1 |1〉2 |0〉3

+C1 |1〉1 |0〉2 |1〉3 − C1 |1〉1 |1〉2 |0〉3) (15.4.4)
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Figure 15.6: A teleportation experiment setup with photons. Alice makes measurement on
the two photons accessible to her using the Bell state measurement device, and communicate
the outcome to Bob via a classical channel. Bob then performs a unitary transformation on
his photon to obtain the input photon state (from Fox).

The four Bell states are complete and orthogonal, and the states of photon 1 and photon 2
can be expanded in the four Bell states; namely∣∣Φ+

〉
12

=
1√
2

(|0〉1 |0〉2 + |1〉1 |1〉2) (15.4.5)

∣∣Φ−〉
12

=
1√
2

(|0〉1 |0〉2 − |1〉1 |1〉2) (15.4.6)

∣∣Ψ+
〉

12
=

1√
2

(|0〉1 |1〉2 + |1〉1 |0〉2) (15.4.7)

∣∣Ψ−〉
12

=
1√
2

(|0〉1 |1〉2 − |1〉1 |0〉2) (15.4.8)

Projecting (15.4.4) onto the four Bell states, and subsequently expanding (15.4.4) in terms
of them, we have

|Ψ〉123 =
1

2

[∣∣Φ+
〉

12
(C0 |1〉3 − C1 |0〉3)

+
∣∣Φ−〉

12
(C0 |1〉3 + C1 |0〉3)

+
∣∣Ψ+

〉
12

(−C0 |0〉3 + C1 |1〉3)

−
∣∣Ψ−〉

12
(C0 |0〉3 + C1 |1〉3)

]
(15.4.9)

In the above, the first two photons, photon 1 and photon 2, are grouped into different Bell
states. Moreover, the state of photon 3 resembles the state of the original photon 1. The
quantum system now is in a linear superposition of different Bell states.
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The Bell state measurement device projects the first two photons onto a Bell state. The
Bell state measurement device collapses the quantum system into one of the four Bell states.
For example, when Alice finds that the first two photons are in the Bell state |Φ+〉12, then
the third photon must be in the state

|ψ〉3 = C0 |1〉3 − C1 |0〉3 (15.4.10)

Bob can apply a unitary operator, similar to qubit gate operators described in the previous
section, to obtain the original state of photon 1.

The above does not violate the no-cloning theorem, because the original state of the
photon 1 is destroyed, and its semblance is reproduced in photon 3.

15.5 Interpretation of Quantum Mechanics

Quantum mechanics has the basic tenet that a quantum state is in a linear superposition of
states before a measurement. A measurement projects a quantum state into one of the states.
The ability of a quantum state to be in a linear superposition of states is surreal, and it has
bothered a great many physicists. In the classical world, a system can only be in one state
or the other, but not in a linear superposition of states. Only the world of ghosts and angels
can we imagine that an object is in a linear superposition of states.

In the coordinate space, an electron, represented by its wavefunction, can be simultane-
ously at all locations where the wavefunction is non-zero. In the Young’s double slit experi-
ment, the electron, represented by its wavefunction, can go through both slits simultaneously
like a wave.1

When the ghost-angel state concept is extended to classical objects, such as a cat, it gives
rise to the ludicrous result: the story of the Schrödinger cat. The Schrödinger cat is a linear
superposition of a dead cat and a live cat. To understand why the Schrödinger cat does not
exist, we need to understand the concept of quantum coherence.

Two states are in quantum coherence if the phase relationships between them are deter-
ministic and not random. When this coherence is lost, the phase relationship between them
is lost. The quantum system has already collapsed into one of the two states. Hence, in
practice, a measurement is not always necessary before the quantum system collapses into
one or more of the quantum states. The interaction of quantum system with its environment
can cause such a collapse.

From a statistical physics viewpoint, it is impossible for a quantum system to be completely
isolated. Almost all systems are in a thermal bath of the universe with which they are
seeking equilibrium. Macroscopic objects cannot be in a pure quantum state which has the
characteristics of the ghost-angel state. It is impossible for the huge number of atoms in the
Schrödinger cat to be coherent with respect to each other.

The density matrix is a nice way of representing a state of a quantum system where
the physics of quantum coherence surfaces explicitly. This concept is expressed in the off-
diagonal terms of the density matrix. If one allows time average or ensemble average2 to the
density matrix, when the system is expressed by quantum states that are not coherent, the

1Or the apparition of the ghost-angel state.
2Processes for which time average is the same as ensemble average are known as ergodic processes.
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off-diagonal elements will average to zero. The system is in a mixed state rather than a pure
quantum state. The system is similar to the local hidden variable theory: the state of the
quantum system is already predetermined before the measurement.

Another uneasiness about the philosophical interpretation of quantum mechanics is that
one does not know what state the quantum system is in before the measurement. This has
prompted Einstein to ask,“Is the moon there if you don’t look at it?” The uncertainty of
the state applied to quantum mechanics is only true for a linear superposition of coherent
quantum states, which I term the ghost-angel state. This state has not been found to exist
for macroscopic objects.

However, if one insists that, “One does not know if the moon is there before one looks at
it.” as a true statement, it cannot be refuted nor confirmed by experiments. The mere act of an
experiment already means that we have “looked” at the moon. The same claim goes that “If I
saw a fallen tree in the forest, it did not necessary follow from the act of falling before I arrived
there.” Alternatively, “If we found dinosaur bones, it did not necessary mean that dinosaurs
roamed the earth over 200 million years ago.” We believe that the moon is there even if we do
not look at it, the tree fell because it went through the act of falling, and that dinosaur bones
were found because they roamed the earth 200 million years ago, because we believe in the
realism of the world we live in. This realism cannot be proved but is generally accepted by
those who live in this world. Hence, it is this surreal interpretation of quantum mechanics that
causes the uneasiness among many physicists. But the interpretation of quantum mechanics
is slightly better than the above: a quantum state is in a linear superposition of states, the
precise one of which we are not sure of until a measurement is performed. However, this
surrealism of this ghost-angel state exists in our minds in fairy tales and ghost stories of
many cultures. Experimental effort has agreed with the surreal interpretation of quantum
mechanics in terms of the Bell’s theorem, that will be discussed.

