
Chapter 06

Testing at Scale of IoT Blockchain Applications

Michael A. Walker

Douglas C. Schmidt

Abhishek Dubey

Abstract

Due to the ever-increasing adaptation of Blockchain technologies in the

private, public, and business domains, both the use of Distributed Systems

and the increased demand for their reliability has exploded recently,

especially with their desired integration with Internet-of-Things devices.

This has resulted in a lot of work being done in the fields of distributed

system analysis and design, specifically in the areas of blockchain smart

contract design and formal verification. However, the focus on formal

verification methodologies has meant that less attention has been given

towards more traditional testing methodologies, such as unit testing and

integration testing. This includes a lack of full support by most, if not all,

the major blockchain implementations for testing at scale, except on fully

public test networks. This has several drawbacks, such as: 1) The inability

to do repeatable testing under identical scenarios, 2) reliance upon public

mining of blocks, which introduces unreasonable amounts of delay for a

test driven development scenario that a private network could reduce or

eliminate, and 3) the inability to design scenarios where parts of the

network go down. In this chapter we discuss design, testing methodologies,

and tools to allow Testing at Scale of IoT Blockchain Applications.

Keywords: Automation, Blockchain, Distributed Systems, IoT,

Scalability, Testing, Testing at Scale.

Introduction

Blockchain deployments (and specifically Ethereum, which is the

main focus of this chapter due to its large installed base and its powerful

smart contract language) are generally managed via programs that have

different modes in which they can operate. They broadly fall into

Command-Line Interfaces (CLI), RPC APIs, or creating Graphical

Interfaces via the use of HTML pages and JavaScript code. These

interfaces provide standard means to either run Ethereum applications

within the clients themselves, or to interface other applications with the

Ethereum clients.

In practice, however, the existing blockchain deployment interfaces

lack built-in fault tolerance, most notably for either network

communication errors or application execution faults. Moreover, Ethereum

clients are deployed manually since no official manager exists for them.

As a result, developers can—and do—lose all of their Ether (Ethereum’s

digital currency) due to insecure client configurations. Addressing this

problem requires patterns and tools that enable the deployment of

blockchain clients in a repeatable and systematic way. This requirement

becomes even more important when integrating IoT blockchain

applications (ITBAs). The IoT component of ITBAs add other

requirements atop traditional blockchain applications due to their

interactions with the physical environment and increased privacy concerns,

e.g., thus preventing leakage of personal data, such as energy usage that

would reveal a user’s activity patterns in their home. Additionally, ITBAs

may not only communicate over the blockchain, but may also use off-

blockchain communications via TCP/IP or other networking protocols for

reasons related to their operation.

In this book chapter we present Best Practices for Testing-at-

Scale of Blockchain Systems making use of the structure and

functionality of PlaTIBART, which is a Platform for Transactive IoT

Blockchain Applications with Repeatable Testing that provides a set

of tools and techniques for enhancing the development, deployment,

execution, management, and testing of blockchain systems and

specifically ITBAs. In particular, we describe a pattern for developing

ITBAs, a Domain Specific Language (DSL) for defining a private

blockchain deployment network, Actor components upon which the

application can be deployed and tested, a tool using these DSL models

to manage deployment networks in a reproducible test environment,

and interfaces that provide fault tolerance via an application of the

Observer pattern. The technology/technical terms used in the book

chapter are explained wherever they appear or at the “Key

Terminology & Definitions” section. Apart from regular References,

additional References are included in the “References for

Advance/Further reading” for the benefit of advanced readers.

Structure of the proposed book chapter

6.1. Introduction of Distributed Ledgers/Blockchain Testing Concepts

Interest in —and commercial adoption of— blockchain

technology has increased in recent years [31]. For example, blockchain

adoption in the financial industry has yielded market capitalization

surpassing $75 billion USD [4] for Bitcoin and $36 billion USD for

Ethereum [15]. Blockchain’s growth, at least partially, stems from its

combination of existing technologies to enable the interoperation of non-

trusted parties in a decentralized, cryptographically secure, and

immutable ecosystem without the need of a trusted central authority.

Blockchain, a specific type of Distributed Ledger, provides these features

in different ways depending on implementation. However, generally

blockchains work by creating a cryptographically signed chain of blocks,

hence the name, that are decentralized via a consensus mechanism such

as Proof-of-Work, that is not controlled by a central authority. Distributed

Ledgers, which share many similarities to blockchain, do not necessarily

require decentralized authority. However, for this chapter we discuss both

but focus on blockchain versions of distributed ledgers due to the fully

distributed non-central authority being easier to implement and manage,

and therefore we assume more likely, for IoT manufacturers to integrate

with. Blockchain deployments (and specifically Ethereum, which is the

focus of this chapter due to its large installed base and its powerful, smart

contract language) are generally managed via programs that have

different modes in which they can operate. They broadly fall into

Command-Line Interfaces (CLI), RPC APIs, or creating Graphical

Interfaces via the use of HTML pages and JavaScript code [18]. These

interfaces provide standard means to either run Ethereum applications

within the clients themselves or to interface other applications with the

Ethereum clients. In practice, however, the existing blockchain

deployment interfaces lack built-in fault tolerance, most notably for either

network communication errors or application execution faults. Moreover,

Ethereum clients are deployed manually since no official manager exists

for them. As a result, developers can—and do [32]—lose all their Ether

(Ethereum’s digital currency) due to unsecure client configurations. This

problem is compounded by the fact that Ethereum’s clients do not warn

of this risk within their built-in help feature, and instead rely upon online

documentation to warn developers. Addressing this problem requires

patterns and tools that enable the deployment of blockchain clients in a

repeatable and systematic way.

6.2. Testing Analysis of Blockchain and IoT Systems

Blockchain systems can be subdivided into two broad categories:

Turing Complete and Non-Turing Complete. This means the design of

the system’s contract language is either Turing Complete or it is not. The

largest of each of these two categories is Bitcoin as a non-Turing

Complete contract language and Ethereum as a Turing-Complete contract

language. The reason this is important is because it describes the inherent

design goal of language. Turing-Complete languages allow for

theoretically any computation to be completed, whereas non-Turing

Complete languages have a more limited instruction set that specifically

limit the actions available in that language. The reason for adding these

limitations to the language is to limit the functionality and therefore

potential complexity of code put onto the blockchain’s public ledger and

executed distributedly. Non-Turing Complete contract languages are

easier to analyze and predict runtime behavior, results, and potential

faults. Additionally, there are blockchain/distributed ledger frameworks

such as Hyperledger Fabric which do not provide a specific public

blockchain for use, but instead provide tools for developing customizable

blockchain/distributed ledger applications or implementations modularly.

