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1 Metric spaces

This section is devoted to fairly formal preliminaries. Things get more inter-
esting in the next section and the course gets fully under way in the third.
Both those students who find the early material worryingly familiar and those
who find it worryingly unfamiliar are asked to suspend judgement until then.

Most Part II students will be familiar with the notion of a metric space.

Definition 1.1. Suppose that X is a non-empty set and d : X2 → R is a
function which obeys the following rules.

(i) d(x, y) ≥ 0 for all x, y ∈ X.
(ii) d(x, y) = 0 if and only if x = y.
(iii) d(x, y) = d(y, x) for all x, y ∈ X.
(iv) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.
Then we say that d is a metric on X and that (X, d) is a metric space.

For most of the course we shall be concerned with metrics which you
already know well.

Lemma 1.2. (i) Consider Rn. If we take d to be ordinary Euclidean distance

d(x,y) = ‖x− y‖ =

(
n∑
j=1

|xj − yj|2
)1/2

,

then (Rn, d) is a metric space. We refer to this space as Euclidean space.
(ii) Consider C. If we take d(z, w) = |z − w|, then (C, d) is a metric

space.

Proof. Proved in previous courses (and set as Exercise 18.1).

The next definitions work in any metric space, but you can concentrate
on what they mean for ordinary Euclidean space.

Definition 1.3. If (X, d) is a metric space xn ∈ X, x ∈ X and d(xn, x)→ 0,
then we say that xn −→

d
x as n→∞.

Definition 1.4. If (X, d) is a metric space x ∈ X and r > 0, then we write

B(x, r) = {y ∈ X : d(x, y) < r}

and call B(x, r) the open ball of radius r with centre x.
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Definition 1.5. Let (X, d) be a metric space.
(i) We say that a subset E of X is closed if, whenever xn ∈ E and

xn −→
d
x, it follows that x ∈ E.

(ii) We say that a subset U of X is open if, whenever u ∈ U , we can find
a δ > 0 such that B(u, δ) ⊆ U .

Exercise 1.6. (i) If x ∈ X and r > 0, then B(x, r) is open in the sense of
Definition 1.5.

(ii) If x ∈ X and r > 0, then the set

B̄(x, r) = {y ∈ X : d(x, y) ≤ r}

is closed. (Naturally enough, we call B̄(x, r) a closed ball.)
(iii) If E is closed, then X \ E is open.
(iv) If E is open then X \ E is closed.

We recall (without proof) the following important results from 1A.

Theorem 1.7. [Cauchy criterion] A sequence an ∈ R converges if and
only if, given ε > 0, we can find an N(ε) such that |an − am| < ε for all
n, m ≥ N(ε)

Generalisation leads us to the following definitions.

Definition 1.8. If (X, d) is a metric space, then a sequence (an) with an ∈ X
is called a Cauchy sequence if, given ε > 0, we can find an N(ε) such that
d(an, am) < ε for all n, m ≥ N(ε).

Definition 1.9. We say that a metric space (X, d) is complete if every
Cauchy sequence converges.

Exercise 1.10. Show that if (X, d) is a metric space (complete or not), then
every convergent sequence is Cauchy.

We note the following very useful remarks.

Lemma 1.11. Let (X, d) be a metric space.
(i) If a Cauchy sequence xn in (X, d) has a convergent subsequence with

limit x, then xn → x.
(ii) Let εn > 0 and εn → 0 as n → ∞. If (X, d) has the property

that, whenever d(xn, xn+1) < εn for n ≥ 1, it follows that the sequence xn
converges, then (X, d) is complete.

Lemma 1.11 (ii) is most useful when we have
∑∞

n=1 εn convergent, for
example if εn = 2−n.

The next exercise is simply a matter of disentangling notation.
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Exercise 1.12. Suppose that (X, d) is a metric space and Y is a non-empty
subset of X.

(i) Show that, if dY (a, b) = d(a, b) for all a, b ∈ Y , then (Y, dY ) is a
metric space.

(ii) Show that, if (X, d) is complete and Y is closed in (X, d), then (Y, dY )
is complete.

(iii) Show that, if (Y, dY ) is complete, then (whether (X, d) is complete
or not) Y is closed in (X, d).

We now come to our first real theorem.

Theorem 1.13. The Euclidean space Rn with the usual metric is complete.

We shall usually prove such theorems in the case n = 2 and remark that
the general case is similar.

2 Compact sets in Euclidean Space

In Part 1A we showed that any bounded sequence had a convergent subse-
quence. This result generalises to n dimensions.

Theorem 2.1. (Bolzano–Weierstrass theorem). If K > 0 and xr ∈ Rm

satisfies ‖xr‖ ≤ K for all r, then we can find an x ∈ Rm and r(k)→∞ such
that xr(k) → x as k →∞.

We now prove a very useful theorem.

Theorem 2.2. (i) If E is closed bounded subset of Rm, then any sequence
xr ∈ E has a subsequence with a limit in E.

(ii) Conversely, if E is a subset of Rm with the property that any sequence
xr ∈ E has a subsequence with a limit in E, then E is closed and bounded.

We shall refer to the property described in (i) as the Bolzano–Weierstrass
property.

If you cannot see how to prove a result in Rm using the Bolzano–Weierstrass
property, then the 1A proof for R will often provide a hint.

We often refer to closed bounded subsets of Rm as compact sets . (The
reader is warned that, in general metric spaces, ‘closed and bounded’ does
not mean the same thing as ‘compact’ (see, for example, Exercise 19.5).
If we deal with the even more general case of topological spaces we have
to distinguish between compactness and sequential compactness1. We shall
only talk about compact sets in Rm.)

1If you intend to climb Everest you need your own oxygen supply. If you intend to
climb the Gog Magogs you do not.
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The reader will be familiar with definitions of the following type.

Definition 2.3. If (X, d) and (Y, ρ) are metric spaces and E ⊆ X, we say
that a function f : E → Y is continuous if, given ε > 0 and x ∈ E, we can
find a δ(x, ε) > 0 such that, whenever z ∈ E and d(z, x) < δ(x, ε), we have
ρ(f(z), f(x)) < ε.

Exercise 2.4. Let (X, d) and (Y, ρ) be metric spaces and let f : X → Y be
a function.

(i) f is continuous if and only if f−1(U) is open whenever U is.
(ii) f is continuous if and only if f−1(E) is closed whenever E is.

Even if the reader has not met the general metric space definition, she
will probably have a good idea of the properties of continuous functions
f : E → Rn when E is a subset of Rm.

The following idea will be used several times during the course.

Lemma 2.5. If (X, d) is a metric space and A is a non-empty closed subset
of X let us write

d(x,A) = inf{d(x, a) : a ∈ A}.

Then d(x,A) = 0 implies x ∈ A. Further the map x 7→ d(x,A) is continuous.

We now prove that the continuous image of a compact set is compact.

Theorem 2.6. If E is a compact subset of Rm and f : E → Rn is continuous,
then f(E) is a compact subset of Rn.

At first sight Theorem 2.6 seems too abstract to be useful, but it has an
immediate corollary.

Theorem 2.7. If E is a non-empty compact subset of Rm and f : E → R
is continuous, then there exist a, b ∈ E such that

f(a) ≥ f(x) ≥ f(b)

for all x ∈ E.

Thus a continuous real valued function on a compact set is bounded and
attains its bounds.

Exercise 2.8. Deduce the theorem in 1A which states that if f : [c, d] → R
is continuous, then f is bounded and attains its bounds.

Theorem 2.7 gives a neat proof of the fundamental theorem of algebra
(which, contrary to its name, is a theorem of analysis).
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Theorem 2.9. [Fundamental Theorem of Algebra] If we work in the
complex numbers, every non-constant polynomial has a root.

The reader will probably have seen, but may well have forgotten, the
contents of the next exercise.

Exercise 2.10. We work in the complex numbers.
(i) Use induction on n to show that, if P is a polynomial of degree n and

a ∈ C, then there exists a polynomial Q of degree n − 1 and an r ∈ C such
that

P (z) = (z − a)Q(z) + r.

(ii) Deduce that, if P is a polynomial of degree n with root a, then there
exists a polynomial Q of degree n− 1 such that

P (z) = (z − a)Q(z).

(iii) Use induction and the fundamental theorem of algebra to show that
every polynomial P of degree n can be written in the form

A
n∏
j=1

(z − aj)

with A, a1, a2, . . . , an ∈ C and A 6= 0.
(iv) Show that, if P is a polynomial of degree at most n which vanishes

at n+ 1 points, then P is the zero polynomial.

3 Laplace’s equation

We need a preliminary definition.

Definition 3.1. Let (X, d) be a metric space and E a subset of X.
(i) The interior of E is the set of all points x such that there exists a δ > 0

(depending on x) such that B(x, δ) ⊆ E. We write IntE for the interior of
E.

(ii) The closure of E is the set of points x in X such that we can find
en ∈ E with en −→

d
x. We write ClE for the closure of E.

(iii) The boundary of E is the set ∂E = ClE \ IntE.

Exercise 3.2. (i) Show that IntE is open. Show also that, if V is open and
V ⊆ E, then V ⊆ IntE.

(ii) Show that ClE is closed. Show also that, if F is closed and F ⊇ E,
then F ⊇ ClE.
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(Thus IntE is the largest open set contained in E and ClE is the smallest
closed set containing E.)

(iii) Show that ∂E is closed.
(iv) Suppose that we work in Rm with the usual metric. Show that if E

is bounded, then so is ClE.

Recall that, if φ is a real valued function in Rm with sufficiently many
derivatives, then we write

O2φ =
m∑
j=1

∂2φ

∂x2
j

.

In this section we look at solutions of Laplace’s equation

O2φ = 0.

Our first collection of results lead up to a proof of uniqueness.

Lemma 3.3. Let Ω be a bounded open subset of Rm. Suppose φ : Cl Ω→ R
is continuous and satisfies

O2φ > 0

on Ω. Then φ cannot attain its maximum on Ω.

Theorem 3.4. Let Ω be a bounded open subset of Rm. Suppose φ : Cl Ω→ R
is continuous on Cl Ω and satisfies

O2φ = 0

on Ω. Then φ attains its maximum on ∂Ω.

Exercise 3.5. Let Ω be a bounded open subset of C. Suppose that

f : Cl Ω→ C

is continuous and f is analytic on Ω. Recall that the real and imaginary parts
of f satisfy Laplace’s equation on Int Ω. Show that |f | attains its maximum
on ∂Ω.
[Hint: Why can we assume that <f(z0) = |f(z0)| at any particular point z0?]

Theorem 3.6. Let Ω be a bounded open subset of Rm. Suppose that the
functions φ, ψ : Cl Ω→ R are continuous and satisfy

O2φ = 0, O2ψ = 0

on Ω. Then, if φ = ψ on ∂Ω, it follows that φ = ψ on Cl Ω.
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You proved a version of Theorem 3.6 in Part 1A but only for ‘nice bound-
aries’ and functions that behaved ‘nicely’ near the boundary.

You have met the kind of arguments used above when you proved Rolle’s
theorem in 1A. Another use of this argument is given in Exercise 18.13 which
provides a nice revision for this section.

In Part 1A you assumed that you could always solve Laplace’s equation.
The next exercise (which forms part of the course) shows that this is not the
case.

Exercise 3.7. (i) Let

Ω = {x ∈ R2 : 0 < ‖x‖ < 1}.

Show that Ω is open, that

ClΩ = {x ∈ R2 : ‖x‖ ≤ 1}

and
∂Ω = {x ∈ R2 : ‖x‖ = 1} ∪ {0}.

(ii) Suppose that φ : Cl Ω→ R is continuous, that φ is twice differentiable
on Ω and that φ satisfies

O2φ = 0

on Ω together with the boundary conditions

φ(x) =

{
0 if ‖x‖ = 1,

1 if x = 0.

Use the uniqueness of solutions of Laplace’s equation to show that φ must be
radially symmetric in the sense that

φ(x) = f(‖x‖)

for some function f : [0, 1]→ R.
(iii) Show that

d

dr

(
rf(r)

)
= 0

for 0 < r < 1 and deduce that f(r) = A + B log r [0 < r < 1] for some
constants A and B.

(iv) Conclude that the function φ described in (ii) can not exist.

This result is due to Zaremba, one of the founding fathers of Polish mathe-
matics. Later Lebesgue produced a three dimensional example (the Lebesgue
thorn) which will be briefly discussed by the lecturer, but does not form part
of the course.
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4 Fixed points

In Part 1A we proved the intermediate value theorem.

Theorem 4.1. If f : [a, b]→ R is continuous function and f(a) ≥ c ≥ f(b),
then we can find a y ∈ [a, b] such that f(y) = c.

We then used it to the following very pretty fixed point theorem.

Theorem 4.2. If f : [a, b] → [a, b] is a continuous function, then we can
find a w ∈ [a, b] such that f(w) = w.

Notice that we can reverse the implication and use Theorem 4.2 to prove
Theorem 4.1. (See Exercise 4.9.)

The object of this section is to extend the fixed point theorem to two
dimensions.

Theorem 4.3. Let D̄ = {x ∈ R2 : ‖x‖ ≤ 1}. If f : D̄ → D̄ is a continuous
function, then we can find a w ∈ D̄ such that f(w) = w.

Although we will keep strictly to two dimensions the reader should note
that the result and many of its consequences hold in n dimensions.

Notice also that the result can be extended to (closed) squares, triangles
and so on.

Lemma 4.4. Let D̄ = {x ∈ R2 : ‖x‖ ≤ 1}. Suppose that g : D̄ → A is
a bijective function with g and g−1 continuous. Then if F : A → A is a
continuous function, we can find an a ∈ A such that F (a) = a.

From now on we shall use extensions of the type given for Lemma 4.4
without comment.

The proof of Theorem 4.3 will take us some time. It consists in showing
that a number of interesting statements are equivalent. The proof thus con-
sists of lemmas of the form A⇒ B orB ⇔ C, . . . . I suggest that the reader
considers each of these implications individually and then steps back to see
how they hang together.

We write

D = {x ∈ R2 : ‖x‖ < 1}, D̄ = {x ∈ R2 : ‖x‖ ≤ 1}, ∂D = {x ∈ R2 : ‖x‖ = 1}.

Theorem 4.5. The following two statements are equivalent.
(i) If f : D̄ → D̄ is continuous, then we can find a w ∈ D̄ such that

f(w) = w. (We say that every continuous function of the closed disc into
itself has a fixed point.)

(ii) There does not exist a continuous function g : D̄ → ∂D with g(x) = x
for all x ∈ ∂D. (We say that there is no retraction mapping from D̄ to ∂D.)
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Let a1, a2 and a3 be unit vectors making angles of ±2π/3 with each other.
We take T to be the closed triangle with vertices a1, a2 and a3 and sides I,
J and K.

(For those who insist on things being spelt out

T = {λ1a1 + λ2a2 + λ3a3 : λ1 + λ2 + λ3 = 1, λj ≥ 0}

but though such ultra precision has its place, that place is not this course.)
The next collection of equivalences is easy to prove.

Lemma 4.6. The following three statements are equivalent.
(i) There is no retraction mapping from D̄ to ∂D.
(ii) Let

Ĩ = {(cos θ, sin θ) : 0 ≤ θ ≤ 2π/3}, J̃ = {(cos θ, sin θ) : 2π/3 ≤ θ ≤ 4π/3}
and K̃ = {(cos θ, sin θ) : 4π/3 ≤ θ ≤ 2π}.

