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Abstract 

Due to the ever-increasing adaptation of Blockchain technologies in the 

private, public, and business domains, both the use of Distributed Systems 

and the increased demand for their reliability has exploded recently, 

especially with their desired integration with Internet-of-Things devices. 

This has resulted in a lot of work being done in the fields of distributed 

system analysis and design, specifically in the areas of blockchain smart 

contract design and formal verification. However, the focus on formal 

verification methodologies has meant that less attention has been given 

towards more traditional testing methodologies, such as unit testing and 

integration testing. This includes a lack of full support by most, if not all, 

the major blockchain implementations for testing at scale, except on fully 

public test networks. This has several drawbacks, such as: 1) The inability 

to do repeatable testing under identical scenarios, 2) reliance upon public 

mining of blocks, which introduces unreasonable amounts of delay for a 

test driven development scenario that a private network could reduce or 

eliminate, and 3) the inability to design scenarios where parts of the 

network go down. In this chapter we discuss design, testing methodologies, 

and tools to allow Testing at Scale of IoT Blockchain Applications. 

Keywords: Automation, Blockchain, Distributed Systems, IoT, 

Scalability, Testing, Testing at Scale. 



Introduction 

Blockchain deployments (and specifically Ethereum, which is the 

main focus of this chapter due to its large installed base and its powerful 

smart contract language) are generally managed via programs that have 

different modes in which they can operate. They broadly fall into 

Command-Line Interfaces (CLI), RPC APIs, or creating Graphical 

Interfaces via the use of HTML pages and JavaScript code. These 

interfaces provide standard means to either run Ethereum applications 

within the clients themselves, or to interface other applications with the 

Ethereum clients. 

In practice, however, the existing blockchain deployment interfaces 

lack built-in fault tolerance, most notably for either network 

communication errors or application execution faults. Moreover, Ethereum 

clients are deployed manually since no official manager exists for them. 

As a result, developers can—and do—lose all of their Ether (Ethereum’s 

digital currency) due to insecure client configurations. Addressing this 

problem requires patterns and tools that enable the deployment of 

blockchain clients in a repeatable and systematic way. This requirement 

becomes even more important when integrating IoT blockchain 

applications (ITBAs). The IoT component of ITBAs add other 

requirements atop traditional blockchain applications due to their 

interactions with the physical environment and increased privacy concerns, 

e.g., thus preventing leakage of personal data, such as energy usage that 

would reveal a user’s activity patterns in their home. Additionally, ITBAs 

may not only communicate over the blockchain, but may also use off-

blockchain communications via TCP/IP or other networking protocols for 

reasons related to their operation.  

In this book chapter we present Best Practices for Testing-at-

Scale of Blockchain Systems making use of the structure and 

functionality of PlaTIBART, which is a Platform for Transactive IoT 

Blockchain Applications with Repeatable Testing that provides a set 

of tools and techniques for enhancing the development, deployment, 

execution, management, and testing of blockchain systems and 

specifically ITBAs. In particular, we describe a pattern for developing 

ITBAs, a Domain Specific Language (DSL) for defining a private 

blockchain deployment network, Actor components upon which the 

application can be deployed and tested, a tool using these DSL models 

to manage deployment networks in a reproducible test environment, 



and interfaces that provide fault tolerance via an application of the 

Observer pattern. The technology/technical terms used in the book 

chapter are explained wherever they appear or at the “Key 

Terminology & Definitions” section. Apart from regular References, 

additional References are included in the “References for 

Advance/Further reading” for the benefit of advanced readers. 

Structure of the proposed book chapter 

6.1.    Introduction of Distributed Ledgers/Blockchain Testing Concepts 

 

Interest in —and commercial adoption of— blockchain 

technology has increased in recent years [31]. For example, blockchain 

adoption in the financial industry has yielded market capitalization 

surpassing $75 billion USD [4] for Bitcoin and $36 billion USD for 

Ethereum [15]. Blockchain’s growth, at least partially, stems from its 

combination of existing technologies to enable the interoperation of non-

trusted parties in a decentralized, cryptographically secure, and 

immutable ecosystem without the need of a trusted central authority. 

