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Part 1.

Introduction:

Maxwell's Equations



Motivation: control of charged particle beams

To control a charged particle beam we use electromagnetic fields. Recall the
Lorentz force:

-

F:q-<E+\7><E§>

where, in high energy machines, |V| ~ ¢ ~ 3-10% m/s. In particle accelerators,
transverse deflection is usually given by magnetic fields, whereas acceleration can
only be given by electric fields.

Comparison of electric and magnetic force:

‘E) - 1 MV/m

‘é‘ - 1 T
Fmagnetic _ evB _ BcB ~ ,33 : 128 — 3008
Fe\ectric ek E 10

= the magnetic force is much stronger then the electric one: in an accelerator, use

magnetic fields whenever possible.
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Some references

1. Richard P. Feynman, Lectures on Physics, 1963, on-line

2. J. D. Jackson, Classical Electrodynamics, Wiley, 1998

3. David J. Griffiths, Introduction to Electrodynamics, Cambridge University Press, 2017
4

. Thomas P. Wangler, RF Linear Accelerators, Wiley, 2008
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Variables and units

E electric field [V/m]

B magnetic field [T]

D electric displacement [C/m?]

H magnetizing field [A/m)]

q electric charge [C]

P electric charge density [C/m?]

i =pv current density [A/m?]

€ permittivity of vacuum, 8.854 - 10712 [F/m]
fo = = permeability of vacuum, 4x - 1077 [H/m or N/A?]
c speed of light in vacuum, 2.99792458 - 108 [m/s]
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Differentiation with vectors

» We define the operator “nabla’:

def (o 9 o)
V—(a> ay 82)

which we treat as a special vector.

» Examples:

OF | 0Fy | OF divergence
ox ady 0z d

_ (0F _ OF OF« _ OF; oF,  OF
V><Fi([‘)y o0z oz ox Ix Ay

) o) ) .
Vqé:(a—f, a—f,’, af) gradient

V.-F=

curl
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Maxwell’s equations: integral form

1. Maxwell's equations can be written in integral or in differential form (S|
units convention):

E.dAi==
€0
B-dA=0

=

. dB
-dr——f(dt) dA
A

dE -
-dA
pod + pHo€o—- i )
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SV]1
8
-il
»\
N
1)

(1) Gauss’ law;

(2) Gauss’ law for magnetism;

(3) Maxwell-Faraday equation (Faraday's law of induction);
(4) Ampére’s circuital law
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Maxwell's equations: differential form

1. Maxwell's equations can be written in integral or in differential form (S|
units convention):

viE =2
€0
VB =0
V x 548

—

s - dE
VX B=poj + poco-

(1) Gauss’ law;

(2) Gauss’ law for magnetism;

(3) Maxwell-Faraday equation (Faraday's law of induction);
(4) Ampére’s circuital law
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magnetic Theory

Part 2.

Electromagnetism:

Static case



Static case

» We will consider relatively simple situations.

» The easiest circumstance is one in which nothing depends on the time—this is
called the static case:

» All charges are permanently fixed in space, or if they do move, they move as
a steady flow in a circuit (so p and j are constant in time).

P In these circumstances, all of the terms in the Maxwell equations which are time
derivatives of the field are zero. In this case, the Maxwell equations become:

Electrostatics:
v.E=",
€
VxE=0.
Magnetostatics:
VxB= —
€pC
V-B=0.
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Electrostatics: principle of superposition

» Coulomb’s Law: Electric field due to a stationary point charge g, located in ry:

E(r) =

r—ri

47T60 |r |3

» Principle of superposition, tells that a distribution of charges g; generates an

electric field: 1
r—r
E(r) = gi
(r) 47reoZ '|r—ri\3

> Continuous distribution of charges, p(r)

r—r
47r60/// |3dr

with Q = [[J, p(r') dr as the total charge, and where p is the charge density.
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Recall: Gauss' theorem

Used in the following: Gauss' theorem to evaluate flux integral:
ffE-d]f:fffV-EdV or
A v

[fE-dA= [f[div E-dV

Integral through closed surface

(flux) is integral of divergence

in the enclosed volume

Surface integral related to the divergence from the enclosed volume
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14

Electrostatics: Gauss' law
Gauss' law states that the flux of E is:

// E.dAe / E. da= sum of charges inside A
A

€0

any closed
surface A

We know that

C - == E(r) =
r’f)a dA = o =2 2 ) ,,‘
f In differential form, using the Gauss’ theorem (diver-
- gence theorem):
- //E-dA://V.Edr
. which gives the first Maxwell's equation in differential
form:
\ v.E=L
€

Example: case of a single point charge

Lo 4 if g lies inside A
// E-di={=a "97 _
0 if g lies outside A
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Electrostatics: Gauss' law

Closed Surface S~ Surface 5~

~
"
Point Charge Paint Charge

The flux of E out of the surface S is zero.
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Electrostatics: scalar potential and Poisson equation

The equations for electrostatics are:

v.E=F
€0
VxE=0

The two can be combined into a single equation:
E=V¢

which leads to the Poisson's equation:

V.Vé=|Vip="L
€0

Where the operator V2 is called Laplacian:
02 0? 0?

V-V=Vi=s__ 4+ -+ —
Ox2  0y?2  0z2

The Poisson's equation allows to compute the electric field generated by arbitrary
charge distributions.
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Electrostatics: Poisson’s equation

P

Vip=-L

¢ .
(82 o2 82) _p
_ 4 =V 4 — - _
Ox2  Oy2  0z2 €

. Numerical solution
—}— Analytical solution (evaluated at cell faces)

0.5
1 h Dirichlet boundary condition ¢=0
0
-05
-1.0-
1.5
-2.0
] Neumann boundary condition i—f:o — ¢
— T T 1 T 1 T T T T T T T
-0.2 0 02 04 06 08 10 12 14 186

X
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Recall: Stokes' theorem

Used in the following: Stoke's theorem

Line Integral of a vector field

s
Si

= ffof-dA‘ or
A

gl

Qe Qe

dF = ffcurlﬁ-df_f
A

obviously : div F = 0
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Magnetostatics: Ampere's and Biot-Savart laws

The equations for electrostatics are:

From which one can derive the Biot-Savart law, stating that, along a current j:

B(F) = 1 :?§Jdr x (F—=T")
c

-7

This provides a practical way to compute B from current distributions.
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Magnetostatics: vector potential

The equations for electrostatics are:

They can be unified into one, introducing the vector potential A
B=VxA
Using the Stokes' theorem

S P
B(F) = 1 :yécjdr x (F—7")

7 -7

one can derive the expression of the vector potential A from of the currentf:

// j(7) &7
[F— 7]
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Summary of electro- and magneto- statics

One can compute the electric and the magnetic fields from the scalar and the vector

potentials

with

W M
[
o
X

> <

3
) o

47reo// |rfr/|
d3—»/
// |r—F’|

being p the charge density, and fthe current density.
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Motion of a charged particle in an electric field

. __F_
I \[ T _ —=
\ -,
| E F q
%1 E g E
Assume no magnetic field:
Lomt) = f = q- B
dt - =1

Force always in direction of field E, also for particles at rest.
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Motion of a charged particle in a magnetic field

—
¢ -
D\
N\
Ny
7 N\ _\

kS

//‘

. . d = .

Without electric field : E(mi}‘} = f = ¢-7 x

Force is perpendicular to both, ©/ and B
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magnetic Theory

Part 3.

Electromagnetism:

Non-static case



Magnetostatics: Faraday's law of induction

“The electromotive force around a closed path is equal to the negative of the time rate
of change of the magnetic flux enclosed by the path.”

. o (3 , S foB) | -
static flux: Q = B-dA changing flux : % / £ dA
A

Moving the magnet changes the flux (density or number of lines)
through the area —

Induces a circulating (curling) electric field E in the coil which " pushes”

charges around the coil —
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Non-static case: electromagnetic waves

Electromagnetic wave equation:

Electric
Field
Magnetic - 21 w
Field ‘k‘ = — =— wave-number vector
A c
c
= 7 wave length
f frequency
w =2xf angular frequency

Time
Magnetic and electric fields are transverse to direction of propagation:
ELBLk

Short wave length —high frequency — high energy
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Spectrum of electromagnetic waves

I g energy
| I
9 g
0.0001 nm Q.01 nm 10nm 1000 nm  0.01 cm 1cm Im 100 m
1 L L 1 1 1
Gomma rays Xerays Ultra- Infrared Radio woves

violet

Radar TV FM AM

Visible light

Examples:
> vellow light ~5- 10 Hz (i.e. ~2¢eV )
> LEP (SR) < 2-10% Hz (i.e. ~ 0.8 MeV 1)
> gamma rays < 3-10%! Hz (i.e. < 12 MeV !)