Then there does not exist a continuous function k̃ : D̄ → ∂D with

k̃(x) ∈ Ĩ for all x ∈ Ĩ , k̃(x) ∈ J̃ for all x ∈ J̃ , k̃(x) ∈ K̃ for all x ∈ K̃.

(iii) There does not exist a continuous function k : T → ∂T with

k(x) ∈ I for all x ∈ I, k(x) ∈ J for all x ∈ J, k(x) ∈ K for all x ∈ K.

We now prove a slightly more difficult equivalence.

Lemma 4.7. The following two statements are equivalent,
(i) There does not exist a continuous function h : T → ∂T with

h(x) ∈ I for all x ∈ I, h(x) ∈ J for all x ∈ J, h(x) ∈ K for all x ∈ K.

(ii) If A, B and C are closed subsets of T with A ⊇ I, B ⊇ J and C ⊇ K
and A ∪B ∪ C = T , then A ∩B ∩ C 6= ∅.

We shall prove statement (ii) of Lemma 4.7 from which the remaining
statements will then follow. The key step is Sperner’s Lemma.

Lemma 4.8. Consider a triangle DEF divided up into a triangular grid. If
all the vertices of the grid are coloured red, green or blue and every vertex on
the side DE of the big triangle (with the exception of E) are coloured red,
every vertex of EF (with the exception of F ) green and every vertex of FD
(with the exception of D) blue then there is a triangle of the grid all of whose
vertices have different colours.
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We can now prove the statement (ii) of Lemma 4.7 and so of Theorem 4.3
and all its equivalent forms.

The following pair of exercises (set as Exercises 18.7 and 18.8) may be
helpful in thinking about the arguments of this section.

Exercise 4.9. The following four statements are equivalent.
(i) If f : [0, 1] → [0, 1] is continuous, then we can find a w ∈ [0, 1] such

that f(w) = w.
(ii) There does not exist a continuous function g : [0, 1] → {0, 1} with

g(0) = 0 and g(1) = 1. (In topology courses we say that [0, 1] is connected.)
(iii) If A and B are closed subsets of [0, 1] with 0 ∈ A, 1 ∈ B and

A ∪B = [0, 1] then A ∩B 6= ∅.
(iv) If h : [0, 1]→ R is continuous and h(0) ≤ c ≤ h(1), then we can find

a y ∈ [0, 1] such that h(y) = c.

Exercise 4.10. Suppose that we colour the points r/n red or blue [r =
0, 1, . . . , n] with 0 red and 1 blue. Show that there are a pair of neigh-
bouring points u/n, (u + 1)/n of different colours. Use this result to prove
statement (iii) of Exercise 4.9.

Sperner’s lemma can be extended to higher dimensions and once this is
done the remainder of our proofs together with Brouwer’s theorem extend
with simple changes to higher dimensions.

Here is an example of the use of Brouwer’s theorem.

Exercise 4.11. Suppose that A = (aij) is a 3 × 3 matrix such that aij ≥ 0
for all 1 ≤ i, j ≤ 3 and

∑3
i=1 aij = 1 for all 1 ≤ j ≤ 3. Let

T = {x ∈ R3 : xj ≥ 0 for all j and x1 + x2 + x3 = 1}.

By considering the effect of A on T , show that A has an eigenvector lying in
T with eigenvalue 1.

If you have not done the 1B Markov chains course Exercise 4.11 may
appear somewhat artificial. However, if you have done that course, you will
see that is not.

Exercise 4.12. (Only for those who understand the terms used. This is not
part of the course.) Use the argument of Exercise 4.11 to show that every 3
state Markov chain has an invariant measure. (Remember that in Markov
chains ‘the i’s and j’s swap places’.) What result can you obtain under the
assumption that Brouwer’s theorem holds in higher dimensions?

Brouwer’s theorem is rather deep. Here is a result which can be proved
using it.
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Exercise 4.13. Show that if ABCD is a square and γ is a continuous path
joining A and C whilst τ is a continuous path joining B and D, then γ and
τ intersect,
[See Exercise 18.11 for a more detailed statement and a description of the
proof.]

Another interesting result is given as Exercise 18.9.

5 Non-zero sum games

It is said that converting the front garden of a house into a parking place
raises the value of a house, but lowers the value of the other houses in the
road. Once everybody has done the conversion, the value of each house is
lower than before the process started.

Let us make a simple model of such a situation involving just two people
with just two choices to see what we can say about it.

Suppose that Albert has the choice of doing A1 or A2 and Bertha the
choice of doing B1 or B2. If Ai and Bj occur, then Albert gets aij units and
Bertha gets bij units. If you went to the 1B course on optimisation you learnt
how to deal with the case when aij = −bij (this is called zero-sum case since
aij + bij = 0 and Albert’s loss is Bertha’s gain). Albert and Bertha agree
that Albert will choose Ai with probability pi and Bertha will choose Bj with
probability qj. The expected value of the arrangement to Albert is

A(p,q) =
2∑
i=1

2∑
j=1

aijpiqj

and the expected value of the arrangement to Bertha

B(p,q) =
2∑
i=1

2∑
j=1

bijpiqj

If you went to the 1B optimisation course, then you saw that in the zero-
sum case there is a choice of p and q such that if Albert chooses p and Bertha
q then even if he knows Bertha’s choice Albert will not change his choice
and even if she knows Albert’s choice Bertha will not change her choice.

So far so good, but if we consider the non zero-sum case we can imag-
ine other situations in which Albert chooses p and then Bertha chooses q
but, now knowing Bertha’s choice, Albert changes his choice to p′ and then,
knowing Albert’s new choice, Bertha changes to q′ and then . . . . The ques-
tion we ask ourselves is whether there is a ‘stable choice’ of p and q such
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that neither party can do better by unilaterally choosing a new value. This
question is answered by a remarkable theorem of Nash.

Theorem 5.1. Suppose aij and bij are real numbers. Let

E = {(p, q) : 1 ≥ p, q ≥ 0},

set p1 = p, p2 = 1− p, q1 = q, q2 = 1− q,

A(p, q) =
2∑
i=1

2∑
j=1

aijpiqj and B(p, q) =
2∑
i=1

2∑
j=1

bijpiqj.

Then we can find (p∗, q∗) ∈ E such that

B(p∗, q∗) ≥ B(p∗, q) for all (p∗, q) ∈ E

and
A(p∗, q∗) ≥ A(p, q∗) for all (p, q∗) ∈ E.

The pair (p∗, q∗) is called a Nash equilibrium point or Nash stable point.
The interested reader should have no difficulty in convincing herself (given

Brouwer’s fixed point theorem in the appropriate dimension) that the result
can be extended to many participants with many choices to state that there
is always a choice of probabilities such that no single participant has an
incentive to change their choice2. Note that the game theory you did in 1B
only applies to two players.

Unfortunately the stable points need not be unique. Suppose that Albert
and Bertha have to choose scissors or paper. If they both choose scissors
they get £1 each. If they both choose paper they get £2 each but if they
disagree they get nothing. It is clear that the points corresponding to ‘both
choose paper’ and ‘both choose scissors’ are stable. The same is true if when
they disagree they both get nothing but Albert gets £1 and Bertha £2 if
they both choose scissors whilst, if they both choose paper the payments are
reversed.

Exercise 5.2. [Chicken] Albert and Bartholomew drive cars fast at one
another. If they both swerve they both lose 1 prestige points. If one swerves
and the other does not the swerver looses 5 prestige points and the non-
swerver gains 10 prestige points. If neither swerves they both loose 100 points.
Identify the Nash equilibrium points.

2However, this applies only to single participants. There may be an incentive for two
or more participants (if they can agree) to change their choices jointly.
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Notice that it is genuinely easy to solve toy problems like this when they
appear in exercises and examinations. First look at the interior of the square
and apply elementary calculus to find stationary points. Then look at the
interior of each edge and apply elementary calculus to find stationary points.
Finally look at the vertices. The same idea applies when there are three
participants, but now we need to examine the interior of the cube, the interior
of each face, the interior of each edge and the vertices in turn. Obviously if
we attack the problem in this way, we run into the curse of dimensionality
— each step is easy but the number of steps increases very rapidly with the
number of participants. So far as I know, there is no way of avoiding this
phenomenon. (But I know of no real life situation where we would wish to
solve a high dimensional problem.)

It is also clear from examples like the one that began this section that
even if the stable point is unique it may be unpleasant for all concerned3.
However this is not the concern of the mathematician.

6 Dividing the pot

Faced with problems like those of the previous section, the young and ten-
der hearted often ask ‘Why not cooperate?’ It is, of course, true that under
certain conditions people are willing to cooperate, but, even if these condi-
tions are met, the question remains of how to divide up the gains due to
cooperation.

Exercise 6.1. (You will be asked to solve this as Exercise 19.4.) Consider
two rival firms A and B engaged in an advertising war. So long as the war
continues, the additional costs of advertising mean that the larger firm A
loses 3 million pounds a year and the smaller firm B loses 1 million pounds
a year. If they can agree to cease hostilities then A will make 8 million a
year and B will make 1 million a year. How much should A pay B per year
to achieve this end4?

Nash produced a striking answer to this question. There are objections
to his argument, but I hope the reader will agree with me that it is a notable
contribution.

3McNamara, the US Defence Secretary at the time, was of the opinion that, during the
Cuban crisis, all the participants behaved in a perfectly rational manner and only good
luck prevented a full scale nuclear war.

4The reader may feel that it would be very difficult for rival firms to come to an
agreement in this way. In fact, it appears to be so easy that most countries have strict
laws against such behaviour.
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In order to examine his answer we need to introduce the notion of a
convex set.

Definition 6.2. A subset E of Rm is convex if, whenever u, v ∈ E and
1 ≥ p ≥ 0, we have

pu + (1− p)v ∈ E.

Nash considers a situation in which m players must choose a point x ∈ E
where E is a closed, bounded, convex set in Rm. The value of the outcome to
the jth participant is xj. To see why is reasonable to take E convex suppose
that the participants can choose two points u and v. The participants can
agree among themselves to toss a suitable coin and choose u with probability
p and v with probability 1−p. The expected value of the outcome to the jth
participant is puj + (1− p)vj, that is to say, the value of the jth component
of pu + (1− p)v.

The participants also know a point s ∈ E (the status quo) which will be
the result if they can not agree on any other point.

Nash argues that a best point x∗ if it exists must have the following
properties.

(1) x∗j ≥ sj for all j. (Everyone must be at least as well off as if they
failed to agree.)

(2) (Pareto Optimality) If x ∈ E and xj ≥ x∗j for all j, then x = x∗. (If
there is a choice which makes some strictly better off and nobody worse off,
then the participants should take it.)

(3) (Independence of irrelevant alternatives.) Suppose E ′ is a closed
bounded convex set with E ′ ⊇ E and x∗∗ is a best point for E ′. Then,
if x∗∗ ∈ E it follows that x∗∗ is a best point for E.

(4) If E is symmetric (that is, if whenever x ∈ E and y1, y2, . . . , ym is
some rearrangement of x1, x2, . . . , xm, then y ∈ E) and s is symmetric, then
x∗1 = x∗2 = · · · = x∗m. This corresponds to our beliefs about ‘fairness’.

(5) Our final assumption is that we must treat the poor man’s penny with
the same respect as the rich man’s pound. Suppose that x∗ is a best point
for E. If we change coordinates and consider

E ′ = {x′ : x′j = ajxj + bj for 1 ≤ j ≤ m and x ∈ E}

with aj > 0, then y∗ with y∗j = ajx
∗
j + bj is a best point for E ′.

Exercise 6.3. Show that the E ′ defined in (5) above is closed bounded and
convex.

There is no difficulty in remembering these conditions since they each
play a particular role in the proof. If the reader prefers initially only to deal
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with the case m = 2, she will lose nothing of the argument. We need a
preliminary lemma.

Lemma 6.4. If K is a convex set in Rn such that (1, 1, . . . , 1) ∈ K and∏n
j=1 xj ≤ 1 for all x ∈ K with xj ≥ 0 [1 ≤ j ≤ n], then

K ⊆ {x : x1 + x2 + . . . xn ≤ n}.

Theorem 6.5. Suppose that we agree to the Nash conditions. If E is closed
bounded convex set in Rm, s is the status quo point and the function f : E →
R given by

f(x) =
m∏
j=1

(xj − sj)

has a maximum (in E) with xj − sj > 0 at x∗, then x∗ is the unique best
point.

We complete our discussion by observing that a best point always exists.

Lemma 6.6. If E is closed bounded convex set in Rm, s ∈ IntE and the
function f : E → R given by

f(x) =
m∏
j=1

(xj − sj),

then there is a unique point in E with xj−sj ≥ 0 where f attains a maximum.

‘There is no patent for immortality under the the moon’ but I suspect
that Nash’s results will be remembered long after the last celluloid copy of
A Beautiful Life has crumbled to dust.

The book Games, Theory and Applications [6] by L. C. Thomas maintains
a reasonable balance between the technical and non-technical and would
make a good port of first call if you wish to learn more along these lines.

7 Approximation by polynomials

It is a guiding idea of both the calculus and of numerical analysis that ‘well
behaved functions look like polynomials’. Like most guiding principles, it
needs to be used judiciously.

If asked to justify it, we might mutter something about Taylor’s Theo-
rem, but Cauchy produced the following example to show that this is not
sufficient5.

5When we do 1A this result is a counterexample but, by Part II, if we need a ‘partition
of unity’ or a ‘smoothing kernel’, it has become an invaluable tool.
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Exercise 7.1. Let E : R→ R be defined by

E(t) =

{
exp(−1/t2) if t 6= 0,

0 if t = 0.

(i) E is infinitely differentiable, except, possibly, at 0, with

E(n)(t) = Pn(1/t)E(t)

for all t 6= 0 for some polynomial Pn.
(ii) E is infinitely differentiable everywhere with

E(n)(0) = 0.

(iii) We have

E(t) 6=
∞∑
n=0

E(n)(0)

n!
tn

for all t 6= 0.

(It is very unlikely that you have not seen this exercise before, but if you
have not you should study it.)

We could also mutter something like ‘interpolation’. The reader probably
knows all the facts given in the next lemma.

Lemma 7.2. Let x0, x1, . . . , xn be distinct points of [a, b].
(i) If f : [a, b] → R, then there is at most one polynomial of degree no

greater than n with P (xj) = f(xj) for 0 ≤ j ≤ n.
(ii) Write

ej(t) =
∏
k 6=j

t− xk
xj − xk

.

If f : [a, b]→ R, then

P =
n∑
j=0

f(xj)ej

is a polynomial of degree at most n with P (xi) = f(xi) for 0 ≤ i ≤ n. (Thus
we can replace ‘at most’ by ‘exactly’ in (i).)

(iii) In the language of vector spaces, the ej form a basis for the vector
space of polynomials Pn of degree n or less.

However polynomials can behave in rather odd ways.
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Theorem 7.3. There exist polynomials Tn of degree n and Un−1 of degree
n− 1 such that

Tn(cos θ) = cosnθ

for all θ and

Un−1(cos θ) =
sinnθ

sin θ

for sin θ 6= 0. The value of Un−1(cos θ) when sin θ = 0 is given by continuity
and will be ±n. The roots of Un−1 are cos(rπ/n) with 1 ≤ r ≤ n− 1 and the
roots of Tn are cos

(
(r + 1

2
)π/n

)
with 0 ≤ r ≤ n− 1.