Blockchain, a specific type of Distributed Ledger, provides these features 

in different ways depending on implementation. However, generally 

blockchains work by creating a cryptographically signed chain of blocks, 

hence the name, that are decentralized via a consensus mechanism such 

as Proof-of-Work, that is not controlled by a central authority. Distributed 

Ledgers, which share many similarities to blockchain, do not necessarily 

require decentralized authority. However, for this chapter we discuss both 

but focus on blockchain versions of distributed ledgers due to the fully 

distributed non-central authority being easier to implement and manage, 

and therefore we assume more likely, for IoT manufacturers to integrate 

with. Blockchain deployments (and specifically Ethereum, which is the 

focus of this chapter due to its large installed base and its powerful, smart 

contract language) are generally managed via programs that have 

different modes in which they can operate. They broadly fall into 

Command-Line Interfaces (CLI), RPC APIs, or creating Graphical 

Interfaces via the use of HTML pages and JavaScript code [18]. These 

interfaces provide standard means to either run Ethereum applications 

within the clients themselves or to interface other applications with the 

Ethereum clients. In practice, however, the existing blockchain 

deployment interfaces lack built-in fault tolerance, most notably for either 

network communication errors or application execution faults. Moreover, 



Ethereum clients are deployed manually since no official manager exists 

for them. As a result, developers can—and do [32]—lose all their Ether 

(Ethereum’s digital currency) due to unsecure client configurations. This 

problem is compounded by the fact that Ethereum’s clients do not warn 

of this risk within their built-in help feature, and instead rely upon online 

documentation to warn developers. Addressing this problem requires 

patterns and tools that enable the deployment of blockchain clients in a 

repeatable and systematic way. 

 

6.2. Testing Analysis of Blockchain and IoT Systems 

 

Blockchain systems can be subdivided into two broad categories: 

Turing Complete and Non-Turing Complete. This means the design of 

the system’s contract language is either Turing Complete or it is not. The 

largest of each of these two categories is Bitcoin as a non-Turing 

Complete contract language and Ethereum as a Turing-Complete contract 

language. The reason this is important is because it describes the inherent 

design goal of language. Turing-Complete languages allow for 

theoretically any computation to be completed, whereas non-Turing 

Complete languages have a more limited instruction set that specifically 

limit the actions available in that language. The reason for adding these 

limitations to the language is to limit the functionality and therefore 

potential complexity of code put onto the blockchain’s public ledger and 

executed distributedly. Non-Turing Complete contract languages are 

easier to analyze and predict runtime behavior, results, and potential 

faults. Additionally, there are blockchain/distributed ledger frameworks 

such as Hyperledger Fabric which do not provide a specific public 

blockchain for use, but instead provide tools for developing customizable 

blockchain/distributed ledger applications or implementations modularly.  

 

During roughly the same time as the growth of blockchain, the 

increased proliferation of IoT devices has motivated the need for 

transactional integrity due to the transition of IoT devices from just being 

smart-sensors to being active participants that impact their environment 

via communication, decision making, and physical actuation. These 

abilities require transactional integrity to provide auditing of actions 

made by potentially untrusted networked 3rd party IoT devices. The 

demand for transactional integrity in IoT devices that simultaneously 

leverage blockchain features (such as decentralization, cryptographic 



security, and immutability) has motivated research on creating transactive 

IoT blockchain applications [5, 7].  

 

This requirement becomes even more important when integrating IoT 

blockchain applications (ITBAs). The IoT component of ITBAs add other 

requirements atop traditional blockchain applications due to their 

interactions with the physical environment and increased privacy 

concerns, e.g., thus preventing leakage of personal data, such as energy 

usage that would reveal a user’s activity patterns in their home [16]. 

Moreover, ITBAs may not only communicate over the blockchain, but 

may also use off-blockchain communications via TCP/IP or other 

networking protocols for the following reasons: 

• There are interactions with the physical environment that might 

require communication with sensors and/or actuators. For 

example, a user’s smart-meter might communicate wirelessly with 

their smart-car’s battery to activate charging based on current 

energy production/cost considerations.  

• The distributed ledger (which makes an immutable record of 

transactions in blockchain) is public, so it is common to only 

include information within transactions that can safely be stored 

publicly. In particular, if some or all data from a transaction must 

be kept secret for privacy or any other reasons the transaction can, 

instead, contain the meta-data and a cryptographic hash of the 

secret data. Private information must, therefore, be communicated 

off-blockchain while still preserving integrity by storing meta-

data and hash information on the blockchain ledger.  

• Management tasks such as: updates, monitoring, calibration, 

debugging, or auditing may require off-blockchain 

communication (with possible on-blockchain components for 

logging). Currently, these management tasks are done manually in 

conventional blockchain ecosystems. Similar to the need for a 

systematic means of deploying apps in a blockchain network, 

there is a need to systematically configure the network topology 

between all components of ITBAs. 

 

6.3. Desired Functionality of Testing IoT Blockchain Systems 

 

In this section we list desired functionality of Testing IoT 

Blockchain Systems. Specifically, what we believe is the simplest way to 



delineate progressive levels of increased testing of IoT blockchain 

systems. These stages, starting at the most easily achievable and 

becoming progressively more difficult, are: Unit Testing, Simple IoT 

Device Integration, Multiple IoT Device Integration, Test Driven 

Development, and Fully Automated Test-Driven Development.  

 

Unit testing of software has become a standard requirement in 

well developed code. However, contract languages do not always include 

default unit-testing capability in the language or default build 

environment. However, the largest implementations for different 

categories of Blockchain solutions: Ethereum, Bitcoin, and Hyperledger 

Fabric all provide unit testing functionality, so any solution that does not 

do so should not be considered production level ready.  

