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Abstract

In this paper, we review how the laws of Quantum Mechanics allow creating unconditionally secure
protocols in cryptography, i.e. protocols where the security is ensured by physical laws and bounds
and not on some computationally hard problems. We first review the use of Quantum Mechanics
to perform unconditionally secure secret key distribution, and we then extend the ideas to other
cryptographic tasks including public-key cryptography, digital signatures, and fingerprinting.
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Chapter 1

Introduction

1.1 The beginnings of cryptography

Cryptography is the science, at the crossroads of mathematics, physics, and computer science, that
tends to design protocols to prevent malicious third-party from reading private messages. Even if
the development of computers during the 20th century made the research in cryptography explode,
the use of cryptographic methods was common before. It is believed that Julius CAESAR used an
encryption method, today known as Caesar Cipher or Alphabet Shift Cipher[1]. The principle is
very simple: imagine you want to encode the 26 letters of the Roman alphabet (A to Z), you then
assign each letter a number (A is 0, B is 1, ..., Z is 25). You then choose a secret key which is a
non-zero integer. The encrypted message is composed of letters, the code of each letter being given
by the modulo 26 addition between the code of the original letter and the secret key. Basically, the
alphabet is shifted by a constant:

Y Z A B C D E F

Y Z A B C D E F

Figure 1.1: Caesar Cipher with K = 3

If we note n the position of the char in the string, Un the unencrypted char, En the encrypted
char, and K the shift:

En = Un +Kmod[26] (1.1)

For instance, the secret message

IMPERIAL COLLEGE LONDON

with the secret key 13, would become

VZCREVNY PBYYRTR YBAQBA

since

n Char Un En Char
1 I 8 21 V
2 M 12 25 Z
3 P 15 2 C
...

...
...

...
...
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1.2. Modern Cryptography Chapter 1. Introduction

This code is very simple to break, as you can easily find patterns. For instance, you can compare
the frequencies of each letter of the alphabet. In the English language, the most common letter
is E with a frequency of 12.7%, followed by the letter T with a frequency of 9.06% [2]. You then
compute the frequencies of the encrypted message. The most common letter in the encrypted text
will probably be the encrypted char corresponding to E, or T. This method can be applied to all
encryption schemes were a letter is always transformed to the same letter.

For this scheme, it also just possible to test the 25 possible secret keys and stop when you have
a meaningful message.

Fortunately, cryptology has evolved since them. Even before the invention of the computer, the
Germans used a very secure scheme (at that time) to encrypt message during the Second World
War. It was secure in two ways:

• the setup has high combinatorial complexity. Germans have to choose 3 rotors in 5 possibil-
ities, choose each initial positions for the rotors (26 possibilities each), and then choose 10
pairs in the plugboard, resulting in the combinatorial complexity

5× 4× 3× 263 × 26!

6!× 10!× 210
= 158, 962, 555, 217, 826, 360, 000 (1.2)

This is not possible to test all possibilities for a human, nor at that time for a machine.

• Unlike the Caesar Cipher, a letter would not become the same letter every time, as the ro-
tors were moving at each letter. This is important because pattern methods (to compare
frequencies of the language with the ones in the encrypted text) cannot be used.

The Enigma machine was broken by a team mainly lead by Alan Turing using a machine called
Bombe and some flaws of the Enigma machine. In the end, the Enigma configuration could be
found in 20 minutes.

1.2 Modern Cryptography

With the arrival of computers and communication networks came also a greater need for cryptog-
raphy.

In our modern world, cryptography is ubiquitous. When you load a web page in a browser with
a small padlock next to the URL, you are using symmetric and asymmetric encryption without
knowing it. When you open some messaging app, like WhatsApp, you are using, again without
knowing it1 symmetric and asymmetric encryption, providing end-to-end encryption [3].

Symmetric and asymmetric encryption are different in their essence. A symmetric encryption
scheme uses a secret key to encrypt and to decrypt the message. This means that the two (or more)
parties that are communicating need to have the same, and secret, key. Symmetric schemes have
several issues:

• The key exchange must be truly secret to ensure the privacy of the encrypted message;

• If you use the key to encrypt more than one time, information can be extracted from the
encrypted message;

• The protocol doesn’t scale well (i.e. if you want to have encrypted discussion between several
users, you have to share the secret key between all the users, which mean, more chance of
information leakage).

They have also some advantages: there are easier to understand and to implement and they
need less computational power than asymmetric encryption.

In contrast, an asymmetric encryption scheme or public-key encryption scheme is a scheme
where two keys are used:

1I mean without the user making anything for the cryptographic exchange to happen. It is totally transparent for the
user.
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• The public key is used only to encrypt messages. It can be distributed without risk to anyone
who wants to send an encrypted message to the owner of the private key. The public key can
be thought of as an open padlock. Once closed only the private key can unlock it.

• The secret key is used only to decrypt messages (and to generate the public key). It should
be kept secret. The secret key can be seen as a key that opens every padlock closed by the
public key.

One of the most used asymmetric encryption scheme today is the RSA (named after the names
of its inventors: RIVEST, SHAMIR, and ADLEMAN who designed in the ’70s [4]). It is based on some
mathematical observations. Let’s recall some arithmetical properties:

• A prime number is a whole number with exactly 2 distinct divisors. Every integer greater or
equal than 2, that is not a prime number is called a composite number.

• Every whole number can be uniquely written as a product of prime numbers:

n = pα1
1 pα2

2 . . . pαkk (1.3)

• A product of two prime numbers is called a semi-prime number. It has 3 or 4 distinct divisors
(3 if it is a square of a prime number).

The basic idea of the RSA scheme follows: it easy to multiply 2 prime numbers to obtain a
semi-prime number but it’s difficult to factorize a semi-prime number into 2 prime numbers.

3× 7 =? Easy!

11× 13 =? A little less easy but still ok

187 =?×? The alert reader may get it

748747 =?×? This gets nasty

(1.4)

In practice, for a 2048 bits long RSA key, a malicious party would have to factorize something
like:

10016444466812877516651347592092877606999325867156134902126474870576401310371509197937849497

32061828879847934816861684862864326449214280155473757303841537670351486905855745788953294686653

05667852687855685298115910404311303180404287100354588108313006482467735715047743256036128648480

80027194762485965856140145864228400743999303156570382089086775865731055296724143521221327468628

21950171266360637073763193766827057457206146627252158883606266393926431447227342695628623860494

83076188549980295606990827731968687429507788792780286440882172770001367957911700000685949637652

38831914470509293382332669418868301436781248853885000370663778352581253239270257156871660127150

01725765933851378635689651151763527144099274447723857372797474452663650725422387256011846500895

56049862683135640206298862612679119720709968586034215160997260304220155673434151135668320749865

84807932093124539029156912634836160456728007753201898072897827815590459999295298908223557195231

58977763724441639028178539046224952247530731887239092769161189850803594847326119864462181341673

60716012369946975020768242661592323585459972285070236101616423672439653172724479999925676798119

71560093919447685551083829047142039685301977153590924844326332056772159786693521935447299870583

1 2

A human being cannot factorise this semi-prime number, nor can a machine at the time this
paper is written. In 1991, the RSA laboratories published 50 semi-prime numbers (called the
RSA numbers) from 100 to 2048 decimal digits. For some numbers, a reward was offered for the
factorisation of the number. Some easy numbers were factorised quite quickly (the RSA-100 was
factorised less than 2 weeks after the publication of the challenge) and some of them are still being
factorised today (the example of the RSA-250 that was factorised in February 2020 is relevant)
even if the challenge ended in 2007. The biggest RSA number to have ever been factorized is the
RSA 768, that was factorized in 2009 using the General Number Field Sieve (GNFS).

The GNFS is the best-known algorithm for factorising integer (at least for large integers). The
GNFS has an algorithmic complexity of

2This is the semi-prime number of my personal RSA key, which is in the public part of the key.
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exp

((
3

√
64

9
+ o(1)

)
(ln(n))

1
3 (ln(ln(n)))

2
3

)
(1.5)

where n is the integer to factorise. As we won’t discuss much more of how the GNFS works, the
interested reader may refer to [5] for a discussion on the algorithm and the complexity. The GNFS
is one the best algorithm to factorise integer, but, nevertheless, it would take more than a billion
years to factorise a 2048 digit key. In this sense, the RSA is a secure protocol.

I would like to emphasise here that the security of the RSA scheme is based on a computation-
ally hard mathematical problem and the belief that we won’t find another more efficient and much
quicker algorithm to solve the problem. But we are believing in the security of the RSA because it
has survived 50 years of attacks.

Symmetric and asymmetric schemes often work together in what we call hybrid cryptosystems.
This idea is further developed in chapter 4.

1.3 Quantum computer or the end of cryptography?

In the early ’80s, the idea of a quantum computer began to grow and with it, the hope to compute
and simulate things that were not possible or will ever be possible on a classical computer [6,
7]. In particular, FEYNMAN proposed to simulate Physics with a quantum computer, that he didn’t
assimilate to the quantum analog of a Turing machine but rather, to a universal quantum simulator.
BENIOFF, in his paper, explored the possibility of a quantum Turing machine, or universal quantum
computer. Without speaking more about the idea of a quantum Turing machine, we will see that
we are today far from having such a computer.

One of the main advantages of quantum information is the superposition principle. The qubit,
the analog of the classical bit, can take the value |0〉 (analog of the bit 0), the value |1〉 (analog of
the bit 1), or a superposition of the two, meaning that with one qubit, we can store much more
information than with one bit. We saw some vulgarisation programs that compared the classical
bit to a switch. Then a qubit was compared to a switch that could be open, closed, and both at
the same time. But this doesn’t feel like a good comparison, and they often don’t speak about the
measurement.

The information encoded in the superposition of state, if not used correctly, will be destroyed
when a measurement on the qubit is made. Here is a graphical representation of the difference
between a bit and a qubit:

Figure 1.2: Graphical representation of qubits

The first one is |0〉 and the second one is |1〉. The third qubit is an equitable mixture of |0〉
and |1〉. We could envisage all mixtures of |0〉 and |1〉. Also, we said that measurement is an
operation where we loose information. Here the measurement operation could be modeled as the
question: "what is the color of the square ?". For both the first and second qubits, the answer is
obvious ("white" for the first one and "yellow" for the second one). For the last one, regardless of
the answer, information will be lost, and for this case, the answer would be "white" half of the time
and "yellow" the other half.

There was also the hope of a quantum speedup, i.e. to compute or simulate things faster on
a quantum computer than on a classical computer one even if the computation or simulation was
possible in the first place.

One of the simplest examples is GROVER’s algorithm [8]. The basic idea of GROVER’s algorithm
is to find an element in a list. Supposing a list of length N , using a classical algorithm, the best
case is to find the element in the first position, the worst case, in the N th position, and on average,

9 9



1.4. Post-Quantum Cryptography Chapter 1. Introduction

you need N
2 operations, which means a complexity in O(N). Using a technique called amplitude

amplification, GROVER’s algorithm has a complexity of O(
√
N).

Another promising algorithm is SHOR’s algorithm. It was introduced in 1997 by Peter SHOR

[9]. The purpose of SHOR’s algorithm is to factorize integers and has a complexity of

(ln(n))2(ln(ln(n)))(ln(ln(ln(n)))) (1.6)

This algorithm is much faster than the most efficient classical algorithm: the GNFS, as the figure
below shows:
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(a) Comparison of GNFS and Shor’s algorithm for
different frequencies
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Figure 1.3: Comparison of GNFS and Shor’s algorithm

(it was proved by VAN METER et al. in 2008 that the execution depends on the architecture of
the quantum computer and the frequency [10]. Figures are from this article).