The coefficient of tn in Tn is 2n−1 for n ≥ 1.

We call Tn the Chebychev6 polynomial of degree n. The Un are called
Chebychev polynomials of the second kind. Looking at the Chebychev poly-
nomials of the second kind, we see that we can choose a well behaved function
f which is well behaved at n + 1 reasonably well spaced points but whose
nth degree interpolating polynomial is very large at some other point. It can
be shown (though this is harder to prove) that this kind of thing can happen
however we choose our points of interpolation.

A little thought shows that we are not even sure what it means for one
function to look like another. It is natural to interpret f looks like g as
saying that f and g are close in some metric. However there are a number
of ‘obvious’ metrics. The next exercise will be familiar to almost all my
audience.

Exercise 7.4. Show that the following define metrics on the space C([0, 1])
of continuous functions f : [0, 1]→ R.

(i) ‖f‖1 =
∫ 1

0
|f(t)| dt defines a norm with associated distance

d1(f, g) = ‖f − g‖1 =

∫ 1

0

|f(t)− g(t)| dt.

(ii) The equation

〈f, g〉 =

∫ b

a

f(t)g(t) dt

defines an inner product on C([a, b]) with associated norm ‖ ‖2 and so a
distance

d2(f, g) = ‖f − g‖2 =

(∫ b

a

(f(t)− g(t))2 dt

)1/2

for the derived norm.

6Or Tchebychev, hence the T .
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(iii) The equation ‖f‖∞ = supt∈[0,1] |f(t)| defines a norm and so a dis-
tance

d3(f, g) = ‖f − g‖∞ = sup
t∈[0,1]

|f(t)− g(t)|.

Show that
‖f‖∞ ≥ ‖f‖2 ≥ ‖f‖1.

Let

fn(t) =

{
(1− nt) for 0 ≤ t ≤ 1/n,

0 otherwise.

Compute ‖fn‖∞/‖fn‖1 and ‖fn‖1/‖fn‖2. Comment.

Each of these metrics has its advantages and all are used in practice.
We shall concentrate on the metric d3. We quote the following result from
a previous course (where it is known as the General Principle of Uniform
Convergence).

Theorem 7.5. If [a, b] is a closed interval and C([a, b]) is the space of con-
tinuous functions on [a, b] then the uniform metric

d(f, g) = ‖f − g‖∞

is complete.

We have now obtained a precise question. If f is a continuous function can
we find polynomials which are arbitrarily close in the uniform norm? This
question was answered in the affirmative by Weierstrass in a paper published
when he was 70 years old. Since then, several different proofs have been
discovered. We present one due to Bernstein based on probability theory7.

Before that, we need a definition and theorem which the reader will have
met in a simpler form earlier.

Definition 7.6. Let (X, d) and (Y, ρ) be metric spaces. We say that a func-
tion f : X → Y is uniformly continuous if, given ε > 0, we can find a δ > 0
such that ρ

(
f(a), f(b)

)
< ε whenever d(a, b) < δ.

Theorem 7.7. If E is a bounded closed set in Rm and f : E → Rp is
continuous, then f is uniformly continuous.

Although we require probability theory, we only need deal with the sim-
plest case of a random variable taking a finite number of values and, if the
reader wishes, she need only prove the next result in that case.

7Some other proofs are given in Exercises 20.6, 20.7 and 20.8. It is the author’s belief
that one can not have too many (insightful) proofs of Weierstrass’s theorem.
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Theorem 7.8. [Chebychev’s inequality] If X is a real valued bounded
random variable, then, writing

σ2 = varX = E(X − EX)2,

we have

Pr(|X − EX| ≥ a) ≤ σ2

a2

for all a > 0.

Theorem 7.9. [Bernstein] Suppose f : [0, 1] → R is continuous. Let
X1, X2, . . .Xn be independent identically distributed random variables with
Pr(Xr = 0) = 1− t and Pr(Xr = 1) = t (think of tossing a biased coin). Let

Yn(t) =
X1 +X2 + · · ·+Xn

n

and let
pn(t) = Ef(Yn(t)).

Then
(i) pn is polynomial of degree n. Indeed,

pn(t) =
n∑
j=0

(
n

j

)
f(j/n)tj(1− t)n−j.

(ii) ‖pn − f‖∞ → 0 as n→∞.

Bernstein’s result differs from many proofs of Weierstrass’s theorem in
giving an elegant explicit approximating polynomial.

8 Best approximation by polynomials

Bernstein’s theorem gives an explicit approximating polynomial but, except
in very special circumstances, not the best approximating polynomial. (In-
deed, we have not yet shown that such a polynomial exists.)

Chebychev was very interested in this problem and gave a way of telling
when we do have a best approximation.

Theorem 8.1. [The Chebychev equiripple criterion] Let f : [a, b]→ R
be a continuous function and P a polynomial of degree at most n−1. Suppose
that we can find a ≤ a0 < a1 < · · · < an ≤ b such that, writing σ = ‖f−P‖∞
we have either

f(aj)− P (aj) = (−1)jσ for all 0 ≤ j ≤ n
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or

f(aj)− P (aj) = (−1)j+1σ for all 0 ≤ j ≤ n.

Then ‖P − f‖∞ ≤ ‖Q− f‖∞ for all polynomials Q of degree n− 1 or less.

We apply this to find the polynomial of degree n− 1 which gives the best
approximation to tn on [−1, 1].

Theorem 8.2. Write Sn(t) = tn − 21−nTn(t), where Tn is the Chebychev
polynomial of degree n. Then (if n ≥ 1)

sup
t∈[−1,1]

|tn −Q(t)| ≥ sup
t∈[−1,1]

|tn − Sn(t)| = 21−n

for all polynomials Q of degree n− 1.

Corollary 8.3. We work on [−1, 1].
(i) If P (t) =

∑n
j=0 ajt

j is a polynomial of degree n with |an| ≥ 1, then

‖P‖∞ ≥ 2−n+1.
(ii) We can find ε(n) > 0 with the following property. If P (t) =

∑n
j=0 ajt

j

is a polynomial of degree at most n and |ak| ≥ 1 for some n ≥ k ≥ 0 then
‖P‖∞ ≥ ε(n).

We can now use a compactness argument to prove that there does exist
a best approximation.

Theorem 8.4. If f : [a, b]→ R is a continuous function, then there exists a
polynomial P of degree at most n such that ‖P − f‖∞ ≤ ‖Q − f‖∞ for all
polynomials Q of degree n or less.

We could also have proved Corollary 8.3 (ii) directly by a compactness
argument without using Chebchev’s result.

We have only shown that the Chebychev criterion is a sufficient condition.
However, it can be shown that it is also a necessary one. The proof is given
in Exercise 20.10 but is not part of the course.

9 Gaussian quadrature

How should we attempt to estimate
∫ b
a
f(x) dx if we only know f at certain

points? One, rather naive, approach is to find the interpolating polynomial
for those points and integrate that. This leads rapidly, via Lemma 7.2, to
the following result.
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Lemma 9.1. Let x0, x1, . . . , xn be distinct points of [a, b]. Then there are
unique real numbers A0, A1, . . . , An with the property that∫ b

a

P (x) dx =
n∑
j=0

AjP (xj)

for all polynomials of degree n or less.

However our previous remarks about interpolating polynomials suggest,
and experience confirms, that it may not always be wise to use the approxi-
mation ∫ b

a

f(x) dx ≈
n∑
j=0

Ajf(xj)

even when f well behaved. In the particular case when the interpolation
points are equally spaced, computation suggests that as the number of points
used increases the Aj begin to vary in sign and become large in absolute value.
It can be shown that this is actually the case and that this means that the
approximation can actually get worse as the number of points increases.

It is rather surprising that there is a choice of points which avoids this
problem. Earlier (in Exercise 7.4 (ii)) we observed that the definition

〈f, g〉 =

∫ 1

−1

f(t)g(t) dt

gives an inner product on the vector space C([−1, 1]). Let us recall some
results from vector space theory.

Lemma 9.2. [Gramm–Schmidt] Let V be a vector space with an inner
product. Suppose that e1, e2, . . . , en are orthonormal and f is not in their
linear span. If we set

v = f −
n∑
j=1

〈f , ej〉ej,

then we know that v 6= 0 and that, setting en+1 = ‖v‖−1v the vectors e1, e2,
. . . , en+1 are orthonormal.

Lemma 9.2 enables us to make the following definition.

Definition 9.3. The Legendre polynomials pn are the the polynomials given
by the following conditions8.

8There are various other definitions, but they all give polynomials of the form bnpn.
The only difference is in the choice of bn. As may be seen from Exercise 19.14 our choice
is not very convenient for most uses.
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(i) pn is a polynomial of degree n with positive leading coefficient.

(ii)

∫ 1

−1

pn(t)pm(t) dt = δnm =

{
1 if n = m,

0 otherwise.

Lemma 9.4. The nth Legendre polynomial pn has n distinct roots all lying
in (−1, 1).

Gauss had the happy idea of choosing the evaluation points to be the
roots of a Legendre polynomial.

Theorem 9.5. [Gaussian quadrature] (i) If α1, α2, . . .αn are the n roots
of the nth Legendre polynomial pn and the Aj are chosen so that∫ 1

−1

P (x) dx =
n∑
j=1

AjP (αj)

for every polynomial P of degree n− 1 or less, then, in fact∫ 1

−1

Q(x) dx =
n∑
j=1

AjQ(αj)

for every polynomial Q of degree 2n− 1 or less.
(ii) If βj ∈ [−1, 1] and Bj are such that∫ 1

−1

Q(x) dx =
n∑
j=1

BjQ(βj)

for every polynomial Q of degree 2n− 1 or less, then the βj are the roots of
the nth Legendre polynomial.

Theorem 9.5 looks impressive, but it is the next result which really shows
how good Gauss’s idea is.

Theorem 9.6. We continue with the notation of Theorem 9.5.
(i) Aj ≥ 0 for each 1 ≤ j ≤ n.
(ii)

∑n
j=1 Aj = 2.

(iii) If f : [−1, 1] → R is continuous and P is any polynomial of degree
at most 2n− 1, then∣∣∣∣∣

∫ 1

−1

f(x) dx−
n∑
j=1

Ajf(αj)

∣∣∣∣∣ ≤ 4‖f − P‖∞.

(iv) Write Gnf for the estimate of
∫ 1

−1
f(t) dt obtained using Gauss’s idea

with the nth Legendre polynomial. Then, if f is continuous on [−1, 1],

Gnf →
∫ 1

−1

f(t) dt

as n→∞.
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10 Distance and compact sets

This section could come almost anywhere in the notes, but provides some
helpful background to the section on Runge’s theorem. We start by strength-
ening Lemma 2.5.

Lemma 10.1. If E is a non-empty compact set in Rm and a ∈ Rm, then
there is a point e ∈ E such that

‖a− e‖ = inf
x∈E
‖a− x‖.

As before we write d(a, E) = infx∈E ‖a− x‖.

Exercise 10.2. (i) Give an example to show that the point e in Lemma 10.1
need not be unique.

(ii) Show that, if E is convex, e is unique.

Lemma 10.3. (i) If E and F are non-empty compact sets in Rm, then there
exist points e ∈ E and f ∈ F such that

‖e− f‖ = inf
y∈E

d(y, F ).

(ii) The result in (i) remains true when F is compact and non-empty and
E is closed and non-empty.

(iii) The result in (i) may fail when E and F are closed and non-empty.

Let us write τ(E,F ) = infy∈E d(y, F ).

Exercise 10.4. Give an example to show that the points e and f in Lemma 10.3
need not be unique.

The statement of the next exercise requires us to recall the definition of
a metric.

Definition 1.1. Suppose that X is a non-empty set and d : X2 → R is a
function such that

(i) d(x, y) ≥ 0 for all x, y ∈ X.
(ii) d(x, y) = 0 if and only if x = y.
(iii) d(x, y) = d(y, x) for all x, y ∈ X.
(iv) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.
Then we say that d is a metric on X and that (X, d) is a metric space.

Exercise 10.5. Show that, if we consider the space K of non-empty com-
pact sets in Rm, then τ obeys conditions (i) and (iii) for a metric but not
conditions (ii) and (iv).

Show that, if E,F ∈ K, then τ(E,F ) = 0 if and only if E ∩ F 6= ∅.
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Since τ does not provide a satisfactory metric on K, we try some thing
else. If E and F are compact sets in Rm, let us set σ(E,F ) = supy∈E d(y, F ).

Exercise 10.6. Suppose that E and F are non-empty compact sets. Show
that there exists an e ∈ E such that d(e, F ) = σ(E,F ).

Exercise 10.7. Show that, if we consider the space K of non-empty compact
sets in Rm, then σ obeys condition (i) for a metric but not conditions (ii)
and (iii).

Show that σ(E,F ) = 0 if and only if E ⊆ F .

However, σ does obey the triangle inequality.

Lemma 10.8. If E, F and G are non-empty compact sets then

σ(E,G) ≤ σ(E,F ) + σ(F,G).

This enables us to define the Hausdorff metric ρ.

Definition 10.9. If E and F are non-empty compact subsets of Rm, we set

ρ(E,F ) = σ(E,F ) + σ(F,E),

that is to say,

ρ(E,F ) = sup
e∈E

inf
f∈F
‖e− f‖+ sup

f∈F
inf
e∈E
‖e− f‖.

Theorem 10.10. The Hausdorff metric ρ is indeed a metric on the space K
of non-empty compact subsets of Rm.

Indeed, we can say something even stronger which will come in useful
when we give examples of the use of Baire’s theorem in Section 13

Theorem 10.11. The Hausdorff metric ρ is a complete metric on the space
K of non-empty compact subsets of Rm.

Our proof of Theorem 10.11 makes use of two observations.

Theorem 10.12. (i) Suppose that we have a sequence of non-empty compact
sets in Rm such that

K1 ⊇ K2 ⊇ K3 ⊇ . . . .

Then K =
⋂∞
p=1Kp is a non-empty compact set.

(ii) Further, Kp →
ρ
K as p→∞.

Lemma 10.13. If K is compact in Rm so is

K + B̄(0, r) = {x + y : x ∈ K, ‖y‖ ≤ r}.

26



11 Runge’s theorem

The existence of two different introductory courses in complex variable is one
of many mad things in the Cambridge system. The contents of this section
should be accessible to anyone who has gone to either. As I shall emphasise
from time to time, the reader will need to know some of the results from
those courses but will not be required to prove them.

Weierstrass’s theorem tells us that every continuous real valued function
on [a, b] can be uniformly approximated by polynomials. Does a similar
theorem hold for complex variable?

Cauchy’s theorem enables us to answer with a resounding no. We write
z̄ for the complex conjugate of z.

Example 11.1. Let D̄ = {z : |z| ≤ 1} and define f : D̄ → C by

f(z) = z̄.

If P is any polynomial, then

sup
z∈D̄
|f(z)− p(z)| ≥ 1.

After looking at this example the reader may recall the following theorem
(whose proof does not form part of this course).

Theorem 11.2. If Ω is an open subset of C and fn : Ω → C is analytic,
then if fn → f uniformly on Ω (or, more generally, if fn → f uniformly on
each compact subset of Ω) then f is analytic.

We might now conjecture that every analytic function on a well behaved
set can be uniformly approximated by polynomials. Cauchy’s theorem again
shows that the matter is not straightforward.

