Inverse Trigonometric Functions

Review

First, let's review briefly inverse functions before getting into inverse trigonometric functions:

- $\mathrm{f} \rightarrow \mathrm{f}^{-1}$ is the inverse
- The range of $f=$ the domain of f^{-1}, the inverse.
- The domain of $f=$ the range of f^{-1} the inverse.
- $y=f(x) \rightarrow x$ in the domain of f.
- $x=f^{-1}(y) \rightarrow y$ in the domain of f^{-1}
- $f\left[f^{-1}(y)\right]=y \rightarrow y$ in the domain of f^{-1}
- $f^{-1}[f(x)]=x \rightarrow x$ in the domain of f

Trigonometry Without Restrictions

- Trigonometric functions are periodic, therefore each range value is within the limitless domain values (no breaks in between).

- Since trigonometric functions have no restrictions, there is no inverse.
- With that in mind, in order to have an inverse function for trigonometry, we restrict the domain of each function, so that it is one to one.
- A restricted domain gives an inverse function because the graph is one to one and able to pass the horizontal line test.

Trigonometry With Restrictions

- How to restrict a domain:
- Restrict the domain of the sine function, $y=\sin x$, so that it is one to one, and not infinite by setting an interval $[-\pi / 2, \pi / 2]$

- The restricted sine function passes the horizontal line test, therefore it is one to one
- Each range value $(-1$ to 1$)$ is within the limited domain $(-\pi / 2, \pi / 2)$.
- The restricted sine function benefits the analysis of the inverse sine function.

Inverse Sine Function

- $\sin ^{-1}$ or arcsin is the inverse of the restricted sine function, $y=\sin x,[-\pi / 2, \pi / 2]$
- The equations $\rightarrow y=\sin ^{-1} x$ or $y=\arcsin x$
which also means, $\sin \mathrm{y}=\mathrm{x}$, where $-\pi / 2 \leq \mathrm{y} \leq \pi / 2,-1 \leq \mathrm{x} \leq 1$ (remember f range is f^{-1} domain and vice versa).

Restricted Sine vs. Inverse Sine

- As we established before, to have an inverse trigonometric function, first we need a restricted function.
- Once we have the restricted function, we take the points of the graph (range, domain, and origin), then switch the y's with the x's.

Restricted Sine vs. Inverse Sine Continued ...

- For example:
- These are the coordinates for the restricted sine function.

$$
(-\pi / 2,-1),(0,0),(\pi / 2,1)
$$

- Reverse the order by switching x with y to achieve an inverse sine function.
$(-1,-\pi / 2),(0,0),(1, \pi / 2)$

Sine-Inverse Sine Identities

- $\sin \left(\sin ^{-1} \mathrm{x}\right)=\mathrm{x}$, where $-1<\mathrm{x}<1$
- Example: $\quad \sin \left(\sin ^{-1} 0.5\right)=0.5$
$\sin \left(\sin ^{-1} 1.5\right) \neq 1.5$
(not within the interval or domain of the inverse sine function)
- $\sin ^{-1}(\sin \mathrm{x})=\mathrm{x}$, where $-\pi / 2 \leq \mathrm{x} \leq \pi / 2$
- Example: $\quad \sin ^{-1}[\sin (-1.5)]=-1.5$
$\sin ^{-1}[\sin (-2)] \neq-2$
(not within the interval or domain of the restricted sine function)

Without Calculator

- To attain the value of an inverse trigonometric function without using the calculator requires the knowledge of the Circular Points Coordinates, found in Chapter 5, the Wrapping Function section.
- Here is quadrant I of the Unit Circle

- The Unit Circle figure shows the coordinates of Key Circular Points.
- These coordinates assist with the finding of the exact value of an inverse trigonometric function.