The ghost-angel state of a quantum system is what enriches the information in it. However,
for a quantum system to be in such a state, the linear superposition of states must be coherent
with each other. Quantum coherence is the largest stumbling block to the construction of
quantum computers; however, rapid advances are being made, and one day, it can be a reality.

15.6 EPR Paradox

The interpretation of quantum mechanics went through difficult times. The fact that a particle
can be in a superposition of many states before a quantum measurement, and the probabilistic
interpretation of a quantum measurement behooves the challenge by many great physicists,
especially Einstein. The most severe challenge of quantum mechanics and its interpretation
comes from the EPR (Einstein, Podolsky and Rosen) paradox. To describe it simply, we
imagine a pi meson that decays into an electron-positron pair:

πo → e− + e+ (15.6.1)

The pi meson originally has spin zero. So for conservation of angular momentum, the electron-
positron pair will have opposite spins: spin up and spin down. Since the total angular
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momentum is zero, they are in the singlet state which has total spin of zero, or

|Ψ〉 =
1√
2

(|↑−↓+〉 − |↓−↑+〉) (15.6.2)

The electron-positron pair is in the linear superposition of two states, but the electron and
positron are flying in opposite directions. According to the interpretation of quantum mechan-
ics, one does not know the spin state of the electron nor the positron before the measurement.
After one measures the spin state of, say the electron, irrespective of how far the positron
is away from the electron, we immediately know the spin state of the positron according to
the above equation. The spins of the two particles are always opposite to each other. This
notion is unpalatable to many physicists, and hence, is called “spooky action at a distance”
by Einstein. Information cannot travel faster than the speed of light. How could the state of
one particle be immediately determined after a measurement is made at another particle far
away? This paradox attempts to prove that quantum mechanics is incomplete by reductio ad
absurdum.

15.7 Bell’s Theorem3

Quantum measurements are known to be random, and the data can only be interpreted
probabilistically. If one were to measure the spin of one of the particle, it is equally likely to
be in the spin up or spin down state randomly according to (15.6.2). In the hidden variable
theory, it is suggested that the outcome of the experiment is already predetermined even
before the measurement. The outcome is determined by a hidden random variable λ. It is
the randomness of this variable that gives rise to the randomness of the outcome in quantum
measurements.

Many hidden variable theories were proposed shortly after the EPR paradox was published.
In 1964, J. S. Bell, in the spirit of proving the correctness of the hidden variable theory, came
up with an inequality that showed the incompatibility of quantum mechanics and the hidden
variable theory. If hidden variable theory is correct, the inequality will be satisfied, but if
quantum mechanics is correct, the inequality is violated. This is known as Bell’s theorem.

We can discuss the derivation of the Bell’s theorem in the context of the two-photon
experiment, since the experiment that verifies the theorem has been done using photons. The
actual experiment is quite complex, but we will reduce it to a simplified case. The simplified
experiment involves a photon source that produces an entangled photon pair, each of which
is traveling in opposite directions. The photon pair is in one of the Bell state, say the EPR
pair:

|Ψ〉 =
1√
2

(|V1V2〉+ |H1H2〉) (15.7.1)

In the above state, if one of the photons is measured to be V (vertical) polarized, the other
photon must be V polarized. However, if one photon is measured to be H (horizontal)
polarized, the other photon must be H polarized. We will detect the photon state with a

3This section is written with important input from Y. H. Lo and Q. Dai.
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simple polarizer. In the above state, which is a linear superposition of two states, the photons
are equally likely to be found in the first state, |V1V2〉, or the second state, |H1H2〉. The
polarizer will detect an H or a V polarization with equal likelihood, but the moment that
one photon is determined to be H polarized, the other photon is immediately know to be H
polarized, and vice versa. This is the “spookiness” of quantum interpretation.

Imagine an atomic source that generates two photons propagating in opposite directions.
The atom initially has zero angular momentum, so that the two photons are either both
horizontally polarized or both vertically polarized. Hence, the photon can be described in
one of the Bell states or an entangled state as shown in (15.7.1).

Figure 15.7: Experimental verification of Bell’s theorem

15.7.1 Prediction by Quantum Mechanics

Photon 1 is measured with a polarizer P1 with vertical polarization pointing in the a direction.
If P1 measures a V polarization, we set A(a) = 1, and if P1 measures an H polarization, we
set A(a) = −1. Here, A(a) denotes the measurement outcome, and it is completely random
according to quantum mechanics.

Similarly, polarizer P2 has its vertical polarization oriented in the b direction. When it
measures a V polarization, we set B(b) = 1, and when it measures an H polarization, it sets
B(b) = −1. Again, B(b) is completely random. In the above, we set A and B to be functions
of a and b respectively, as the experimental outcomes are expected to be functions of the
orientation of the polarizers.

If a = b, we expect that

〈A(a)B(b)〉 = E (a,b) = AB = 1 (15.7.2)

If a⊥b, if P1 measures a V polarization, P2 will measure a H polarization, we expect that

〈A(a)B(b)〉 = E (a,b) = AB = −1 (15.7.3)

Even though A and B are random, their products are deterministic in the above two cases.
An interesting case ensues if a and b are at an incline with respect to each other. In this

case, we know by quantum mechanics that

|V 〉a = cos θ|V 〉b − sin θ|H〉b (15.7.4)

|H〉a = sin θ|V 〉b + cos θ|H〉b (15.7.5)
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Figure 15.8: The case when the two polarizers are at an incline with respect to each other
for proving the Bell’s theorem.