We won’t explain in detail how SHOR’s algorithm works, but it’s based on a classical algorithm
with a quantum subroutine, that finds a period of a function, using Quantum Fourier Transform
(see [9] for more detail).

Today, we mostly use the RSA cryptosystem with a key of length 2048. The GNFS would need
more than a billion years to factorise the key, but using SHOR’s algorithm at 1MHz, it would take
between tens of seconds and less than a month depending on the architecture, which is a huge
speedup.

Then, we might break the RSA in the foreseeable future. There are however several issues.
Although Google claimed to have reached Quantum Supremacy [11], i.e. they claimed to have
computed something that is not computable on classical computers (they estimated at 10 000
years the amount of time needed on the most powerful classical computers to compute what they
did in 200 seconds), they have done a task that is quite resilient to errors. SHOR’s algorithm is
less error-resilient and the error rate that we have in quantum computers today is too high for
factorising large integers. Today, the largest integer factorised by SHOR’s algorithm is 21 [12].

Nevertheless, we might see the RSA broken in the near future. What must be understood
is that any encrypted message saved by a malicious party could be decrypted as soon as RSA
is broken. This means that any private message sent today can become a public message later.
To prevent those issues, some governments and companies are working in an area called post-
Quantum Cryptography.

1.4 Post-Quantum Cryptography

In 2016, the NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST) of the US Department
of Commerce issued a report on post-Quantum Cryptography [13]. It first described what is the
core of modern cryptography: public-key encryption, digital signatures, and key exchange. Some
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1.4. Post-Quantum Cryptography Chapter 1. Introduction

other components are required and we will talk of them later. Then the report continues by de-
scribing how a potential quantum computer would be capable of breaking or at least weakening
some of those algorithms. The RSA, as we saw, would become insecure and the AES (Advanced
Encryption Standard) which is a widely used symmetric scheme to encrypt data would require
larger keys (GROVER’s algorithm can help breaking symmetric encryption).

The issue is the fact that those algorithms use some kind of mathematical problem that is hard
to solve on a classical computer (factorising whole numbers or the discrete log problem) and that
we could experience a quantum speedup to solve those problems.

Then there are two approaches to solve this problem:

• find mathematical problems that are impossible to solve in a reasonable amount of time even
with a quantum computer;

• use physical constraints, using for example quantum mechanics to design unconditionally
secure protocols.

The first point is more on the classical side of Quantum Cryptography and that is usually what
we mean when we talk about post-Quantum Cryptography. Some problems are already good
candidates for such algorithms and some of them are already implemented. Indeed, even if SHOR’s
algorithm can break cryptosystems based on large integer factorisation or discrete logarithms, it
can’t be applied to some other cryptosystems like [14]:

• Hashed-based cryptography (for example MERKLE’s hash tree)

• Code-based cryptography (MCELIECE’s hidden-Goppa-Code)

• Lattice-based cryptography (NTRU)

• Multivariate-quadratic-equations cryptography

• Symmetric cryptography (recent symmetric cryptography schemes are considered pretty se-
cure against quantum attacks)

GROVER’s algorithm can provide help to break some of those schemes, but as the algorithm has
a smaller speedup, it is sufficient to use a larger key [14]. But we may one day find a quantum
algorithm that can help breaking any of these cryptosystems (even if these schemes are believed
to be quantum-safe and selected by the NIST). Therefore, we consider solutions from point two,
where some schemes are proven to be resistant, in principle, to an attacker with unlimited quantum
power.

We will look forward to the second point for the rest of this paper, i.e. we will see how it is possi-
ble to implement key exchange (see chapter 3), public cryptography (public key, digital signatures,
fingerprinting) (see chapter 4) using quantum information theory. In chapter 5, we investigate
other components useful in cryptography that can be improved using quantum information theory.

The role of the NIST is to standardise protocols. In this purpose, they launched in 2016 a
request for public candidatures: researchers and computer scientists would submit a potential
quantum-safe algorithm to the NIST. On July 22, 2020, the third round of this request ended, and
four algorithms are finalists for public-key encryption and key-establishment and three are finalists
for digital signatures (there are also some alternative candidates). Those schemes use methods
cited above (we find the NTRU and MecEliece schemes for instance). They make pick one or some
algorithms for the standardisation process that will come during the next few years. In the report,
NIST estimated that a quantum computer capable of break the RSA2048 could be available in 2030
and they advised the companies to make the change during the second half of the 2020’s decade.
The standards are then expected for around 2022.

11 11



Chapter 2

Preliminaries

This chapter aims to derive key results in Quantum Cryptography that will be used in the following
chapters. It defines some notations and recalls some basic rules of Quantum Mechanics.

2.1 Notations

We are setting the work of Quantum Cryptography and Quantum Computing in a two-dimensional
Hilbert space H. The vectors in H are quantum states and named qubits (for quantum bits) and
denoted with the bracket notations: |φ〉 ∈ H.

We denote by σx,σy and σz the Pauli operators (the operators will be in bold). The eigenstates
of σz are denoted |0〉 and |1〉

σz |0〉 = |0〉 σz |1〉 = − |1〉 (2.1)

|0〉 and |1〉 are orthogonal states (〈0|1〉 = 0) and form an orthonormal basis of H. The basis is
denoted Bz = {|0〉 , |1〉}. In this basis, the Pauli operators read

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(2.2)

We denote by |±〉 the states

|±〉 =
|0〉 ± |1〉√

2
(2.3)

They are the eigenstates of the σx operator:

σx |+〉 = |+〉 σx |−〉 = − |−〉 (2.4)

They are orthogonal states and form a basis, that we denote by Bx = {|+〉 , |−〉}.
If we consider two Hilbert spaces Ha and Hb, their tensor product is denoted Ha ⊗ Hb and is

composed of the states

|ψ〉a ⊗ |φ〉b = |ψ〉a |φ〉b = |ψ〉 |φ〉 = |ψ〉 ⊗ |φ〉 = |ψφ〉 ∈ Ha ⊗Hb (2.5)

for |ψ〉a ∈ Ha, |φ〉b ∈ Hb.
We end this section by giving some mathematical notations:

• ⊕2 is the modulo-2 addition;

12
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• b·c is the floor function;

• P(A) denotes the probability of an event A.

2.2 Quantum gates

In classical computers, we have, at the heart of computers, gates, that are implemented with
transistors. Those gates take one or more bits as entry and output one or more bits. For example,
the NOT gate is a gate that inverts the bit (a 0 becomes a 1 and a 1 becomes a 0)

Figure 2.1: Representation of the NOT gate

Input 0 1
Output 1 0

Table 2.1: Logic table of the NOT gate

Quantum operators are unitary operators applied on one or more qubits (a unitary operator on
H is a on one-qubit gate, on H⊗H is a two-qubit gate, etc...).

For example, one could consider the quantum analog of the NOT gate, i.e. a gate U such that,
for all |φ〉,

U |φ〉 = ψ and 〈ψ|φ〉 = 0 (2.6)

This is not possible since such an operator would impose

U |0〉 = |1〉
U |1〉 = |0〉

(2.7)

and then, we would have

U |+〉 = U

(
|0〉+ |1〉√

2

)
=
|1〉+ |0〉√

2
= |+〉 (2.8)

Nevertheless, what we call the quantum NOT gate is the σx gate since

σx |0〉 = |1〉 and σx |1〉 = |0〉 (2.9)

The equivalent of the logic table of a logic gate would be the matrix representation in a canon-
ical basis ({|0〉 , |1〉} for H, {|00〉 , |01〉 , |10〉 , |11〉} for H ⊗H, etc...). For instance, for the σz gate,
we would have

Figure 2.2: Representation of the σx gate

(
0 1
1 0

)
(2.10)

Matrix of the σx gate in the Bz basis

A quantum gate related to the σx gate, but this time is a two-qubit gate, is the controlled-NOT
or CNOT gate. This is a gate where σx is applied on the second qubit if the first qubit is |1〉.

CNOT |0〉 |0〉 = |0〉 |0〉
CNOT |0〉 |1〉 = |0〉 |1〉
CNOT |1〉 |0〉 = |1〉 |1〉
CNOT |1〉 |1〉 = |1〉 |0〉

(2.11)

The first qubit is called the control qubit and the second one is called the target qubit.

If we have a superposition of |0〉 and |1〉 for the control qubit then

13 13
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CNOT(α |0〉+ β |1〉) |0〉 = αCNOT |0〉 |0〉+ βCNOT |1〉 |0〉 = α |0〉 |0〉+ β |1〉 |1〉 (2.12)

Control qubit

Target qubit

Figure 2.3: Representation of the CNOT gate


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =

(
12 02

02 σx

)
(2.13)

Matrix of the CNOT gate in the canonical basis

An important gate is the Hadamard gate H, which is the transfer matrix between the Bz and
Bx bases:

H |0〉 = |+〉
H |1〉 = |−〉
H |+〉 = |0〉
H |−〉 = |1〉

(2.14)

In quantum circuits, we represent it by

H

Figure 2.4: Representation of the Hadamard
gate

H =

(
1 1
1 −1

)
(2.15)

Matrix of the Hadamard gate in the Bz basis

It has its importance when we will speak about measurement in quantum circuits.

Finally, the SWAP gate is a gate that takes two qubits as input and outputs two qubits, such
that, for all |φ〉 and |ψ〉,

SWAP(|φ〉 |ψ〉) = |ψ〉 |φ〉 (2.16)

i.e. the two qubits are swapped.

It can be represented by

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (2.17)

in the basis {|00〉 , |01〉 , |10〉 , |11〉}.
In quantum circuits, we represent it by

|φ〉 |ψ〉

|ψ〉 |φ〉

Figure 2.5: Representation of the SWAP gate

14 14
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2.3 Measurement

Let B = {|bi〉}i be an orthonormal basis of some Hilbert space H. Then a general state |φ〉 ∈ H can
be written

|φ〉 =
∑
i

αi |bi〉 (2.18)

with

∑
i

|αi|2 = 1 (2.19)

Then, a measurement of |φ〉 in the B basis yields result |bi〉 with probability |αi|2. After mea-
surement, the state collapse to |bi〉 (measurement alters the system).

In quantum circuits, the measurement in the Bz basis is represented by

|+〉
0/1

Using the properties of the Hadamard gate, a measurement in the Bx basis is performed as
follows:

0/1
H

2.4 No-cloning theorem

A central result in quantum computing and Quantum Cryptography is the no-cloning theorem
[15]:

Theorem (No-cloning theorem): Let Ha and Hb be two Hilbert spaces. There is no unitary
operator U acting on Ha ×Hb such that, for every |Ψ〉a,

U(|Ψ〉a |0〉b) = |Ψ〉a |Ψ〉b (2.20)

It basically means that we cannot clone an arbitrary unknown quantum state.

Proof. The proof is straightforward and is based on Reductio ad absurdum. Let’s suppose we have
such a unitary operator. We then have

U |0〉 |0〉 = |0〉 |0〉
U |1〉 |0〉 = |1〉 |1〉

(2.21)

Then let’s consider an arbitrary state α |0〉+ β |1〉 with α, β ∈ C. Then,

U(α |0〉+ β |1〉) |0〉 = αU |0〉 |0〉+ βU |1〉 |0〉 = α |0〉 |0〉+ β |1〉 |1〉 (2.22)

but we also have, from the definition of U that

U(α |0〉+β |1〉) |0〉 = (α |0〉+β |1〉)(α |0〉+β |1〉) = α2 |0〉 |0〉+αβ(|0〉 |1〉+|1〉 |0〉)+β2 |1〉 |1〉 (2.23)

The expressions of 2.22 and 2.23 are different unless α = 1 or β = 1 and then, such a U cannot
exist.

