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Part 1.

Introduction:

Maxwell’s Equations
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Motivation: control of charged particle beams
To control a charged particle beam we use electromagnetic fields. Recall the
Lorentz force:

~F = q ·
(
~E + ~v × ~B

)
where, in high energy machines, |~v | ≈ c ≈ 3 · 108 m/s. In particle accelerators,
transverse deflection is usually given by magnetic fields, whereas acceleration can
only be given by electric fields.

Comparison of electric and magnetic force:∣∣∣~E ∣∣∣ = 1 MV/m∣∣∣~B∣∣∣ = 1 T

Fmagnetic

Felectric
=

evB
eE

=
βcB
E

' β
3 · 108

106
= 300β

⇒ the magnetic force is much stronger then the electric one: in an accelerator, use
magnetic fields whenever possible.
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Some references

1. Richard P. Feynman, Lectures on Physics, 1963, on-line

2. J. D. Jackson, Classical Electrodynamics, Wiley, 1998

3. David J. Griffiths, Introduction to Electrodynamics, Cambridge University Press, 2017

4. Thomas P. Wangler, RF Linear Accelerators, Wiley, 2008
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Variables and units

E electric field [V/m]
B magnetic field [T]
D electric displacement [C/m2]
H magnetizing field [A/m]

q electric charge [C]
ρ electric charge density [C/m3]
j = ρv current density [A/m2]

ε0 permittivity of vacuum, 8.854 · 10−12 [F/m]
µ0 = 1

ε0c2
permeability of vacuum, 4π · 10−7 [H/m or N/A2]

c speed of light in vacuum, 2.99792458 · 108 [m/s]
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Differentiation with vectors

I We define the operator “nabla”:

∇ def
=

(
∂
∂x ,

∂
∂y ,

∂
∂z

)
which we treat as a special vector.

I Examples:

∇ · F =
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z
divergence

∇× F =
(
∂Fz
∂y −

∂Fy
∂z ,

∂Fx
∂z −

∂Fz
∂x ,

∂Fy
∂x −

∂Fx
∂y

)
curl

∇φ =
(
∂φ
∂x ,

∂φ
∂y ,

∂φ
∂z

)
gradient

7/37 A. Latina - Electromagnetic Theory



Maxwell’s equations: integral form

1. Maxwell’s equations can be written in integral or in differential form (SI
units convention):

(1) Gauss’ law;
(2) Gauss’ law for magnetism;
(3) Maxwell–Faraday equation (Faraday’s law of induction);
(4) Ampère’s circuital law
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Maxwell’s equations: differential form

1. Maxwell’s equations can be written in integral or in differential form (SI
units convention):

(1) Gauss’ law;
(2) Gauss’ law for magnetism;
(3) Maxwell–Faraday equation (Faraday’s law of induction);
(4) Ampère’s circuital law
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Part 2.

Electromagnetism:

Static case
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Static case

I We will consider relatively simple situations.
I The easiest circumstance is one in which nothing depends on the time—this is

called the static case:
I All charges are permanently fixed in space, or if they do move, they move as

a steady flow in a circuit (so ρ and j are constant in time).
I In these circumstances, all of the terms in the Maxwell equations which are time

derivatives of the field are zero. In this case, the Maxwell equations become:
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Electrostatics: principle of superposition

I Coulomb’s Law: Electric field due to a stationary point charge q, located in r1:

E (r) =
q

4πε0
r − r1
|r − r1|3

I Principle of superposition, tells that a distribution of charges qi generates an
electric field:

E (r) =
1

4πε0

∑
qi

r − ri
|r − ri |3

I Continuous distribution of charges, ρ (r)

E (r) =
1

4πε0

˚
V
ρ
(
r′
) r − r′

|r − r′|3
dr

with Q =
˝

V ρ (r
′) dr as the total charge, and where ρ is the charge density.
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Recall: Gauss’ theorem
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Electrostatics: Gauss’ law
Gauss’ law states that the flux of ~E is:

¨
A

~E ·d~A=
ˆ

any closed
surface A

En da=
sum of charges inside A

ε0

We know that

E (r) =
1

4πε0

˚
V
ρ
(
r′
) r − r′

|r − r′|3
dr

In differential form, using the Gauss’ theorem (diver-
gence theorem):¨

~E · d~A =

˚
∇ · ~E dr

which gives the first Maxwell’s equation in differential
form:

∇ · ~E=
ρ

ε0

Example: case of a single point charge

¨
~E · d~A =

{
q
ε0

if q lies inside A

0 if q lies outside A
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Electrostatics: Gauss’ law