If P1 measures an outcome with A(a) = 1, then the photon that propagates to P2 must
be polarized in the a direction. However, according to (15.7.4), for P2, such a photon has the
probability of cos2 θ being detected in the V polarization, and the probability of sin2 θ being
detected in the H polarization. Hence, the expectation value of B, or 〈B〉 = cos2 θ − sin2 θ.

If P1 finds that A = −1, by similar arguments, the expectation value of B is sin2 θ−cos2 θ.
Then

E(a,b) = 〈A(a)B(b)〉 = cos2 θ − sin2 θ = cos(2θ) (15.7.6)

Notice that the above reduces to the special cases of: (i) when the polarizers P1 and P2 are
aligned, namely when θ = 0◦, as in (15.7.2), and (ii) when the polarizers are perpendicular
to each other, with θ = 90◦, as in (15.7.3).

15.7.2 Prediction by Hidden Variable Theory

In the hidden variable theory derivation, a particle is assumed to be already in a polarization
state even before a measurement. A and B are random, but they are predetermined by a
hidden random variable λ. We let

A(a, λ) = ±1 (15.7.7)
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B(b, λ) = ±1 (15.7.8)

Here, A and B hence flip-flop between ±1 entirely due to randomness of the variable λ. This
theory predicts the randomness of quantum mechanics experiments nicely. The expectation
value of AB then is

E(a,b) = 〈AB〉 =

∫
ρ(λ)A(a, λ)B(b, λ)dλ (15.7.9)

where ρ(λ) is the probability distribution of the random variable λ. The above is a very
general representation of the hidden variable theory where we have not explicitly stated the
functions ρ(λ), A(a, λ) nor B(b, λ).

If a = b, then

A(a, λ) = B(a, λ) (15.7.10)

and the above becomes

E(a,a) =

∫
ρ(λ)A2(a, λ)dλ =

∫
ρ(λ)dλ = 1 (15.7.11)

Same as we would have found in (15.7.2).
If a⊥b, then

A(a, λ) = −B(b, λ) (15.7.12)

and (15.7.9) becomes

E(a,b) = −
∫
ρ(λ)A2(a, λ)dλ =

∫
ρ(λ)dλ = −1 (15.7.13)

as would have been found in (15.7.3). Hence, hidden variable theory is in good agreement
with quantum mechanics interpretation of (15.7.2) and (15.7.3).

So far, everything is fine and dainty until when a and b do not belong to any of the above
category, but in general are inclined with respect to each other. If a 6= b in general, then the
hidden variable generates random A and B in such a manner that

E(a,b) ≤ 1 (15.7.14)

Consequently, we have

E(a,b)− E(a,b′) =

∫
[A(a, λ)B(b, λ)−A(a, λ)B(b′, λ)]ρ(λ)dλ (15.7.15)

The above can be rewritten as

E(a,b)− E(a,b′) =

∫
A(a, λ)B(b, λ)[1±A(a′, λ)B(b′, λ)]ρ(λ)dλ

−
∫
A(a, λ)B(b′, λ)[1±A(a′, λ)B(b′, λ)]ρ(λ)dλ (15.7.16)
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We have just added and subtracted identical terms in the above. After using the triangular
inequality

|E(a,b)− E(a,b′)| ≤
∫
|A(a, λ)B(b, λ)||1±A(a′, λ)B(b′, λ)|ρ(λ)dλ

+

∫
|A(a, λ)B(b′, λ)||1±A(a′, λ)B(b, λ)|ρ(λ)dλ (15.7.17)

Using the fact that

|AB| ≤ 1, 1±AB ≥ 0 (15.7.18)

we have

|E(a,b)− E(a,b′)| ≤
∫

[1±A(a′, λ)B(b′, λ)]ρ(λ)dλ

+

∫
[1±A(a′, λ)B(b, λ)]ρ(λ)dλ (15.7.19)

The above is the same as

|E(a,b)− E(a,b′)| ≤ 2± [E(a′,b′) + E(a′,b)] (15.7.20)

It is of the form

|X| ≤ 2± Y (15.7.21)

which implies that

|X| ± Y ≤ 2 (15.7.22)

or

|X + Y | ≤ |X|+ |Y | ≤ 2 (15.7.23)

Consequently, we have

|E(a,b)− E(a,b′) + E(a′,b′) + E(a′,b)| ≤ 2 (15.7.24)

which is the Clauser-Horne-Shimony-Holt (CHSH) inequality.
In (15.7.20), if a′ = b′ = c, then (15.7.20) becomes

|E(a,b)− E(a, c)| ≤ 2± [E(c, c) + E(b, c)] (15.7.25)

From (15.7.11), E(c, c) = 1. We pick the smaller of the right-hand side of (15.7.25) and arrive
at

|E(a,b)− E(a, c)| ≤ 1− E(b, c) (15.7.26)
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Figure 15.9: The case for a, b, and c where the quantum mechanics prediction violates the
Bell’s inequality.

The above is the Bell’s inequality. It can be easily shown that it cannot be satisfied by
quantum mechanics that predicts (15.7.6). Say if we pick a, b, and c as shown in the Figure
15.9, then according to quantum mechanics or (15.7.6),

E(a,b) = cos(90◦) = 0 (15.7.27)

E(a, c) = cos(45◦) =
1√
2

(15.7.28)

E(b, c) = cos(45◦) =
1√
2

(15.7.29)

Then in (15.7.26), we have ∣∣∣∣0− 1√
2

∣∣∣∣ = 0.707 6≤ 1− 1√
2

= 0.293 (15.7.30)

In experimental tests of Bell’s theorem, quantum mechanics triumphs over hidden variable
theory so far.4 Hence, the spookiness of ghost-angel states will prevail in quantum mechanics.