Example 11.3. Let T = {z : 1/2 ≤ |z| ≤ 2} and define f : T → C by

f(z) =
1

z
.

If P is any polynomial then

sup
z∈T̄
|f(z)− p(z)| ≥ 1.

Thus the best we can hope for is a theorem that tells us that every analytic
function on a suitable set ‘without holes’ can be uniformly approximated by
polynomials.

We shall see that the following definition gives a suitable ‘no holes’ con-
dition.
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Definition 11.4. An open set U ⊆ C is path connected if, given z0, z1 ∈ U ,
we can find a continuous map γ : [0, 1]→ U with γ(0) = z0 and γ(1) = z1.

We will obtain results for a bounded sets whose complement is path con-
nected.

The reader may ask why we could not simply use Taylor’s theorem in
complex variables. To see that this would not work we recall various earlier
results. (As I said earlier the proofs are not part of the course, but you are
expected to know the results.)

Lemma 11.5. If aj ∈ C, then there exists an R ∈ [0,∞] (with suitable
conventions when R = ∞) such that

∑∞
j=0 ajz

j converges for |z| < R and
diverges for |z| > R.

We call R the radius of convergence of
∑∞

j=0 ajz
j.

Lemma 11.6. If
∑∞

j=0 ajz
j has radius of convergence R and R′ < R then∑∞

j=0 ajz
j converges uniformly for |z| ≤ R′.

Lemma 11.7. Suppose that
∑∞

j=0 ajz
j has radius of convergence R and that∑∞

j=0 bjz
j has radius of convergence R′. If there exists an R′′ with 0 < R′′ ≤

R,R′ such that
∞∑
j=0

ajz
j =

∞∑
j=0

bjz
j

for all |z| < R′′, then aj = bj for all j.

By a careful use of Taylor’s theorem Lemma 11.7 can be used to give the
following extension. (The proof is not part of the course but, again, you are
expected to know the result.)

Lemma 11.8. Suppose that f, g : B(w, r) → C are analytic. If there is a
non-empty open subset U of B(w, r) such that f(z) = g(z) for all z ∈ U , it
follows that g = f .

Exercise 11.9. (i) If w 6= 0, show that we can find a power series
∑∞

j=0 aj(z−
w)j with radius of convergence |w| such that

z−1 =
∞∑
j=0

aj(z − w)j

for all |z − w| < |w|.
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(ii) Let

Ω = {z : 10−2 < |z| < 1} \ {x : x ∈ R, x ≤ 0}

Show that Ω is open, path connected and bounded and f(z) = 1/z defines a
bounded analytic function on Ω, but we can not find z0 and bj such that

z−1 =
∞∑
j=0

bj(z − z0)j

for all z ∈ Ω.

Let us see what Taylor’s theorem actually says.

Theorem 11.10. [Taylor’s Theorem] Suppose that Ω is an open set in C
and f : Ω→ C is analytic. If the open disc

B(z0, δ) = {z : |z − z0| < δ}

lies in Ω, then we can find aj ∈ C such that
∑∞

j=0 ajz
j has radius of conver-

gence at least δ and
∞∑
j=0

aj(z − z0)j = f(z)

for all z ∈ B(z0, δ).

Thus Taylor’s theorem for analytic functions says (among other things)
that an analytic function can be locally approximated uniformly by polyno-
mials. Runge’s theorem asserts that (under certain conditions) an analytic
function can be globally approximated uniformly by polynomials.

Theorem 11.11. [Runge’s theorem] Suppose that Ω is an open set and
f : Ω → C is analytic. Suppose that K is a compact set with K ⊆ Ω and
C \ K path connected. Then given any ε > 0, we can find a polynomial P
with

sup
z∈K
|f(z)− P (z)| < ε.

I shall make a number of remarks before moving on to the proof. The
first is that (as might be expected) Theorem 11.11 is the simplest of a family
of results which go by the name of Runge’s theorem. However, I think that
it is fair to say that, once the proof of this simplest case is understood, both
the proofs and the meanings of the more general theorems are not hard to
grasp.
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The second remark is that the reader will lose very little understanding9 if
she concentrates on the example of Runge’s theorem for geometrically simple
K and Ω (like rectangles and triangles).

Our proof of Runge’s theorem splits into several steps.

Lemma 11.12. Suppose that K is a compact set with K ⊆ Ω. Then we can
find a finite set of piece-wise linear contours Cm lying entirely within Ω \K
such that

f(z) =
1

2πi

M∑
m=1

∫
Cm

f(w)

w − z
dw

whenever z ∈ K and f : Ω→ C is analytic.

It is worth making the following observation explicit.

Lemma 11.13. With the notation and conditions of Lemma 11.12, we can
find a δ > 0 such that |z − w| ≥ δ whenever z ∈ K and w is a point of one
of the contours Cm.

We use Lemma 11.12 to prove the following result which takes us closer
to our goal.

Lemma 11.14. Suppose that K is a compact set with K ⊆ Ω. Then given
any analytic f : Ω → C and any ε > 0 we can find an integer N , complex
numbers A1, A2, . . . , AN and α1, α2, . . . , αN ∈ Ω \K such that∣∣∣∣∣f(z)−

N∑
n=1

An
z − αn

∣∣∣∣∣ ≤ ε

for all z ∈ K.

Thus Runge’s theorems follows at once from the following special case.

Lemma 11.15. Suppose that K is a compact set and C \K path connected.
Then, given any α /∈ K and any ε > 0, we can find a polynomial P with∣∣∣∣P (z)− 1

z − α

∣∣∣∣ < ε

for all z ∈ K.

Let us make a temporary definition.

9And, provided she does not twist the examiner’s nose, few marks in the exam.
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Definition 11.16. Let K be a compact set in C. We write Λ(K) for the set
of points α /∈ K such that, given any ε > 0, we can find a polynomial P with∣∣∣∣P (z)− 1

z − α

∣∣∣∣ < ε

for all z ∈ K.

A series of observations about Λ(K) brings the proof of Runge’s theorem
to a close.

Lemma 11.17. Let K be a compact set in C. Then there exists an R such
that |α| > R implies α ∈ Λ(K).

Lemma 11.18. Let K be a compact set in C. If α ∈ Λ(K) and |α − β| <
d(α,K) then β ∈ Λ(K).

Lemma 11.19. Suppose that K is a compact set in C and C \ K is path
connected. Then Λ(K) = C \K.

Since Lemma 11.19 is equivalent to Lemma 11.15, this completes the
proof of our version of Runge’s theorem.

It is natural to ask if the condition of uniform convergence can be dropped
in Theorem 11.2. We can use Runge’s theorem to show that it can not.

Example 11.20. Let D = {z : |z| < 1} and define f : D → C by

f(reiθ) = r3/2e3iθ/2

for r ≥ 0 and 0 < θ ≤ 2π (so that f is not even continuous). Then we can
find a sequence of polynomials Pn such that Pn(z)→ f(z) as n→∞ for all
z ∈ D.

12 Odd numbers

According to Von Neumann10 ‘In mathematics you don’t understand things.
You just get used to them.’ The real line is one of the most extraordinary
objects in mathematics11. A single apparently innocuous axiom (‘every in-
creasing bounded sequence has a limit’ or some equivalent formulation) calls
into being an indescribably complicated object.

10Dr Bloom suggests a a footnote in the ‘The Dancing Wu Li Masters’ by Gary Zukav
as a source.

11I am being modest on behalf of analysis, I suspect the real line is the most extraordi-
nary object in mathematics.
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We know from 1A that R is uncountable (a different proof of this fact
will be given later in Corollary 13.8). But, if we have a finite alphabet of
n symbols (including punctuation), then we can only describe at most nm

real numbers in phrases exactly m symbols long. Thus the collection of
describable real numbers is the countable union of finite (so countable) sets
so (quoting 1A again) countable! We find ourselves echoing Newton.

I do not know what I may appear to the world, but to myself I
seem to have been only like a boy playing on the sea-shore, and
diverting myself in now and then finding a smoother pebble or a
prettier shell than ordinary, whilst the great ocean of truth lay
all undiscovered before me. [Memoirs of the Life, Writings, and
Discoveries of Sir Isaac Newton Brewster (Volume II. Ch. 27)]

Let us look at some of the prettier shells.

Theorem 12.1. The number e is irrational.

Theorem 12.2. The number π is irrational.

Our proof of Theorem 12.2 depends on the following lemma.

Lemma 12.3. If we write fn(x) = xn(π − x)n then∫ π

0

fn(x) sinx dx = n!
n∑
j=0

ajπ
j

with aj an integer.

Faced with a proof like that of Theorem 12.2 the reader may cry ‘How did
you think of looking at fn(x)?’ The first, though not very helpful, answer
is ‘I did not, I learnt it from someone else12’. The second is that, even
admitting that we could not have thought of it in a thousand years, once we
are presented with the argument we can see a path (though not, I suspect, the
actual one) which it might have been thought of. We are all familiar with the
evaluation of

∫ π
0
xn sinx dx and the fact that this takes the form P (π) where

P is polynomial of degree at most n with integer coefficients. It follows that
if Q is a polynomial of degree n with integer coefficients then

∫ π
0
Q(x) sinx dx

takes the form U(π) where u is polynomial of degree at most n with integer
coefficients. If π = p/q then qnU(π) is an integer. We now experiment, trying
to make

∫ π
0
Q(x) sinx dx lie between 0 and 1 in the manner of our proof that

e was irrational.

12Professor Gowers in this case.
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For what it is worth, I think the restriction ‘candidates will not be required
to quote elaborate formula from memory’ ought to mean that the examiners
remind you of the formula for fn in a question that requires it. However, it
is also my opinion that examiners, like umpires, are always right.

It may be worth remembering that, after 300 years we still do not know
if Euler’s constant

γ = lim
N→∞

(
N∑
n=1

1

n
− logN

)
is irrational or not.

If we think of the rationals as ‘the best understood numbers’ then the
algebraic numbers can be thought of as ‘the next best understood numbers’.

Definition 12.4. We say that a real number α is algebraic if it is a zero of
a polynomial with integer coefficients. Real numbers which are not algebraic
are called transcendental.

Exercise 12.5. Show that a real number α is algebraic if and only if it is a
zero of a polynomial with rational coefficients.

Lemma 12.6. The algebraic numbers are countable.

Since the reals are uncountable, this shows that transcendental numbers
exist.

The argument just given (which you saw in 1A) is due to Cantor. It
is beautiful but non-constructive. It tells us that transcendental numbers
exist (indeed that uncountably many transcendental numbers exist) without
showing us any.

The first proof that transcendentals exist was given earlier by Liouville13.
It is longer but actually produces particular examples.

Theorem 12.7. [Liouville] Suppose α is an irrational root of the equation

anx
n + an−1x

n−1 + · · ·+ a0 = 0

13Once when lecturing to a class [Kelvin] used the word ‘mathematician,’ and then
interrupting himself asked his class: ’Do you know what a mathematician is?’ Stepping
to the blackboard he wrote upon it:—∫ ∞

−∞
e−x

2/2 dx =
√

2π.

Then putting his finger on what he had written, he turned to his class and said: ‘A
mathematician is one to whom that is as obvious as that twice two makes four is to you.
Liouville was a mathematician.’ [S. P. Thompson, Life of Lord Kelvin]
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where aj ∈ Z [0 ≤ j ≤ n], n ≥ 1 and an 6= 0. Then there is a constant c > 0
(depending on the aj) such that∣∣∣∣α− p

q

∣∣∣∣ ≥ c

qn

for all p, q ∈ Z with q 6= 0

We can now exhibit a transcendental number.

Theorem 12.8. The number

∞∑
j=0

1

10j!

is transcendental.

Exercise 12.9. By considering

∞∑
n=0

bn
10n!

with bj ∈ {1, 2}, give another proof that the set of transcendental numbers is
uncountable.

As might be expected, it turned out to be very hard to show that particu-
lar numbers are transcendental. Hermite proved that e is transcendental and
Lindemann adapted Hermite’s method to show that π is transcendental (and
so the circle can not be squared). Alan Baker contributed greatly to this field,
and his book Transcendental number theory [2] contains accessible14 proofs
of the transcendence of e and π.

13 The Baire category theorem

The following theorem turns out to be much more useful than its somewhat
abstract formulation makes it appear.

Theorem 13.1. [The Baire category theorem] If (X, d) is a complete
non-empty metric space and U1, U2, . . . are open sets whose complements
have empty interior, then

∞⋂
j=1

Uj 6= ∅.

14But miraculous.
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Taking complements gives the following equivalent form.

Theorem 13.2. If (X, d) is a complete non-empty metric space and F1, F2,
. . . are closed sets with empty interior, then

∞⋃
j=1

Fj 6= X.

I think of Baire’s theorem in yet another equivalent form.

Theorem 13.3. Let (X, d) be a non-empty complete metric space. Suppose
that Pj is a property such that:-

(i) The property of being Pj is stable in the sense that, given x ∈ X
which has property Pj, we can find an ε > 0 such that whenever d(x, y) < ε
the point y has the property Pj.

(ii) The property of not being Pj is unstable in the sense that, given
x ∈ X and ε > 0, we can find a y ∈ X with d(x, y) < ε which has the
property Pj.

Then there is an x0 ∈ X which has all of the of the properties P1, P2,
. . . .

Baire’s theorem has given rise to the following standard definitions15.

Definition 13.4. A set in a metric space is said to be nowhere dense if its
closure has empty interior. A set in a metric space is said to be of first
category if it is a subset of a countable union of nowhere dense closed sets.
Any set which is not of first category is said to be of second category.

Your lecturer will try never to use the words second category but always
to talk about ‘not first category’. If all points outside a set of first category
have a property P , I shall say that quasi-all points have property P .

Two key facts about first countable sets are stated in the next lemma.

Lemma 13.5. (i) If (X, d) is a non-empty complete metric space and E is
a subset of first category, then E 6= X.

(ii) The countable union of sets of first category is of first category.

We need one more definition.

Definition 13.6. (i) If (X, d) is a metric space, we say that a point x ∈ X
is isolated if we can find a δ > 0 such that B(x, δ) = {x}.

(ii) If (X, d) is a metric space, we say that a subset E of X contains no
isolated points if, whenever x ∈ E and δ > 0, we have B(x, δ) ∩ E 6= {x}.

15Your lecturer thinks that, whilst the concepts defined are very useful, the nomenclature
is particularly unfortunate.
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Theorem 13.7. A non-empty complete metric space without isolated points
is uncountable.

Corollary 13.8. The real numbers are uncountable.

The proof we have given here is much closer to Cantor’s original proof
than that given in 1A. It avoids the use of extraneous concepts like decimal
representation.

Banach was a master of using the Baire category theorem. Here is one of
his results.

Theorem 13.9. Consider C([0, 1]) with the uniform norm. The set of any-
where differentiable functions is a set of the first category. Thus continuous
nowhere differentiable functions exist.

Here is another corollary of Theorem 13.7.

Corollary 13.10. A non-empty closed subset of R without isolated points is
uncountable.

Do there exist nowhere dense closed subsets of R with no isolated points16?
We shall answer this question by applying Baire’s theorem in the context of
the Hausdorff metric.

Lemma 13.11. Consider the space K of non-empty compact subsets of [0, 1]
with the Hausdorff metric ρ. Let Ek be the collection of compact sets E such
that there exists an x ∈ E with B(x, 1/k) ∩ E = {x}.