 

Beyond unit testing, the next level of desired testing of ITBAs is 

integration testing. Integration testing of purely software-based 

distributed systems provides a unique challenge due to coordination of 

multiple instances, networking and runtime configuration, etc. ITBAs 

compound this by requiring not only multiple software instances to be run 

for integration testing, but also require integration with the IoT 

component(s) of the system to verify runtime characteristics, hardware 

and software compatibility, etc. Therefore, we’ve decided to split the 

stage of testing with IoT devices into two sub-stages: one where 

integration testing is only done with one device, and then into a second 

stage where multiple devices are integrated into testing. This division 

provides a cleaner progression of desirability for analysis of testing 

progress.  

 

The next level of desired testing ITBA systems is continuous 

integration. Continuous integration, like unit testing and integration 

testing, are commonplace in software development now. However, the 

adoption of these practices is less dependent upon the core blockchain, or 

even IoT, system being used and more about the support software 

designed to assist in development of that specific system. Therefore, like 

unit testing, we suggest considering any system that doesn’t yet provide 

continuous integration support via support libraries, tools, etc. to be non-

production level ready. 

 

 



6.4  Existing Shortcomings in Testing IoT Blockchain Systems 

 

This section reviews the state-of-the-art in IoT and blockchain 

integration, focusing on testing. Prior work [9] has shown that IoT and 

blockchain can be integrated, allowing peers to interact in a trustless, 

auditable manner via the use of blockchain as a resilient, decentralized, 

and peer-to-peer ledger. Work has also been done on the topics of 

security and privacy of IoT and Blockchain integrations [12, 26]. Beyond 

that, work has focused on formal verification of smart contracts [20], and 

how to write smart contracts “defensively” [11] to avoid exceptions when 

multiple contracts interact. The current state-of-the-art with respect to 

testing, however, is lacking because blockchains are infrequently tested at 

scale in a systematic and repeatable manner, so we focus on that below. 

 

6.4.1. Functional vs Model-Based Declarations  

 

 Currently, as far as we can tell, PlaTIBART is the only model-

based system for deploying Blockchain test networks,with Ethereum or 

otherwise. There are some tools, such as Nixos,1 that provide for 

repeatable installation of their Linux distribution and therefore via use of 

the NixOps devops tool, can declaratively define deployments of private 

Ethereum networks. However, this still requires functional declaration of 

the instances to be created. The benefits of a model-based approach are 

that it allows much easier variation in the outputs, additionally, a model-

based declaration can be modified to create the functional declaration 

inputs of other systems easily, thereby maintaining easy adaptability 

while also increasing interoperability with other tools, toolchains, and 

workflows.  

 

6.4.2. Testing on Live Environments, Non-Repeatable  

 

 Blockchain systems, particularly Ethereum, focused extensively at 

the start on testing your smart contract code on a public, global, and non-

modifiable instance of the Ethereum network they call the Test Network. 

Ethereum has at least added support for smart contract unit testing, 

                                                           
1 https://nixos.org/ 

https://nixos.org/


testing smart contracts in an emulator, and calling that integration testing. 

However, these approaches lack robustness and repeatability.  

The use of a public non-blockchain, even a testing one, for 

development poses several potential issues for developers. Firstly, the 

chance of publishing content to the blockchain that is intended to be 

secret is a high concern in a test environment. Secondly, reliance upon a 

public blockchain for testing removes the ability to control the frequency, 

latency, and predictability, or lack thereof, of your testing environment. 

This is important due to the common need for tests to be faster than real-

time execution speed.  

The use of an emulator to do integration testing of only the smart 

contract component of the system lacks robustness because of several 

reasons. First, it doesn’t use the same client as production code would. 

Second, it ignores the need to include the client itself in the integration 

testing process. Third, it focuses on the HTML/JavaScript interface of the 

official client, while ignoring the other interfaces that geth provides, such 

as the JSON RPC API.  

Therefore, we believe Ethereum has issues with the design 

philosophy of their testing mechanisms. Additionally, we have noted 

previously [34] that Ethereum’s documentation was incomplete and 

spread across multiple pages for the same APIs, and as of the date of this 

publication the issue still exists. 

 

6.4.3. Lack of Defined Integration/Testing Methodologies 

 

 Unfortunately, there is currently a severe lack of support for 

testing Blockchain systems and software when not using the precise 

scenarios envisioned by the Blockchain system’s creators. For instance, 

Ethereum doesn’t have any tools, testing or otherwise, that assist in 

integrating the official command line client of Ethereum: geth into 

applications. There is an official IDE, the Remix Solidity IDE, which 

enables unit testing but no support for integration testing at all currently. 

Their focus is on unit testing their smart contracts and “integration 

testing” their contracts inside a separate simulator, and not the geth client 

and private test networks. Other Blockchain and/or Distributed Ledger 

technologies, such as Hyperledger Fabric, at least have unit testing 

support and support integration testing, but at the time of writing, they 

have zero documentation on it.  



6.5. Platform for Transactive IoT Blockchain Applications with 

Repeatable Testing (PlaTIBART) 

  

 The following sections will describe the PlaTIBART architecture, 

components, and components.  