15.8 A Final Word on Quantum Parallelism

Quantum interpretation gives rise to the spookiness of quantum mechanics, in a way giving
it the capability that empowers ghosts and angels. Quantum parallelism is such an empower-
ment. It reminds me of a novel that I have read when I was young on the Monkey King. This

4see a paper by A. Aspect, 1982.
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Monkey King is of Indian origin, but has permeated Chinese culture to take on a different
persona. According to the story in The Journey to the West, this Monkey King had unusual
capabilities. One of them was that he could pull a strand of hair from his body, and with a
puff of air, he could turn it into many duplicates of himself. He could then fight his enemies
from all angles and all sides. He thus made himself invincible.

He was arrogant, mischievous, and wreaked havoc in the Heavenly Palace where the other
gods lived. Finally, he could only be tamed and subdued by Lord Buddha, summoning him
to accompany and protect the monk Xuan Zang in his treacherous journey to collect the
Buddhist Sutra from the West (in this case India).

Oh Lord, if we were to empower ourselves with the capabilities of ghosts and angels, who
is there to curb our power!
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Figure 15.10: The Monkey King sending replicas of himself against his enemy, defeating
everyone in his path.
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Appendix A

Generators of Translator and
Rotation

A.1 Infinitesimal Translation

From Taylor series expansion, we have

f(x+ a) = f(x) + af(x) +
a2

2!
f2(x) + · · ·

=

[
1 + a

d

dx
+
a2

2!

d2

dx2
+ · · ·

]
f(x)

= ea
d
dx f(x) (A.1.1)

The exponential to an operator is interpreted as a Taylor series when it needs to be evaluated.
The above can be written with a momentum operator (assuming that ~ = 1)

f(x+ a) = eiap̂f(x) (A.1.2)

or in Dirac notation
|fa〉 = eiap̂|f〉 (A.1.3)

where |fa〉 is the state vector representation of the function f(x + a). If a Hamiltonian is
translational invariant, it will commute with the translation operator, namely

Ĥeiap̂|f〉 = eiap̂Ĥ|f〉 (A.1.4)

or [
eiap̂, Ĥ

]
= 0 (A.1.5)

For example, if the Hamiltonian is such that − 1
2d

2/dx2, then it is quite clear that the left-hand
side of (A.1.4) is

−1

2

d2

dx2
eiap̂f(x) = −1

2

d2

dx2
f(x+ a) = −1

2
f ′′(x+ a) (A.1.6)
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The right-hand side of (A.1.4) is

eiap̂
[
−1

2

d2

dx2
f(x)

]
= eiap̂

[
−1

2
f ′′(x)

]
= −1

2
f ′′(x+ a) (A.1.7)

which is the same as the left-hand side.
By assuming that eiap̂ ≈ 1 + iap̂+ · · · , the above also means that

Ĥp̂ = p̂Ĥ, [Ĥ, p̂] = 0 (A.1.8)

This means that p̂ is a constant of motion as shown in Section 5.8, or

d〈p̂〉
dt

= 0 (A.1.9)

In other words, momentum is conserved in a system where the Hamiltonian is translational
invariant.

A.2 Infinitesimal Rotation

Similarly, the Lz operator is −i ∂∂φ which is a generator of rotation,1

f(φ+ α) = eα
d
dφ f(φ) = eiαL̂zf(φ) (A.2.1)

Going through the derivation as we have before, for a Hamiltonian that is rotationally sym-

metric about the z axis, then it commutes with eiαL̂z . In this case

[eiαL̂z , Ĥ] = 0 (A.2.2)

or Taylor series expanding the above, we derive that

[L̂z, Ĥ] = 0 (A.2.3)

Hence, the ẑ component of the angular momentum is conserved for a system that is rotation-
ally symmetric about the z axis.

The above has been motivated by L̂z that follows from the orbital angular momentum,
whose form has been motivated by the classical angular momentum. What if the angular
momentum has no classical analogue like the spin angular momentum? Or the state vector
may not be written using wavefunctions at all. In this case, we can postulate a generalized
generator of rotation of the form

eiαĴz |j〉 (A.2.4)

The above will take the angular momentum state |j〉 and generate rotated state about the z
axis. We postulate the above form for three reasons:

1Assume again that ~ = 1.
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1. The generator of rotation for orbital angular momentum is already of this form. It must
be the special case of the above form.

2. If the above generator commutes with the Hamiltonian with similar rotational symme-
try, this component of angular momentum will be conserved.

3. The rotation will cause the expectation value of the angular momentum vector, an
observable, to rotate according to a coordinate rotation about the z axis.

It is easy to see that the expectation value of the Ĵz operator remains unchanged under
this rotation. We can easily show that

〈j|e−iαĴz ĴzeiαĴz |j〉 = 〈j|Ĵz|j〉 (A.2.5)

In the above, functions of operator Ĵz commute with each other, a fact that can be easily

proved by expanding the functions as a power series. The conjugate transpose of eiαĴz is

e−iαĴz since Ĵz is Hermitian because it represents an observable. Hence, the last equality in
(A.2.5) follows.

A.3 Derivation of Commutation Relations

In general, we can define the angular momentum operator to be

Ĵ = iĴx + jĴy + kĴz (A.3.1)

The above is an observable so are the components of the operator in the x, y, z directions.
Hence, the expectation value of the above with respect to the state |j〉 gives rise to

〈Ĵ〉 = i〈Ĵx〉+ j〈Ĵy〉+ k〈Ĵz〉 = iJx + jJy + kJz = J (A.3.2)

where we denote the expectation values of Ĵi with scalar number Ji, and that of Ĵ with J. We
will test point 3 above with respect to this vector J. This vector will have to rotate according
to coordinate rotation as the state vector is rotated according to (A.2.4).