15 15



2.5. Conjugate coding Chapter 2. Preliminaries

2.5 Conjugate coding

Conjugate coding is one of the most important notions of Quantum Cryptography. The term is
attributed to WIESNER, who proposed the idea in an unpublished (at first) and unnoticed article
written in 1970, but was published in 1983 after Quantum Cryptography became a more plausible
idea [16]. It is also called quantum coding and quantum multiplexing. The basic idea is that we can
encode our classical bits 0 or 1 in different bases, and that a measurement in one of the basis will
completely randomise the result in the other.

Consider for example the bases Bz and Bx defined by

Bz = {|0〉 , |1〉}
Bx = {|+〉 , |−〉}

|±〉 =
|0〉 ± |1〉√

2

(2.24)

We encore our classical bits using the following table

Bz Bx
0 |0〉 |+〉
1 |1〉 |−〉

Table 2.2: Equivalence bits and qubits

Now imagine you want to encode the bit 1. If you do so in the Bz basis, you will have the state
|1〉. Now if you measure this state in the Bz basis, you will always obtain |1〉 and recover the good
bit as

| 〈0|1〉 |2 = 0

| 〈1|1〉 |2 = 1
(2.25)

But, if you make a measurement in the Bx basis, you will end up with |+〉 (and recover the bit
0, so the bad one) half of the time and |−〉 (and recover the good bit) the other half since

| 〈+|1〉 |2 =

∣∣∣∣ 〈0|+ 〈1|√
2
|1〉
∣∣∣∣2 =

∣∣∣∣ 1√
2

∣∣∣∣2 =
1

2

| 〈−|1〉 |2 =

∣∣∣∣ 〈0| − 〈1|√
2
|1〉
∣∣∣∣2 =

∣∣∣∣− 1√
2

∣∣∣∣2 =
1

2

(2.26)

We say that Bz and Bx are conjugate to each other.

Note: in Quantum Cryptography, we are often working with light and polarization of light to
make our qubits. In this case, the bases are called rectilinear (R) and diagonal (D) and are defined
by

R = {|↔〉 , |l〉}
D = {|↘↖〉 , |↙↗〉}

(2.27)

associating

|↔〉 = |0〉
|l〉 = |1〉
|↘↖〉 = |+〉
|↙↗〉 = |−〉

(2.28)
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2.6 Entanglement, EPR paradox and BELL inequalities

In 1935, EINSTEIN, PODOLSKY, and ROSEN proposed a thought experiment to prove that the theory
of Quantum Mechanics was incomplete. They proposed the notion of hidden variables to solve the
issue of particles that would be correlated after being separated [17].

Shortly after SCHRÖDINGER published a paper on entanglement [18], and it is described as "the
characteristic trait of quantum mechanics". Entanglement describes a situation when two or more
particles cannot be described on their own, i.e. the quantum state of the whole system cannot
be factored into quantum states for each particle. The historical example is the singlet spin state:
consider two spin- 12 particles, that are paired in such a way that the overall spin is 0. Measuring
the spin of one particle immediately gives the spin of the other as it is perfectly opposite.

In 1964, BELL showed that considering local realism, some quantity will respect the so-called
BELL inequalities, and if the BELL inequalities were to be violated, then the hypothesis of 1935 of
local realism would be rejected. We will see an example of application, and derivation, of BELL

(or CHSH see [19]) inequality. The BELL test has been performed several times (first time in 1972
[20]) and results rejected hidden local variables.

Let’s recall some definitions: a pure state, or separable state of Ha ⊗ Hb is a state that is not
entangled and can be represented in the form

|φ〉a ⊗ |φ〉b (2.29)

A state that cannot be factored in such a way is called a mixed state, or entangled state. For
instance the singlet spin state can be represented by

1√
2

(|↑↓〉 − |↓↑〉) (2.30)

which cannot be factored.

More formally, for a state |φ〉, we can define the density operator (or density matrix)

ρ = |φ〉 〈φ| (2.31)

This is an Hermitian positive semi-definite operator, with unit trace.

A state is pure if and only if

ρ2 = ρ (2.32)

The four BELL states are defined by∣∣Φ+
〉
AB

=
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B)∣∣Ψ+
〉
AB

=
1√
2

(|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B)∣∣Ψ−〉
AB

=
1√
2

(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B)∣∣Φ−〉
AB

=
1√
2

(|0〉A ⊗ |0〉B − |1〉A ⊗ |1〉B)

(2.33)

They are maximally entangled states.

In the following, an EPR source is a source that emits pair of entangled particles.

2.7 Quantum teleportation

Imagine that Alice has a qubit |φ〉. She wants to teleport her qubit to Bob. This is possible using
quantum teleportation, which was first proposed in 1993 [21]. This can be done as follows:
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1. An entangled pair is created and shared between Alice and Bob;

2. Alice performs a BELL measurement of the entangled pair qubit and |φ〉. This measurement
has 4 outcomes possible, meaning that we can encode the result with 2 classical bits. After
this measurement, Bob’s entangled qubit is in the same state as |φ〉 or in one of three other
states, closely related to |φ〉;

3. Alice sends the result of measurement encoded in two classical bits over the classical channel;

4. Depending on the result, Bob performs one of four actions to his qubit and end up with |φ〉.

Note that after the BELL measurement, Alice’s qubit is not in the state |φ〉, and hence, this does not
violate the no-cloning theorem.

Formally, let’s suppose that Alice has the following target qubit

|φ〉T = α |0〉T + β |1〉T (2.34)

with α, β unknown (they will remain unknown by the end of the teleportation). The T stands for
Target.

For the EPR pair, they are using one of the four maximally entangled BELL states. The BELL

state that is used is decided beforehand and for the following, we suppose they share the BELL

state ∣∣Φ+
〉
AB

=
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) (2.35)

where the A subscript refers to Alice and the B one to Bob.

Then the total system state is

|φ〉T ⊗
∣∣Φ+

〉
AB

=
1√
2

(α |0〉T + β |1〉T )⊗ (|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) (2.36)

Using the following relations, which are easily verifiable:

|0〉 ⊗ |0〉 =
1√
2

(∣∣Φ+
〉

+
∣∣Φ−〉)

|0〉 ⊗ |1〉 =
1√
2

(∣∣Ψ+
〉

+
∣∣Ψ−〉)

|1〉 ⊗ |0〉 =
1√
2

(∣∣Ψ+
〉
−
∣∣Ψ−〉)

|1〉 ⊗ |1〉 =
1√
2

(∣∣Φ+
〉
−
∣∣Φ−〉)

(2.37)

and some algebra:

|φ〉T ⊗
∣∣Φ+

〉
AB

=
1√
2

(α |0〉T + β |1〉T )⊗ (|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B)

=
α

2
|0〉T |0〉A |0〉B +

β

2
|1〉T |0〉A |0〉B +

α

2
|0〉T |1〉A |1〉B +

β

2
|1〉T |1〉A |1〉B

=
α

2

(∣∣Φ+
〉
TA

+
∣∣Φ−〉

TA

)
|0〉B +

β

2

(∣∣Ψ+
〉
TA
−
∣∣Ψ−〉

TA

)
|0〉B

+
α

2

(∣∣Ψ+
〉
TA

+
∣∣Ψ−〉

TA

)
|1〉B +

β

2

(∣∣Φ+
〉
TA
−
∣∣Φ−〉

TA

)
|1〉B

We finally end up with

|φ〉T ⊗
∣∣Φ+

〉
AB

=
1

2

(∣∣Φ+
〉
TA

(α |0〉B + β |1〉B)

+
∣∣Φ−〉

TA
(α |0〉B − β |1〉B)

+
∣∣Ψ+

〉
TA

(α |1〉B + β |0〉B)

+
∣∣Ψ+

〉
TA

(α |1〉B − β |0〉B)
)

(2.38)
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When Alice makes the BELL measurement, she will have one of the four results: |Φ+〉TA , |Φ−〉TA ,
|Ψ+〉TA , |Ψ−〉TA, that we can encode on two classical bits by:

Result Encoding
|Φ+〉 00
|Φ−〉 01
|Ψ+〉 10
|Ψ−〉 11

Table 2.3: Encoding the BELL measurement result

Now, also depending on the measurement result, Bob will end up with slightly different states:

• If the result is |Φ+〉TA, Bob’s state is α |0〉+ β |1〉 = |φ〉. In this case, Bob does nothing;

• If the result is |Φ−〉TA, Bob’s state is α |0〉 − β |1〉 and he can apply the Z-gate (the σz Pauli
matrix) since

σz |0〉 = |0〉
σz |1〉 = − |1〉

σz(α |0〉 − β |1〉) = α |0〉+ β |1〉 = |φ〉
(2.39)

• If the result is |Ψ+〉TA, Bob’s state is α |1〉 + β |0〉 and he can apply the X-gate (the σx Pauli
matrix) since

σx |0〉 = |1〉
σx |1〉 = |0〉

σx(α |1〉+ β |0〉) = α |0〉+ β |1〉 = |φ〉
(2.40)

• If the result is |Ψ−〉TA, Bob’s state is α |1〉−β |0〉 and he can apply the X-gate and Z-gate since

σzσx(α |1〉 − β |0〉) = σz(α |0〉 − β |1〉) = α |0〉+ β |1〉 = |φ〉 (2.41)

Note that σzσx = iσy, which is almost the Y-gate.

In every case, Bob ends up with the correct qubit and Alice’s state has collapsed after the
measurement so she doesn’t have the initial qubit anymore.

We can sum up the quantum teleportation with the following table:

Result of measurement Classical bits Bob’s state Gate to apply Bob’s final state
|Φ+〉 00 α |0〉+ β |1〉 1 |φ〉
|Φ−〉 01 α |0〉 − β |1〉 σz |φ〉
|Ψ+〉 10 α |1〉+ β |0〉 σx |φ〉
|Ψ−〉 11 α |1〉 − β |0〉 σzσx |φ〉

Table 2.4: Quantum teleportation

2.8 Quantum Shannon Theory

2.8.1 VON NEUMANN entropy

In his book from 1932 [22], John VON NEUMANN introduced the notion of entropy for a quantum
state by analogy with the thermodynamical GIBBS entropy.

For a quantum state ρ, the VON NEUMANN entropy S(ρ) is defined by

S(ρ) = −Tr(ρ ln(ρ)) (2.42)

It has the following properties:
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• S(ρ) ≥ 0;

• S(ρ) = 0 if and only if ρ is a pure state;

• S(ρ) ≤ n where n is the dimension of the Hilbert space. When the equality holds, we say
that the state is maximally entangled.

The VON NEUMANN entropy is then a measure of how entangled a state is. A maximally entan-
gled state (for instance a BELL state) is a state that maximises the VON NEUMANN entropy. If the
Hilbert space if finite-dimensional, then the maximal value for S is reached when ρ = 1

dim(H) .

If we have two states ρX and ρY , it is possible to define the conditional VON NEUMANN entropy:

S(ρX |ρY ) = S(ρXY )− S(ρY ) (2.43)

and the relative VON NEUMANN entropy:

S(ρX ||ρY ) = −Tr(ρX ln(ρY ))− S(ρX) = Tr(ρX(ln(ρX)− ln(ρY ))) (2.44)

2.8.2 Mutual information

In the classical world, if X and Y are two random variables, we can quantify the amount of
information that can be deduced from one variable by observing the other with mutual information
(also called SHANNON mutual information):

I(X : Y ) = DKL(P(X,Y )||PX ⊗ PY ) (2.45)

where DKL is the KULLBACK-LEIBLER divergence, P(X,Y ) is the joint distribution of X and Y and
PX , PY are the marginal distributions.