During roughly the same time as the growth of blockchain, the

increased proliferation of IoT devices has motivated the need for

transactional integrity due to the transition of IoT devices from just being

smart-sensors to being active participants that impact their environment

via communication, decision making, and physical actuation. These

abilities require transactional integrity to provide auditing of actions

made by potentially untrusted networked 3rd party IoT devices. The

demand for transactional integrity in IoT devices that simultaneously

leverage blockchain features (such as decentralization, cryptographic

security, and immutability) has motivated research on creating transactive

IoT blockchain applications [5, 7].

This requirement becomes even more important when integrating IoT

blockchain applications (ITBAs). The IoT component of ITBAs add other

requirements atop traditional blockchain applications due to their

interactions with the physical environment and increased privacy

concerns, e.g., thus preventing leakage of personal data, such as energy

usage that would reveal a user’s activity patterns in their home [16].

Moreover, ITBAs may not only communicate over the blockchain, but

may also use off-blockchain communications via TCP/IP or other

networking protocols for the following reasons:

• There are interactions with the physical environment that might

require communication with sensors and/or actuators. For

example, a user’s smart-meter might communicate wirelessly with

their smart-car’s battery to activate charging based on current

energy production/cost considerations.

• The distributed ledger (which makes an immutable record of

transactions in blockchain) is public, so it is common to only

include information within transactions that can safely be stored

publicly. In particular, if some or all data from a transaction must

be kept secret for privacy or any other reasons the transaction can,

instead, contain the meta-data and a cryptographic hash of the

secret data. Private information must, therefore, be communicated

off-blockchain while still preserving integrity by storing meta-

data and hash information on the blockchain ledger.

• Management tasks such as: updates, monitoring, calibration,

debugging, or auditing may require off-blockchain

communication (with possible on-blockchain components for

logging). Currently, these management tasks are done manually in

conventional blockchain ecosystems. Similar to the need for a

systematic means of deploying apps in a blockchain network,

there is a need to systematically configure the network topology

between all components of ITBAs.

6.3. Desired Functionality of Testing IoT Blockchain Systems

In this section we list desired functionality of Testing IoT

Blockchain Systems. Specifically, what we believe is the simplest way to

delineate progressive levels of increased testing of IoT blockchain

systems. These stages, starting at the most easily achievable and

becoming progressively more difficult, are: Unit Testing, Simple IoT

Device Integration, Multiple IoT Device Integration, Test Driven

Development, and Fully Automated Test-Driven Development.

Unit testing of software has become a standard requirement in

well developed code. However, contract languages do not always include

default unit-testing capability in the language or default build

environment. However, the largest implementations for different

categories of Blockchain solutions: Ethereum, Bitcoin, and Hyperledger

Fabric all provide unit testing functionality, so any solution that does not

do so should not be considered production level ready.

Beyond unit testing, the next level of desired testing of ITBAs is

integration testing. Integration testing of purely software-based

distributed systems provides a unique challenge due to coordination of

multiple instances, networking and runtime configuration, etc. ITBAs

compound this by requiring not only multiple software instances to be run

for integration testing, but also require integration with the IoT

component(s) of the system to verify runtime characteristics, hardware

and software compatibility, etc. Therefore, we’ve decided to split the

stage of testing with IoT devices into two sub-stages: one where

integration testing is only done with one device, and then into a second

stage where multiple devices are integrated into testing. This division

provides a cleaner progression of desirability for analysis of testing

progress.

The next level of desired testing ITBA systems is continuous

integration. Continuous integration, like unit testing and integration

testing, are commonplace in software development now. However, the

adoption of these practices is less dependent upon the core blockchain, or

even IoT, system being used and more about the support software

designed to assist in development of that specific system. Therefore, like

unit testing, we suggest considering any system that doesn’t yet provide

continuous integration support via support libraries, tools, etc. to be non-

production level ready.

6.4 Existing Shortcomings in Testing IoT Blockchain Systems

This section reviews the state-of-the-art in IoT and blockchain

integration, focusing on testing. Prior work [9] has shown that IoT and

blockchain can be integrated, allowing peers to interact in a trustless,

auditable manner via the use of blockchain as a resilient, decentralized,

and peer-to-peer ledger. Work has also been done on the topics of

security and privacy of IoT and Blockchain integrations [12, 26]. Beyond

that, work has focused on formal verification of smart contracts [20], and

how to write smart contracts “defensively” [11] to avoid exceptions when

multiple contracts interact. The current state-of-the-art with respect to

testing, however, is lacking because blockchains are infrequently tested at

scale in a systematic and repeatable manner, so we focus on that below.

6.4.1. Functional vs Model-Based Declarations

 Currently, as far as we can tell, PlaTIBART is the only model-

based system for deploying Blockchain test networks,with Ethereum or

otherwise. There are some tools, such as Nixos,1 that provide for

repeatable installation of their Linux distribution and therefore via use of

the NixOps devops tool, can declaratively define deployments of private

Ethereum networks. However, this still requires functional declaration of

the instances to be created. The benefits of a model-based approach are

that it allows much easier variation in the outputs, additionally, a model-

based declaration can be modified to create the functional declaration

inputs of other systems easily, thereby maintaining easy adaptability

while also increasing interoperability with other tools, toolchains, and

workflows.

6.4.2. Testing on Live Environments, Non-Repeatable

 Blockchain systems, particularly Ethereum, focused extensively at

the start on testing your smart contract code on a public, global, and non-

modifiable instance of the Ethereum network they call the Test Network.

Ethereum has at least added support for smart contract unit testing,

1 https://nixos.org/

https://nixos.org/

testing smart contracts in an emulator, and calling that integration testing.

However, these approaches lack robustness and repeatability.

The use of a public non-blockchain, even a testing one, for

development poses several potential issues for developers. Firstly, the

chance of publishing content to the blockchain that is intended to be

secret is a high concern in a test environment. Secondly, reliance upon a

public blockchain for testing removes the ability to control the frequency,

latency, and predictability, or lack thereof, of your testing environment.

This is important due to the common need for tests to be faster than real-

time execution speed.

The use of an emulator to do integration testing of only the smart

contract component of the system lacks robustness because of several

reasons. First, it doesn’t use the same client as production code would.

Second, it ignores the need to include the client itself in the integration

testing process. Third, it focuses on the HTML/JavaScript interface of the

official client, while ignoring the other interfaces that geth provides, such

as the JSON RPC API.

Therefore, we believe Ethereum has issues with the design

philosophy of their testing mechanisms. Additionally, we have noted

previously [34] that Ethereum’s documentation was incomplete and

spread across multiple pages for the same APIs, and as of the date of this

publication the issue still exists.