If eiαĴz is a generator of rotation about the z axis, it will leave Jz unchanged as shown
above. But it will not leave Jx and Jy components unchanged. Now, we can find the expec-

tation value of Ĵx under rotation about z axis, or that

Jx = 〈j|Ĵx|j〉, J ′x = 〈j|e−iαĴz ĴxeiαĴz |j〉 (A.3.3)

Before rotation, this would have represented the expectation values of the x component of J,
the angular momentum. After rotation,

J = i′J ′x + j′J ′y + kJz (A.3.4)

and J ′x will contain both the x and y component of J. When we rotate the state vector by
angle α, the expectation value of the vector J will rotate by α in the same direction. But
from the Figure A.1, it is clear that

J ′x = Jx cosα+ Jy sinα (A.3.5)
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The equivalence of rotations in (A.3.3) and (A.3.5) can be proved by lengthy algebra. To
simplify the algebra, we can show the equivalence for infinitesimal rotation. To this end, we
assume that α is small so that we keep only the first two terms of the Taylor expansion for

eiαĴz or eiαĴz ≈ 1 + iαĴz. Then,

J ′x = 〈j|Ĵx − iαĴzĴx + iαĴxĴz + · · · |j〉 (A.3.6)

For small α, (A.3.5) becomes
J ′x
∼= Jx + αJy (A.3.7)

But (A.3.6) can be written as

J ′x = 〈j|Ĵx|j〉 − iα〈j|ĴzĴx − ĴxĴz|j〉 (A.3.8)

Figure A.1: Coordinate rotation of the xy plane about the z axis by angle α.

Comparing (A.3.7) and (A.3.8), we have

ĴzĴx − ĴxĴz = iĴy (A.3.9)

We can let ~ 6= 1 to arrive back at the previously postulated commutator relations. The
above is arrived at using only rotational symmetry argument that the angular momentum
operator is a generator of rotation. The other commutation relations for angular operators
can be derived by similar arguments. In general, for all operators that represent angular
momentum, we have[

Ĵx, Ĵy

]
= i~Ĵz,

[
Ĵy, Ĵz

]
= i~Ĵx,

[
Ĵz, Ĵx

]
= i~Ĵy (A.3.10)

From the above, we can define raising and lowering operators and use the ladder approach to
derive the properties of the eigenstates of angular momentum operators.



Appendix B

Quantum Statistical Mechanics

B.1 Introduction

We would like to derive Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein distributions.
It is based on statistical mechanics that assumes that all identical energy levels have equal
likelihood of being occupied. Only the counting is based on quantum mechanics.

We consider a quantum system with energy levels E1, E2, E3, · · · . Each level Ei could
have degeneracy of di, i = 1, 2, 3, · · · , and is filled by Ni, i = 1, 2, 3, · · · particles. When
the system is coupled to its environment, energy will be exchanged with its environment via
collision, vibration, and radiation. At thermal equilibrium, there is no net energy flowing into
and out of the system. We expect that

E =

∞∑
n=1

EnNn (B.1.1)

to be a constant due to energy conservation. Also we expect the number of particles to remain
constant, or that

N =

∞∑
n=1

Nn (B.1.2)

due to particle conservation.
The particles will acquire energy from their environment due to energy exchange, and dis-

tribute themselves across the energy levels subject to the above constraints, but also according
to the availability of energy levels. Energy levels with higher degeneracies are more likely to
be filled. We will consider three different cases: (i) when the particles are distinguishable, (ii)
when they are identical fermions, and (iii) when they are identical bosons.

B.1.1 Distinguishable Particles

We will find the function Q(N1, N2, N3, · · · ) whose value equals the number of ways that
there are N1 particles in E1, N2 particles in E2, N3 particles in E3 and so on. In order to fill

195
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En dn, Nn 

E3 d3, N3 

E2 d2, N2 

E1 d1, N1 

Figure B.1: Particles are distributed among different energy levels according to quantum
statistics. An energy level is denoted with Ei with degeneracy di and Ni particles occupying
it.

energy level E1 with N1 particles, the number of ways is(
N
N1

)
=

N !

N1! (N −N1)!
(B.1.3)

If E1 has degeneracy d1, all the degenerate levels are equally likely to be filled. Then there
are dN1

1 ways that the N1 particles can go into E1 level. Hence, the number of ways that E1

can be filled is

QE1
=

N !dN1
1

N1! (N −N1)!
(B.1.4)

The number of ways that E2 can be filled is

QE2
=

(N −N1)!dN2
2

N2! (N −N1 −N2)!
(B.1.5)

Then the total number of ways

Q(N1, N2, N3, · · · ) = QE1QE2QE3 · · ·

=
N !dN1

1

N1! (N −N1)!

(N −N1)!dN2
2

N2! (N −N1 −N2)!

(N −N1 −N2)!dN3
3

N3! (N −N1 −N2 −N3)!
· · ·

= N !
dN1

1 dN2
2 dN3

3 · · ·
N1!N2!N3! · · ·

= N !

∞∏
n=1

dNnn
Nn!

(B.1.6)
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Notice that the above is independent of the order in which the levels are filled, as expected.
The above can also be interpreted in a different light: There are dNnn ways that Nn particles
can fit into the En energy level. But order is unimportant and a division by Nn! is necessary.
But there are N ! ways that these distinguishable particles can be selected in an ordered way,
and hence, a prefactor of N ! is needed in the above.

B.1.2 Identical Fermions

Due to Pauli’s exclusion principle, each energy level can admit only one particle. In this case,
the number of ways energy En can be filled is

QEn =
dn!