It can be written
I(X : Y ) = H(X,Y )−H(X|Y )−H(Y |X) (2.46)

where H(X,Y ) is the joint entropy, and H(X|Y ) and H(Y |X) are conditional entropies.

The mutual information is positive and symmetric

I(X : Y ) ≥ 0

I(X : Y ) = I(Y : X)
(2.47)

In analogy, letHXY = HX⊗HY be the product of two Hilbert spaces and ρXY a state inHXY .
Applying partial traces we have:

ρX = TrY (ρXY )

ρY = TrX(ρXY )
(2.48)

We define the quantum mutual information (or VON NEUMANN mutual information) by

I(X : Y ) = S(ρX) + S(ρY )− S(ρXY ) (2.49)

in analogy with the classical case. We immediately see that the mutual information is symmetric.

Then

I(X : Y ) = S(ρX) +X(ρY )− S(ρXY )

= −TrX(ρX ln(ρX))− TrY (ρY ln(ρY )) + TrXY (ρXY ln(ρXY ))

= −TrXY (ρXY ln(ρX ⊗ 1Y ))− TrXY (ρXY ln(1X ⊗ ρY )) + TrXY (ρXY ln(ρXY ))

= TrXY (ρXY (ln(ρXY )− ln(ρX ⊗ 1Y )− ln(1X ⊗ ρY )))

= TrXY (ρXY (ln(ρXY )− ln(ρX ⊗ ρY )))

= S(ρXY ||ρX ⊗ ρY )

I(X : Y ) = S(ρXY ||ρX ⊗ ρY ) (2.50)
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The relative entropy is the quantum analog of the KULLBACK-LEIBLER divergence.

The relative entropy can be shown non-negative and hence, we have the two following proper-
ties for the quantum mutual information.

I(X : Y ) ≥ 0

I(X : Y ) = I(Y : X)
(2.51)

2.8.3 HOLEVO’s theorem
Theorem (HOLEVO’s theorem [23]): Let ρ1,ρ2, · · · ,ρn be mixed states and X a random
variable with P (X = i) = pi for 1 ≤ i ≤ n. Let ρ be

ρ =
∑
i

piρi (2.52)

and Y the outcome of measurement on ρ. Then,

I(X : Y ) ≤ χ

χ = S(ρ)−
∑
i

piS(ρi)
(2.53)

χ is called HOLEVO information.

This theorem, also called HOLEVO’s bound, states that there is an upper bound of the informa-
tion that can be known on a quantum state by performing a measurement.
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Chapter 3

Quantum Key Distribution

The goal of Quantum Key Distribution (QKD) is to share a string of random bits between two par-
ties, using quantum technologies and ensure that only the two parties have access to a meaningful
part of the key.

We will first discuss in more detail the utility of having a secret random string of bits shared
between two parties. Then we will discuss BB84 which is historically the first scheme of Quantum
Key Distribution, and also the first time Quantum Cryptography gained interest in the scientific
community and became something possible. Next, we will talk about entangled Quantum Key
Distribution with the protocols Ekert91 and BBM92, and we will also discuss quantum repeaters
and relays by the same occasion. Finally, we will relax one assumption of Quantum Key Distribution
and take an interest in Device Independent Quantum Key Distribution (DIQKD).

As in most examples of cryptography, we will denote by Alice (A) and Bob (B) the two parties
that want to exchange a key, and Eve (E) a malicious party that wants to gain information on the
key.

3.1 What to do with a random key ?

But surely, Alice and Bob want to share some things more interesting than a string of random
numbers, like a secret photo, a very important password, or what they have eaten for lunch.

But they can do it. Imagine they already share the secret key

01101001

want to share the secret string

BANANA PIE

Using the UTF8 encoding, the B will become in binary

01000010

The encrypted version of the message is the modulo 2 addition between the plain message and
the key:

E = U ⊕2 K

U = E ⊕2 K
(3.1)

the second equation comes from the fact that ⊕2 · ⊕2 = 1. Then, Alice’s encrypted message will
begin with:

22



3.2. The oldest protocol: BB84 Chapter 3. Quantum Key Distribution

0 1 0 0 0 0 1 0 U
⊕2 0 1 1 0 1 0 0 1 K
= 0 0 1 0 1 0 1 1 E

Table 3.1: Encryption of B of Banana Pie

and Bob can easily decrypt the message with:

0 0 1 0 1 0 1 1 E
⊕2 0 1 1 0 1 0 0 1 K
= 0 1 0 0 0 0 1 0 U

Table 3.2: Decryption of B of Banana Pie

We have a symmetric scheme, i.e. we have to securely share a secret key and quantum me-
chanics can help us.

This secret key could also be used with a standard classical encryption scheme like AES.

To assure maximal privacy, each bit of the private key should be used to encrypt one bit of a
message, meaning that when Alice and Bob have run out of bits from the key, they should exchange
a new key: this is the one-time pad (OTP).

3.2 The oldest protocol: BB84

3.2.1 Assumptions

For the time being, we make the following assumptions:

i ) Alice and Bob try to cooperate;

ii ) Alice and Bob share a perfect (i.e. without loss) quantum channel that can be subject to
eavesdropping;

iii ) Alice and Bob share a classical communication channel, that can be subject to passive eaves-
dropping. This channel transfers the information without losses or errors (using classical
error correction for instance);

iv ) Alice and Bob each have a truly trusted random generator;

v ) Alice and Bob are in secure physical locations (i.e. no information can go out except for the
two above channels);

vi ) Alice and Bob have trusted classical devices;

vii ) Alice and Bob have trusted measurement devices.

We will see how can those assumptions can be relaxed. Under those assumptions, it is possible
to design a theoretically secure key distribution protocol.

3.2.2 The protocol

The BB84 protocol is one of the first examples of plausible Quantum Cryptography. The aim is
to share a secret key without any pre-shared secret (or a very small one). It was designed by
BRASSARD and BENNETT in 1984 [24].
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Alice

Quantum channel
|0〉 |0〉 |−〉 |+〉 |−〉 |1〉 |0〉 |0〉

Bob

Classical channel
BzBzBxBxBxBzBzBz BzBxBxBzBxBzBxBz

00101100 01101110

Figure 3.1: Schematic diagram of BB84

The exchange proceeds as follows:

1. Alice chooses a random bit using the random generator;

2. Alice chooses a random basis Bz or Bx using the random generator;

3. Alice encodes the chosen bit in the chosen basis and sends the qubit to Bob using the quantum
channel;

4. Bob chooses a random basis Bz or Bx using the random generator;

5. Bob measures the received qubit in the chosen basis and decodes the bit. If Bob has the same
basis as Alice, they share the same bit, and, if not, they share the same bit with a probability
of 1

2 and a different bit with the same probability (section 2.5).

6. Alice and Bob repeat the steps 1 to 5 until a reasonable amount (we will see what we mean
by that) of bits have been exchanged.

7. Then they share the bases used for encoding and decoding using the classical channel.

8. They discard every bit where the bases are not the same and keep the other ones, without
revealing the value of the bits.

9. To verify that no one eavesdropped, they publicly share a reasonable amount of bits and
verify they agree. If they agree on all the bits, they discard the used bits and keep the key. If
they disagree, they throw away the key and start again.

At the end of the operation, Alice and Bob share an identical and secure private key. Let’s see an
example before seeing what could go wrong if Eve tries to gain information on the exchanged bits.

Let’s see an example:

n A’s bit A’s basis A’s qubit B’s basis B’s qubit B’s bit Key
1 0 Bz |0〉 Bz |0〉 0 0
2 0 Bz |0〉 Bx |+〉 / |−〉 0/1
3 1 Bx |−〉 Bx |−〉 1 1
4 0 Bx |+〉 Bz |0〉 / |1〉 0/1
5 1 Bx |−〉 Bx |−〉 1 1
6 1 Bz |1〉 Bz |1〉 1 1
7 0 Bz |0〉 Bx |+〉 / |−〉 0/1
8 0 Bz |0〉 Bz |0〉 0 0

Table 3.3: Example of realization of the BB84 protocol
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When the bases are the same (1, 3, 5, 6, 8), Alice and Bob share the same bit.

When the bases are not the same, we have something like |0〉 / |1〉 which means that the mea-
surement will give either outcome with a probability of 1

2 , but Bob doesn’t know, a priori that he
didn’t have the same basis as Alice. For Bob the sequence might be:

00111110

During the phase where Alice and Bob share their bases, they will discard the bits 2, 4, and 7
and at the end, they will share the secret key:

01110

Before discussing the performances of this algorithm, let’s see how it protects against passive
eavesdropping.

Let’s suppose we have an eavesdropper Eve. She measures in a random basis (or always the
same basis, in either case it will lead to problems) and re-encodes the bit in the same basis she
measured. She measures and sends with no notable delay.

Here is an example of realisation (this time instead of letting |0〉 / |1〉, we randomly choose
measurement outcomes)

n A’s bit A’s basis A’s qubit E’s basis E’s qubit B’s basis B’s qubit B’s bit Key
1 0 Bz |0〉 Bz |0〉 Bz |0〉 0 0
2 0 Bz |0〉 Bz |0〉 Bx |−〉 1
3 1 Bx |−〉 Bz |1〉 Bx |+〉 0 0
4 0 Bx |+〉 Bx |+〉 Bz |1〉 1
5 1 Bx |−〉 Bx |−〉 Bx |−〉 1 1
6 1 Bz |1〉 Bz |1〉 Bz |1〉 1 1
7 0 Bz |0〉 Bz |0〉 Bx |−〉 1
8 0 Bz |0〉 Bx |+〉 Bz |0〉 0 0

Table 3.4: Example of realization of the BB84 protocol with eavesdropper

We only look at bits 1, 3, 5, 6, and 8 because the others are discarded. On the bits 1, 5, 6, Alice
and Eve share the same basis so Eve cannot be detected. With the 8th bit, Eve doesn’t have the
same basis as Alice but chance made Alice and Bob share the same bit at the end. However, with
the 3rd bit, Eve has not the same basis as Alice, and this time Alice and Bob don’t share the same
bit value. By sharing this bit for verification at the end, they will see that Eve was present.

But we can ask ourselves: how many bits do Alice and Bob have to share in order to ensure to
find Eve if she exists.

Let’s denote BA,BE ,BB the bases of, respectively, Alice, Eve, and Bob at an iteration of the
protocol. There are four, equally probable, possibilities:

BA = BE = BB p =
1

4

BA = BE 6= BB p =
1

4

BA 6= BE = BB p =
1

4

BA = BB 6= BE p =
1

4

(3.2)

The cases where BA 6= BB are not interesting since the bits will be discarded. Also, the case
where BA = BE = BB provides no information.

Let’s look at the case BA = BB 6= BE . Imagine, without loss of generality, that BA = BB = Bz
and BE = Bx and that Alice ant to encode a 0.
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0 → |0〉

|−〉

|1〉 → 1 ×1
2

|0〉 → 0 X

1
2

1
2

|+〉

|1〉 → 1 ×1
2

|0〉 → 0 X

1
2

1
2

Figure 3.2: Probability tree

Then if Eve is present, and her basis is different from the one of Alice and Bob, there is proba-
bility of 1

2 ×
1
2 + 1

2 ×
1
2 = 1

2 to find her.