6.4.3. Lack of Defined Integration/Testing Methodologies

 Unfortunately, there is currently a severe lack of support for

testing Blockchain systems and software when not using the precise

scenarios envisioned by the Blockchain system’s creators. For instance,

Ethereum doesn’t have any tools, testing or otherwise, that assist in

integrating the official command line client of Ethereum: geth into

applications. There is an official IDE, the Remix Solidity IDE, which

enables unit testing but no support for integration testing at all currently.

Their focus is on unit testing their smart contracts and “integration

testing” their contracts inside a separate simulator, and not the geth client

and private test networks. Other Blockchain and/or Distributed Ledger

technologies, such as Hyperledger Fabric, at least have unit testing

support and support integration testing, but at the time of writing, they

have zero documentation on it.

6.5. Platform for Transactive IoT Blockchain Applications with

Repeatable Testing (PlaTIBART)

 The following sections will describe the PlaTIBART architecture,

components, and components.

6.5.1. System Design/Rationale

PlaTIBART architecture for creating repeatable test network

deployments of IoT/blockchain applications combines a Domain Specific

Language (DSL) to define the network topology and settings, a Python

program leveraging the Fabric API to manage the test network, and the

RIAPS middleware[14] to facilitate communication between nodes on the

network. Each of these components is described below.

6.5.2. Application Platform

The Resilient Information Architecture Platform for Smart Grid

(RIAPS)[14] is the application platform used by PlaTIBART to

implement our case-study examples.]

RIAPS provides actor and component based abstraction, as well

as support for deploying algorithms on devices across the network2 and

solves problems collaboratively by providing micro-second level time

synchronization[14], failure based reconfiguration[7], and group creation

and coordination services (still under active development), in addition to

the services described in [22]. It is capable of handling different

communications and running implemented algorithms in real-time.

6.5.3. Actor Pattern

Each application client in the network is implemented as an actor

with two main components: (1) a wrapper class specific to the role the

actor is given and (2) a geth client, the reference client for Ethereum3.

Figure 1 shows a small network of five actors (indicated by an ellipse

2 RIAPS uses ZeroMQ [17] and Cap'n Proto [33] to manage the communication layer.

3 https://github.com/ethereum/go-ethereum/wiki/geth

around a wrapper and geth client pair) and the networking connections

between each actor's components. Geth clients communicate exclusively

via on-blockchain means, i.e., the geth client of each actor communicates

directly with its associated wrapper, and the wrapper communicates

directly with other wrappers via an off-blockchain channel, such as TCP

P2P communications.

Figure 1 : Sample Actor Component Network with an Actor is a Geth Client and a

Wrapper.

6.5.4. Fault Tolerance

A key benefit of decoupling the blockchain client and the wrapper

into two components of an actor is enhanced fault tolerance around

transaction loss, compared with tightly coupled solutions. Specifically, it

allows the wrapper to not only monitor the blockchain client, but also

shut down and restart the client as needed. This design allows the

wrapper component to ensure that if any known or discovered faults arise

from defects in the blockchain software, the wrapper can at least attempt

to recover.

For example, in our Ethereum test network described in Section

6.7, we have encountered faults where transactions are never mined [32]

a client is restarted. These lost transactions are problematic since they

prevent a client from being able to interact with the blockchain network.

Other types of faults, such as those related to an actor's communication

with other components of the network, are handled by other middleware

solutions, such as RIAPS.

PlaTIBART applies the Observer pattern to notify the wrapper of

the occurrence of events, such as faults and other blockchain-related

conditions. This notification is accomplished by a separate thread within

the wrapper that monitors its paired geth client for new events, such as

completed transactions, or potential faults. This thread then notifies

registered callback(s) when target events occur. For example, if the geth

client becomes unresponsive or transactions appear to have stalled, then

registered callback method(s) are called to notify the wrapper.

6.5.5. Domain Specific Language

PlaTIBART’s DSL defines the roles that different clients in our

net-work have, based on the Actor pattern. This DSL model implements a

correct-by-construction design, thereby allowing for a verification stage

on the model to check for internal consistency before any deployment is

attempted. This verification prevents inconsistencies, such as two clients

requesting the same port on the same host.

Figure 1 shows an example of our DSL, which specifies a full

network configuration file for a test network. The first two lines of the

configuration file contain two unique identifiers for this test network and

its current version, ``configurationName” and ``configurationVersion”,

respectively. Next, it contains values specific for the creation of an

Ethereum private network's Genesis block.

A Genesis block in Ethereum is the first block in a blockchain and

has special properties, such as not having a predecessor and being able to

declare accounts that already have balances before any mining or

transactions begin. The ``chainID” is a unique positive integer identifying

which blockchain the test network is using; 1 through 4 are public

Ethereum blockchains of varying production/testing phases and should

not be used for creation of private networks.

Next, “difficulty” indicates how computationally hard it is to mine

a block, and “gasLimit” is the maximum difficulty of a transaction based

on length in bytes of the data and other Ethereum runtime values. The

“balance” is the starting balance that we allocate to each client's starting

account upon creation of the network4, which eliminates the situation

where clients cannot begin transactions to request assets before any

mining has begun. Lastly, the “clients” represent the actual nodes in our

network.

{" configurationNa me ":" test network a001 ",

 " configurationVe rs io n ":"1" ,

 " chainId ": 15 ,

 " difficulty ": 100000 ,

 " gasLimit ": 200000000000000000 ,

 " balance ": 40000000000000000000000000 ,

 " genesisBlockOutFil e ":" genesis - data . json ",

 " clients ": {

" startPort ": 9000 ,

 " prosumer ":{

" count ": 15 ,

 " hosts ": ["10.4.209.25" ,

 "10.4.209.26" ,

 "10.4.209.27" ,

 "10.4.209.28"]

}

, " dso ": {

" count ": 1,

 " hosts ": ["10.4.209.29"]

},

" miner ": {

" count ": 1,

" hosts ": ["10.4.209.30"]

}

 }

 }

Figure 2 Sample DSL Model

4 “balance” applies only to accounts created before a new blockchain is created.

Accounts created after the blockchain, be it public or private, is created will not receive

any starting balance.

Figure 2 shows how Clients are defined. Clients in the DSL represent the

individual actors in our network, comprised of a geth client and a RIAPs

instance using a wrapper interface. The geth client has two interface/TCP

port pairs associated with it: one for incoming Blockchain connections,

and one for administration and communication with RIAPs.

6.5.6. Network Manager

Based on our experience developing decentralized apps (DApps)

for blockchain ecosystems [19, 34], three key capabilities are essential for

DApps to function effectively in an ITBA ecosystem: traditional IoT

computations and interactions should be supported, information should be

robustly sorted in a distributed database, and a system-wide accepted

sequential log of events should be provided. Each requirement can be

delegated to a separate layer in a three-tiered architecture. The first tier is

the IoT middleware layer that facilitates communication between

networked devices, which can be addressed by existing IoT middleware,

such as RIAPS [14]. The second tier is a distributed database layer. The

third tier is a sequential log of events layer, which can be solved by

blockchain integration. PlaTIBART provides an architecture for

coordinating all these layers in a fault tolerant manner, along with tools

for repeatable testing at scale. It leverages the Actor model [21] to

integrate these three layers.