Nn! (dn −Nn)!
, dn ≥ Nn (B.1.7)

(The above has value 1 when dn = 1.) The total number of ways is then

Q (N1, N2, N3, ...) =
∞∏
n=1

dn!

Nn! (dn −Nn)!
(B.1.8)

B.1.3 Identical Bosons

For bosons, repetition for filling a given state is allowed, but the particles are indistinguishable
from each other. Then when Nn particles are picked to fill the dn degenerate En levels, the
first particle from Nn particles has dn slots to fill in, while the second particle has dn+1 slots
to fill in, and the third particle has dn+ 2 slots to fill in and so on, since repetition is allowed.
That is the new particle can take the position of the old particle as well. So the number of
ways that En with dn degeneracy can be filled is

QEn =
dn (dn + 1) (dn + 2) ... (dn +Nn − 1)

Nn!
(B.1.9)

=
(Nn + dn − 1)!

Nn! (dn − 1)!
(B.1.10)

Therefore

Q (N1, N2, N3, ...) =
∞∏
n=1

(Nn + dn − 1)!

Nn! (dn − 1)!
(B.1.11)

Unlike the distinguishable particle case, no prefactor of N ! is needed for the identical
particle case, since the order with which they are selected is unimportant.

B.2 Most Probable Configuration

A way of filling the energy levels {E1, E2, E3, ...} with {N1, N2, N3, ...} is called a configura-
tion. The most likely configuration to be filled is the one with the largest Q (N1, N2, N3, ...).
At statistical equilibrium, the system will gravitate toward this configuration. Hence, to find
this configuration, we need to maximize Q with respect to different {N1, N2, N3, ...} subject
to the energy conservation constraint (B.1.1) and particle conservation constraint (B.1.2).
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We use the Lagrange multiplier technique to find the optimal Q subject to constraints
(B.1.1) and (B.1.2). We define a function

G = lnQ+ α

[
N −

∞∑
n=1

Nn

]
+ β

[
E −

∞∑
n=1

NnEn

]
(B.2.1)

The optimal Q value is obtained by solving

∂G
∂Nn

= 0, n = 1, 2, 3, · · · , ∂G
∂α = 0, ∂G

∂β = 0 (B.2.2)

B.2.1 Distinguishable Particles

In this case,

G = lnN ! +
∞∑
n=1

[Nn ln dn − lnN !] (B.2.3)

+ α

[
N −

∞∑
n=1

Nn

]
+ β

[
E −

∞∑
n=1

NnEn

]
(B.2.4)

We use Stirling’s formula that

ln (z!) ≈ z ln z − z (B.2.5)

Consequently,

G =
∞∑
n=1

[Nn ln dn −Nn lnNn +Nn − αNn − βEnNn] (B.2.6)

+ lnN ! + αN + βE (B.2.7)

From the above
∂G

∂Nn
= ln dn − lnNn − α− βEn = 0 (B.2.8)

As a result, we have

Nn = dne
−(α+βEn) (B.2.9)

The above is the precursor to the Maxwell-Boltzmann distribution from first principles.

B.2.2 Identical Fermions

In this case

G =

∞∑
n=1

[ln(d′n)− ln(N ′n)− ln((dn −Nn)!)] (B.2.10)

+ α

[
N −

∞∑
n=1

Nn

]
+ β

[
E −

∞∑
n=1

NnEn

]
(B.2.11)
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After applying Stirling’s formula to Nn dependent terms, we have

G =

∞∑
n=1

[ln dn!−Nn lnNn +Nn − (dn −Nn) ln(dn −Nn) + (dn −Nn)− αNn − βNnEn]

(B.2.12)

+ αN + βE (B.2.13)

From the above,

∂G

∂Nn
= − lnNn + ln(dn −Nn)− α− βEn = 0 (B.2.14)

or

Nn =
dn

1 + eα+βEn
(B.2.15)

In the above derivation, we have assumed that dn is large so that Nn is large since Nn ≤ dn
in (B.1.7). The above is the precursor to the Fermi-Dirac distribution.

B.2.3 Identical Bosons

In this case

G =

∞∑
n=1

[ln((Nn + dn − 1)!)− ln(Nn!)− ln((dn − 1)!)] (B.2.16)

+ α

[
N −

∞∑
n=1

Nn

]
+ β

[
E −

∞∑
n=1

NnEn

]
(B.2.17)

With Stirling’s approximation to the Nn dependent terms,

G =

∞∑
n=1

[(Nn + dn − 1) ln(Nn + dn − 1)− (Nn + dn − 1)−Nn lnNn +Nn (B.2.18)

− ln((dn − 1)!)− αNn − βNnEn] + αN + βE (B.2.19)

Then

∂G

∂Nn
= ln(Nn + dn − 1)− ln(Nn)− α− βEn = 0 (B.2.20)

yielding

Nn =
dn − 1

eα+βEn − 1
' dn
eα+βEn − 1

(B.2.21)

where we assume that dn � 1. The above is the precursor to the Bose-Einstein distribution.
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B.3 The Meaning of α and β

We will apply the above to a simple quantum system in order to infer what α and β should
be. We consider N electrons inside a bulk material describable by a single electron in an
effective mass approximation. In such a case, the kinetic energy of the electron is described
by

Ek =
~2k2

2m
(B.3.1)

If we assume periodic boundary conditions on a box of lengths Lx, Ly, and Lz, then

k2 =

(
2nxπ

Lx

)2

+

(
2nyπ

Ly

2)
+

(
2nzπ

Lz
t

)2

(B.3.2)