After discarding the bits, we have only two possibilities for the bases:

BA = BE = BB p =
1

2

BA = BB 6= BE p =
1

2

(3.3)

And then the probability to not find her by revealing one bit is

P (BA = BE = BB)+P (BA = BB 6= BE)×P (Alice and Bob have same bit) =
1

2
+

1

2
× 1

2
=

3

4
(3.4)

As the events are supposed independents, the probability to not find Eve by giving away k bits
is

pk =

(
3

4

)k
(3.5)

And then the probability to find Eve, assuming she exists, by giving away k bits is

pk = 1−
(

3

4

)k
(3.6)

The more bits are given away, the more chance we have to find Eve.
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k≥33; pk≥0.9999

Figure 3.3: Probability to find Eve assuming she exists

Let’s see the efficiency of the protocol. The length of the key L is given by

L = N −Nincorrect − k (3.7)

where N is the number of sent qubits, Nincorrect the number of mismatching bases, and k the
number of qubits given away to see if Eve is present. On average, Nincorrect = N

2 . If we give a
fraction of what is left atfer the announcement of the bases, let say k = L

3 , then

L = N − N

2
− L

3

L =
3

8
N

(3.8)

We can define the efficiency η = L
N and then

η =
3

8
= 37.5% (3.9)

3.2.3 Relaxing assumptions

Now, we review the assumptions that we made for QKD and we see how we can relax them.

Assumption (i): Alice and Bob try to cooperate

Even if this assumption seems to be useless, there are contexts where the parties cannot trust each
other and want to cheat. This can be studied as quantum coin flipping (or tossing) and is studied
in section 5.2.

Assumption (ii): Alice and Bob share a perfect (i.e. without loss) quantum channel, that can
be subject to eavesdropping;

In practice, quantum channels are noisy. We see this idea in subsection 3.2.4.

Also, the problem of active eavesdropping must be addressed.
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What we mean by passive eavesdropping is to listen to communications on the channel without
trying to alter or delete the data or to impersonate one of the legitimate users of the channel.

If we don’t want active eavesdropping, we need an authenticated quantum channel. This can
be done using a small pre-shared secret (see [25]).

Assumption (iii): Alice and Bob share a classical communication channel, that can be subject
to passive eavesdropping. This channel transfers the information without losses or errors (using
classical error correction for instance);

Alice and Bob need to share a classical channel to send the information about the bases used
and about the bits that are given away to see if Eve is present. This channel can be subject to passive
eavesdropping because the information transmitted using this channel gives no information about
the key, except the maximal length.

In practice, we could have active eavesdropping on the classical channel. Hence, there is a need
to check the authenticity and the integrity of the messages (i.e. to verify that the message was
indeed sent by the good person and that it was not altered in any way during the communication).
As said in [26], this matter is often skipped in the QKD literature as it is classical considerations
that are already well treated.

There are different ways to do that:

• Using a small, already shared, private key. Then QKD is viewed as a private key enlarger
since you can create a bigger private key using a small one;

• Using public-key cryptosystems.

Assumption (iii): Alice and Bob each have a truly trusted random generator

The random generator is used to choose the bits and the bases. If the random generator is
biased, information on the key or to attack could be used

However, if the generator is not trusted (for example, it was modified by a third malicious party
to play a predefined sequence that looks like random), then, it would be easy for an attacker to get
access to the key.

The idea of a quantum random generator for cryptography is discussed in section 5.1.

Assumption (iv): Alice and Bob are in secure physical locations (i.e. no information can go
out except for the two above channels)

A malicious third party could have a camera inside the lab, or a module, on the measurement
apparatus for example, that gives result of the measurements. We suppose that no information can
leak out the physical place to prevent this.

Assumption (v): Alice and Bob have trusted classical devices

Again, an eavesdropper could have tricked the classical device before the exchange to substitute
the secret key by a pre-decided key. This assumption cannot be relaxed.

Assumption (vi): Alice and Bob have trusted measurement devices

For this protocol to work, Alice and Bob assume that the measurement apparatus gives what
they are expected to give. But they could have been modified by a malicious third-party. They
cannot transmit the result of the measurements, due to assumption iv but they could be tricked
in some way. To relax this assumption, we need to talk about Device Independent Quantum Key
Distribution (DIQKD), see section 3.4.
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3.2.4 The issue with the distance: error correction and privacy amplification

In practice, neither the quantum channel nor the source of qubits is perfect.

If we take the example of photons, we need a single-photon source which is experimentally
really hard to produce. For example, using attenuated LASER pulses, we could have no photon
emitted, or 1 photon emitted or 2 or more photons emitted. In the last case, the extra photons
could be used to make a so-called photon number splitting (PNS) attack [27]. The basic idea is that
the eavesdropper Eve keeps one photon over the n photons of the pulse and sends the (n−1) other
photons to Bob. Then when the bases are announced over the classical channel, Eve measures the
photons when Bob and Alice agreed and she gets the sifted key.

Another issue is the fact that neither the quantum channel nor the detectors are perfect. First,
there are losses in the optical fiber and following [27, 28], we can model the losses by

F = 10
−αd+c

10 (3.10)

• F is called the transmission efficiency of the fiber;

• α are the losses of the fiber in dB km−1;

• d is the distance in km;

• c are eventual distance-independent losses on the fiber;

Now the detector is not perfect neither: there are two cases

• the photon is transmitted on the fiber, but the detector doesn’t detect it. We denote η the
probability for a detector to detect the photon;

• no photon is transmitted, but one of the detectors detects something. It is a dark count and
is due to thermal noise. We denote D the probability for a detector to do a dark count.

It is also possible that the two detectors of Bob detect something simultaneously (two dark counts
or one dark count and a real photon). We suppose that those events are discarded from the key
(instead of noting the basis he used, Bob notes "fail" for the basis, and when Alice and Bob share
the bases, Alice will discard the failed measurements).

Then we can calculate the probability that a bit goes into the sifted key. First, Bob must choose
the same basis as Alice (otherwise, the bit is immediately discarded). It has probability 1

2 . Then
there are two cases:

• the photon passes and is detected on the detector. Also, no dark count is registered on the
second detector. The probability is

1

2
Fη(1−D) (3.11)

• no photon passes or a photon passes but not detected and a dark count is registered and one
detector (but not on the other). The probability is

1

2
(1− Fη)2D(1−D) (3.12)

So the total probability that a bit contributes to the sifted key is

ptotal =
1

2
(Fη + (1− Fη)2D) (1−D) (3.13)

Next, we want to know which bits are correctly received. It is possible to define the visibility
V : the signal passes perfectly in the fiber with probability V and becomes noise with probability
1− V .
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Then, to be a correct bit, the photon must pass the fiber without being absorbed (F ) and
without becoming noise (V ), must be detected (η) at the detector and there must be no dark count
on the other detector (1 −D). Also, Bob needs to choose the same basis as Alice ( 1

2). Hence the
probability to accept a correct bit photon in the sifted key is

psignal =
1

2
FηV (1−D) (3.14)

Then the signal to noise ratio, or visibility (Bob’s visibility of Alice’s bit) is

VB =
psignal
ptotal

=
FηV

Fη + (1− Fη)2D
(3.15)

This visibility decreases as the distance d increases. This sounds logical as more and more photons
are absorbed. Then,

• At low distances, dark counts D and the optical visibility of the fiber V are responsible for
losses;

• At high distances, the losses come from the absorption of photons in the fiber.

Note that if we had only losses with the distance, we could do quantum key distribution at
arbitrarily large distances anyway, as the losses would only make the bit rate decrease. But we
have noise (visibility, noise by Eve, and dark counts) and hence, at one moment, the signal will
become weaker than the noise, and the communication will become impossible.

For simulation, we take the following values (see [28, 29]):

• α = 0.25dB km−1

• D = 10−4

• V = 0.99

• η = 0.3

• c = 0
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Figure 3.4: Bob’s visibility of Alice’s bit
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How these unavoidable errors are handled by Alice and Bob and from which distance the QKD
becomes impossible are the questions we will try to answer next.

Before starting the protocol, Alice and Bob agree on a qubit rate. Alice sends the qubit at this
rate and Bob measures at the same rate. If none of the detectors or the two of them tick, then Bob
marks the qubit as a failure and this will be announced during announcement of the bases in order
for Alice to delete the bits for her key.

We can then update the length of the key in equation 3.7, as Nincorrect will on average be equal
to

Nincorrect = (1− ptotal)N =

(
1− 1

2
(Fη + (1− Fη)2D) (1−D)

)
N (3.16)

L =
1

2
(Fη + (1− Fη)2D) (1−D)N − k (3.17)

Now, Alice and Bob share a key of the same length but with potential errors due to dark
count and noise. This is a problem in two ways: first, when they discard bits to verify that no
eavesdropper listened during the exchange and secondly, the need to share the exact same private
key.

For the first part, Alice and Bob agree on a threshold. If, when they discard bits, they find more
errors than the predefined threshold, they assume that an eavesdropper was listening and they
discard the key, if not, they keep the key.

They then proceed to error correction and privacy amplification.

The goal of the error correction phase is to delete the errors (either natural or caused by an
eavesdropper) in order for Bob and Alice to share the same private key. This is called reconcilia-
tion. This can be done using the classical channel, which means that an eavesdropper might gain
information by listening to this step. This will be the role of privacy amplification to reduce the
knowledge of potential eavesdropper.

A protocol for reconciliation was proposed in 1991, partly by the same authors that proposed
the BB84 protocol several years before (BENNETT and BRASSARD), in an article called Experimental
Quantum Cryptography and which discuss of the matter of reconciliation and privacy amplification
[30].

The idea is to do parity checks on blocks of the sifted key.

Alice and Bob may beforehand decide and a random permutation of the key. Then, using the
length of the sifted key and an estimation of the error rate, they split the sifted key into blocks in
such a way that they expect to have zero or one error in each block. If the blocks are too large,
they may not detect correctly the errors and if the blocks are too small, they will leak too much
information.

Before explaining in more detail the protocol, let’s just recap what is a parity check. The parity
of a bit string is 0 if there is an even number of 1 in the string and 1 if there is an odd number of 1
in the string. The effect of a one-bit flip on the string is the flip of the parity.

If Alice and Bob share a string with some errors, they will have the same parity of there is an
even number of errors. On the other hand, they will have a different parity if there is an odd
number of errors.

Then, if the blocks are split correctly so that there is zero or one error in the block, they can
detect an error by comparing the parities (if the parities are the same, there is no error and if
the parities are different there is one error). If the block has two errors, they will have the same
parities and will think that there is no error.

Before describing precisely the protocol, we must consider the fact that giving away the parity
of blocks gives away some information. In order to reduce the leakage of information, Alice and
Bob agree to delete the last bit of the block. At the bits are random, it will delete a zero with
probability 1

2 and a one with probability 1
2 . So it will leave the parity unchanged with probability

1
2 and flip it with probability 1

2 , so the parity is random again.
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So Alice and Bob split the sifted key into blocks and check the parity. If the parity is different,
they assume to have one error and search it by a bisective search.

Definition (BINARY): The bisective search works like this (see [30, 31]), also called the
BINARY primitive:

1. Bob splits the string in 2a, compute the parity of the first half, and ask the parity to Alice
over the classical channel. The parity computed by Bob is referred to as the current parity.
The parity sent by Alice is referred to as the correct parity;

2. Bob compares the correct parity sent by Alice with the current parity. If the parities are
different, the first half is selected and if the parities are the same, the second half is
selected.

3. Bob announces the selected half of the string over the public channel, and they start over
at step 1, the new string being the half of the string selected.

4. Eventually, they will find the error (in the [30] protocol, the error will be discarded since
they discard the last bit after each parity check).