Each layer is composed of components that accomplish their

designated layer-dependent tasks. These components are then combined

into a single actor that can interact with each layer and other actors in the

network, as described in Section 6.7 Case Study: Transactive Energy

System. Transactive Energy Systems (TES) have emerged in response to

the shift in the power industry away from centralized, monolithic

business models characterized by bulk generation and one-way delivery

toward a decentralized model in which end users play a more active role

in both production and consumption [8, 24]. The GridWise Architecture

Council defines TES as “a system of economic and control mechanisms

that allows the dynamic balance of supply and demand across the entire

electrical infrastructure, using value as a key operational parameter” [24].

In this paper, we consider a class of TES that operates in a gridconnected

mode, meaning the local electric network is connected to a Distribution

System Operator (DSO) that provides electricity when the demand is

greater than what the local-network can generate. The main actors are the

consumers, which are comprised primarily of residential loads, and

prosumers who operate distributed energy resources, such as rooftop

solar batteries or flexible loads capable of demand/response.

Additionally, the DSO manages the grid connection of the network. Such

installations are equipped with an advanced metering infrastructure

consisting of TES-enabled smart meters. Examples of such installations

include the Brooklyn Microgrid Project [6] and the Sterling Ranch

learning community [10]. A key component of TES is a transaction

management platform (TMP), which handles market clearing functions in

a way that balances supply and demand in a local market.

6.6. In-Depth Guided Walkthrough of PlaTIBART Network Manager

 The goal of PlaTIBAT is to use models to design and deploy

repeatable testing networks for IoT Blockchain Applications. Therefore,

we present a guided walkthrough of how PlaTIBART’s Network

Manager allows for simple command line creation of blockchain

networks, currently only Ethereum but with more to come in future

revisions of the software.

 The Network Manager, having file name network-manager.py, is

designed to be a command line tool for eventual integration into other

systems, such as automated build systems, etc. Therefore, it follows best

practices of command line tools and has a built-in help menu to assist

users when learning the system. Additionally, it doesn’t do anything to

the system that can’t already be done by a series of repetitive, and

potentially complicated, command line instructions. Meaning that the

purpose of the Network Manager is to simplify the process of creating

blockchain test networks in a repeatable and model-driven manner. The

use of a model allows the command line instructions to remain the same

for almost all variations of supported network designs. Currently the

Network Manager only supports networks designs where each blockchain

node connects to each of the bootnodes, or to each of the first class of

clients. Higher level of customization in network connections is a future

area of research and development. Having the same series of instructions

for the Network Manager enables a series of simple commands to be

written that fully automate test network creation and testing. To show

this, we’ll be examining a complete cycle of creating, running, stopping

and deleting a test network.

6.6.1. Guided Walkthrough of Creating New Test Network

 The first step in creating a test network is to delete the temporary

files that can be used. The following commands delete the /new-

blockchain/ directory where the blockchain is created and saved to. The

remaining files are possible files that may or may not be created

depending on system design. The file static-nodes.json is a list of static

nodes, a possible Ethereum discovery mechanism, that could have been

previously created. The new miners and clients json files are lists of

newly created miner clients and standard non-miner clients. Clients are

separated into two categories due to the relatively massive memory

requirements for miners, 4 GB minimum to even start mining and

growing from there as the blockchain grows in length, versus the

relatively minor approximately 250 MB of ram used by a non-miner

client note these requirements being specific to the Ethereum network

and Ethereum’s client: geth. The genesis-data.json file is the traditional

input file that geth uses to create a new blockchain network, the Network

Manager creates this as an intermediary artifact during network creation.

The first step in creating a new Ethereum test network is to create

Bootnodes if your network is going to use them. We’re going to assume a

valid PlaTIBART model file is passed as a parameter to $1 in the

following command line instructions both save space and to reinforce that

the Network Manager’s commands don’t change based on input model.

The next step in creating a new Ethereum test network is to create

the clients and miners defined in the input model file. The order of these

commands isn’t dependent upon one another.

rm -f ./static-nodes.json

rm -f ./new-miners.json

rm -f ./new-clients.json

rm -rf ./new-blockchain/

rm -f ./genesis-data.json

Figure 3: Commands to Delete Network Manager Temporary Files

./network-manager.py bootnodes create --file $1 \

 --out=./static-nodes.json

Figure 4 How to create Bootnodes with the Network Manager

Next in creating a new Ethereum test network is to make the

genesis-data.json input file that allows Ethereum’s geth client to create a

new blockchain network. This file contains all the meta-data about the

network to be created, such as staring Ether for known clients,

complexity of the beginning mining calculations, and the ChainID, which

prevents unrelated chains from communicating with each other. This is

then fed to the local copy of geth on the host machine and creates the

genesis block (first block in a blockchain).

Figure 6 Making genesis file for new test network

Here is the creation of the genesis block, which is done on the

host machine’s local geth client.

Figure 7 Creating the new Blockchain genesis block

./network-manager.py clients create --file $1 \

 --out=./new-clients.json

./network-manager.py miners create --file $1 \

 --out=./new-miners.json

Figure 5 Creating miners and clients

./network-manager.py blockchains make --file $1 \

 --clients ./new-clients.json

./network-manager.py blockchains create \

 --file genesis-data.json --datadir ./new-blockchain/

Figure 8 Distributing genesis block to clients and miners

This newly created block contains all the model’s meta data and

allows pre-mining distribution to each of the miners and clients. This pre-

mining distribution helps prevent a potential race-condition where a client

is always trying to “catch-up” to the newest created block and never does.

If the mining difficulty is set too low compared to the processing power

of the system(s) hosting the miner(s) this is a possibility that can occur.

At this point, localized logic and data files can also be distributed

via the Network manager to the hosts for each one of the generated

clients from the model. The specifics of these files will depend upon the

ITBA(s) that you are testing. This example distributed the code used in

our Use-Case 1. At this point the new Blockchain, Ethereum in this

example, test network is now fully created and ready for use. Some use

cases, such as our Use-Case 2, will archive this network for future use,

while others will make use of it as is.