The flux of E out of the surface S is zero.
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Electrostatics: scalar potential and Poisson equation
The equations for electrostatics are:

∇ · ~E =
ρ

ε0

∇× ~E = 0

The two can be combined into a single equation:

~E=-∇φ

which leads to the Poisson’s equation:

∇ · ∇φ = ∇2φ=-
ρ

ε0

Where the operator ∇2 is called Laplacian:

∇ · ∇ = ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

The Poisson’s equation allows to compute the electric field generated by arbitrary
charge distributions.
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Electrostatics: Poisson’s equation
∇2φ = −

ρ

ε0(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
φ = −

ρ

ε0
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Recall: Stokes’ theorem
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Magnetostatics: Ampère’s and Biot-Savart laws

The equations for electrostatics are:

∇ · ~B = 0

∇× ~B =
~j
ε0c2

The Stokes’ theorem tells that:˛
C

~B · d~r =

¨
A

(
∇× ~B

)
· d~A

This equation gives the Ampère’s law:
˛
C

~B · d~r =
1
ε0c2

¨
A

~j · ~n dA

From which one can derive the Biot-Savart law, stating that, along a current j :

~B (~r) =
1

4πε0c2 =

˛
C

j d~r ′ × (~r −~r ′)
|~r −~r ′|3

This provides a practical way to compute ~B from current distributions.
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Magnetostatics: vector potential

The equations for electrostatics are:

∇ · ~B = 0

∇× ~B =
~j
ε0c2

They can be unified into one, introducing the vector potential ~A:

~B = ∇× ~A

Using the Stokes’ theorem

~B (~r) =
1

4πε0c2 =

˛
C

j d~r ′ × (~r −~r ′)
|~r −~r ′|3

one can derive the expression of the vector potential ~A from of the current ~j :

~A (r) =
µ0
4π

˚ ~j (~r ′)
|~r −~r ′|d

3~r ′
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Summary of electro- and magneto- statics

One can compute the electric and the magnetic fields from the scalar and the vector
potentials

~E = −∇φ
~B = ∇× ~A

with

φ (r) =
1

4πε0

˚
ρ (~r ′)
|~r −~r ′|d

3~r ′

~A (r) =
µ0
4π

˚ ~j (~r ′)
|~r −~r ′|d

3~r ′

being ρ the charge density, and ~j the current density.
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Motion of a charged particle in an electric field

~F = q ·
(
~E + ~v ×��SS~B

)
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Motion of a charged particle in a magnetic field

~F = q ·
(
��SS~E + ~v × ~B

)
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Part 3.

Electromagnetism:

Non-static case
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Magnetostatics: Faraday’s law of induction

“The electromotive force around a closed path is equal to the negative of the time rate
of change of the magnetic flux enclosed by the path.”

25/37 A. Latina - Electromagnetic Theory



Non-static case: electromagnetic waves
Electromagnetic wave equation:

~E (~r , t) = ~E0e i(ωt−
~k·~r)

~B (~r , t) = ~B0e i(ωt−
~k·~r)

Important quantities:

∣∣∣~k∣∣∣ = 2π
λ

=
ω

c
wave-number vector

λ =
c
f

wave length

f frequency

ω = 2πf angular frequency

Magnetic and electric fields are transverse to direction of propagation:

~E ⊥ ~B ⊥ ~k

Short wave length →high frequency → high energy
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Spectrum of electromagnetic waves

Examples:
I yellow light ≈ 5 · 1014 Hz (i.e. ≈ 2 eV !)
I LEP (SR) ≤ 2 · 1020 Hz (i.e. ≈ 0.8 MeV !)
I gamma rays ≤ 3 · 1021 Hz (i.e. ≤ 12 MeV !)

(For estimates using temperature: 3 K ≈ 0.00025 eV )
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Electromagnetic waves impacting highly conductive
materials

Highly conductive materials: RF cavities, wave guides.

I In an ideal conductor:
~E‖ = 0, ~B⊥ = 0

I This implies:
I All energy of an electromagnetic wave is reflected from the surface of an

ideal conductor.

I Fields at any point in the ideal conductor are zero.

I Only some field patterns are allowed in waveguides and RF cavities.
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Example: RF cavities and wave guides
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Example: Fields in RF cavities

30/37 A. Latina - Electromagnetic Theory



31/37 A. Latina - Electromagnetic Theory



Example: Consequences for RF cavities
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Example: Consequences for wave guides
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Classification of modes
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Classification of modes
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...The End!

Thank you

for your attention!

Special thanks to Werner Herr, for the pictures I took from his slides.
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