This bisective search finds the error in less than dlog(l)ewhere l is the length of the initial string.

The BINARY primitive can only be run on a block with odd error parity.
aIf the block has an odd length, one of the sub-block will be one bit shorter than the other

Alice’s key 0 0 0 1 0 0 1 1 1 Correct parity: 0

Bob’s key 0 0 1 1 0 0 1 1 1 Current parity: 1

0 0 1 1 0 0 1 1 1
Correct parity: 1
Current parity: 1

Correct parity: 1
Current parity: 0

0 0 1 1 0
Correct parity: 1
Current parity: 1

Correct parity: 0
Current parity: 1

0 0 1
Correct parity: 0
Current parity: 1

Correct parity: 0
Current parity: 0

0

Bob’s corrected key 0 0 0 1 0 0 1 1 1

Current parity: 1

Flip

Figure 3.5: Run of BINARY

If there is more than one error, but an odd number of errors since BINARY can only ran on
blocks with an odd number of errors, the BINARY primitive will correct only one error:

32 32



3.2. The oldest protocol: BB84 Chapter 3. Quantum Key Distribution

Alice’s key 0 0 0 1 0 1 0 1 1 Correct parity: 0

Bob’s key 0 0 1 1 0 0 1 1 1 Current parity: 1

0 0 1 1 0 0 1 1 1
Correct parity: 1
Current parity: 1

Correct parity: 1
Current parity: 0

0 0 1 1 0
Correct parity: 1
Current parity: 1

Correct parity: 0
Current parity: 1

0 0 1
Correct parity: 0
Current parity: 1

Correct parity: 0
Current parity: 0

0

Bob’s corrected key 0 0 0 1 0 0 1 1 1

Flip

Figure 3.6: Run of BINARY with more than one error

Once they have done this process, they permute the sifted key again and they start again, with
bigger blocks. Repeating this process will reduce the number of errors. This process becomes less
and less efficient to find the last errors. In the end, Alice and Bob may change the strategy a little
bit and compare parities of random subsets (announce publicly) and not ordered blocks.

At some point, they will successfully pass the parity check a predefined number of times, 20
times for example, in a row. They then assume to share an identical key.

This process of reconciliation needs a lot of bits, as a bit is discarded whenever a parity check
is made.

We can update the formula 3.7:

L = N −Nincorrect − k −Nparity (3.18)

when Nparity is the number of parity checks. Nparity will be related to the number of errors
Nerrors but we will not find the relation between the two (we will do that for the improved version
of BINARY).

Using equation 3.14, we can estimate the number of errors:

Nerrors =

(
1− 1

2
FηV (1−D)

)
N (3.19)

Nerrors being the number of bits where Alice and Bob do not agree after announcing publicly the
bases.

This protocol is not optimal and leaks too much information (resulting in the suppression of
bits). In 1994, BRASSARD and SALVAIL proposed an optimal algorithm and a bit less optimal
algorithm, but much more usable in practice [31].

For that purpose, they defined what is a reconciliation theorem, what is an optimal, efficient,
ideal, and almost ideal reconciliation theorem.

Also, hey assimilated the quantum private channel to a binary symmetric channel. A Binary
Symmetric Channel with crossover probability p (BSCp) is a channel taking a binary value as input
and giving a binary value as output. The bit is transmitted correctly with probability 1 − p and is
flipped with probability p. It is represented schematically in figure 3.7.
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1

0
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1− p

p

p

1− p

Figure 3.7: Binary symmetric channel

In the following, we denote the error rate, also called Quantum Bit Error Rate (QBER) by Q
instead of p.

The proposed protocol is called CASCADE. It has similarities with the protocol presented in [30]
but allows us to keep the bits instead of discarding them.

As before, the CASCADE protocol takes as input the noisy key and an estimated error rate and
gives as output the reconciliated key and some information that was leaked on the public channel.

Definition (CASCADE protocol): The CASCADE protocol works like this (each step will be dis-
cussed in further detail below).

The protocol works in passes. At the beginning of each pass, except the first one, Bob
shuffles the key. This shuffle can be announced over the public channela. Then, Bob splits the
key into equal blocks b. The number of blocks k(i, Q) depends on the error rate Q and the pass
i. These blocks are referred to as top-blocks.

Then Bob computes the parity for each top-block and asks to Alice the correct parities. He
compares the correct parities with the current parities and applies the BINARY primitive to each
block with different parities.

After applying the BINARY primitive, all top-blocks will have the correct parity. Bob then use
the cascade effect to correct bits from the previous iterations.

aIt is also possible to only announce the final shuffle to Alice
bThe last block can be a bit shorter if the length is not a multiple of the number of blocks

Now let’s understand two things: why the key is shuffled at the beginnings of each pass and
why the protocol is called CASCADE.

The shuffling is useful to separate errors that are too close apart. Imagine the worst-case
scenario (see figure 3.8) where two errors are just next to each other. If at the first pass, the two
errors are in the same block (which is quite likely), without shuffling they would stay in the same
block as the size of the block increases between passes. The shuffling allows those errors to be
separated and to correct more errors.

0 1 1 1 0 0 1 0 Pass i

0 1 1 1 0 0 1 0 Pass i+ 1, without shuffling

1 0 0 0 1 1 1 0 Pass i+ 1, with shuffling

Figure 3.8: Shuffling process in the CASCADE protocol

The protocol is called CASCADE because of the cascade effect. As previously stated, a difference
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between CASCADE and the protocol described in [30] is that bits are not discarded when parities
are computed. Keeping the bits allows to correct bits from previous iterations.

Imagine that, at pass i a bit (in red in figure 3.9) is corrected. Then, Bob can apply the cor-
rection to previous passes, and one block in the previous pass will flip parity from even to odd
(remember that after the end of a pass, each top-block has even parity). Then Bob can apply the
BINARY primitive on these blocks to correct more errors, and the cascade will apply again. The
cascade can be very deep, depending on the number of passes.
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Figure 3.9: Cascade effect in the CASCADE protocol

At iteration i+ 1, the bit 5 (in red) is corrected using BINARY on the first top-block. After correction, the bit
is marked in blue. Looking at the iteration i, the second top-block has now an odd error parity and BINARY
can be applied to correct the seventh bit. The cascade is then applied to all previous iterations additionally

using the seventh bit.

Keeping the bits and exchanging the parities over the public channel means that some informa-
tion is leaked to the eavesdropper. The protocol is a practical protocol that leaks more information
than the theoretical bound but close enough to it for Q ≤ 0.15 to be used in real applications.

Aside: does Alice send all the parities without Bob asking or does she only reply to questions
from Bob. In the original protocol [31], Alice sends all the correct parities of the top-blocks (assum-
ing that the shuffle was sent by Bob). But in [26], it was presented in a server-client infrastructure:
Alice is just responding to Bob’s "Ask parity" messages. In this scheme, Alice has the only mission
to reply to the messages and to compute parities. By having such a light work, she could handle a
large number of requests (remembering that she is playing the role of a server).

In [31], the CASCADE benchmark used 4 passes with the following number of blocks:

k(1, Q) =

⌊
0.73

Q

⌋
k(2, Q) = 2× k(1, Q)

k(3, Q) = 2× k(2, Q)

k(4, Q) = 2× k(3, Q)

(3.20)

The size of the blocks doubles at each pass. The only thing we have to understand is the
⌊
0.73
Q

⌋
.

Q being the error rate, if we consider blocks with size
⌊

1
Q

⌋
, we have on average blocks with one

error. But we will also have blocks with 2 errors. By taking
⌊
0.73
Q

⌋
, we will have more blocks with

zero errors, but less with two errors. Blocks with zero errors are fewer trouble than blocks with
two errors (they are not corrected). We also have to bear in mind that the smaller the blocks the
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greater we leak information.

Hence, for regular values of Q, we have the following block sizes

k(1, Q) k(2, Q) k(3, Q) k(4, Q)
Q = 0.01 73 146 292 584
Q = 0.05 14 28 56 112
Q = 0.10 7 14 28 56
Q = 0.15 5 10 20 40

Table 3.5: Block sizes for the 4 passes for different values of Q

As expected, the block size decreases as the error rate increases.

Note that the number of passes can be different from 4. It is determined by Alice and Bob
beforehand, taking into consideration the parameter Q.

Note that the two error correction protocols don’t ensure that the final keys will be the same.
However, Alice and Bob can verify that they have the same string by producing a fingerprint of the
key (see section 4.1 for a discussion on fingerprints). The hash (or fingerprint) will be identical
if they share the same key and radically different even with small errors. Moreover, as the hash
is exchanged over the classical channel, an eavesdropper can access it, but he can’t compute the
original strings in polynomial time. While they don’t share an identical string, they repeat the error
correction process.

Alice and Bob share an identical key but an eavesdropper has gained information on the key by
two different ways:

• by eavesdropping without being detected during the quantum transmission;

• using the public information exchanged on the classical channel.

To eliminate the information gained by a potential eavesdropper, they proceed to privacy am-
plification. Again, this is done classically using the public channel. The first paper on privacy
amplification was published in 1988 by BENNETT, BRASSARD, and ROBERT [32]. In 1995, BEN-
NETT, BRASSARD, CREPEAU, and MAURER published a more general paper on the subject [33],
called Generalized Privacy Amplification.

Note that privacy amplification can be applied to other situations than just Quantum Cryptog-
raphy.

The goal of privacy amplification is to create a secret key from a larger common key on which
an eavesdropper may have gained information, that is subject to some constraints.

To explain privacy amplification, we use the work of BENNETT, BRASSARD, ROBERT, CRÉPAU

and MAURER [32, 33].

We suppose that the eavesdropper has access to t bits of information on the key, with t < n, n
being the length of the shared key W between Alice and Bob (if t = n, no privacy amplification
can be done because Eve knows the key).

Alice and Bob will use a compression function g, that will be publicly announced. The final key
K = g(W ) will be r-bit long with r < n. r depends on g and the quantity of information that Eve
has at its disposal. Eve will know only negligible information on K.

In [32, 33] emphasised the importance of universal2 classes of functions, for the purpose of
privacy amplification.

Definition (Universal2 class of functions): Following [34], let H be a class of functions from
a set A to a set B. This class is said to be universal2 if, for all x, y in A∑

f∈H

δf (x, y) ≤ |H|
|B|

(3.21)

36 36



3.2. The oldest protocol: BB84 Chapter 3. Quantum Key Distribution

where

δf (x, y) =

{
1 if x 6= y and f(x) = f(y)

0 otherwise
(3.22)

and | · | denotes the cardinal. In other terms, it means that for all x 6= y in A the probability to
have f(x) = f(y) should be less than 1

|B| when f is chosen at random in H.

Universal2 classes of functions exist. For example, the class of all functions from A to B is
universal2. A more interesting result is the fact that the class of all linear functions from {0, 1}n to
{0, 1}r is universal2 [34]. Those functions are described by n× r matrices, and then there are 2rn

functions, so rn bits are necessary to describe a function (it is possible to use smaller universal2
classes of functions and only n bits are needed to describe a function).

Alice and Bob, or at least one of the two, choose at random a function in the linear functions
from {0, 1}n → {0, 1}r where r = n− t− s (0 < s < n− t is a safety parameter). If Alice chooses
the function, she announces it to Bob using the classical channel (she also announces s), and Alice
and Bob apply the function to the key. Eve will know the function as the classical channel is public
but, as she doesn’t know all the bits of the key, she will lose information in applying the function.
In fact, it was proved in [33] that the number of bits known by Eve after privacy amplification is
less than

2−s

ln(2)
bits (3.23)

To choose r, Alice and Bob must have an estimation of t, the number of bits known by Eve. But
remember, Alice and Bob already sacrificed a number of bits to estimate the error rate. They can
make the assumption that all errors were introduced by an eavesdropper (even if some errors were
effectively introduced by noise and detector errors). By doing so, they will probably over-estimate
the number of bits known by Eve and have a shorter key than the optimal case, but at least, Eve
would know fewer bits.