In the k space, there is a state associated with a unit box of volume

∆Vk =
(2π)3

LxLyLz
=

8π3

V
(B.3.3)

where V is the volume of the box of bulk material. In k space, in a spherical shell of thickness
∆k, the number of states in the neighborhood of k is

dk =
4πk2∆k

∆Vk
=

V

2π2
k2∆k (B.3.4)

Then the total number of particles is, using (B.2.9) for Maxwell-Boltzmann,

N =
∑
k

dke
−(α+βEk) =

V

2π
e−α

∑
k

k2∆ke−βEk

=
V

2π2
e−α

∫ ∞
0

e−β~
2k2/(2m)k2dk (B.3.5)

By using the fact that

I1 =

∫ ∞
0

e−Ak
2

k2dk = − d

dA

∫ ∞
0

e−Ak
2

dk = − d

dA

1

2

√
π

A
=

√
π

4
A−

3
2 (B.3.6)

the above integrates to

N = V e−α
(

m

2πβ~2

) 3
2

(B.3.7)

Similarly, the total E is given by

E =
∑
k

EkNk =
∑
k

Ekdke
−(α+βEk),
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After using (B.3.1) and (B.3.4), we have

E =
V ~2

4π2m
e−α

∫ ∞
0

e−β~
2k2/2mk4dk

=
3V

2β
e−α

(
m

2πβ~2

) 3
2

=
3N

2β
(B.3.8)

where we have made use of

I2 =

∫ ∞
0

e−Ak
2

k4dk = − d

dA
I1 =

3
√
π

8
A−

5
2 (B.3.9)

and (B.3.7) in getting the last equality.
From the equipartition theorem of energy from statistical mechanics we know that

E

N
=

3

2
kBT (B.3.10)

Hence, we conclude that

β =
1

kBT
(B.3.11)

It is customary to write

α = −µ(T )

kBT
(B.3.12)

so that for Maxwell-Boltzmann distribution,

Nn = dne
−(En−µ)/(kBT ) (B.3.13)

where µ(T ) is the chemical potential. When normalized with respect to degeneracy, we have

nmb = e−(En−µ)/(kBT ), Maxwell-Boltzmann (B.3.14)

Fermi-Dirac and Bose-Einstein distribution become Maxwell-Boltzmann when (βEn +
α)� 1. So they have the same α and β. Therefore,

nfd =
1

e(En−µ)/(kBT ) + 1
, Fermi-Dirac (B.3.15)

nbe =
1

e(En−µ)/(kBT ) − 1
, Bose-Einstein (B.3.16)

When (En − µ) � kBT the above distributions resemble the Maxwell-Boltzmann distri-
bution. This is because n becomes small per energy level, and the indistinguishability of
the particles plays a less important role. When (En − µ) < 0, the Fermi-Dirac distribution
“freezes” to 1 for all energy levels below µ, since the Pauli’s exclusion principle only allows
one fermion per level. When (En − µ) � kBT , the Bose-Einstein distribution diverges, im-
plying that the particles condense to an energy level close to µ. This condensation is more
pronounced if kBT is small.
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Appendix C

Gaussian Wave Packet

C.1 Introduction

In order to relate the wave nature to the particle nature of an object, it is necessary to obtain
a wave packet picture of the object. Experimental observation has indicated that electrons are
highly localized objects, so are photons. A wavefunction with a pure or single wavenumber
k has equal amplitude everywhere. According to the probabilistic interpretation of quantum
mechanics, it is untenable physically to think of a particle as all pervasive and can be found
equally likely everywhere. A photon wave can have many k wavenumbers, and they can be
linearly superposed to form a localized photon wave packet. Since the E-k relationship of
the photon wave is linear (or almost linear in the material-media case), the formation of such
a wave packet is quite straightforward. It is less clear for an electron wave, since the E-k
relationship is nonlinear.

In this appendix, we will explain the particle nature of an electron in the classical limit
when the momentum of the electron becomes large. One expects that the wavefunction
resembles that of a localized particle in this limit so that the electron is found with high
probability only in a confined location. This understanding can be achieved by studying the
Gaussian wave packet solution of Schrödinger equation.

When the Schrödinger equation is solved in vacuum for electron, the solution is

eik·r

This unlocalized solution means that the electron can be everywhere. A more realistic wave-
function for an electron is a wave packet which is localized. This is more akin to the motion
that an electron is a localized particle. A wave packet can be constructed by linear superpos-
ing waves of different momenta ~k or different energies ~ω. We will derive the Gaussian wave
packet solution to Schrödinger equation. This can be constructed by studying the solution to
the wave equation.
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C.2 Derivation from the Wave Equation

It is well known that the wave equation(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

)
φ (x, y, z) = 0 (C.2.1)

admits solution of the form

φ (x, y, z) = C
e±ik
√
x2+y2+(z−ib)2√

x2 + y2 + (z − ib)2
(C.2.2)

for √
x2 + y2 + (z − ib)2 6= 0 (C.2.3)

The above corresponds to a spherical wave where the source point is located in the complex
coordinates x = 0, y = 0, and z = ib. It was first suggested by G. Deschamps. From the
above, it is quite clear that, after letting z = vt,

φ (x, y, vt) = A
e±ik
√
x2+y2+(vt−ib)2√

x2 + y2 + (vt− ib)2
(C.2.4)

is a solution to (
∂2

∂x2
+

∂2

∂y2
+

1

v2

∂2

∂t2
+ k2

)
φ (x, y, vt) = 0 (C.2.5)

The above equation can be factored(
v−1∂t − i

√
k2 + ∂2

x + ∂2
y

)(
v−1∂t + i

√
k2 + ∂2

x + ∂2
y

)
φ (x, y, vt) = 0 (C.2.6)

where ∂t = ∂/∂t, ∂2
x = ∂2/∂x2 and so on. In the above, function of an operator has meaning

only when the function is Taylor expanded into an algebraic series. One can assume that
k2 →∞, while ∂2

x and ∂2
y are small.1 Taylor expanding the above and keeping leading order

terms only, we have(
v−1∂t − ik −

i

2k

(
∂2
x + ∂2

y

))(
v−1∂t + ik +

i

2k

(
∂2
x + ∂2

y

))
φ (x, y, vt) ∼= 0 (C.2.7)

In (C.2.4), we can let2 |vt− ib|2 � x2 + y2 to arrive at the approximation

φ (x, y, vt) ≈ Ae
±
(
ik(vt−ib)+ik x

2+y2

vt−ib

)
vt− ib

(C.2.8)

1This is known as the paraxial wave approximation. It implies that the variation of the solution is mainly
in the vt direction with slow variation in the x and y directions.