 

6.5.1. System Design/Rationale 

 

PlaTIBART architecture for creating repeatable test network 

deployments of IoT/blockchain applications combines a Domain Specific 

Language (DSL) to define the network topology and settings, a Python 

program leveraging the Fabric API to manage the test network, and the 

RIAPS middleware[14] to facilitate communication between nodes on the 

network. Each of these components is described below. 

6.5.2. Application Platform 

The Resilient Information Architecture Platform for Smart Grid 

(RIAPS)[14] is the application platform used by PlaTIBART to 

implement our case-study examples. ] 

RIAPS provides actor and component based abstraction, as well 

as support for deploying algorithms on devices across the network2 and 

solves problems collaboratively by providing micro-second level time 

synchronization[14], failure based reconfiguration[7], and group creation 

and coordination services (still under active development), in addition to 

the services described in [22]. It is capable of handling different 

communications and running implemented algorithms in real-time. 

 

6.5.3.  Actor Pattern  

 

Each application client in the network is implemented as an actor 

with two main components: (1) a wrapper class specific to the role the 

actor is given and (2) a geth client, the reference client for Ethereum3. 

Figure 1 shows a small network of five actors (indicated by an ellipse 

                                                           
2 RIAPS uses ZeroMQ [17] and Cap'n Proto [33] to manage the communication layer. 

3 https://github.com/ethereum/go-ethereum/wiki/geth 



around a wrapper and geth client pair) and the networking connections 

between each actor's components. Geth clients communicate exclusively 

via on-blockchain means, i.e., the geth client of each actor communicates 

directly with its associated wrapper, and the wrapper communicates 

directly with other wrappers via an off-blockchain channel, such as TCP 

P2P communications. 

 
Figure 1 : Sample Actor Component Network with an Actor is a Geth Client and a 

Wrapper. 

 

6.5.4.  Fault Tolerance 

A key benefit of decoupling the blockchain client and the wrapper 

into two components of an actor is enhanced fault tolerance around 

transaction loss, compared with tightly coupled solutions. Specifically, it 

allows the wrapper to not only monitor the blockchain client, but also 

shut down and restart the client as needed. This design allows the 

wrapper component to ensure that if any known or discovered faults arise 

from defects in the blockchain software, the wrapper can at least attempt 

to recover.  

For example, in our Ethereum test network described in Section 

6.7, we have encountered faults where transactions are never mined [32] 

a client is restarted. These lost transactions are problematic since they 

prevent a client from being able to interact with the blockchain network. 

Other types of faults, such as those related to an actor's communication 



with other components of the network, are handled by other middleware 

solutions, such as RIAPS. 

PlaTIBART applies the Observer pattern to notify the wrapper of 

the occurrence of events, such as faults and other blockchain-related 

conditions. This notification is accomplished by a separate thread within 

the wrapper that monitors its paired geth client for new events, such as 

completed transactions, or potential faults. This thread then notifies 

registered callback(s) when target events occur. For example, if the geth 

client becomes unresponsive or transactions appear to have stalled, then 

registered callback method(s) are called to notify the wrapper. 

 

6.5.5.  Domain Specific Language 

 

PlaTIBART’s DSL defines the roles that different clients in our 

net-work have, based on the Actor pattern. This DSL model implements a 

correct-by-construction design, thereby allowing for a verification stage 

on the model to check for internal consistency before any deployment is 

attempted. This verification prevents inconsistencies, such as two clients 

requesting the same port on the same host. 

Figure 1 shows an example of our DSL, which specifies a full 

network configuration file for a test network. The first two lines of the 

configuration file contain two unique identifiers for this test network and 

its current version, ``configurationName” and ``configurationVersion”, 

respectively. Next, it contains values specific for the creation of an 

Ethereum private network's Genesis block.  

A Genesis block in Ethereum is the first block in a blockchain and 

has special properties, such as not having a predecessor and being able to 

declare accounts that already have balances before any mining or 

transactions begin. The ``chainID” is a unique positive integer identifying 

which blockchain the test network is using; 1 through 4 are public 

Ethereum blockchains of varying production/testing phases and should 

not be used for creation of private networks.  

Next, “difficulty” indicates how computationally hard it is to mine 

a block, and “gasLimit” is the maximum difficulty of a transaction based 

on length in bytes of the data and other Ethereum runtime values. The 

“balance” is the starting balance that we allocate to each client's starting 



account upon creation of the network4, which eliminates the situation 

where clients cannot begin transactions to request assets before any 

mining has begun. Lastly, the “clients” represent the actual nodes in our 

network. 

 

{" configurationNa me ":" test network a001 ",  

 " configurationVe rs io n ":"1" , 

 " chainId ": 15 , 

 " difficulty ": 100000 , 

 " gasLimit ": 200000000000000000 , 

 " balance ": 40000000000000000000000000 , 

 " genesisBlockOutFil e ":" genesis - data . json ", 

 " clients ": {  

" startPort ": 9000 , 

 " prosumer ":{  

" count ": 15 , 

 " hosts ": [ "10.4.209.25" ,  

                   "10.4.209.26" , 

                    "10.4.209.27" , 

                    "10.4.209.28" ]  

} 

, " dso ": {  

" count ": 1, 

 " hosts ": [ "10.4.209.29" ]  

},  

" miner ": {  

" count ": 1,  

" hosts ": [ "10.4.209.30" ] 

} 

 } 

 } 

Figure 2 Sample DSL Model 

 

                                                           
4 “balance” applies only to accounts created before a new blockchain is created. 