6.6.2. Guided Walkthrough of Starting and Stopping Test Networks

Figure 9 Distributing logic code and data to each client

Figure 10 Connecting miners to each client to connect the network

Figure 11 Starting miner and clients

./network-manager.py clients distribute --file $1 \

 --local ./new-blockchain/

./network-manager.py miners distribute --file $1 \

 --local ./new-blockchain/

./network-manager.py clients distribute --file $1 \

 --local ./components/ --subdir components/

./network-manager.py clients distribute --file $1 \

 --local ./data/ --subdir components/data/

./network-manager.py miners connect --file $1

./network-manager.py miners start --file $1

./network-manager.py clients start --file $1

 Starting the network for mining and then the processing of data

and requests start by starting the miners and clients. If the miners and

clients can reach a single bootnode in the bootnode network, then they

should eventually sync up if the network is moderately reliable.

Otherwise, if not using bootnodes, the miners will need connected to the

clients manually.

Stopping the entire network can be done step-by-step by using the

above commands, substituting “start” with “stop”. Alternatively, you can

use the Network Manager’s network options to stop the entire network at

once. Starting the entire network also works, but it was explained in

detail above for clarity.

Figure 12 Network Manager stopping entire network

Deleting the network will delete all files created by the setup

process on all clients, miners, and bootnodes in the network, but will not

delete the host machine’s generated files, if those are to be kept

separately.

Figure 13 Network Manager deleting entire network

6.7. Example Use-Case 1: Transactive Energy

Transactive Energy Systems (TES) have emerged in resonse to

the shift in the power industry away from centralized, monolithic

business models characterized by bulk generation and one-way delivery

toward a decentralized model in which end users play a more active role

in both production and consumption [8, 24]. The GridWise Architecture

Council defines TES as “a system of economic and control mechanisms

that allows the dynamic balance of supply and demand across the entire

electrical infrastructure, using value as a key operational parameter” [24].

6.7.1. Sample Problem

In this section, we consider a class of TES that operates in a

gridconnected mode, meaning the local electric network is connected to a

./network-manager.py network stop --file $1

./network-manager.py network delete --file $1

Distribution System Operator (DSO) that provides electricity when the

demand is greater than what the local-network can generate. The main

actors are the consumers, which are comprised primarily of residential

loads, and prosumers who operate distributed energy resources, such as

rooftop solar batteries or flexible loads capable of demand/response.

Additionally, the DSO manages the grid connection of the network. Such

installations are equipped with an advanced metering infrastructure

consisting of TES-enabled smart meters. Examples of such installations

include the Brooklyn Microgrid Project [6] and the Sterling Ranch

learning community [10]. A key component of TES is a transaction

management platform (TMP), which handles market clearing functions in

a way that balances supply and demand in a local market.

6.7.2. In-Depth Guided Walkthrough

To test PlaTIBART we implemented a solution to the Transactive

Energy case study and deployed it to the test network defined in Figure 2.

This network was installed on a private cloud instance hosted at

Vanderbilt University. We ran our tests on 6 virtual hosts, each with:

4GB RAM, 40GB hard drive space, running Ubuntu 16.04.02, and

gigabit networking. For these tests we implemented a custom smart

contract and wrappers for both Smart Grid distribution system operators

(DSO) and prosumer clients in Python. Each wrapper had one geth client

associated with it. We used PlaTIBART’s network manager tool outlined

in Section 6.5.6 and commands detailed in Sections 6.6.1 and 6.6.2 to

create, start, shutdown, and delete the test network. We manually paired

each wrapper with its geth client’s IP address and port (in future work

this is to be integrated and automated into the network manager’s

capabilities). Using our custom written wrappers, smart contract, and

managed test network we simulated a day’s worth of transactive energy

trading between actors. Via the Linux “time” command we measured

each step needed in the entire process to create a test network, including

Clients Create, Miners Create, Blockchain Make, Blockchain Create,

Distribute to Clients, and Distribute to Miners. We also measured the

steps required to start and connect the geth instance for each “clients”

(“prosumer” and “DSO”) to the geth client of each “miner.” Currently,

this star-network is the only network topology supported by PlaTIBART,

but we will expand the supported topologies in the future.

6.7.3. System Output and Analysis

After running our tests, described above, we found the standard

deviation for each testing phase was small (the largest being 0.09% of the

time taken). Likewise, the average time either remained relatively static,

or scaled linearly, in relation to the number of clients (2, 5, 10, 15, 20

prosumers + 1 DSO + 1 miner).

The test phases that remained relatively static included: Miners

Create, Blockchain Make, Blockchain Create, Distribute to Miners,

Miners Start, and Network Delete. The test phases that scaled with

increase in number of prosumers were: Clients Create, Distribute to

Clients, Full Network Created, Clients Start, Network Connect, and

Network Stop. The scaling increases were linear (Std Dev < 0.065) after

dividing the average time increase by the difference in number of clients.

The results of our experiments indicate that there exists high

consistency and predictability of managing PlaTIBART-managed

blockchain test networks. These results help build confidence that

PlaTIBART's approach to creating repeatable testing networks for IoT

blockchain applications scales well, which is important to encourage

adoption by IoT system developers.

6.8. Example Use-Case 2: Blockchain/Distributed Systems Education

As we discussed in An Elastic Platform for Large-scale

Assessment of Software Assignments for MOOCs (EPLASAM), there

are significant challenges presented when attempting to scale software

assignments for use in MOOCs[35]. Attempting to scale distributed

system, specifically ITBA, software assignments presents additional

challenges beyond those of traditional software assignments. Even

ignoring the need for physical IoT hardware to test code on, the need for:

private repeatable Blockchain networks, easily adjustable network

designs, and ease of use of network setup by both instructors and staff,

but also learners, becomes crucial for individual assessment.

6.8.1. Sample Problem

 The use of PlaTIBART does not provide a complete solution, as

described in EPLASM, for MOOC scalable assessment, or even just

testing, of ITBAs. However, it does provide the design philosophy, tools,

and methods that enable repeatable individual assessment of ITBAs

and/or ITBA components. In our classes at both Vanderbilt University

and Youngstown State University, we have made use of PlaTIBART to

assist in the creation assignments that assessed the Blockchain

components of ITBAs. Additionally, we were able to leverage

PlaTIBART to provision 25x IoT clusters (Cisco router, 4x Raspberry Pi

3B+, ethernet cabling, and an IoT Electronics kit) for a series of IoT

lectures and workshops held in partnership with Youngstown State

University, the Youngstown Business Incubator, with support from

Cisco5. These clusters included a custom PDF guide, all the software

required to operate the electronics kits via Python, and all the software

required to operate an Ethereum network on each of the clusters,

including PlaTIBART being installed on each cluster’s first Raspberry Pi

device.

6.8.2. In-Depth Guided Walkthrough

 The benefit to the design of PlaTIBART is that the only difference

between creating a Dockerized container containing all the required code

to allow students to easily start learning Blockchain and configuring IoT

workshop clusters is slight modification of the input model file and

changing the files distributed to each client. Figure 14 shows the model

input we used for creating the Docker image with a single client and a

single miner, both on the same host, using localhost 127.0.0.1, but the

network manager handles giving them ports in different ranges.