(i) The set Ek is closed in the Hausdorff metric.
(ii) The set Ek is nowhere dense in the Hausdorff metric.
(iii) The set E of compact sets with an isolated point is of first category

with respect to the Hausdorff metric.

Lemma 13.12. Consider the space K of non-empty compact subsets of [0, 1]
with the Hausdorff metric ρ. Let Fj,k be the collection of compact sets F such
that F ⊇ [j/k, (j + 1)/k] [0 ≤ j ≤ k, 1 ≤ k].

(i) The set Fj,k is closed in the Hausdorff metric.
(ii) The set Fj,k is nowhere dense in the Hausdorff metric.
(ii) The set F of compact sets with non-empty interior is of first category.

Theorem 13.13. The set C of non-empty compact sets with empty interior
and no isolated points is the complement of a set of first category in the space
K of non-empty compact subsets of [0, 1] with the Hausdorff metric ρ.

16Such sets are called perfect. If they make pretty pictures they are called fractals. You
do not have to remember either name.
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Since K with the Hausdorff metric is complete it follows that non-empty
compact sets with empty interior and no isolated points exist.

The following example provides a background to our next use of Baire
category.

Exercise 13.14. (i) Show that we can find continuous functions gn : [0, 1]→
R such that gn(x)→ 0 for each x ∈ [0, 1] but

sup
t∈[0,1]

gn(t)→∞

as n→∞.
[Hint: Witch’s hat.]

(ii) Show that we can find continuous functions fn : [0, 1]→ R such that
fn(x)→ 0 for each x ∈ [0, 1] but

sup
t∈[2−r−1,2−r]

fn(t)→∞

as n→∞ for each integer r ≥ 0.

In spite of the previous example we have the following remarkable theo-
rem.

Theorem 13.15. Suppose that we have a sequence of continuous functions
fn : [0, 1] → R such that fn(x) → 0 for each x ∈ [0, 1] as n → ∞. Then we
can find a non-empty interval (a, b) ⊆ [0, 1] and an M > 0 such that

|fn(t)| ≤M

for all t ∈ (a, b) and all n ≥ 1.

A slightly stronger version of the result is given as Exercise 20.11.

14 Continued fractions

We are used to writing real numbers as decimals, but there are other ways
of specifying real numbers which may be more convenient. The oldest of
these is the method of continued fractions. Suppose that x is irrational and
1 ≥ x > 0. We know that there is a strictly positive integer N(x) such that

1

N(x)
≥ x >

1

N(x) + 1
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so we can write

x =
1

N(x) + T (x)

where T (x) is irrational and 1 > T (x) ≥ 0. Thus

Nx =

[
1

x

]
, Tx =

1

x
−
[

1

x

]
. We can do the same things to T (x) as we did to x, obtaining

T (x) =
1

N(T (x)) + T (T (x))

and so, using the standard notation for composition of functions,

x =
1

N(x) +
1

NT (x) + T 2(x)

.

The reader17 will have no difficulty in proceeding to the next step and ob-
taining

x =
1

N(x) +
1

NT (x) +
1

NT 2(x) + T 3(x)

,

and so on indefinitely. We call

1

N(x) +
1

NT (x) +
1

NT 2(x) +
1

NT 3(x) + . . .

the continued fraction expansion of x. [Note that, for the moment, this is
simply a pretty way of writing the infinite sequence N(x), NT (x), NT 2(x),
. . . . In the next section we shall show first that the continued fraction can
be assigned a numerical meaning and then that the assigned meaning is, as
we might hope, x.]

17As opposed to typesetters; this sort of thing turned their hair prematurely grey.
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If y is a general irrational number, we call

[y] +
1

N(x) +
1

NT (x) +
1

NT 2(x) +
1

NT 3(x) + . . .

.

the continued fraction expansion of y.
We can do the same thing if y is rational, but we must allow for the

possibility that the process does not continue indefinitely. It is instructive to
carry out the process in a particular case.

Exercise 14.1. Carry out the process outlined above for 100/37. Carry out
the process for the rational of your choice.

Once we have done a couple of examples it is clear that we are simply
echoing Euclid’s algorithm18.

Lemma 14.2. (i) Suppose that rk, sk are coprime positive integers with
rk < sk; that rk+1, sk are coprime strictly positive integers with rk+1 < sk+1.
and that ak is a strictly positive integer. If

rk
sk

=
1

ak +
rk+1

sk+1

,

then sk+1 = rk
sk = aksk+1 + rk+1

for some positive integer k1. Thus the pair (rk+1, sk+1) is obtained from
(rk, sk) by applying one step of the Euclidean algorithm.

(ii) If y is a rational number, its continued fraction expansion (obtained
by the method described above) terminates.

Exercise 14.3. Show that
√

2 has continued fraction expansion

1 +
1

2 +
1

2 +
1

2 +
1

2 + . . .

.

Deduce that
√

2 is irrational.

18I think historians would reverse the order and say that continued fractions gave rise
to Euclid’s algorithm
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If we look at a random variable with the uniform distribution on [0, 1]
then the successive terms in the decimal expansion of X will be independent
and will take the value j with probability 1/10 [0 ≤ j ≤ 9].

Exercise 14.4. (This easy exercise formalises the remark just made.) If
x ∈ [0, 1) let us write Dx = 10x− [10x] (in other words, Dx is the fractional
part of 10x) and Nx = [10x]. Show that

x = 10−1(Dx+Nx) = 10−1Nx+ 10−2NDx+ 10−2D2x = . . .

and write down the next term in the chain of equalities explicitly.
If X is a random variable with uniform distribution on [0, 1], show that

NX, NDX, ND2X, . . . are independent and

Pr(NDkX = j) = 1/10

for 0 ≤ j ≤ 9.

Gauss made the following observation.

Lemma 14.5. Suppose that X is a random variable on [0, 1) with density
function

f(x) =

(
1

log 2

)
1

1 + x
.

Then TX is a random variable with the same density function.

Corollary 14.6. Suppose that X is a random variable on [0, 1] with density
function

f(x) =

(
1

log 2

)
1

1 + x
.

Then

Pr(NTmX = j) =
1

log 2

∫ 1/j

1/(j+1)

dx

1 + x
=

1

log 2
log

(
(j + 1)2

j(j + 2)

)
.

Proof. By Lemma 14.5,

Pr(NTmX = j) = Pr(NX = j)

=
1

log 2

∫ (j+1)−1

j−1

1

1 + x
dx

=
1

log 2

[
log(1 + x)

]j−1

(j+1)−1

=
1

log 2

(
log(j + 2)− log(j + 1)

)
=

1

log 2
log

j + 2

j + 1
.
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With a little extra work (which we shall not do) we can show that, if
X has the density suggested by Gauss, then NX, NTX, NT 2X, . . . are
independent random variables all with the same probability distribution. It
is also not hard to guess, and not very hard to prove, that if Y is uniformly
distributed on [0, 1], then

Pr(NTmY = j)→ 1

log 2
log

(
(j + 1)2

j(j + 2)

)
.

as m→∞, but we shall not take the matter further.

15 Continued fractions (continued)

In the previous section we showed how to compute the continued fraction
associated with a real number x, but we did not really consider what exact
meaning was to be assigned to the result. In this section we show that
continued fractions do what we might hope they do.

Definition 15.1. If a1, a2, . . . is a sequence of strictly positive integers and
a0 is a positive integer we call

a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 + . . .

the continued fraction associated with a = (a0, a1, a2, . . .).

Lemma 15.2. (i) We use the notation of Definition 15.1. If we take

rn = an, sn = 1

and define rk and sk in terms of rk+1 and sk+1(
rk
sk

)
=

(
ak 1
1 0

)(
rk+1

sk+1

)
,
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then
rk
sk

= ak +
1

ak+1 +
1

ak+2 +
1

ak+3 +
1

ak+4 +
1

. . .

an−1 +
1

an

.

(ii) If we set(
r0

s0

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
. . .

(
an−1 1

1 0

)(
an
1

)
,

then
r0

s0

= a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 +
1

. . .

an−1 +
1

an

We now read everything off in the opposite direction

Lemma 15.3. (i) If we set(
pn
qn

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
. . .

(
an−1 1

1 0

)(
an
1

)
,

then
pn
qn

= a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 +
1

. . .

an−1 +
1

an
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(ii) Further(
pn pn−1

qn qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an−1 1

1 0

)(
an 1
1 0

)
,

The pay-off for our work in recasting matters in matricial form comes in
the next theorem.

Theorem 15.4. Choose pj and qj as in Lemma 15.3.
(i) pkqk−1 − qkpk−1 = (−1)k+1 for all k.
(ii) qk = akqk−1 + qk−2 and pk = akpk−1 + pk−2 for all k ≥ 2.
(iii) pk and qk are coprime for all k.
(iv) We have

p2k

q2k

>
p2k−2

q2k−2

,
p2k−1

q2k−1

>
p2k+1

q2k+1

and ∣∣∣∣pkqk − pk+1

qk+1

∣∣∣∣ =
1

qkqk+1

.

(v) Suppose aj is a sequence of strictly positive integers for j ≥ 1 and a0

is a positive integer. Then there exists an α ∈ R such that

pn
qn
→ α.

Further ∣∣∣∣pnqn − α
∣∣∣∣ ≤ 1

qnqn+1

.

Exercise 15.5. Suppose we have an irrational x ∈ (0, 1] and we form a
continued fraction (with a0 = 0)

1

a1 +
1

a2 +
1

a3 +
1

a4 + . . .

in the manner of Section 14. Show that

p2k

q2k

< x <
p2k−1

q2k−1

for all k and deduce that x = α where α is the value of the associated con-
tinued fraction.
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Theorem 15.6. Continuing with the ideas and notation of Theorem 15.4,
pn/qn is closer to α than any other fraction with denominator no larger than
qn. In other words, ∣∣∣∣pnqn − α

∣∣∣∣ ≤ ∣∣∣∣pq − α
∣∣∣∣

whenever p and q are integers with 1 ≤ q ≤ qn.

Theorem 15.7. If x is irrational, we can find un and vn integers with vn →
∞ such that ∣∣∣∣unvn − x

∣∣∣∣ < 1

v2
n

.

This result should be compared with Theorem 12.7. We give another
proof of Theorem 15.7 in Exercise 21.5. We give a slight improvement in
Exercise 21.9.

Exercise 15.8. Which earlier result tells us that, if α is the irrational root
of a quadratic with integer coefficients, then there exists a C (depending on
α) such that ∣∣∣u

v
− α

∣∣∣ ≥ C

v2

whenever u and v are integers with v ≥ 1?

We can treat ‘terminating continued fractions’ and rationals in the same
way.

Speaking rather vaguely, we see that the occurrence of large aj’s in a
continued fraction expansion gives rise to large qm’s and associated good
approximations. It is reasonable to look at the most extreme opposite case.

Exercise 15.9. (i) Show that, if we write

σ =
1

1 +
1

1 +
1

1 +
1

1 + . . .

,

then

σ =
−1 +

√
5

2
.

(ii) Show that, if we form pn and qn in the usual way for the continued
fraction above, then pn = Fn, qn = Fn+1 where Fm is the mth Fibonacci
number given by F0 = 0, F1 = 1 and

Fm+1 = Fm + Fm−1.
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(iii) Show that
Fn+1Fn−1 − F 2

n = (−1)n.

Exercise 15.10. Use the continued fraction expansion of σ and Theorem 15.6
to show that there exists an m > 0 such that∣∣∣∣pq − σ

∣∣∣∣ > m

q2

whenever p and q are integers with q ≥ 1.
Exercise 21.10 gives a more general version of this idea. Exercise 21.11 (vii)

suggests a better estimate for m.

Exercise 15.11. In one of Lewis Carroll’s favourite puzzles an 8× 8 square
is reassembled to form a 13× 5 rectangle as shown in Figure 1.

Figure 1: Carroll’s puzzle

What is the connection with Exercise 15.9? Can you design the next
puzzle in the sequence?

Hardy and Wright’s An Introduction to the Theory of Numbers [5] con-
tains a chapter on approximation by rationals in which they show, among
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other things, that σ is indeed particularly resistant to being so approximated
by rationals. If I was asked to nominate a book to be taken away by some
one leaving professional mathematics, but wishing to keep up an interest in
the subject, this book would be my first choice.

16 A nice, but starred, formula

This section is non-examinable
The notion of a continued fraction can be extended in many ways.
We are used to the idea of approximating functions f by polynomials P .

Sometimes it may be more useful to approximate f by a rational function
P/Q where P and Q are polynomials. If we approximate by polynomials we
are led to look at Taylor series. If we approximate by rational functions it
might be worth looking at some generalisation of continued fractions.

Here is a very pretty formula along these lines.

tanx =
x

1−
x2

3−
x2

5−
x2

7− . . .

.

The following theorem of Lambert makes the statement precise.

Theorem 16.1. If we write

Rn(x) =
x

1−
x2

3−
x2

. . . −
x2

2n− 3−
x2

2n− 1

,

then Rn(x)→ tanx as n→∞ for all real x with |x| ≤ 1.

In order to attack this we start by generalising an earlier result

Exercise 16.2. Suppose that aj and bj [j = 0, 1, 2, . . . ] are chosen so that
we never divide by zero (for example all strictly positive). Show that if(

pn bnpn−1

qn bnqn−1

)
=

(
a0 b0

1 0

)(
a1 b1

1 0

)
. . .

(
an bn
1 0

)
,
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then
pn
qn

= a0 +
b0

a1 +
b1

a2 +
b2

a3 +
b3

a4 +
b4

. . .

an−1 +
bn−1

an

Show that

pn = anpn−1 + bn−1pn−2

qn = anqn−1 + bn−1qn−2.

We now use the following result which is clearly related to the manipula-
tions used in Lemma 12.3.

Lemma 16.3. Let us write

Sn(x) =
1

2nn!

∫ x

0

(x2 − t2)n cos t dt.

Then Sn(x) = qn(x) sinx− pn(x) cosx where pn and qn satisfy the recur-
rence relations

pn(x) = (2n− 1)pn−1(x)− x2pn−2(x),

qn(x) = (2n− 1)qn−1(x)− x2qn−2(x)

for n ≥ 2 and p0(x) = 0, q0(x) = 1, p1(x) = x, q1(x) = 1.

The results of this section and other interesting topics are discussed in a
book [3] which is a model of how a high level recreational mathematics text
should be put together.

17 Winding numbers

We all know that complex analysis has a lot to say about ‘the number of
times a curves goes round a point’. In this final section we make the notion
precise.
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Theorem 17.1. Let
T = {z ∈ C : |z| = 1}.

If g : [0, 1] → T is continuous with g(0) = eiθ0, then there is a unique
continuous function θ : [0, 1] → R with θ(0) = θ0 such that g(t) = eiθ(t) for
all t ∈ [0, 1].

The uniqueness part of Theorem 17.1 follows from the next exercise.

Exercise 17.2. Suppose ψ, φ : [0, 1] → R are continuous with eiψ(t) = eiφ(t)

for all t ∈ [0, 1]. Show that there exists an integer n such that ψ(t) = φ(t) +
2nπ for all t ∈ [0, 1].

Corollary 17.3. If γ : [0, 1]→ C \ {0} is continuous with γ(0) = |γ(0)|eiθ0,
then there is a unique continuous function θ : [0, 1]→ R with θ(0) = θ0 such
that γ(t) = |γ(t)|eiθ(t).