Accounts created after the blockchain, be it public or private, is created will not receive 

any starting balance. 



Figure 2 shows how Clients are defined. Clients in the DSL represent the 

individual actors in our network, comprised of a geth client and a RIAPs 

instance using a wrapper interface. The geth client has two interface/TCP 

port pairs associated with it: one for incoming Blockchain connections, 

and one for administration and communication with RIAPs. 

  

6.5.6. Network Manager 

 

Based on our experience developing decentralized apps (DApps) 

for blockchain ecosystems [19, 34], three key capabilities are essential for 

DApps to function effectively in an ITBA ecosystem: traditional IoT 

computations and interactions should be supported, information should be 

robustly sorted in a distributed database, and a system-wide accepted 

sequential log of events should be provided. Each requirement can be 

delegated to a separate layer in a three-tiered architecture. The first tier is 

the IoT middleware layer that facilitates communication between 

networked devices, which can be addressed by existing IoT middleware, 

such as RIAPS [14]. The second tier is a distributed database layer. The 

third tier is a sequential log of events layer, which can be solved by 

blockchain integration. PlaTIBART provides an architecture for 

coordinating all these layers in a fault tolerant manner, along with tools 

for repeatable testing at scale. It leverages the Actor model [21] to 

integrate these three layers.  

Each layer is composed of components that accomplish their 

designated layer-dependent tasks. These components are then combined 

into a single actor that can interact with each layer and other actors in the 

network, as described in Section 6.7 Case Study: Transactive Energy 

System. Transactive Energy Systems (TES) have emerged in response to 

the shift in the power industry away from centralized, monolithic 

business models characterized by bulk generation and one-way delivery 

toward a decentralized model in which end users play a more active role 

in both production and consumption [8, 24]. The GridWise Architecture 

Council defines TES as “a system of economic and control mechanisms 

that allows the dynamic balance of supply and demand across the entire 

electrical infrastructure, using value as a key operational parameter” [24]. 

In this paper, we consider a class of TES that operates in a gridconnected 

mode, meaning the local electric network is connected to a Distribution 

System Operator (DSO) that provides electricity when the demand is 

greater than what the local-network can generate. The main actors are the 



consumers, which are comprised primarily of residential loads, and 

prosumers who operate distributed energy resources, such as rooftop 

solar batteries or flexible loads capable of demand/response. 

Additionally, the DSO manages the grid connection of the network. Such 

installations are equipped with an advanced metering infrastructure 

consisting of TES-enabled smart meters. Examples of such installations 

include the Brooklyn Microgrid Project [6] and the Sterling Ranch 

learning community [10]. A key component of TES is a transaction 

management platform (TMP), which handles market clearing functions in 

a way that balances supply and demand in a local market. 

 

6.6.  In-Depth Guided Walkthrough of PlaTIBART Network Manager 

 

 The goal of PlaTIBAT is to use models to design and deploy 

repeatable testing networks for IoT Blockchain Applications. Therefore, 

we present a guided walkthrough of how PlaTIBART’s Network 

Manager allows for simple command line creation of blockchain 

networks, currently only Ethereum but with more to come in future 

revisions of the software.  

 The Network Manager, having file name network-manager.py, is 

designed to be a command line tool for eventual integration into other 

systems, such as automated build systems, etc. Therefore, it follows best 

practices of command line tools and has a built-in help menu to assist 

users when learning the system. Additionally, it doesn’t do anything to 

the system that can’t already be done by a series of repetitive, and 

potentially complicated, command line instructions. Meaning that the 

purpose of the Network Manager is to simplify the process of creating 

blockchain test networks in a repeatable and model-driven manner. The 

use of a model allows the command line instructions to remain the same 

for almost all variations of supported network designs. Currently the 

Network Manager only supports networks designs where each blockchain 

node connects to each of the bootnodes, or to each of the first class of 

clients. Higher level of customization in network connections is a future 

area of research and development. Having the same series of instructions 

for the Network Manager enables a series of simple commands to be 

written that fully automate test network creation and testing. To show 

this, we’ll be examining a complete cycle of creating, running, stopping 

and deleting a test network. 

 



6.6.1. Guided Walkthrough of Creating New Test Network 

 

 The first step in creating a test network is to delete the temporary 

files that can be used. The following commands delete the /new-

blockchain/ directory where the blockchain is created and saved to. The 

remaining files are possible files that may or may not be created 

depending on system design. The file static-nodes.json is a list of static 

nodes, a possible Ethereum discovery mechanism, that could have been 

previously created. The new miners and clients json files are lists of 

newly created miner clients and standard non-miner clients. Clients are 

separated into two categories due to the relatively massive memory 

requirements for miners, 4 GB minimum to even start mining and 

growing from there as the blockchain grows in length, versus the 

relatively minor approximately 250 MB of ram used by a non-miner 

client note these requirements being specific to the Ethereum network 

and Ethereum’s client: geth. The genesis-data.json file is the traditional 

input file that geth uses to create a new blockchain network, the Network 

Manager creates this as an intermediary artifact during network creation. 