5 https://oh-iot.com/

https://oh-iot.com/

{" configurationName ":" test network b001 ",

 " configurationVersion ":"1",

 " chainId ": 15 ,

 " difficulty ": 100000 ,

 " gasLimit ": 200000000000000000 ,

 " balance ": 40000000000000000000000000 ,

 " genesisBlockOutFil e ":" genesis - data . json ",

 " clients ": {

" startPort ": 9000 ,

 " client ":{ " count ": 1, " hosts ": ["127.0.0.1"] }

" miner ": { " count ": 1, " hosts ": ["127.0.0.1"] }

}}
Figure 14 Blockchain assignment sample model json file

Now to support deploying to actual individual ITBA clusters the

only requirement is that each system already have the host machine’s

public SSH key, have geth installed, and accept SSH connections.

{" configurationName ":" test network c001 ",

 " configurationVersion ":"1",

 " chainId ": 15 ,

 " difficulty ": 100000 ,

 " gasLimit ": 200000000000000000 ,

 " balance ": 40000000000000000000000000 ,

 " genesisBlockOutFil e ":" genesis - data . json ",

 " clients ": {

" startPort ": 9000 ,

" client ":{ " count ": 4, " hosts ": [

 "10.0.1.1","10.0.1.2","10.0.1.3","10.0.1.4"] }

" miner ": { " count ": 1, " hosts ": ["127.0.0.1"] }

}}
Figure 15 IoT/Blockchain-Cluster configuration sample model json file

Figure 15 shows that the only change needed is adjusting the ‘client’

section of the json. Increasing the number of clients and changing what

IPs the clients will be installed on. Both scenarios were completed via the

exact same command line instructions as discussed in section 6.6.1 and

6.6.2, the only difference being what files were distributed to each client.

6.8.3. System Output and Analysis

 Both examples discussed in this section proved to be viable and

were successful in creating ITBA component educational assessments.

Both Docker images of Blockchain assignments for university courses,

and IoT and Blockchain workshop preparation and instruction were

successful. However, neither of these were studied in-depth for formal

verification, but instead were used as a means of rapidly creating

repeatable Blockchain test networks in the educational scenarios.

Therefore, these examples show more the adaptability of the PlaTIBART

design when crafting future ITBA assignments. Future work will need to

verify the efficacy of this approach.

6.9. Research Directions in Testing at Scale of IoT & Distributed

Systems

 Testing at scale of distributed systems is an ongoing research

focus that will simultaneously have many different approaches. Formal

validation of Blockchain related contract languages, systems, and tools,

including PlaTIBART, is one area that will see continued focus.

Additionally, verification of the efficacy of using PlaTIBART in an

educational environment to teach ITBAs needs to be proven; this is a

research area which we are currently pursuing. Expanding the network

topology supported by PlaTIBART is future work that needs to be

addressed, possibly with the integration with network simulation or

management software. Work needs to be done on including private test

Blockchain networks into both Unit and Integration Testing frameworks,

and currently there don’t appear to be tools, at least for Ethereum, for

integration testing outside of Solidity IDE.

Key Terminology & Definitions

IoT Blockchain Applications (ITBAs) - Blockchain Applications that run

on an IoT system where Blockchain is leveraged for a wide range of

potential uses ranging from distributed logging up to integration into the

command and control decision making process of the IoT device. Both

Blockchain and IoT use case scenarios can change drastically when they

are used together in a system. Therefore, we use this term to describe the

added complexity of Blockchain applications that interact with the physical

world through IoT devices.

Testing-at-Scale - Testing distributed systems incurs a much heavier

cost, both in complexity and required resources, when attempting to test a

fully integrated distributed system versus traditional systems. This is

because fully testing a distributed system requires a large amount of

potentially heterogeneous devices running on potentially multiple

platforms and/or architectures. This not only requires a system and

methodology of testing that can be run easily with each new variation of

the overall system, be it hardware or software, but also allows for

consistent benchmarking, profiling, and analysis of performance,

reliability, and other metrics.

Authors Bio:

Mr. Michael A. Walker is a Graduate Research Assistant pursuing his PhD

in Computer Science at Vanderbilt University, Nashville, TN, USA.

Currently he is an Instructor for the Computer Science & Information

Systems department at Youngstown State University. He previously

received his Masters in Science in Computer Science from Vanderbilt

University [2011-2013], and obtained his Bachelors of Science in

Computer Science from Youngstown State University [2006-2011].

Mr. Walker’s research interests include Distributed Systems, Learning-at-

Scale, Privacy, Security, and Software Design Patterns. He has published

more than eleven research papers in various conferences, workshops and

international journals of repute, including IEEE and ACM. He has been

involved with ten Massive Open Online Courses, acting as a Teaching Staff

for three and an Instructor for four courses. He is a present and past board

member of several non-profits directed toward outreach and education of

Science, Technology, Engineering, and Mathematics, with a concentration

on computer literacy and scientific understanding, specifically focused on

benefiting young girls from disadvantaged backgrounds. Additionally, he

has given several conference presentations on the subject of bridging the

academic and industry divide for non-traditional students.

Affiliation/Address:

E-mail: michael.a.walker.1@vanderbilt.edu

Affiliation

Institute for Software Integrated Systems

Vanderbilt University, Nashville, TN, USA

Dr. Douglas C. Schmidt is the Cornelius Vanderbilt Professor of

Computer Science, Associate Provost for Research Development and

Technologies, Co-Chair of the Data Sciences Institute, and a Senior

Researcher at the Institute for Software Integrated Systems, all at

Vanderbilt University. His research covers a range of software-related

topics, including patterns, optimization techniques, and empirical analyses

of middleware frameworks for distributed real-time embedded systems and

mobile cloud computing applications.

Dr. Schmidt has published 12 books and more than 600 technical papers

covering a range of software-related topics, including patterns,

optimization techniques, and empirical analyses of frameworks and model-

driven engineering tools that facilitate the development of mission-critical

middleware and mobile cloud computing applications running over

wireless/wired networks and embedded system interconnects. For the past

three decades, Dr. Schmidt has led the development of ACE and TAO,

which are open-source middleware frameworks that constitute some of the

most successful examples of software R&D ever transitioned from

research to industry.

Dr. Schmidt received B.A. and M.A. degrees in Sociology from the

College of William and Mary in Williamsburg, Virginia, and an M.S. and

a Ph.D. in Computer Science from the University of California, Irvine in

1984, 1986, 1990, and 1994, respectively.