Definition 17.4. If γ : [0, 1] → C \ {0} and θ : [0, 1] → R are continuous
with γ(t) = |γ(t)|eiθ(t), then we define

w(γ, 0) =
θ(1)− θ(0)

2π
.

Exercise 17.2 shows that w(γ, 0) does not depend on the choice of θ.

Exercise 17.5. (i) If γ : [0, 1] → C \ {0} is continuous and γ(0) = γ(1)
(that is to say, the path is closed) show that w(γ, 0) is an integer.

(ii) Give an example to show that, under the conditions of (i), w(γ, 0)
can take any integer value.

We are only interested in the winding number of closed curves.
If a ∈ C, it is natural to define the winding number round a of a curve

given by a continuous map

γ : [0, 1]→ C \ {a}

to be
w(γ, a) = w(γ − a, 0),

but we shall not use this slight extension.

Lemma 17.6. If γ1, γ2 : [0, 1]→ C \ {0} then the product γ1γ2 satisfies

w(γ1γ2, 0) = w(γ1, 0) + w(γ2, 0).
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Lemma 17.7. [Dog walking lemma] If γ1, γ2 : [0, 1] → C \ {0} are con-
tinuous, γ1(0) = γ1(1), γ2(0) = γ2(1) and

|γ2(t)| < |γ1(t)|

for all t ∈ [0, 1], then γ1 + γ2 never takes the value 0 and w(γ1 + γ2, 0) =
w(γ1, 0).

Many interesting results in ‘applied complex analysis’ are obtained by
‘deforming contours’. The idea of ‘continuously deforming curves’ can be
made precise in a rather clever manner.

Definition 17.8. Suppose that γ0, γ1 are closed paths not passing through 0
(so we have, γj : [0, 1]→ C\{0}). Then we say that γ0 is homotopic to γ1 by
closed curves not passing through zero if we can find a continuous function
Γ : [0, 1]2 → C \ {0} such that

Γ(s, 0) = Γ(s, 1) for all s ∈ [0, 1],

Γ(0, t) = γ0(t) for all t ∈ [0, 1],

Γ(1, t) = γ1(t) for all t ∈ [0, 1].

We often write γs(t) = Γ(s, t).

Exercise 17.9. If γ0 and γ1 satisfy the conditions of Definition 17.8, we
write γ0 ' γ1. Show that ' is an equivalence relation on closed curves not
passing through zero.

The proof of the next theorem illustrates the utility of Definition 17.8.
The proof itself is sometimes referred to as ‘dog walking along a canal’.

Theorem 17.10. If γ0 and γ1 satisfy the conditions of Definition 17.8, then
w(γ0, 0) = w(γ1, 0).

As before, let us write

D̄ = {z ∈ C : |z| ≤ 1},
D = {z ∈ C : |z| < 1},
∂D = {z ∈ C : |z| = 1}.

Corollary 17.11. Suppose f : D̄ → C is continuous, f(z) 6= 0 for z ∈ ∂D,
and we define γ : [0, 1]→ C by

γ(t) = f(e2πit)

for all t ∈ [0, 1]. If w(γ, 0) 6= 0, then there must exist a z ∈ D with f(z) = 0.
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This gives us another proof of the Fundamental Theorem of Algebra (The-
orem 2.9).

Corollary 17.12. If we work in the complex numbers, every non-trivial poly-
nomial has a root.

We also obtain a second proof of Brouwer’s theorem in two dimensions
in the ‘no retraction’ form of Theorem 4.5.)

Corollary 17.13. There does not exist a continuous function f : D̄ → ∂D
with f(z) = z for all z ∈ ∂D.

The earlier combinatorial proof that we gave requires less technology to
extend to higher dimensions.

The contents of this section show that parts of complex analysis are really
just special cases of general ‘topological theorems’. On the other hand, other
parts (such as Taylor’s theorem and Cauchy’s theorem itself) depend crucially
on the the fact that we are dealing with the very restricted class of functions
which satisfy the Cauchy-Riemann equations.

In traditional courses on complex analysis, this fact appears, if it appears
at all, rather late in the day. Beardon’s Complex Analysis [4] shows that it
is possible to do things differently and is well worth a look19.
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18 Question sheet 1

Note The Pro-Vice-Chancellor for Education has determined that the amount
of work required by a student to understand a course should be the same as
that required by any other student. Traditionally, teachers and students in
the Faculty of Mathematics have interpreted this as meaning that each ex-
ample sheet should have exactly twelve questions. The number of questions
in the example sheets for this course may be reduced to twelve by omitting
any marked with a F.

Exercise 18.1. (i) Consider Rn. If we take d to be ordinary Euclidean distance

d(x,y) = ‖x− y‖ =

(
n∑
j=1

|xj − yj|2
)1/2

,

show that (Rn, d) is a metric space.
[Hint: Use inner products.]

(ii) Consider C. If we take d(z, w) = |z−w|, show that (C, d) is a metric
space.

(iii) Let X be a non-empty set. Check that, if we write

d(x, y) =

{
0 if x = y,

1 if x 6= y,

then (X, d) is a metric space (d is called the discrete metric).
(iv) Consider X = {0, 1}n. If we take

d(x,y) =
n∑
j=1

|xj − yj|,

show that (X, d) is a metric space.

Exercise 18.2. (i) Give an example of a continuous bijection f : R→ R with
no fixed points.

(ii) If A is an infinite countable set, show that there exists a bijection
f : A → A with no fixed points. What can you say if A is finite non-empty
set? (Be careful to cover all possible cases.)

[Remark: We can replace ‘infinite countable’ by ‘infinite’ provided we
accept the appropriate set theoretic axioms.]

Exercise 18.3. (i) Show that a subset E of Rm (with the usual metric) is
compact if every continuous function f : E → R is bounded.

(ii) Show that a subset E of Rm (with the usual metric) is compact if
every bounded continuous function f : E → R attains its bounds.
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Exercise 18.4. Suppose that d is the usual metric on Rm, X is a compact
set in Rm and f : X → X is a continuous distance increasing map. In other
words,

d(f(x), f(y)) ≥ d(x, y)

for all x, y ∈ X. The object of the first two parts of this question is to show
that f must be a surjection.

(i) Let f 0(x) = x fn(x) = f(fn−1(x)). Explain why X∞ =
⋂∞
n=0 f

n(X)
is compact and why the map g : X∞ → X∞ is well defined by f

(
g(y)

)
= y.

(ii) If z ∈ X, consider the sequence fn(z). By using compactness and
part (i) show that given ε > 0 we can find an w ∈ X∞ such that d(w, z) < ε.
Deduce that f is surjective.

(iii) Let X = {x ∈ R : x ≥ 0}. Find a continuous function f : X → X
such that |f(x)− f(y)| ≥ 2|x− y| for all x, y ∈ X but f(X) 6= X. Why does
this not contradict (ii)?

(iv) We work in C. Let α be irrational and let ω = exp(2παi). If

X = {ωn : n ≥ 1},

find a continuous function f : X → X such that |f(w)− f(z)| = |w − z| for
all w, z ∈ X but f(X) 6= X. Why does this not contradict (ii)?

Exercise 18.5. A function f : Rn → R is called upper semi-continuous if,
given x ∈ Rn and ε > 0, we can find a δ > 0 such that

‖x− y‖ < δ ⇒ f(y) ≤ f(x) + ε.

(i) If E is a subset of Rn and we define the indicator function IE by

IE(x) =

{
1 if x ∈ E,

0 otherwise,

show that IE is upper semi-continuous if and only if E is closed.
(ii) State and prove necessary and sufficient conditions for −IE to be

upper semi-continuous.
(iii) If f : Rn → R is upper semi-continuous and K is compact show that

there exists a z ∈ K such that f(z) ≥ f(k) for all k ∈ K. (In other words f
attains a maximum on K.)

(iv) If g : R→ R is defined by

g(x) =

{
−1/|x| if x 6= 0,

0 if x = 0,

show that g is upper semi-continuous but that g is unbounded on [−1, 1].
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Exercise 18.6. Let

H = {z ∈ C : <z > 0},
H̄ = {z ∈ C : <z ≥ 0},
D = {z ∈ C : |z| < 1},
D̄ = {z ∈ C : |z| ≤ 1}.

(i) Does every bijective continuous map f : C→ C have a fixed point?
(ii) Does every bijective continuous map f : H→ H have a fixed point?
(iii) Does every bijective continuous map f : H̄→ H̄ have a fixed point?
(iv) Does every bijective continuous map f : D→ D have a fixed point?
(v) Does every bijective continuous map f : D̄→ D̄ have a fixed point?
Give reasons for your answers.

Exercise 18.7. (Exercise 4.9) Show that the following four statements are
equivalent.

(i) If f : [0, 1] → [0, 1] is continuous, then we can find a w ∈ [0, 1] such
that f(w) = w.

(ii) There does not exist a continuous function g : [0, 1] → {0, 1} with
g(0) = 0 and g(1) = 1. (In topology courses we say that [0, 1] is connected.)

(iii) If A and B are closed subsets of [0, 1] with 0 ∈ A, 1 ∈ B and
A ∪B = [0, 1] then A ∩B 6= ∅.

(iv) If h : [0, 1]→ R is continuous and h(0) ≤ c ≤ h(1), then we can find
a y ∈ [0, 1] such that h(y) = c.

Exercise 18.8. (Exercise 4.10) Suppose that we colour the points r/n red or
blue [r = 0, 1, . . . , n] with 0 red and 1 blue. Show that there are a pair of
neighbouring points u/n, (u + 1)/n of different colours. Use this result to
prove statement (iii) of Exercise 4.9.

Exercise 18.9. Suppose that g : R2 → R2 is a continuous function such that
there exists a K > 0 with ‖g(x)− x‖ ≤ K for all x ∈ R2.

(i) By constructing a function f : R2 → R2, taking a disc into itself, and
such that

f(t) = t⇒ g(t) = 0

show that 0 lies in the image of g.
(ii) Show that, in fact, g is surjective.
(iii) Is it necessarily true that g has a fixed point? Give reasons.
(iv) Is g necessarily injective? Give reasons.

Exercise 18.10. Use the Brouwer fixed point theorem to show that there is a
complex number z with |z| ≤ 1 and

z4 − z3 + 8z2 + 11z + 1 = 0.
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Exercise 18.11. Consider the square S = [−1, 1]2. Suppose that β, γ :
[−1, 1] → S are continuous with β(−1) = (−1,−1), β(1) = (1, 1), γ(−1) =
(−1, 1), γ(1) = (1,−1). The object of this question is to show that there
exist (s0, t0) ∈ [−1, 1]2 such that β(s0) = γ(t0). (Note that this is just a
formal version of Exercise 4.13.)

Our proof will be by contradiction, so assume that no such (s0, t0) exists.
We write

β(s) =
(
β1(s), β2(s)

)
, γ(t) =

(
γ1(t), γ2(t)

)
(i) Show carefully that the function F : S → S given by

F (s, t) =
−1

max{|β1(s)− γ1(t)|, |β2(s)− γ2(t)|}
(
β1(s)− γ1(t), β2(s)− γ2(t)

)
is well defined and continuous.

(ii) Show by considering the possible values of the fixed points of F or
otherwise that F has no fixed points, Brouwer’s fixed point theorem now
gives a contradiction.

Exercise 18.12. Here is a variation on Lemma 4.7 (ii). It can be proved in
the same way.

Suppose that T , I, J , K are as in Lemma 4.7 and that A, B and C are
closed subsets of T with

A ∪B ∪ C = T,

A ∪B ⊇ I, B ∪ C ⊇ J, C ∪ A ⊇ K,

A ⊇ K ∩ I, B ⊇ I ∩ J, C ⊇ J ∩K.

Show that A ∩B ∩ C 6= ∅.

Exercise 18.13. F Cantor started the researches which led him to his studies
of infinite sets by looking at work of Riemann on trigonometric series. He
needed to show that if F : [a, b]→ R is continuous and

F (x+ h)− 2F (x) + F (x− h)

h2
→ 0

as h→ 0 for all x ∈ (a, b) then F is linear. (Note that there are no differen-
tiability conditions on F .) Schwarz was able to supply a proof.

(i) Suppose that F : [a, b] → R is continuous, F (a) = F (b) and there
exists an ε > 0 such that

lim sup
h→0

F (x+ h)− 2F (x) + F (x− h)

h2
≥ ε

54



for all x ∈ (a, b). Show that F cannot attain a maximum at any x ∈ (a, b).
Deduce that

F (x) ≤ F (a)

for all x ∈ [a, b].
(ii) Suppose that F : [a, b]→ R is continuous, F (a) = F (b) and

lim sup
h→0

F (x+ h)− 2F (x) + F (x− h)

h2
≥ 0

for all x ∈ (a, b). Let c = (a+b)/2. By considering G(x) = F (x)+ε(x−c)2/4
or otherwise, show that

F (x) ≤ F (a)

for all x ∈ [a, b].
(iii) Suppose that F : [a, b]→ R is continuous, F (a) = F (b) and

lim
h→0

F (x+ h)− 2F (x) + F (x− h)

h2
= 0

for all x ∈ (a, b). By considering F and −F show that

F (x) = F (a)

for all x ∈ [a, b].
(iv) Show that if F : [a, b]→ R is continuous and

F (x+ h)− 2F (x) + F (x− h)

h2
→ 0

as h→ 0 for all x ∈ (a, b) then F is linear.

Exercise 18.14. F As usual D̄ is the closed unit disc in R2 and ∂D its
boundary. Let us write

∆ = {(x,y) ∈ D̄2 : x 6= y}

and consider ∆ as a subset of R4 with the usual metric. We define F : ∆→
∂D as follows.

Given (x,y) ∈ Γ, take the line from x to y and extend it (in the x to y
direction) until it first hits the boundary at z. We write F (x,y) = z.

In the proof of Theorem 4.5 I claimed that it was obvious that F was
continuous. Suppose, if possible, that g : D̄ → D̄ is a continuous map with
g(x) 6= x for all x ∈ D̄. Explain why, if my claim is true, the map

x 7→ F
(
x, g(x)

)
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is a continuous map.
The claimed result is obvious (in some sense) and you may take it as

obvious in the exam. However, if we can not prove the obvious it ceases to
be obvious. This question outlines one method of proof, but, frankly, the
reader may find it easier to find their own method. Any correct method
counts as a solution.

(i) Suppose that 0 < y0 < 1, x0 > 0 and x2
0 + y2

0 = 1. Show that, given
ε > 0 we can find an η > 0 such that if x2 + y2 = 1, x > 0 and |y − y0| < η
implies ‖(x, y)− (x0, y0)‖ < ε.

(ii) Suppose that (x1, y0), (x2, y0) ∈ D̄, y0 ≥ 0 and x1 6= x2. By using (i),
or otherwise, show that, given any ε > 0, we can find a δ > 0 such that,
whenever

‖(x′1, y′1)− (x1, y)‖, ‖(x′2, y′2)− (x2, y)‖ < δ

and (x′1, y
′
1), (x′2, y

′
2) ∈ D̄, we have (x′1, y

′
1) 6= (x′2, y

′
2) and

F
(
(x′1, y

′
1), (x′2, y

′
2)
)

= (u, v) with |v − y| < ε.

(iii) Hence show that F : ∆→ D̄ is continuous.
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19 Question sheet 2

Exercise 19.1. In the two player game of Hawks and Doves20, player i chooses
a probability pi which announce publicly. Players may change their mind
before the game begins but must stick to their last announced decision.