The first step in creating a new Ethereum test network is to create 

Bootnodes if your network is going to use them. We’re going to assume a 

valid PlaTIBART model file is passed as a parameter to $1 in the 

following command line instructions both save space and to reinforce that 

the Network Manager’s commands don’t change based on input model. 

 

The next step in creating a new Ethereum test network is to create 

the clients and miners defined in the input model file. The order of these 

commands isn’t dependent upon one another.  

rm -f ./static-nodes.json 

rm -f ./new-miners.json 

rm -f ./new-clients.json 

rm -rf ./new-blockchain/ 

rm -f ./genesis-data.json 

Figure 3: Commands to Delete Network Manager Temporary Files 

./network-manager.py bootnodes create --file $1 \ 

 --out=./static-nodes.json 

Figure 4 How to create Bootnodes with the Network Manager 



 

 

 
 

Next in creating a new Ethereum test network is to make the 

genesis-data.json input file that allows Ethereum’s geth client to create a 

new blockchain network. This file contains all the meta-data about the 

network to be created, such as staring Ether for known clients, 

complexity of the beginning mining calculations, and the ChainID, which 

prevents unrelated chains from communicating with each other. This is 

then fed to the local copy of geth on the host machine and creates the 

genesis block (first block in a blockchain). 

Figure 6 Making genesis file for new test network 

Here is the creation of the genesis block, which is done on the 

host machine’s local geth client.  

 

Figure 7 Creating the new Blockchain genesis block 

 

 

 
 

 

./network-manager.py clients create --file $1 \ 

 --out=./new-clients.json 

./network-manager.py miners create --file $1 \ 

 --out=./new-miners.json 

Figure 5 Creating miners and clients 

./network-manager.py blockchains make --file $1 \ 

 --clients ./new-clients.json 

./network-manager.py blockchains create \ 

 --file genesis-data.json --datadir ./new-blockchain/ 



Figure 8 Distributing genesis block to clients and miners 

This newly created block contains all the model’s meta data and 

allows pre-mining distribution to each of the miners and clients. This pre-

mining distribution helps prevent a potential race-condition where a client 

is always trying to “catch-up” to the newest created block and never does. 

If the mining difficulty is set too low compared to the processing power 

of the system(s) hosting the miner(s) this is a possibility that can occur. 

At this point, localized logic and data files can also be distributed 

via the Network manager to the hosts for each one of the generated 

clients from the model. The specifics of these files will depend upon the 

ITBA(s) that you are testing. This example distributed the code used in 

our Use-Case 1. At this point the new Blockchain, Ethereum in this 

example, test network is now fully created and ready for use. Some use 

cases, such as our Use-Case 2, will archive this network for future use, 

while others will make use of it as is. 

 

6.6.2. Guided Walkthrough of Starting and Stopping Test Networks 

 

 
Figure 9 Distributing logic code and data to each client 

 
Figure 10 Connecting miners to each client to connect the network 

 
Figure 11 Starting miner and clients 

./network-manager.py clients distribute --file $1 \ 

 --local ./new-blockchain/ 

./network-manager.py miners distribute --file $1 \ 

 --local ./new-blockchain/ 

./network-manager.py clients distribute --file $1 \ 

 --local ./components/ --subdir components/ 

 

./network-manager.py clients distribute --file $1 \ 

 --local ./data/ --subdir components/data/ 

./network-manager.py miners connect --file $1 

./network-manager.py miners start --file $1 

./network-manager.py clients start --file $1 



 Starting the network for mining and then the processing of data 

and requests start by starting the miners and clients. If the miners and 

clients can reach a single bootnode in the bootnode network, then they 

should eventually sync up if the network is moderately reliable. 

Otherwise, if not using bootnodes, the miners will need connected to the 

clients manually.  

Stopping the entire network can be done step-by-step by using the 

above commands, substituting “start” with “stop”. Alternatively, you can 

use the Network Manager’s network options to stop the entire network at 

once. Starting the entire network also works, but it was explained in 

detail above for clarity.  

 

 
Figure 12 Network Manager stopping entire network 

Deleting the network will delete all files created by the setup 

process on all clients, miners, and bootnodes in the network, but will not 

delete the host machine’s generated files, if those are to be kept 

separately. 

Figure 13 Network Manager deleting entire network 

6.7. Example Use-Case 1: Transactive Energy 

 

Transactive Energy Systems (TES) have emerged in resonse to 

the shift in the power industry away from centralized, monolithic 

business models characterized by bulk generation and one-way delivery 

toward a decentralized model in which end users play a more active role 

in both production and consumption [8, 24]. The GridWise Architecture 

Council defines TES as “a system of economic and control mechanisms 

that allows the dynamic balance of supply and demand across the entire 

electrical infrastructure, using value as a key operational parameter” [24].  