Affiliation/Address:

E-mail: d.schmidt@vanderbilt.edu

Affiliation

Institute for Software Integrated Systems

Vanderbilt University, Nashville, TN, USA

mailto:michael.a.walker.1@vanderbilt.edu
mailto:d.schmidt@vanderbilt.edu

Dr. Abhishek Dubey is an Assistant Professor of Electrical Engineering

and Computer Science at Vanderbilt University, Senior Research Scientist

at the Institute for Software-Integrated Systems and co-lead for the

Vanderbilt Initiative for Smart Cities Operations and Research (VISOR).

His research interests include model-driven and data-driven techniques for

dynamic and resilient human cyber physical systems. He directs the Smart

computing laboratory (scope.isis.vanderbilt.edu) at the university. The lab

conducts research at the intersection of Distributed Systems, Big Data, and

Cyber Physical System, especially in the domain of transportation and

electrical networks. Abhishek completed his PhD in Electrical Engineering

from Vanderbilt University in 2009. He received his M.S. in Electrical

Engineering from Vanderbilt University in August 2005 and completed his

undergraduate studies in Electrical Engineering from the Indian Institute

of Technology, Banaras Hindu University, India in May 2001. He is a

senior member of IEEE.

Affiliation/Address:

E-mail: abhishek.dubey@vanderbilt.edu

Affiliation

Institute for Software Integrated Systems
Vanderbilt University, Nashville, TN, USA

 REFERENCES

[1] Agrawal, Hiralal, Joseph Robert Horgan, Edward W Krauser, and Saul A London.

“Incremental regression testing.” In Software Maintenance, 1993. CSM93,

Proceedings., Conference on, 348–357. IEEE, 1993.

[2] Banafa, Ahmed. IoT and Blockchain Convergence: Benefits and Challenges - IEEE

Internet of Things. https://iot.ieee.org/newsletter/january2017/iot-and-

blockchain-convergence-benefits-and-challenges. html. (Accessed on

08/31/2017), 2017.

https://na01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fscope.isis.vanderbilt.edu&data=02%7C01%7Cabhishek.dubey%40Vanderbilt.Edu%7Cc1bc5ff6ca16470115b908d5c176ef8d%7Cba5a7f39e3be4ab3b45067fa80faecad%7C0%7C0%7C636627638934148505&sdata=7jGNtuWHa9XybgoJEZO0EC8G25k6eMbbeyRLG1fDzoI%3D&reserved=0
mailto:abhishek.dubey@vanderbilt.edu
https://iot.ieee.org/newsletter/january-2017/iot-and-blockchain-convergence-benefits-and-challenges.html
https://iot.ieee.org/newsletter/january-2017/iot-and-blockchain-convergence-benefits-and-challenges.html
https://iot.ieee.org/newsletter/january-2017/iot-and-blockchain-convergence-benefits-and-challenges.html
https://iot.ieee.org/newsletter/january-2017/iot-and-blockchain-convergence-benefits-and-challenges.html
https://iot.ieee.org/newsletter/january-2017/iot-and-blockchain-convergence-benefits-and-challenges.html
https://iot.ieee.org/newsletter/january-2017/iot-and-blockchain-convergence-benefits-and-challenges.html

[3] Beck, Roman, Jacob Stenum Czepluch, Nikolaj Lollike, and Simon Malone.

“Blockchain-the Gateway to Trust-Free Cryptographic Transactions.” In ECIS,

ResearchPaper153. 2016.

[4] Bitcoin (BTC) price, charts, market cap, and other metrics | CoinMarketCap.

https://coinmarketcap.com/currencies/bitcoin/. (Accessed on 08/30/2017),

August 2017.

[5] Bogner, Andreas, Mathieu Chanson, and Arne Meeuw. “A Decentralised Sharing

App Running a Smart Contract on the Ethereum Blockchain.” In Proceedings of

the 6th International Conference on the Internet of Things, 177–178. IoT’16.

Stuttgart, Germany: ACM, 2016. isbn: 978-1-4503-48140.

doi:10.1145/2991561.2998465. http://doi.acm.org/10.1145/

2991561.2998465.

[6] “Brooklyn Microgrid.” 2017. http://brooklynmicrogrid.com/.

[7] Buccafurri, Francesco, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera.

“Overcoming Limits of Blockchain for IoT Applications.” In Proceedings of the

12th International Conference on Availability, Reliability and Security, 26:1–

26:6. ARES ’17. Reggio Calabria, Italy: ACM, 2017. isbn: 978-1-45035257-4.

doi:10.1145/3098954.3098983. http://doi.acm.org/10.1145/

3098954.3098983.

[8] Cazalet, E., P. De Marini, J. Price, E. Woychik, and J. Caldwell. Transactive Energy

Models. Technical report. National Institute of Standards Technology, 2016.

[9] Christidis, Konstantinos, and Michael Devetsikiotis. “Blockchains and smart

contracts for the internet of things.” IEEE Access 4 (2016): 2292–2303.

[10] Company, Sterling Ranch Development. “The Nature of Sterling Ranch.” 2017.

http://sterlingranchcolorado.com/about/.

[11] Delmolino, Kevin, Mitchell Arnett, Ahmed Kosba, Andrew Miller, and Elaine Shi.

“Step by step towards creating a safe smart contract: Lessons and insights from

a cryptocurrency lab.” In International Conference on Financial Cryptography

and Data Security, 79–94. Springer, 2016.

https://coinmarketcap.com/currencies/bitcoin/
https://coinmarketcap.com/currencies/bitcoin/
http://dx.doi.org/10.1145/2991561.2998465
http://dx.doi.org/10.1145/2991561.2998465
http://doi.acm.org/10.1145/2991561.2998465
http://doi.acm.org/10.1145/2991561.2998465
http://doi.acm.org/10.1145/2991561.2998465
http://doi.acm.org/10.1145/2991561.2998465
http://brooklynmicrogrid.com/
http://brooklynmicrogrid.com/
http://dx.doi.org/10.1145/3098954.3098983
http://dx.doi.org/10.1145/3098954.3098983
http://doi.acm.org/10.1145/3098954.3098983
http://doi.acm.org/10.1145/3098954.3098983
http://doi.acm.org/10.1145/3098954.3098983
http://doi.acm.org/10.1145/3098954.3098983
http://sterlingranchcolorado.com/about/
http://sterlingranchcolorado.com/about/

[12] Dorri, Ali, Salil S Kanhere, Raja Jurdak, and Praveen Gauravaram. “Blockchain for

IoT security and privacy: The case study of a smart home.” In Pervasive

Computing and Communications Workshops (PerCom Workshops), 2017 IEEE

International Conference on, 618–623. IEEE, 2017.

[13] Dubey, Abhishek, Gabor Karsai, and Subhav Pradhan. “Resilience at the edge in

cyber-physical systems.” In Fog and Mobile Edge Computing (FMEC), 2017

Second International Conference on, 139–146. IEEE, 2017.