Once the game begins, player i becomes a hawk with probability pi and
a dove with probability 1− pi. Two doves divide food so that each gets V/2.
A hawk scares off a dove so the hawk gets V and the dove 0. Two hawks
fight, the winner gets V − D and the looser −D (D is the damage). The
probability of winning such an encounter is 1/2 for each bird.

If V > 2D show that there is only one Nash equilibrium point. Give a
simple explanation of this fact.

If V < 2D show that there are three equilibrium points and identify them.
What happens if V = 2D?

Exercise 19.2. (i) Suppose that E is a compact convex set in Rn, that α :
Rn → Rm is linear and b ∈ Rm. Show that

{b + αx : x ∈ E}

is compact and convex.
(ii) Suppose that E is a compact convex set in Rn, that f : Rn → Rm is

continuous and b ∈ Rm. Set

E ′ = {b + f(x) : x ∈ E}

(a) Is E ′ necessarily convex if n = 1?
(b) Is E ′ necessarily convex if m = 1?
(c) E ′ necessarily convex for general m and n?

Give reasons.

Exercise 19.3. (If you have done the 1B optimisation course.) We use the
notation of Theorem 5.1. Suppose that aij = −bij, that is to say that Albert’s
gain is Bertha’s loss. Explain why the 1B game theoretic solution will always
be a Nash equilibrium point and vice versa.

Exercise 19.4. (This is Exercise 6.1) Consider two rival firms A and B en-
gaged in an advertising war. So long as the war continues, the additional
costs of advertising mean that the larger firm A loses 3 million pounds a year
and the smaller firm B loses 1 million pounds a year. If they can agree to
cease hostilities then A will make 8 million a year and B will make 1 million

20This has nothing to do with the question but I cannot resist passing on the information
that TfL employs hawks to clear its larger stations of pigeons. The hawks actually catch
pigeons, but are not allowed to eat them, because London pigeons have too many diseases.
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a year. How much does Nash say should A pay B per year to achieve this
end/

[One way of doing this is to apply an affine transformation.]

Exercise 19.5. Consider the continuous functions on [0, 1] with the uniform
norm. Show that the unit ball

{f ∈ C([0, 1]) : ‖f‖∞ ≤ 1}

is a closed bounded subset of the complete space (C([0, 1]), ‖ ‖∞), but is not
compact.

Exercise 19.6. (i) Let f : [0, 1] → R be a continuous function which is not
a polynomial. If pn is a polynomial of degree dn and pn → f uniformly on
[0, 1], show that dn →∞.

[Hint. Look at Corollary 8.3.]
(ii) If qn is a polynomials of degree en with en →∞ and qn → g uniformly

on [0, 1], does it follow that g is not a polynomial? Give reasons.

Exercise 19.7. Show that no formula of the form∫ 1

−1

f(t) dt =
n∑
j=1

Ajf(xj)

(with xj, Aj ∈ R) can hold for polynomials f of degree at most 2n.

Exercise 19.8. Let f : [0, 1]→ R and g : [−1, 1]→ R be continuous.
(i) By using the Weierstrass approximation theorem, show that∫ 1

0

xnf(x) dx = 0 for all n ≥ 0⇒ f is the zero function.

(ii) Show that∫ 1

0

x2nf(x) dx = 0 for all n ≥ 0⇒ f is the zero function.

(iii) Is it true that if
∫ 1

0
x2n+1f(x) dx = 0 for all n ≥ 0, then f must be

the zero-function? Give reasons.
(iv) Is it true that, if

∫ 1

−1
x2ng(x) dx=0 for all n ≥ 0, then g must be the

zero-function? Give reasons.

Exercise 19.9. (i) (This just to remind you that discontinuous functions come
in many shapes and sizes.) Let f : R → R be given by f(x) = sin 1/x for
x 6= 0 and f(0) = a. Show that, whatever the choice of a, f is discontinuous.
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(ii) Does there exist a discontinuous function g : [0, 1]→ R which can be
approximated uniformly by polynomials? Why?

(iii) Does there exist a smooth function h : R → R which cannot be
approximated uniformly by polynomials? Prove your answer.

(iv) If f : R → R is continuous, does there always exist a sequence of
polynomials pn with pn(x)→ f(x) for each x as n→∞.

Exercise 19.10. We say that a function f : R→ R has the intermediate value
property if whenever a, b ∈ R and f(a) ≥ c ≥ f(b) we can find a t in the
closed interval with end points a and b such that f(t) = c.

(i) Give an example of a function satisfying the intermediate value prop-
erty which is not continuous.

(ii) Show that if f has the intermediate value property and in addition
f−1(α) is closed for every α in a dense subset of of R then f is continuous.

Exercise 19.11. F Are the following statements true or false? Give reasons.
(i) If f : (0, 1)→ R is continuous, we can find a sequence of polynomials

Pn converging uniformly to f on every compact subset of (0, 1).
(ii) If g : (0, 1)→ R is continuously differentiable we can find a sequence

of polynomials Qn with Q′n converging uniformly to g′ and Qn converging
uniformly to g on every compact subset of (0, 1).

(iii) If h : (0, 1) → R is continuous and bounded we can find a sequence
of polynomials Rn with

sup
t∈(0,1)

|Rn(t)| ≤ sup
t∈(0,1)

|h(t)|

converging uniformly to h on every compact subset of (0, 1).

Exercise 19.12. F Compute the Chebychev polynomials Tn of the first kind
for n = 0, 1, 2 . . . , 4 and the Chebychev polynomials Un−1 of the second
kind for n = 1, 2 . . . , 4.

Recall that we say that a function f ; [−1, 1]→ R is even if f(x) = f(−x)
for all x and odd if f(x) = −f(−x) for all x.

Explain why we know, without calculation, that the Chebychev polyno-
mials Tn are even when n is even and odd when n is odd. What can you say
about the Chebychev polynomials Un of the second kind?

Exercise 19.13. The Chebychev polynomials are orthogonal with respect to
a certain non-zero positive weight function w. In other words,∫ 1

−1

Tm(x)Tn(x)w(x) dx = 0

for all m 6= n. Use a change of variables to find a suitable w.
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Exercise 19.14. F (i) Use the Gramm–Schmidt method (see Lemma 9.2) to
compute the Legendre polynomials pn for n = 0, 1, 2, 3, 4. You may leave
your answers in the form Anpn (i.e. ignore normalisation).

(ii) Explain why we know, without calculation, that the Legendre poly-
nomials pn are even when n is even and odd when n is odd.

(iii) Explain why
dm

dxm
(1− x)n(1 + x)n

vanishes when x = 1 or x = −1 whenever m < n.
Suppose that

Pn(x) =
dn

dxn
(1− x2)n.

Use integration by parts to show that∫ 1

−1

Pn(x)Pm(x) dx = 0

for m 6= n. Conclude that the Pn are scalar multiple of the Legendre poly-
nomials pn.

(iv) Compute Pn for n = 0, 1, 2, 3, 4 and check that these verify the last
sentence of (iii).

(iv) Let un(x) = xn. Find the choice of v which minimises

‖un − v‖2 =

(∫ 1

−1

|xn − v(x)|2 dx
)1/2

for v a polynomial of degree at most n− 1

Exercise 19.15. Are the following statements true or false. Give reasons.
(i) For all n ≥ 1, there exists a polynomial Pn of degree at most n such

that
Pn(cosh t) = coshnt.

(ii) For all n ≥ 1 there exists a polynomial Qn of degree at most n such
that

Qn(cosh t) = sinhnt.

(iii) For all n ≥ 1 there exists a polynomial Rn of degree at most n such
that

Rn(sin t) = sinnt.

Exercise 19.16. F (i) Suppose f : [a, b] → R is continuous and ε > 0. Why
can we find an infinitely differentiable function g : [a, b] → R such that
‖f − g‖∞ < ε.
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(ii) By using Chebychev polynomials and Weierstrass’s approximation
theorem, show that given any continuous f : [0, π] → R and any ε > 0 we
can find N and aj ∈ R 0 ≤ j ≤ N such that∣∣∣∣∣f(s)−

N∑
j=0

aj cos js

∣∣∣∣∣ < ε

for all s ∈ [0, π].
(iii) Let ε > 0. If f : [0, π] → R is continuous with f(0) = 0, show that

we can find N and bj ∈ R 0 ≤ j ≤ N such that∣∣∣∣∣f(s)− b0s−
N∑
j=0

bj sin js

∣∣∣∣∣ < ε

for all s ∈ [0, π].
(iv) Let ε > 0. If f : [0, π]→ R is continuous with f(0) = f(π) = 0, show

that we can find N and bj ∈ R, 0 ≤ j ≤ N such that∣∣∣∣∣f(s)−
N∑
j=0

bj sin js

∣∣∣∣∣ < ε

for all s ∈ [0, π].
(v) Hence show that, given any continuous f : [−π, π]→ R with f(−π) =

f(π) and any ε > 0, we can find N and αj, βj ∈ R such that∣∣∣∣∣f(t)−
N∑
j=0

bj cos jt−
N∑
j=1

cj sin jt

∣∣∣∣∣ < ε

for all t ∈ [−π, π].

61



20 Question Sheet 3

Exercise 20.1. Let f : [−1, 1] → R be a function and let M > 0. Show that
there exists at most one polynomial of degree n such that

|f(x)− P (x)| ≤M |x|n+1

for all x ∈ [−1, 1].
Must there always exist such a P if f is everywhere infinitely differentiable

and we choose M sufficiently large?

Exercise 20.2. Let Tj be the jth Chebychev polynomial. Suppose that γj is
a sequence of non-negative numbers such that

∑∞
j=1 γj converges. Explain

why
∑∞

j=1 γjT3j converges uniformly on [−1, 1] to a continuous function f .
Let us write Pn =

∑n
j=1 γjT3j . Show that we can find points

−1 ≤ x0 < x1 < . . . < x3n+1 ≤ 1

such that

f(xk)− Pn(xk) = (−1)k+1

∞∑
j=n+1

γj.

Exercise 20.3. Use Exercise 20.2 to show that, given any decreasing sequence
δn → 0, we can find a continuous function f : [−1, 1]→ R such that (writing
‖ ‖∞ for the uniform norm on [−1, 1])

inf{‖f − P‖∞ : P a polynomial of degree at most n} ≥ δn.

Why does this not contradict the Weierstrass approximation theorem?

Exercise 20.4. Use the ideas of Theorem 7.9 to show that, if f : [0, 1]2 → R
is continuous, then, given ε > 0, we can find a polynomial P in two variables
such that

|f(x, y)− P (x, y)| < ε

for all x, y ∈ [0, 1].

Exercise 20.5. (Not very much to do with the course but a nice question which
you should have met at least once in your life.) Suppose f : [−1, 1]2 → R
is a bounded function such that the map x 7→ f(x, y) is continuous for each
fixed y and the map y 7→ f(x, y) is continuous for each fixed x. By means of
a proof or counterexample establish whether f is necessarily continuous.

The next three questions give alternative proofs of Weierstrass’s theorem.
Each involves some heavy lifting, but each introduces ideas which are very
useful in a variety of circumstances. If you are finding the course heavy going,
or your busy social schedule limits the time you can spend thinking to an
absolute minimum, you can skip them. If you want to do any sort of analysis
in the future they are highly recommended.
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Exercise 20.6. Here is an alternative proof of Bernstein’s theorem using a
different set of ideas.

(i) Let f ∈ C([0, 1]). Show that given ε > 0 we can find an A > 0 such
that

f(x) + A(t− x)2 + ε/2 ≥ f(t) ≥ f(x)− A(t− x)2 − ε/2
for all t, x ∈ [0, 1].

(ii) Now show that we can find an N such that, writing

hr(t) = f(r/N) + A(t− r/N)2, gr(t) = f(r/N)− A(t− r/N)2,

we have
gr(t) + ε ≥ f(t) ≥ hr(t)− ε

for |t − r/N | ≤ 1/N . (You may find it helpful to draw diagrams here and
in (iii).)

(iii) We say that a linear map S : C([0, 1]) → C([0, 1]) is positive if
F (t) ≥ 0 for all t ∈ [0, 1] implies SF (t) ≥ 0 for all t ∈ [0, 1]. Suppose that S
is such a positive linear operator. Show that if F (t) ≥ G(t) for all t ∈ [0, 1],
then (SF )(t) ≥ (SG)(t) for all t ∈ [0, 1] [F, G ∈ C([0, 1])]. Show also that if,
F ∈ C([0, 1]), then ‖SF‖∞ ≤ ‖S1‖∞‖F‖∞.

(iv) Write er(t) = tr. Suppose that Sn is a sequence of positive linear
functions such that ‖Sner − er‖∞ → 0 as n → ∞ for r = 0, r = 1 and
r = 2. Show, using (ii), or otherwise, that ‖Snf − f‖∞ → 0 as n → ∞ for
all f ∈ C([0, 1]).

(v) Let

(Snf)(t) =
n∑
j=0

(
n

j

)
f(j/n)tj(1− t)n−j.

Verify that Sn satisfies the hypotheses of part (iv) and deduce Bernstein’s
theorem.

Exercise 20.7. F Here is another proof of Weierstrass’s theorem which is
closer to his original proof. We wish to show show that any continuous
function function f : [−1/2, 1/2] → R can be uniformly approximated by
polynomials on [−1/2, 1/2]. To do this we show that any continuous function
g : R → R with g(x) = 0 for |x| ≥ 1 can be uniformly approximated by
polynomials on [−1/2, 1/2]. Why does this give the desired result?

Let

Ln(x) =

{
(4− x2)n for |x| ≤ 2,

0 otherwise,

let

An =

∫ ∞
−∞

Ln(x) dx
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and let Kn(x) = A−1
n Ln(x).

(i) Show that

Pn(x) = Kn ∗ g(x) =

∫ ∞
−∞

Kn(x− t)g(t) dt

is a polynomial in x on the interval [−1/2, 1/2] It may be helpful to recall
that f ∗ g = g ∗ f .)

(ii) Let δ > 0 be fixed. Show that Kn(x)→ 0 uniformly for |x| ≥ δ and∫ δ

−δ
Kn(x) dx→ 1

as n→∞.
(iii) Use the fact that g is bounded and uniformly continuous together

with the formula

Pn(x) =

∫ δ

−δ
Kn(t)g(x− t) dt+

∫
t/∈(−δ,δ)

Kn(t)g(x− t) dt

to show that Pn(x)→ g(x) uniformly on [−1/2, 1/2].

Exercise 20.8. Here is another proof of Weierstrass’s theorem, this time due
to Lebesgue.

(i) If a < b sketch the graph of |x− a| − |x− b|.
(ii) Show that if g : [0, 1]→ R is piece-wise linear, then we can find n ≥ 1,

λj ∈ R and aj ∈ [0, 1] such that

g(t) = λ0 +
n∑
j=1

λj|t− aj|.

Deduce that, given f : [0, 1] → R and ε > 0, we can find n ≥ 1, λj ∈ R and
aj ∈ [0, 1] such that ∣∣∣∣∣f(t)− λ0 −

n∑
j=1

λj|t− aj|

∣∣∣∣∣ < ε.

(iii) Let

un(t) = 3

√(
1 +

1

n

)
−
(

1− t2

9

)
.

Explain using results on the general binomial expansion (which you need not
prove) why un can be uniformly approximated by polynomials on [−2, 2].
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Explain why un(t) → |t| uniformly on [−2, 2] as n → ∞. Deduce that
there exist polynomials qr with qr(t)→ |t| uniformly on [−1, 1] as r →∞.