3.2.5 Summary and length of the final key

Now we are going to do a quick summary of all the steps in the BB84 protocol, also we are going
to keep track of the number of bits in the key. There are three main steps:

1. Quantum communication;

2. Reconciliation;

3. Privacy amplification.

During the first step, Alice sends Ni qubits to Bob. Bob may not measure all qubits, he will
sometimes have no detector that ticks or the two of them. In this case, the bit is just discarded and
Bob marks the basis as failed.

So, when Alice and Bob share the bases, they will discard, on average

Ns = Ni −
(

1

2
+
pfail

2

)
Ni (3.24)

Following the previous notations, we have

pfail = ηD + (1− η)D2 + (1− η)(1−D)2 (3.25)

Next, Alice and Bob will sacrifice a certain number of bits to estimate the error rate

Ne = Ns − peNs (3.26)
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where pe is the proportion of bits used to estimate the error rate. The error rate is denoted
terrors.

Now Alice and Bob proceed to error correction. If they use the CASCADE protocol they don’t
discard any bits, but all the corrections, as they are done publicly will increase the information
known by Alice. They end up with a corrected key with

Nc = Ne (3.27)

Finally, Alice and Bob proceed to privacy amplification. The final key length will be equal to

Nf = Nc − t− s (3.28)

where t is

t = terrors + tPA (3.29)

terrors can be approximated by

terrors =

(
1− 1

2
FηV (1−D)

)
Ne (3.30)

and tPA, the information gained by Eve during the privacy amplification phase will depend on
terrors (or more precisely on the effective number of errors). Using the CASCADE protocol, we can
roughly estimate the number of parity bits that are given to Eve by

tPA =

4∑
i=1

k(i, terrors) = 15×
⌊

0.73

terrors

⌋
(3.31)

if there are 4 passes. Now we can all put together and

Nf = Nc − terrors −
⌊

0.73

terrors

⌋
− s

= Ne −
(

1− 1

2
FηV (1−D)

)
Ne −

⌊
0.73(

1− 1
2FηV (1−D)

)
Ne

⌋
− s

= (1− pe)Ns −
(

1− 1

2
FηV (1−D)

)
(1− pe)Ns

−

⌊
0.73(

1− 1
2FηV (1−D)

)
(1− pe)Ns

⌋
− s

= (1− pe)
(

1

2
− ηD + (1− η)D2 + (1− η)(1−D)2

2

)
Ni

−
(

1− 1

2
FηV (1−D)

)
(1− pe)

(
1

2
− ηD + (1− η)D2 + (1− η)(1−D)2

2

)
Ni

−

 0.73(
1− 1

2FηV (1−D)
)

(1− pe)
(

1
2 −

ηD+(1−η)D2+(1−η)(1−D)2

2

)
Ni

− s

(3.32)

It gives an approximate relation between Nf , Ni, and simulation parameters of the compo-
nents. The only things Alice and Bob can choose are pe, the number of passes in the CASCADE
protocol, and s.
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3.2.6 Eavesdropping strategy

Let’s finish this discussion on the BB84 protocol by analyzing eavesdropping strategies. In the
description of the protocol, we used elementary arguments to explain that the protocol is secure.
But we only described a "intercept-and-resend" strategy, with an errorless channel. Here we are
interested in an eavesdropper that can delay his measurement after the bases have been announced
for instance, and what is the maximum information gain that an eavesdropper can have.

The information gain with an intercept-and-resend strategy was studied in [35]: Alice intercept
with a measurement in the basis Bθ which is the basis Bz rotated of an angle θ, and the information
that Eve has on the raw key, per bit measured is

I(θ) = 1 + p(θ) log2(p(θ)) + q(θ) log2(q(θ)) (3.33)

where p(θ) is the probability of having the same bit as Alice sent

p(θ) =
1

2
+

cos(θ) + sin(θ)

4
(3.34)

and q(θ) is the probability of error

q(θ) =
1

2
− cos(θ) + sin(θ)

4
(3.35)

I(θ) is maximum for θ = π
4 . Results for the information on the sifted key and the corrected key

were also derived in this paper.

In [36], a more general situation was envisaged and results on Eve’s information when POVM
measurement where allowed were derived.

But here we are going to analyze the results of a paper by FUCHS et al. that derived a general
bound on Eve’s information and an optimal strategy for eavesdropping [37].

Here, we are considering a situation where Eve can delay her measurements until the bases
have been announced. This is done as follows: when Eve receives a qubit from Alice, she makes a
unitary interaction between the received qubit and a probe. The probe will then be measured after
the bases have been announced. The considered measurement is general POVM measurement.

The derivation of the bound is quite long but the result is as follows. Eve’s mutual information
I is bounded by

I ≤ 1

2
φ
(

2
√
Q(1−Q)

)
(3.36)

where φ : x 7→ (1+x) ln(1 + x)+(1−x) ln(1− x) and Q is the average error rate on both bases
(from the natural noise). They also explained that the bound can be reached with an optimal
strategy.

Finally, the key exchange can only be made if the mutual information between Alice and Bob is
superior to the mutual information between Alice and Eve and between Bob and Eve, i.e. if

IAB ≤ min(IAE , IEB) (3.37)

then the exchange must not proceed. Using the expression that was derived it was proved that
for

Q ≥ 1

2
− 1

4

√
2 ' 14.6% (3.38)

then the exchange would not be secure.

Just before closing this section, let’s name some known attacks that have been experimentally
tested on some protocols of QKD [38] : we saw the "intercept-and-resend" attack, and we quickly
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talked about photon number splitting attack. There is also the denial of service attack (you cut
the fiber), where solutions include quantum networks and free space QKD. There are also phase
randomisation and Trojan horse (Eve sends light in the quantum channel and analyses the back
reflections) attacks that could be performed on the source. There are also attacks on the detectors,
namely blinding (bling the detector using continuous wave illumination and bright pulses), time-
shift (modulating detector efficiency over time with pulses), and dead-time (using dead time effect
of single-photon detectors, i.e. the time needed after a detection to be able to detect another
photon) attacks.

3.3 Entanglement-based QKD

In 1991, Artur EKERT proposed a new way to do Quantum Key Distribution using entanglement
and BELL’s theorem [39], a protocol known as Ekert91 or E91, which was closely followed by a
modified version of BB84 that used quantum entanglement, the BBM92 protocol [40]. We start by
describing the BBM92, which is conceptually closer to BB84.

3.3.1 The BBM92 protocol

The scheme requires again a quantum channel and a classical and authenticated channel where
passive eavesdropping may be performed.

This time, instead of Alice sending qubits to Bob, an EPR pair is created and send to the parties
(the EPR pair can be issued by Alice, Bob, or a third party). Alice and Bob then independently
choose a basis, and measure in that basis, without telling the result to each other. After exchanging
a predefined number of qubits, Alice and Bob share the bases they used over the classical channel,
and each discards any measurement where they used different orientations.

As the two photons of an EPR pair are correlated, Alice and Bob should always have the same
measurement outcome when measuring in the same basis (unless transmission errors, imperfect
EPR, or eavesdropper), meaning that after this operation they end up with keys that should be
equal, they are called the sifted keys.

Then Alice and Bob share some bits to try and estimate the error rate. If the error rate is
above some threshold, they assume that the errors don’t only come from natural errors, that an
eavesdropper tried to gain some information and start a new exchange. Otherwise, they proceed
to error correction and privacy amplification (as explained in subsection 3.2.4).

Alice EPR source Bob

Classical channel
BzBzBxBxBxBzBzBz BzBxBxBzBxBzBxBz

00101100 01101110

Figure 3.10: BBM92 principle schema

Now we can question the security of the protocol, and we have to examine the two main
differences between BB84 and BBM92:

• In the BB84 scheme, the randomness of the key comes from a random generator (that can be
classical or quantum, but is independent of the scheme) and assuming that Alice has good
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intentions, this is good. Here the randomness is assured by the measurement of an EPR pair.
It might be even a bit more secure than the original BB84 scheme;

• The EPR source can be located at Alice or Bob secure locations or at a third party. If the
EPR source is located at, for instance, Alice’s location, then the protocol is pretty much the
same as BB84. In fact, Bob or any third party cannot distinguish if Alice is using an EPR
source or not. In the second case, the source is placed between Alice and Bob. We will see
in subsection 3.3.3 that it allows Quantum Key Distribution over longer distances but one be
worried about a third malicious party modifying the EPR source.

In their paper, BENNETT et al. proved that a malicious third party Eve cannot modify the EPR
source in order to gain information (the best she can, without increasing the error rate significantly,
is a measurement uncorrelated from the EPR pair).

The scheme is really close to the BB84 one and at least as secure. It may have some advantages:

• If Alice and Bob decide to store the EPR pairs and to make the measurements just before the
key is used, then the key cannot be leaked before its use as the information don’t exist and is
hidden, quantumly stored. In the other case, the key is stored classically and could be easily
copied if anyone gained access to the physical locations;

• As we will see later, the maximal distance over which the exchange can be made is almost
multiplied by 2 if the EPR source is placed in the middle.

3.3.2 The Ekert91 protocol

The Ekert91 protocol came before the BBM92 protocol and is a bit more complicated as it uses
BELL’s inequality in order to detect a potential eavesdropper. It is considered less usable than the
BBM92 but can be used in a special case where the BB884 and BBM92 schemes cannot be used:
Device Independent Quantum Key Distribution (see section 3.4).

Once again we have a source placed between Alice and Bob that emits pairs of entangled
particles, in the state

∣∣Φ+
〉

=
1√
2

(|00〉+ |11〉) (3.39)

Alice makes a measurement with a direction randomly chosen between 0, π8 ,
π
4 (we denote the

three possible directions a1,a2,a3).

Bob makes a measurement with a direction randomly chosen between −π8 , 0,
π
8 (we denote the

three possible directions b1, b2, b3).

Here note that we did not follow EKERT’s original paper, were the pair would be in the state:

∣∣Ψ−〉 =
1√
2

(|01〉 − |10〉) (3.40)

and the angles are 0°, 45°, 90° for Alice and 45°, 90°, 135° for Bob. The idea is nevertheless the
same, and the intermediary results only slightly different.
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ex

ey

a1

a2

a3

(a) Alice

ex

ey

b1

b2

b3

(b) Bob

Figure 3.11: Directions for measurement for Alice and Bob

When Alice and Bob choose the same orientations (a1, b2 or a2, b3), they will end up with the
same measurement outcome.

At the end of the quantum communication, Alice and Bob share the bases they used and they
separate the results into two groups:

• The first group is composed of the results where Alice and Bob use different bases. This will
be used to detect a potential eavesdropper.

• The second group is composed of the results where Alice and Bob used the same basis. This
will be used to construct the secret key.

Then they publicly reveal the content of the first group. To understand this step, we have to
define correlation coefficients. The correlation coefficient between ai and bj is

E(ai, bj) = P00(ai, bj) + P11(ai, bj)− P01(ai, bj)− P10(ai, bj) (3.41)

where P0/10/1(ai, bj) is the probability for Alice to measure 0/1 with orientation ai and for Bob
to measure 0/1 with orientation bj .