[14] Eisele, S., I. Mardari, A. Dubey, and G. Karsai. “RIAPS: Resilient Information

Architecture Platform for Decentralized Smart Systems.” In 2017 IEEE 20th

International Symposium on Real-Time Distributed Computing (ISORC), 125–

132. May 2017. doi:10.1109/ISORC.2017.22.

[15] Ethereum (ETH) $381.84 (3.83%) | CoinMarketCap.

https://coinmarketcap.com/currencies/ethereum/. (Accessed on 08/30/2017),

August 2017.

[16] Gubbi, Jayavardhana, Rajkumar Buyya, Slaven Marusic, and Marimuthu

Palaniswami. “Internet of Things (IoT): A vision, architectural elements, and

future directions.” Future generation computer systems 29, no. 7 (2013): 1645–

1660.

[17] Hintjens, Pieter. “ZeroMQ: The Guide.” URL http://zeromq. org, 2010.

[18] Interfaces | Ethereum Frontier Guide. https://ethereum.gitbooks.io/front ier-

guide/content/interfaces.html. (Accessed on 08/30/2017), 2017.

[19] JSON RPC - ethereum/wiki Wiki - GitHub.

https://github.com/ethereum/wiki/wiki/JSON-RPC. (Accessed on 08/28/2017),

2017.

[20] Kumaresan, Ranjit, and Iddo Bentov. “How to use bitcoin to incentivize correct

computations.” In Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, 30–41. ACM, 2014.

http://dx.doi.org/10.1109/ISORC.2017.22
http://dx.doi.org/10.1109/ISORC.2017.22
https://coinmarketcap.com/currencies/ethereum/
https://coinmarketcap.com/currencies/ethereum/
https://coinmarketcap.com/currencies/ethereum/
https://coinmarketcap.com/currencies/ethereum/
https://ethereum.gitbooks.io/frontier-guide/content/interfaces.html
https://ethereum.gitbooks.io/frontier-guide/content/interfaces.html
https://ethereum.gitbooks.io/frontier-guide/content/interfaces.html
https://ethereum.gitbooks.io/frontier-guide/content/interfaces.html
https://github.com/ethereum/
https://github.com/ethereum/wiki/wiki/JSON-RPC
https://github.com/ethereum/wiki/wiki/JSON-RPC
https://github.com/ethereum/wiki/wiki/JSON-RPC

[21] Lee, Edward A, Stephen Neuendorffer, and Michael J Wirthlin. “Actor-oriented

design of embedded hardware and software systems.” Journal of circuits,

systems, and computers 12, no. 03 (2003): 231–260.

[22] Lee, H., S. Niddodi, A. Srivastava, and D. Bakken. “Decentralized voltage stability

monitoring and control in the smart grid using distributed computing

architecture.” In 2016 IEEE Industry Applications Society Annual Meeting, 1–9.

October 2016. doi:10.1109/IAS.2016.7731871.

[23] Leung, Hareton KN, and Lee White. “A study of integration testing and software

regression at the integration level.” In Software Maintenance, 1990,

Proceedings., Conference on, 290–301. IEEE, 1990.

[24] Melton, R. B. Gridwise transactive energy framework. Technical report. Pacific

Northwest National Laboratory, 2013.

[25] Mirkovic, Jelena, and Terry Benzel. “Teaching cybersecurity with DeterLab.” IEEE

Security & Privacy 10, no. 1 (2012): 73–76.

[26] Ouaddah, Aafaf, Anas Abou Elkalam, and Abdellah Ait Ouahman. “Towards a novel

privacy-preserving access control model based on blockchain technology in

IoT.” In Europe and MENA Cooperation Advances in Information and

Communication Technologies, 523–533. Springer, 2017.

[27] Rothermel, Gregg, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.

“Prioritizing test cases for regression testing.” IEEE Transactions on software

engineering 27, no. 10 (2001): 929–948.

[28] Siaterlis, Christos, Andres Perez Garcia, and Béla Genge. “On the use of Emulab

testbeds for scientifically rigorous experiments.” IEEE Communications Surveys

& Tutorials 15, no. 2 (2013): 929–942.

[29] Simić, Miloš, Goran Sladić, and Branko Milosavljević. “A Case Study IoT and

Blockchain powered Healthcare,” June 2017.

http://dx.doi.org/10.1109/IAS.2016.7731871
http://dx.doi.org/10.1109/IAS.2016.7731871

[30] Sometimes, transactions disappear from txpool rather than being mined into the

next block - Issue #14893 - ethereum/go-ethereum. https://github.com/

ethereum/go-ethereum/issues/14893. (Accessed on 09/06/2017).

[31] The Truth About Blockchain. https://hbr.org/2017/01/the-truth-about-blockchain

(Accessed on 08/30/2017), January 2017.

[32] use RPC API personal_sendTransaction lost coin Issue #14901 ·

ethereum/goethereum. https://github.com/ethereum/go-

ethereum/issues/14901. (Accessed on 08/30/2017), August 2017.

[33] Varda, Kenton. Cap’n Proto, 2015.

[34] Walker, Michael A., Abhishek Dubey, Aron Laszka, and Douglas C. Schmidt.

"Platibart: a platform for transactive iot blockchain applications with

repeatable testing." In Proceedings of the 4th Workshop on Middleware and

Applications for the Internet of Things, pp. 17-22. ACM, 2017.

[35] Walker, Michael, Douglas C. Schmidt, and Jules White. "An elastic platform for

large-scale assessment of software assignments for MOOCs (EPLASAM)." In

User-centered design strategies for massive open online courses (MOOCs), pp.

187-206. IGI Global, 2016.

[36] Zhang, Fan, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. “Town Crier: An

Authenticated Data Feed for Smart Contracts.” In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security, 270–282. CCS

’16. Vienna, Austria: ACM, 2016. isbn: 978-1-45034139-4.

doi:10.1145/2976749.2978326. http://doi.acm.org/10.1145/2976749.2978326.

https://github.com/ethereum/go-ethereum/issues/14893
https://github.com/ethereum/go-ethereum/issues/14893
https://github.com/ethereum/go-ethereum/issues/14893
https://github.com/ethereum/go-ethereum/issues/14893
https://hbr.org/2017/01/the-truth-about-blockchain
https://github.com/ethereum/go-ethereum/issues/14901
https://github.com/ethereum/go-ethereum/issues/14901
https://github.com/ethereum/go-ethereum/issues/14901
http://dx.doi.org/10.1145/2976749.2978326
http://dx.doi.org/10.1145/2976749.2978326
http://doi.acm.org/10.1145/2976749.2978326
http://doi.acm.org/10.1145/2976749.2978326