Without Calculator

Example 1: Find the value for $\rightarrow \sin ^{-1}(-1 / 2)$
Answer:

- $\sin ^{-1}(-1 / 2)$, is the same as $\sin \mathrm{y}=-1 / 2$, where $-\pi / 2 \leq \mathrm{y} \leq \pi / 2$

- Since the figure displays a mirror image of $\pi / 6$ on the IV quadrant, the answer is:

$$
y=-\pi / 6=\sin ^{-1}(-1 / 2)
$$

- Although $\sin (11 \pi / 6)=-1 / 2$, y must be within the interval $[-\pi / 2, \pi / 2]$.
- Consequently, $\mathrm{y}=-\pi / 6$, which is between the interval, meets the conditions for the inverse sine function.

With Calculator

- There are different types of brands on calculators, so read the instructions in the user's manual.
- Make sure to set the calculator on radian mode.
- If the calculator displays an error, then the values or digits used are not within the domain of the trigonometry function
- For example:

If you punch in $\sin ^{-1}$ (1.548) on your calculator, the device will state that there is an error because 1.548 is not within the domain of $\sin ^{-1}$.

Restrict Cosine Function

- The restriction of a cosine function is similar to the restriction of a sine function.
- The intervals are $[0, \pi]$ because within this interval the graph passes the horizontal line test.
- Each range goes through once as x moves from 0 to π.

Inverse Cosine Function

- Once we have the restricted function, we are able to proceed with defining the inverse cosine function, $\cos ^{-1}$ or arccos.
- The inverse of the restricted cosine function $\mathrm{y}=\cos x, 0 \leq x \leq \pi$, is $\mathrm{y}=\cos ^{-1} x$ and $\mathrm{y}=\arccos x$.
- Which also means, $\cos \mathrm{y}=x$, where $0 \leq \mathrm{y} \leq \pi,-1<\mathrm{x}<1$ (Remember, the domain of f is the range of f^{-1}, and vice versa).

Restricted Cosine vs. Inverse Cosine

- The restricted cosine function has the domain, range, and x-intercept coordinates: $(0,1)(\pi / 2,0)(\pi,-1)$

- The inverse cosine function switched the coordinates of the restricted function, x is now y, and y is now $\mathrm{x}:(1,0)(0, \pi / 2)(-1, \pi)$

Cosine-Inverse Cosine Identities

- $\cos \left(\cos ^{-1} \mathrm{x}\right)=\mathrm{x}$, where $-1 \leq \mathrm{x} \leq 1$
- Example: $\quad \cos \left(\cos ^{-1} 0.5\right)=0.5$
$\cos \left(\cos ^{-1} 1.5\right) \neq 1.5$
(not within the interval or domain of the inverse cosine function)
- $\cos ^{-1}(\cos x)=x$, where $0 \leq x \leq \pi$
- Example: $\quad \cos ^{-1}[\cos (0.5)]=0.5$
$\cos ^{-1}[\cos (-2)] \neq-2$
(not within the interval or domain of the restricted cosine function)

Cosine Inverse Solving Without Calculator:
Example 2: $\cos \left(\cos ^{-1} 0.6\right)$

Answer:

Since $-1 \leq 0.6 \leq 1$, then $\cos \left(\cos ^{-1} 0.6\right)=\mathbf{0 . 6}$ because the form is following the cosine-inverse cosine identities.

Example 3: $\arccos (-1 / \sqrt{ } 2)$

Answer:

- $\arccos (-1 / \sqrt{ } 2)$, is the same as $\cos y=-1 / \sqrt{ } 2$, where $0<y<\pi$.

- Due to the fact, that the figure displays a mirror image of $\pi / 4$ on the II quadrant, $(3 \pi / 4)$, the answer is $\mathbf{y}=\mathbf{3 \pi / 4}=\arccos (-1 / \sqrt{ } 2)$.
- Even though $\cos (-3 \pi / 4)=-1 / \sqrt{2}, \mathrm{y} \neq-3 \pi / 4$. The y must be within the interval $[0, \pi]$.

Solving Cosine Inverse With Calculator

- There are different types of brands on calculators, so read the instructions in the user's manual.
- Make sure to set the calculator on radian mode.
- If the calculator displays an error, then the values or digits used are not within the domain of the trigonometry function
- For example:

If you punch in $\cos ^{-1}(1.238)$ on your calculator, the device will state that there is an error because 1.238 is not within the domain of $\cos ^{-1}$.