 

6.7.1. Sample Problem 

 

In this section, we consider a class of TES that operates in a 

gridconnected mode, meaning the local electric network is connected to a 

./network-manager.py network stop --file $1 

./network-manager.py network delete --file $1 



Distribution System Operator (DSO) that provides electricity when the 

demand is greater than what the local-network can generate. The main 

actors are the consumers, which are comprised primarily of residential 

loads, and prosumers who operate distributed energy resources, such as 

rooftop solar batteries or flexible loads capable of demand/response. 

Additionally, the DSO manages the grid connection of the network. Such 

installations are equipped with an advanced metering infrastructure 

consisting of TES-enabled smart meters. Examples of such installations 

include the Brooklyn Microgrid Project [6] and the Sterling Ranch 

learning community [10]. A key component of TES is a transaction 

management platform (TMP), which handles market clearing functions in 

a way that balances supply and demand in a local market. 

6.7.2. In-Depth Guided Walkthrough 

 

To test PlaTIBART we implemented a solution to the Transactive 

Energy case study and deployed it to the test network defined in Figure 2. 

This network was installed on a private cloud instance hosted at 

Vanderbilt University. We ran our tests on 6 virtual hosts, each with: 

4GB RAM, 40GB hard drive space, running Ubuntu 16.04.02, and 

gigabit networking. For these tests we implemented a custom smart 

contract and wrappers for both Smart Grid distribution system operators 

(DSO) and prosumer clients in Python. Each wrapper had one geth client 

associated with it. We used PlaTIBART’s network manager tool outlined 

in Section 6.5.6 and commands detailed in Sections 6.6.1 and 6.6.2 to 

create, start, shutdown, and delete the test network. We manually paired 

each wrapper with its geth client’s IP address and port (in future work 

this is to be integrated and automated into the network manager’s 

capabilities). Using our custom written wrappers, smart contract, and 

managed test network we simulated a day’s worth of transactive energy 

trading between actors. Via the Linux “time” command we measured 

each step needed in the entire process to create a test network, including 

Clients Create, Miners Create, Blockchain Make, Blockchain Create, 

Distribute to Clients, and Distribute to Miners. We also measured the 

steps required to start and connect the geth instance for each “clients” 

(“prosumer” and “DSO”) to the geth client of each “miner.” Currently, 

this star-network is the only network topology supported by PlaTIBART, 

but we will expand the supported topologies in the future.  

  



6.7.3. System Output and Analysis 

After running our tests, described above, we found the standard 

deviation for each testing phase was small (the largest being 0.09% of the 

time taken). Likewise, the average time either remained relatively static, 

or scaled linearly, in relation to the number of clients (2, 5, 10, 15, 20 

prosumers + 1 DSO + 1 miner).  

The test phases that remained relatively static included: Miners 

Create, Blockchain Make, Blockchain Create, Distribute to Miners, 

Miners Start, and Network Delete. The test phases that scaled with 

increase in number of prosumers were: Clients Create, Distribute to 

Clients, Full Network Created, Clients Start, Network Connect, and 

Network Stop. The scaling increases were linear (Std Dev < 0.065) after 

dividing the average time increase by the difference in number of clients.  

The results of our experiments indicate that there exists high 

consistency and predictability of managing PlaTIBART-managed 

blockchain test networks. These results help build confidence that 

PlaTIBART's approach to creating repeatable testing networks for IoT 

blockchain applications scales well, which is important to encourage 

adoption by IoT system developers. 

 

6.8. Example Use-Case 2: Blockchain/Distributed Systems Education  

  

As we discussed in An Elastic Platform for Large-scale 

Assessment of Software Assignments for MOOCs (EPLASAM), there 

are significant challenges presented when attempting to scale software 

assignments for use in MOOCs[35]. Attempting to scale distributed 

system, specifically ITBA, software assignments presents additional 

challenges beyond those of traditional software assignments.  Even 

ignoring the need for physical IoT hardware to test code on, the need for: 

private repeatable Blockchain networks, easily adjustable network 

designs, and ease of use of network setup by both instructors and staff, 

but also learners, becomes crucial for individual assessment.  

 

6.8.1. Sample Problem 

  



 The use of PlaTIBART does not provide a complete solution, as 

described in EPLASM, for MOOC scalable assessment, or even just 

testing, of ITBAs. However, it does provide the design philosophy, tools, 

and methods that enable repeatable individual assessment of ITBAs 

and/or ITBA components. In our classes at both Vanderbilt University 

and Youngstown State University, we have made use of PlaTIBART to 

assist in the creation assignments that assessed the Blockchain 

components of ITBAs. Additionally, we were able to leverage 

PlaTIBART to provision 25x IoT clusters (Cisco router, 4x Raspberry Pi 

3B+, ethernet cabling, and an IoT Electronics kit) for a series of IoT 

lectures and workshops held in partnership with Youngstown State 

University, the Youngstown Business Incubator, with support from 

Cisco5. These clusters included a custom PDF guide, all the software 

required to operate the electronics kits via Python, and all the software 

required to operate an Ethereum network on each of the clusters, 

including PlaTIBART being installed on each cluster’s first Raspberry Pi 

device. 