2It can be shown that when this is valid, the paraxial wave approximation used in (C.2.7) is good.
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It can be shown that when we pick the plus sign above in the ± sign, the above is the exact
solution to (

v−1∂t − ik −
i

2k

(
∂2
x + ∂2

y

))
φ+ (x, y, vt) = 0 (C.2.9)

where

φ+ (x, y, vt) = Aeik(vt−ib) e
ik x2+y2

2(vt−ib)

2 (vt− ib)
= eik(vt−ib)ψ (x, y, t) (C.2.10)

and

ψ (x, y, t) = −A0
ibeik

x2+y2

2(vt−ib)

(vt− ib)
(C.2.11)

Furthermore, ψ (x, y, t) is an exact solution to(
v−1∂t −

i

2k

(
∂2
x + ∂2

y

))
ψ (x, y, t) = 0 (C.2.12)

If we multiply the above by i~v, the above becomes(
i~∂t +

~v
2k

(
∂2
x + ∂2

y

))
ψ (x, y, t) = 0 (C.2.13)

By letting v = ~k/m, the above becomes(
i~∂t +

~2

2m

(
∂2
x + ∂2

y

))
ψ (x, y, t) = 0 (C.2.14)

which is just Schrödinger equation. Equation (C.2.11) represents the Gaussian wave packet
solution of Schrödinger equation. It can be studied further to elucidate its physical contents.

C.3 Physical Interpretation

In (C.2.11), one can write

k
(
x2 + y2

)
2 (vt− ib)

=
k
(
x2 + y2

)
(vt+ ib)

2 (v2t2 + b2)
=
k
(
x2 + y2

)
2R

+ i
x2 + y2

W 2
(C.3.1)

where

R =
v2t2 + b2

vt
, W 2 =

2b

k

(
1 +

v2t2

b2

)
(C.3.2)

Then Gaussian wave packet can be more suggestively written as

ψ (x, y, t) =
A0√

1 + v2t2/b2
e−

x2+y2

W2 eik
x2+y2

2R e−iϕ(t) (C.3.3)

where
ϕ(t) = tan−1 (vt/b) (C.3.4)
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The above reveals a wave packet which is Gaussian tapered with width W and modulated
by oscillatory function of space and time. However, the width of this packet is a function of
time as indicated by (C.3.2).

At vt = 0, the width of the packet is given by

W0 =

√
2b

k
, or b =

1

2
kW 2

0 (C.3.5)

This width can be made independent of k if b is made proportional to k. Nevertheless, as
time progresses with vt > 0, the width of the packet grows according to (C.3.2). However, to
maintain a fixed-width W0, it is necessary that b→∞ as k →∞. Subsequently, the effect of
v2t2/b2 becomes small in (C.3.2) as b→∞. This means that the width of the Gaussian wave
packet remains almost constant for the time when vt ≤ b, but b is a large number proportional
to k. The duration over which the Gaussian wave packet’s width remains unchange becomes
increasingly longer as k becomes larger.

In the above, ~k represents the momentum of a particle. When the particle carries high
momentum, it can be represented by a Gaussian wave packet that hardly changes in shape
with respect to time. This is what is expected of a classical picture of a moving particle: the
Gaussian wave packet does reproduce the classical picture of a high momentum particle.

It is quite easy to design a wave packet for a photon that does not spread with time by
linear superposing waves with different frequencies. This is because the ω-k diagram (or E-k
diagram, since E = ~ω) for photons is a straight line. It implies that all waves with different
k’s travel with the same phase velocity. These Fourier modes are locked in phase, and the
pulse shape does not change as the wave packet travels.

k

ω

Figure C.1: ω − k diagram for a photon wave which is a straight line.

But for electron wave in a vacuum, the ω-k diagram is quadratic. It implies that waves
with different k numbers travel with different phase velocity, giving rise to distortion of the
pulse shape. But if we have a narrow band pulse operating in the high k regime, the ω-k
diagram is quasi-linear locally, and there should be little pulse spreading. Hence, one can
construct a quasi-distortionless pulse in the high k regime.
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k

ω

Δk

Δω

Figure C.2: ω − k diagram of an electron wave in vacuum.

C.4 Stability of the Plane Wave Solution

It is quite obvious from our understanding of quantum mechanics, wave packets, and coher-
ence, that the plane wave solution eikx is not stable as k →∞. One can always express

eikx =

∫ ∞
−∞

dx′eikx
′
δ(x− x′) (C.4.1)

If one can think of δ(x − x′) as the limiting case of a wave packet, the above implies that
a plane wave can be expanded as a linear superposition of wave packets at each location x,
but bearing a phase exp(ikx). As k → ∞, this phase is rapidly varying among the different
wave packets. Hence, their coherence is extremely difficult to maintain, and upset easily
by coupling to other quantum systems that exists in the environment. In other words, the
particle cannot be stably maintained in the plane-wave state classically: it has to collapse to
a wave-packet state. Consequently, classically, particles are localized when its momentum k
becomes large.
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