(iv) Use (ii) and (iii) to prove the Weierstrass approximation theorem.
[Lebesgue’s idea provides the basis for the proof of the more general Stone–
Weierstrass theorem.]

Exercise 20.9. (This will look less odd if you have done the previous exercise.)
(i) Let a sequence of distinct xn form a dense subset of [0, 1] with x0 = 0,

x1 = 1. If f ∈ C([0, 1]), define fn : [0, 1] → R to be the simplest piece-wise
linear function with fn(xj) = f(xj) for 0 ≤ j ≤ n. Show that fn → f
uniformly.

(ii) Use (i) to show that there exists a sequence of continuous functions
φn such that, for each f ∈ C([0, 1]) there exists a unique sequence an such
that

n∑
j=0

ajφj → f

uniformly on [0, 1].
[In practice the sequence xj is usually taken to be 0, 1, 1/2, 1/4, 3/4 1/8,
3/8, 5/8, 7/8,1/16, 3/16, . . . .]

Exercise 20.10. F In Theorem 8.4 we saw that, if f : [a, b] → R is a con-
tinuous function there exists a polynomial P , of degree at most n− 1, such
that ‖P − f‖∞ ≤ ‖Q− f‖∞ for all polynomials Q degree n or less. The ob-
ject of this question is to show that the polynomial P satisfies the equiripple
criterion.

We claim that we can find a ≤ a0 ≤ a1 ≤ · · · ≤ an ≤ b such that, writing
σ = ‖f − P‖∞ we have either

f(aj)− P (aj) = (−1)jσ for all 0 ≤ j ≤ n

or

f(aj)− P (aj) = (−1)j+1σ for all 0 ≤ j ≤ n.

Our proof will be by reductio ad absurdum.
We assume without loss of generality that [a, b] = [0, 1] and σ = 1.
(i) Write g = f − P . Explain why we can find an integer N ≥ 1 such

that, if 1 ≤ r ≤ N , at least one of the following statements must be true

g(x) ≥ 1/2 for all x ∈ [(r − 1)/N, r/N ],

or

g(x) ≤ −1/2 for all x ∈ [(r − 1)/N, r/N ],
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or

|g(x)| ≤ 3/4 for all x ∈ [(r − 1)/N, r/N ].

(ii) Using the result of (i), show that, if our putative theorem is false, we
can find an integer q ≤ n, integers

0 = u(1) < v(1) < u(2) < v(2) < · · · < u(q) < v(q) = N

and w ∈ {0, 1} such that

(−1)w+jg(x) > −1 for all x ∈ [u(j)/N, v(j)/N ]

|g(x)| < 1 for all x ∈ [v(j)/N, u(j + 1)/N ].

Without loss of generality, we take w = 0.
(iii) Explain why we can find an η > 0 with

(−1)jg(x) > −1 + η for all x ∈ [u(j)/N, v(j)/N ]

|g(x)| < 1− η for all x ∈ [v(j)/N, u(j + 1)/N ],

for all j. We may take η < 1/8 and will do so.
(iv) Explain how to find a polynomial R of degree n or less with ‖R‖∞ = 1

such that
(−1)jR(x) > 0 for all x ∈ [u(j)/N, v(j)/N ]

and j = 1, 2, . . . , q.
(v) Show that

|g(x)− (η/2)R(x)| < 1− η/2

for all x ∈ [0, 1]. Hence obtain a contradiction.
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Exercise 20.11. Suppose that we have a sequence of continuous functions
fn : [0, 1] → R such that fn(x) → 0 for each x ∈ [0, 1] as n → ∞. Then,
given ε > 0, we can find a non-empty interval (a, b) ⊆ [0, 1] and an N(ε) such
that

|fn(t)| ≤ ε

for all t ∈ (a, b) and all n ≥ N(ε).
Hint Consider the sets

EN = {x ∈ [0, 1] : |fn(x)| ≤ ε, for all n ≥ N}.

Exercise 20.12. Suppose that f : [1,∞) → R is a continuous function and
f(nx)→ 0 as n→∞ for each x ∈ [1,∞). Show that f(x)→ 0 as x→∞.

Exercise 20.13. F (i) Consider C([0, 1]) with the uniform norm. If M is
strictly positive integer, let EM be the set of f ∈ C([0, 1]) such that whenever
N ≥ 1 and

0 ≤ x0 < x1 < x2 < . . . < xN ≤ 1

we have
N∑
j=1

|f(xj−1)− f(xj)| ≤M.

Show that EM is closed with dense complement. Deduce that there is a set G
which is the complement of a set of first category such that, given any f ∈ G
and any M ≥ 1, we can find N ≥ 1 and

0 ≤ x0 < x1 < x2 < . . . < xN ≤ 1

with
N∑
j=1

|f(xj−1)− f(xj)| > M.

(ii) Show that there is a set H which is the complement of a set of first
category such that, given any f ∈ H, any a and b with 0 ≤ a < b ≤ 1 and
any M ≥ 1, we can find N ≥ 1 and

a ≤ x0 < x1 < x2 < . . . < xN ≤ b

with
N∑
j=1

|f(xj−1)− f(xj)| > M.
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Exercise 20.14. Let h : [0, 1]→ R be a continuous strictly increasing function
with h(0) = 0. We say that a compact set E is thin if, given ε > 0, we can
find a finite collection of intervals Ij of length lj [N ≥ j ≥ 1] such that

E ⊆
N⋃
j=1

Ij, but
N∑
j=1

h(lj) < ε.

Show that the set C of thin compact sets is the complement of a set of
first category in the space K of compact subsets of [0, 1] with the Hausdorff
metric ρ.

Exercise 20.15. F Let A = {z ∈ C : 1/2 < |z| < 1} and let D = {z ∈ C :
|z| < 1}. Suppose that f : A → C is analytic and we can find polynomials
pn with pn(z) → f(z) uniformly on A. Show that we can find an analytic
function g : D → C with f(z) = g(z) for all z ∈ A.
[Hint: Use the maximum modulus principle and the general principle of
uniform convergence.]

Exercise 20.16. (i) We work in C. Show that there exists a sequence of
polynomials Pn such that

Pn(z)→

{
1 if |z| < 1 and <z ≥ 0

0 if |z| < 1 and <z < 0

as n→∞.
[Hint: Recall that, if Ω1 and Ω2 are disjoint open sets and f(z) = 0 for z ∈ Ω1

and f(z) = 1 for z ∈ Ω2, then f is analytic on Ω1 ∪ Ω2.]
(ii) Show that there exists a sequence of polynomials Qn such that

Qn(z)→

{
1 if <z ≥ 0

0 if <z < 0

as n→∞.
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21 Question sheet 4

Exercise 21.1. By quoting the appropriate theorems, show that, if Ω is an
open set in C, then f : Ω → C is analytic if and only if, whenever K is a
compact subset of Ω with path-connected complement and ε > 0, we can
find a polynomial P with |f(z)− P (z)| < ε for all z ∈ K.

Exercise 21.2. In this exercise we suppose that K is a bounded compact
subset of C and E is a non-empty bounded connected component of C \K.
Give a simple example of such a K and E. Our object is to show that if
a ∈ E the function f(z) = (z − a)−1 is not uniformly approximable on K by
polynomials.

Suppose P is a polynomial with |p(z) − (z − a)−1| ≤ ε or all z ∈ K.
By observing that the boundary ∂E of E lies in K and using the maximum
modulus principle deduce that |p(w)(w − a) − 1| ≤ ε supz∈K |z − a|. By
choosing w appropriately deduce that ε ≥ (supz∈K |z − a|)−1.

Exercise 21.3. Show that cos 1 is irrational. Show more generally that cos 1/n
is irrational whenever n is a non zero integer.

Exercise 21.4. Use the idea of Louiville’s theorem to write down a continued
fraction whose value is transcendental. Justify your answer.

Exercise 21.5. Let us write 〈y〉 = y − [y] so that 〈y〉 is the fractional part of
y

Suppose that x is irrational. If m is strictly positive integer consider the
m+ 1 points

0 = 〈0x〉, 〈1x〉, . . . , 〈kx〉, . . . , 〈mx〉

and explain why there must exist integers r and s with 0 ≤ s < r ≤ m and

|〈rx〉 − 〈sx〉| ≤ 1/m.

Deduce that we can find an integer v with 1 ≤ v ≤ m and and integer u with

|vx− u| ≤ 1/m

and so with ∣∣∣x− u

v

∣∣∣ ≤ 1

mv
≤ 1

v2
.

Deduce that we can find un, vn integers with vn →∞ such that∣∣∣∣x− un
vn

∣∣∣∣ ≤ 1

v2
n

.
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Exercise 21.6. Determine the continued fraction expansion of 71/49 and use
your result to find the rational number with denominator no greater than 10
which best approximates 71/49.

Exercise 21.7. (i) Determine the continued fraction expansions of
√

3.
(ii) Explain why the form of the continued fraction shows that

√
3 is

irrational.
(iii) Let pn/qn be the nth convergent for

√
3. Compute (pn/qn)2 for n =

1, 2, 3, 4, 5.

Exercise 21.8. Let a and b be strictly positive integers. If

x =
1

a+
1

b+
1

a+
1

b+ . . .

,

show that ax2 + abx− b = 0

Exercise 21.9. If x is irrational, we can find un and vn show that we can find
integers with vn →∞ such that∣∣∣∣unvn − x

∣∣∣∣ < 1

2v2
n

.

[Hint: Show that, in fact, at least one of the convergents pn/qn or pn+1/qn+1

must satisfy the required inequality.]

Exercise 21.10. Show that if all the integers an in the continued fraction

x =
1

a1 +
1

a2 +
1

a3 +
1

a4 + . . .

,

are bounded, then there exists an M > 0 such that∣∣∣∣x− p

q

∣∣∣∣ > M

q2

for all integers p and q with q 6= 0.
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Exercise 21.11. The Fibonacci sequence has many interesting aspects. (It
is, so far as I know the only series with its own Fanzine — The Fibonacci
Quarterly.)

(i) Find the general solution of the difference equation

un+1 = un + un−1.

The Fibonacci series is the particular solution Fn = un with u0 = 0, u1 = 1.
Write Fn in the appropriate form.

(ii) Show, by using (i), or otherwise, that if n ≥ 1, Fn is the closest integer
to

1√
5

(
1 +
√

5

2

)n

.

We call

τ =
1 +
√

5

2

the golden ratio.
(iii) Prove the two identities

F2n+1 = F 2
n + F 2

n+1

F2n = Fn(Fn−1 + Fn+1)

by using the result of (i).
(iv) Explain why (

Fn+1 Fn
Fn Fn−1

)
= An

where

A =

(
1 1
1 0

)
.

Use the result An+m = AnAm to deduce that

Fn+m+1 = Fn+1Fm+1 + FnFm

Fn+m = FnFm+1 + Fn−1Fm.

Obtain (iii) as a special case.
(v) Let xn = Fn+1/Fn. Use (iii) to express x2n as a rational function of

xn.
(vi) Suppose now we take yk = x2k . Write down yn+1 as a rational

function of yn. Use (i) to show that yk converges very rapidly to τ . Can you
link this with the Newton–Raphson method for finding a root of a particular
function?
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(vii) What is the relation between τ and the σ of Exercise 15.9. Use the
result of part (i) to obtain an estimate for

Fn
Fn+1

− σ

correct to within a constant multiple of σ4n.

Exercise 21.12. Let p(z) = z2 − 4z + 3 and let γ : [0, 1] → C be given by
γ(t) = p(2e2πit). Show that closed path associated with γ does not pass
through 0.

Compute w(γ, 0)
(i) Non-rigorously direct from the definition by obtaining enough infor-

mation about γ, (You could write the real and imaginary parts of γ(t) in
terms of cos t and sin t.)

(ii) by factoring, and
(iii) by the dog walking lemma.

Exercise 21.13. F Suppose that γ : [0, 1]→ C \ {0} is a continuously differ-
entiable function with γ(0) = γ(1).

If we define r : [0, 1]→ C by

r(t) = exp

(∫ t

0

γ′(s)

γ(s)
ds

)
compute the derivative of r(t)/γ(t) and deduce that

w(γ, 0) =
1

2πi

∫ 1

0

γ′(s)

γ(s)
ds.

Use this result and the residue theorem to compute w(γ, 0) in Exer-
cise 21.12.
[The example used in the last two questions has been chosen to make things
easy. However, if you are prepared to work hard, it is possible to obtain
enough information about γ to find the winding number of closed curves
even in quite complicated cases. If many winding numbers are required (as
may be the case when studying stability in an engineering context then we
can use numerical methods (this question suggests a possibility, though not
necessarily a good one) together with the knowledge that the winding number
is an integer to obtain winding numbers on an industrial scale.]

Exercise 21.14. F Take your electronic calculator out of your old school
satchel (or use the expensive piece of equipment on which you play games)
and find the first few terms of the continued fraction for π (or, more strictly
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for the rational number that your calculator gives when you ask it for π.)
Compute first few associated convergents (what we have called 3 + pn/qn).

Verify that 355/113 is an extremely good approximation for π and explain
why this is so. Apparently the approximation was first discovered by the
astronomer Tsu Ch’ung-Chih in the fifth century A.D.

The entries an in the continued fraction expansion for π look, so far as
anyone knows, just like those you would expect from a random real number
(in a sense made precise in Corollary 14.6).

I would be inclined to say that this was precisely what one should expect
if there was not a beautiful expansion (using a generalisation of the kind of
continued fraction discussed in the course) found by Lord Brouncker in 1654.

π

4
= 1 +

12

1 +
32

2 +
52

2 +
72

2 + . . .

.

You may easily verify that the first convergents are

1, , 1− 1

3
, 1− 1

3
+

1

5
−, . . .

and, if your name is Euler, that the nth convergent is

n∑
j=0

(−1)j

2j + 1

and then, if your name is Leibniz, you will prove the result

n∑
j=0

(−1)j

2j + 1
→ π

4
.

The convergence is, however, terribly slow and it is no wonder that Huygen’s
initially disbelieved Brouncker’s result.
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Cauchy
counterexample, 18
sequence, 4

Chebychev
equiripple criterion, 21
inequality, 21
polynomials, 19

closed set, 4
closure, 7
compact set, 5
complete metric space, 4
continuous function, 6
convex set, 16

d(x,A), 6
dog walking lemma, 49

e irrational, 32
Euclidean metric complete, 5

first category, 35
fundamental theorem of algebra, 7,

50

Gauss, happy ideas, 24, 40
Gaussian quadrature, 24
Gramm–Schmidt, 23

Hausdorff metric, 26
homotopy, 49

interior, 7
isolated point, 35

Legendre polynomials, 23

lunacy, Cambridge, 27

metric space
complete, 4
convergence, 3
definition, 3
examples, 3

Nash stable points, 14
nowhere dense, 35

open set, 4

Pareto optimality, 16
path connected, 28
π irrational, 32

quasi-all, 35

retraction mapping, 10

second category, 35
solution of Laplace’s equation

possible non-existence, 9
uniqueness, 8

Sperner’s lemma, 11

Taylor series, counterexample, 18

uniformly continuous, 20

Weierstrass’s approximation theorem
Bernstein’s proof, 21
other proofs, 62

winding number, 48
witchs’ hats, 37

Zaremba’s counterexample, 9
zero-sum game, 13
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