 

6.8.2. In-Depth Guided Walkthrough 

 

 The benefit to the design of PlaTIBART is that the only difference 

between creating a Dockerized container containing all the required code 

to allow students to easily start learning Blockchain and configuring IoT 

workshop clusters is slight modification of the input model file and 

changing the files distributed to each client. Figure 14 shows the model 

input we used for creating the Docker image with a single client and a 

single miner, both on the same host, using localhost 127.0.0.1, but the 

network manager handles giving them ports in different ranges.  
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{" configurationName ":" test network b001 ",  

 " configurationVersion ":"1", 

 " chainId ": 15 , 

 " difficulty ": 100000 , 

 " gasLimit ": 200000000000000000 , 

 " balance ": 40000000000000000000000000 , 

 " genesisBlockOutFil e ":" genesis - data . json ", 

 " clients ": {  

" startPort ": 9000 , 

 " client ":{ " count ": 1,  " hosts ": [ "127.0.0.1" ] } 

" miner ": { " count ": 1,  " hosts ": [ "127.0.0.1" ] } 

}}  
Figure 14 Blockchain assignment sample model json file 

Now to support deploying to actual individual ITBA clusters the 

only requirement is that each system already have the host machine’s 

public SSH key, have geth installed, and accept SSH connections.  

 

{" configurationName ":" test network c001 ",  

 " configurationVersion ":"1", 

 " chainId ": 15 , 

 " difficulty ": 100000 , 

 " gasLimit ": 200000000000000000 , 

 " balance ": 40000000000000000000000000 , 

 " genesisBlockOutFil e ":" genesis - data . json ", 

 " clients ": {  

" startPort ": 9000 , 

" client ":{ " count ": 4,  " hosts ": [ 

   "10.0.1.1","10.0.1.2","10.0.1.3","10.0.1.4" ] } 

" miner ": { " count ": 1,  " hosts ": [ "127.0.0.1" ] } 

}}  
Figure 15 IoT/Blockchain-Cluster configuration sample model json file 

Figure 15 shows that the only change needed is adjusting the ‘client’ 

section of the json. Increasing the number of clients and changing what 

IPs the clients will be installed on. Both scenarios were completed via the 

exact same command line instructions as discussed in section 6.6.1 and 

6.6.2, the only difference being what files were distributed to each client. 



 

6.8.3. System Output and Analysis 

 

 Both examples discussed in this section proved to be viable and 

were successful in creating ITBA component educational assessments. 

Both Docker images of Blockchain assignments for university courses, 

and IoT and Blockchain workshop preparation and instruction were 

successful. However, neither of these were studied in-depth for formal 

verification, but instead were used as a means of rapidly creating 

repeatable Blockchain test networks in the educational scenarios. 

Therefore, these examples show more the adaptability of the PlaTIBART 

design when crafting future ITBA assignments. Future work will need to 

verify the efficacy of this approach.  

  

6.9. Research Directions in Testing at Scale of IoT & Distributed 

Systems 

 

 Testing at scale of distributed systems is an ongoing research 

focus that will simultaneously have many different approaches. Formal 

validation of Blockchain related contract languages, systems, and tools, 

including PlaTIBART, is one area that will see continued focus. 

Additionally, verification of the efficacy of using PlaTIBART in an 

educational environment to teach ITBAs needs to be proven; this is a 

research area which we are currently pursuing. Expanding the network 

topology supported by PlaTIBART is future work that needs to be 

addressed, possibly with the integration with network simulation or 

management software. Work needs to be done on including private test 

Blockchain networks into both Unit and Integration Testing frameworks, 

and currently there don’t appear to be tools, at least for Ethereum, for 

integration testing outside of Solidity IDE.  

 

Key Terminology & Definitions  

IoT Blockchain Applications (ITBAs) - Blockchain Applications that run 

on an IoT system where Blockchain is leveraged for a wide range of 

potential uses ranging from distributed logging up to integration into the 

command and control decision making process of the IoT device. Both 

Blockchain and IoT use case scenarios can change drastically when they 

are used together in a system. Therefore, we use this term to describe the 



added complexity of Blockchain applications that interact with the physical 

world through IoT devices. 
 

Testing-at-Scale - Testing distributed systems incurs a much heavier 

cost, both in complexity and required resources, when attempting to test a 

fully integrated distributed system versus traditional systems. This is 

because fully testing a distributed system requires a large amount of 

potentially heterogeneous devices running on potentially multiple 

platforms and/or architectures. This not only requires a system and 

methodology of testing that can be run easily with each new variation of 

the overall system, be it hardware or software, but also allows for 

consistent benchmarking, profiling, and analysis of performance, 

reliability, and other metrics.  
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