(For estimates using temperature: 3 K = 0.00025 eV )
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Electromagnetic waves impacting highly conductive
materials

Highly conductive materials: RF cavities, wave guides.

» In an ideal conductor:
E; =0, B, =0

» This implies:
> All energy of an electromagnetic wave is reflected from the surface of an
ideal conductor.

» Fields at any point in the ideal conductor are zero.

» Only some field patterns are allowed in waveguides and RF cavities.
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Example: RF cavities and wave guides

Rectangular, conducting cavities and wave guides (schematic) with
dimensions a X b X cand a X b:

X x

a a
R e N [ N "
e N I D
b| —~ o~~~ z b S z
g c e

} RF cavity, fields can persist and be stored (reflection !)

> Plane waves can propagate along wave guides, here in z-direction

gnetic Theory




Example: Fields in RF cavities

Assume a rectangular RF cavity (a, b, c), ideal conductor.

Without derivations, the components of the fields are:
E, = E.o - cos(k,x) - sin(kyy) - sin(k.2) - e **
E, = Ey - sin(kez) - cos(kyy) - sin(k.z) - e it

—twt

E, = E.o - sin(kzx) - sin(kyy) - cos(k.z) - e

—iwt

B, = —(Eyok. — E.oky) - sin(k,x) - cos(kyy) - cos(k.z) - e

L

w

B, = i(Ezg.’cm — Eaok,) - cos(kqx) - sin(kyy) - cos(k.z) - e ™"
w

B. = i(Eng:y — Eyokz) - cos(kzx) - cos(kyy) - sin(k.z) - e ¢
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'Modes’ in cavities - 1 transverse dimension

2 T

04 0.8 0.8 1
dimension a

No electric field at boundaries, wave must have "nodes” = zero
fields at the boundaries

Only modes which 'fit’ into the cavity are allowed

LA a2 A _ & _a_
In the example: 5 = I, 5 = I»

0.8

B>

a
(then either "sin” or " cos” is 0)
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Example: Consequences for RF cavities

Field must be zero at conductor boundary, only possible if:

wz

2 2 2 _
Ktk k=

and for k,, k,, k. we can write, (then they all fit):

Mg My
k?:c = y y = b’ kz = 3

The integer numbers m,, m,, m. are called mode numbers, important for

design of cavity !

— half wave length /2 must always fit exactly the size of the cavity.

(For cylindrical cavities: use cylindrical coordinates )
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Example: Consequences for wave guides

Similar considerations as for cavities, no field at boundary.
We must satisfy again the condition:
2 2 2w
k'_r + k'.y + kz - C_Z
This leads to modes like (no boundaries in direction of propagation z):
MeT myT
k= —", k,=—",
a Y b

The numbers m., m, are called mode numbers for planar waves in wave

guides !

In z direction: No Boundary - No Boundary Condition ...
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Re-writing the condition as:

2 2
2_ W 42 2 Y 12
ke = c2? kz —ky - k. = o2 k2 — kj
Propagation without losses requires k. to be real, i.e.:
MzT 9 MLy T
Ty 4 (2

which defines a cut-off frequency w.. For lowest order mode:

2
w 2 2
C—2>km+ky:(

mT-C
We = ——
a
> Above cut-off frequency: propagation without loss
> At cut-off frequency: standing wave

> Below cut-off frequency: attenuated wave (it does not "fit in").

There is a very easy way to show that very high frequencies easily propagate
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Classification of modes

Transverse electric modes (TE): £, = 0 H, # 0
Transverse magnetic modes (TM): E, # 0 H, =

Transverse electric-magnetic modes (TEM): E, = 0

(Not all of them can be used for acceleration ... !)

Note (here a TE mode) :
Electric field lines end at boundaries

Magpnetic field lines appear as ”loops”
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Classification of modes

) Magnetic
Magnetic field

Electric field

TE mode TM mode

Magnetic flux lines appear as continuous loops
Electric flux lines appear with beginning and end points
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..The End!

Thank you

for your attention!

SpeC|aI thanks to Werner Herr for the pictures | took from his slides.
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