Restriction of Tangent Function

- To become a one-to-one function, we choose the interval $(-\pi / 2,-\pi / 2)$, thus a restricted function is formed.

- The restricted tangent function passes the horizontal line test.
- Each range value (y) is given exactly once as x proceeds across the restricted domain.
- Now, that we have the function restricted we will use it to formulize the inverse tangent function.

Inverse Tangent Function

- Signified by $\tan -1$ or $\arctan \rightarrow y=\tan -1$ or $y=\arctan x$
- The definition, undifferentiated to sine and cosine, is the inverse of the restricted tan function ($\mathrm{y}=\tan \mathrm{x}$), in the interval $-\pi / 2 \leq \mathrm{x} \leq \pi / 2$
- The inverse is equivalent to $\tan \mathrm{y}=\mathrm{x}$, where $-\pi / 2 \leq \mathrm{y} \leq \pi / 2$
- Here is the graph of restricted tangent function

- Here is the graph of inverse tangent function

- The coordinates on the restricted function $(-\pi / 4,-1),(0,0)$, and $(\pi / 4,1)$ are reversed on the inverse function.
- The vertical asymptotes on the restricted function become horizontal on the inverse.

Tangent-Inverse Tangent Identities

- $\tan \left(\tan ^{-1} \mathrm{x}\right)=\mathrm{x}$, where $-\infty<\mathrm{x}<\infty$
- Example: $\quad \tan \left(\tan ^{-1} 2\right)=2$ $\tan \left(\tan ^{-1}-1.5\right)=-1.5$
- $\tan ^{-1}(\tan \mathrm{x})=\mathrm{x}$, where $-\pi / 2<\mathrm{x}<\pi / 2$

$$
\begin{aligned}
& \tan ^{-1}[\tan (-0.5)]=-0.5 \\
& \tan ^{-1}[\tan (-2)] \neq-2 \\
& \text { (not within the interval or domain of the restricted tangent function) }
\end{aligned}
$$

Solving Inverse Tangent Problem Without Calculator

Example 4: y $=\tan ^{-1}(\sqrt{ } 3)$

Answer:

- $\tan ^{-1}(\sqrt{ } 3)$, is the same as $\tan y=\sqrt{ } 3$, where $-\pi / 2<y<\pi / 2$.

Therefore, $y=\pi / 3=\tan ^{-1}(\sqrt{ } 3)$:

- Since $\tan x=b / a=\sqrt{ } 3 / 2 \div 1 / 2=\sqrt{ } 3 / 2 \times 2 / 1=\sqrt{ } 3 / 2$, then the answer to $\tan ^{-1}(\sqrt{ } 3)=y=\pi / 3$

Example 5: $\tan \left[\tan ^{-1}(56)\right]$

Answer:

- According to the Tangent-Inverse Tangent Identities, $\tan \left(\tan ^{-1} x\right)=x$, where $-\infty<\mathrm{x}<\infty$. Consequently, any number x will equal number x because the domain is infinite, no limits.
- So, the answer: $\tan \left[\tan ^{-1}(56)\right]=56$

Summary

Let us summarize all the different inverse trigonometric functions.

- $\mathrm{y}=\sin ^{-1} \mathrm{x} \rightarrow \mathrm{x}=\sin \mathrm{y}$, where $-1<\mathrm{x}<1$, and $-\pi / 2<\mathrm{y}<\pi / 2$

- $\mathrm{y}=\cos ^{-1} \mathrm{x} \rightarrow \mathrm{x}=\cos \mathrm{y}$, where $-1<\mathrm{x}<1$, and $0<\mathrm{y}<\pi$

Summary Continued ...

- $\mathrm{y}=\tan ^{-1} \mathrm{x} \rightarrow \mathrm{x}=\tan \mathrm{y}$, where $-\infty<\mathrm{x}<\infty$, and $-\pi / 2<\mathrm{y}<\pi / 2$