This can be written

E(ai, bj) = P(a = b|ij)− P(a 6= b|ij) (3.42)

where a is the result of Alice’s measurement and b the result of Bob’s one.

Now let’s compute a value for E(ai, bj). We denote by θaj and θbj the angles corresponding to
the orientations of measurement i.e.

ai = cos(θai )ex + sin(θai )ey

bj = cos
(
θbj
)
ex + sin

(
θbj
)
ey

(3.43)

Then a measurement with orientation ai corresponds to a measurement in the {|ai〉 ,
∣∣a⊥i 〉}

with

|ai〉 = cos(θai ) |0〉+ sin(θai ) |1〉∣∣a⊥i 〉 = − sin(θai ) |0〉+ cos(θai ) |1〉
(3.44)

Hence, we have
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P00(ai, bj) = |
〈
aibj

∣∣Φ+
〉
|2

=

∣∣∣∣ 1√
2

(
cos(θai ) cos

(
θbj
)

+ sin(θai ) sin
(
θbi
))∣∣∣∣2

=
1

2
cos2(θai − θbj)

P01(ai, bj) = |
〈
aib
⊥
j

∣∣Φ+
〉
|2

=

∣∣∣∣ 1√
2

(
− cos(θai ) sin

(
θbj
)

+ sin(θai ) cos
(
θbi
))∣∣∣∣2

=
1

2
sin2(θai − θbj)

We have similar expressions for P10 and P11 resulting in

P00(ai, bj) =
1

2
cos2(θai − θbj)

P01(ai, bj) =
1

2
sin2(θai − θbj)

P10(ai, bj) =
1

2
sin2(θai − θbj)

P11(ai, bj) =
1

2
cos2(θai − θbj)

(3.45)

Hence we have

E(ai, bj) = cos2(θai − θaj )− sin2(θai − θbj) = cos
(
2(θai − θbj)

)
(3.46)

meaning that we have the following values:

i
j

1 2 3

1
√
2
2 1

√
2
2

2 0
√
2
2 1

3 −
√
2
2 0

√
2
2

Table 3.6: Value of the correlation coefficients

We then define a quantity when Alice and Bob choose different orientations:

S = E(a1, b1) + E(a1, b3)− E(a3, b1) + E(a3, b3) (3.47)

Using table 3.6, we find

S = 2
√

2 (3.48)

Now let’s see the effect of an eavesdropper. Let’s suppose Eve tries to make a measurement on
the two particles (she chooses a direction ea for Alice’s particle and eb for Bob’s particle), and after
the measurement, she resends the same bit encoded in a qubit in the measurement basis.

The strategy of Eve is represented by a distribution probability:

ρ(ea, eb) ≥ 0

∫∫
ρ(ea, eb)d2ead2eb = 1 (3.49)

In this case
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S(ea, eb) = E(a1, ea)E(b1, eb) + E(a1, ea)E(b3, eb)− E(a3, ea)E(b1, eb) + E(a3, ea)E(b3, eb)
(3.50)

This expression can be simplified using a bit of algebra. We denote

ea = cos(θea)ex + sin(θea)ey

eb = cos(θeb)ex + sin(θeb)ey

and then

S(ea, eb) = cos(2(θa1 − θea)) cos
(
2(θb1 − θeb)

)
+ cos(2(θa1 − θea)) cos

(
2(θb3 − θeb)

)
− cos(2(θa3 − θea)) cos

(
2(θb1 − θeb)

)
+ cos(2(θa3 − θea)) cos

(
2(θb3 − θeb)

)
This simplifies to

S(ea, eb) =
√

2 cos(2(θea − θeb)) (3.51)

and the average value is

S =

∫∫
ρ(ea, eb)S(ea, eb)d2ead2eb

=
√

2

∫∫
ρ(ea, eb) cos(2(θea − θeb))d2ead2eb

(3.52)

We have

− 1 ≤ cos(2(θea − θeb)) ≤ 1 (3.53)

and combining equations 3.49, 3.52, and 3.53, we end up with

−
√

2 ≤ S ≤
√

2 (3.54)

So, when Alice and Bob share the bits of the first group, they can compute the value of S. If
they find S = 2

√
2, it means that the output they have was indeed obtained using entangled pairs.

If they obtain |S| ≤
√

2, it means that an eavesdropper has perturbed the exchange (note that
depending on the chosen angles, BELL’s inequality may yield a different result. Often, one finds
|S| ≤ 2).

The advantage of the EKERT’s protocol is the fact that, at a cost of one supplementary basis (i.e.
two supplementary states), no information about the key is revealed to know if an eavesdropper
was present (remember that in the BB84 and BBBM92 protocols, Alice and Bob estimate the error
rate by publicly announcing bits from the key).

Now, the protocol is less efficient than the BB84 and BBM92 protocols. There are in total 9
combinations possible for the choice of the bases and only 2 of them contribute in the sifted. So
the length of the sifted key, before any correction or privacy amplification is roughly

L =
2

9
N (3.55)

but remember that this time, we don’t give away any bit to verify the presence of an eavesdrop-
per. A modified and more efficient version of EKERT’s protocol is presented in section 3.4.
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Having said all that, we must however remember that, even if Alice and Bob choose the same
basis, their results are not perfectly correlated due to errors and will affect the value of S. Following
the ideas in [41], we can define the Quantum Bit Error Rate (QBER) by

Q = P(a 6= b|12) + P(a 6= b|23) (3.56)

Also, we use the following model. Instead of sharing the state |Φ+〉, Alice and Bob share the
state

ρ = p
∣∣Φ+

〉 〈
Φ+
∣∣+ (1− p)1

4
(3.57)

(noisy state: the entangled pair is correctly shared with probability and become noise with
probability 1-p).

Now, we can relate p and Q: they will have different outcomes when they should have the
same, when: 1) the entangled pair becomes noisy (1− p) and 2) Measurement outcomes, that are
hazardous, are different ( 1

2), resulting in

Q =
1

2
− p

2
(3.58)

Note that, if p = 1, i.e., the perfect channel, we have Q = 0. If we have p = 0 (the noisiest
channel), we have Q = 1

2 , which are totally uncorrelated results.

In the noisy case, the correlation coefficients are multiplied by p since results are uncorrelated
when the signal becomes noise, resulting in

S = 2
√

2p = 2
√

2

(
1

2
− p

2

)
(3.59)

But, the security of this protocol is based on the violation of BELL’s inequality. But if S is less
than

√
2, i.e. when p ≤ 1

2 , Eve’s interference cannot be distinguished from noise. This corresponds
to a quantum bit error rate of Q = 25%.

3.3.3 Quantum relays and repeaters

As stated before in subsection 3.2.4, it is difficult to implement Quantum Key Distributions over
long distances, in particular, due to the absorption of photons in the fiber. But we have physical
realizations of QKD over hundreds of kilometers.

One way to easily increase the maximal distance is to use an entanglement-based QKD, with
the EPR source placed between Alice and Bob. This would allow doubling the distance compared
to QKD.

If we want to increase the distance even more, we need to use something more. Classically we
use repeaters to increase communication distance. But in the quantum world, we cannot do the
same because of the no-cloning theorem.

In 1998, BRIEGEL et al. proposed an idea of a quantum repeater [42]. This would allow to
creating entangled pairs over an arbitrarily large distance.

But those quantum repeaters use entanglement purification and quantum memory, areas that
need research. Nevertheless, there is a way to increase the maximal distance over which QKD can
be achieved without those strong requirements. This is refereed to as quantum relays.

The idea of quantum relays is to extend what we did in putting the EPR between Alice and Bob:
we have split the channel into two sections. It is possible to separate the channel in more than two
sections. Before trying to generalize, let’s try to compute Bob’s visibility VB in the case we use two
segments.
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The probability for the photon to pass half the fiber without being absorbed is then

10−
αd

2
10 = F

1
2 (3.60)

For a bit to contribute to the sifted key:

• Alice and Bob must choose the same basis: 1
2 ;

• each photon must pass half the fiber without being absorbed and be detected, or being ab-
sorbed or being not detected and have a dark count on one of the detectors: F

1
2 η + (1 −

F
1
2 η)2D;

• the other detector must have no dark count: 1−D.

resulting in the total probability:

ptotal,2 =
1

2

(
F

1
2 η + (1− F 1

2 η)2D
)2

(1−D)2 (3.61)

To be not noisy,

• Alice and Bob must choose the same basis: 1
2 ;

• each photon must pass half the fiber without being absorbed, without becoming noise, be
detected and have no dark count on the other detector: F

1
2 ηV (1−D).

resulting in the total probability:

psignal,2 =
1

2

(
F

1
2 ηV (1−D)

)2
(3.62)

Hence, Bob’s visibility is

VB,2 =
psignal,2
ptotal,2

=
(F

1
2 ηV )2(

F
1
2 η + (1− F 1

2 η)2D
)2 (3.63)

We compare VB and VB,2 in figure 3.12.
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Figure 3.12: Comparison of VB and VB,2

Now we can consider splitting our communication into 3 parts, and then we will generalize to
N parts. To do that, we use quantum teleportation (see subsection)

Let denote the intermediaries of the transmission by Charlies. The first intermediary is Charlie-1
and the second is Charlie-2.

Alice Charlie-1 Charlie-2 Bob

Figure 3.13: Key exchange with N = 3

Now let’s suppose the following:

1. Charlie-1 emits a pair of entangled particles, one is sent to Alice and the other to Charlie-2;

2. Charlie-2 teleports his particle to Bob;

3. Alice and Bob have a pair of entangled particles. They can proceed as explained in the
previous parts.

Alice Charlie-1 Charlie-2 Bob

1

2

Figure 3.14: Key exchange with N = 3

Now, as before, we want to know Bob’s visibility. First, the exchange between Alice and Charlie-
2 must go well. Also, to do the quantum teleportation, Charlie-2 and Bob must share an entangled
pair which is equivalent to one section, resulting in the following results.
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We are not capable of qubit teleportation with 100% efficiency. Using linear optics, it is not
however possible to do that and the teleportation fails with probability 1

2 [43]. So we now have

psignal,3 =
1

2

(
F

1
3 ηV (1−D)

)3 1

2
(3.64)

We denote

p3 =
(
F

1
3 η +

(
1− F 1

3

)
2D
)

(1−D) (3.65)

We would expect to have

ptotal,3 =
1

2
p33 (3.66)

like for the 1 and 2 sections cases but in fact, this is not the case. We indeed have the p3
probability for the section from Charlie-1 to Alice. In the setup of the article, they suppose that the
BELL measurement is made using a beam splitter, that combines the photons from the 2 fibers, and
then, the BELL states are distinguished by the time of arrival of the photons. 2 BELL states will give
photons arriving at different times (one of the BELL states gives different times and different sides
while the other gives different times and same side) and the two last BELL states give the same
time and the same side, and so the 2 photons arrive at the same detector half of the time. In this
case, as only one detection is recorded, this bit don’t go in the sifted key, unless a dark count was
detected on another detector. Hence, we remove from p23 the probability 1

2 (F
1
3 η)2(1−D)2, which

is the probability of having the two photons pass the fiber and having no dark count, divided by 2
to have half of the time, and then we add 1

2 (F
1
3 η)2(1−D)2 × 2D. And hence

ptotal,3 =
1

2
p3

(
p3 −

1

2
(1− 2D)(F

1
3 η)2(1−D)2

)
(3.67)

Hence,

VB,3 =
psignal,3
ptotal,3

=

(
F

1
3 ηV (1−D)

)3
2p3

(
p23 − 1

2 (1− 2D)(F
1
3 η)2(1−D)2

) (3.68)

For 4 sections we can use 2 EPR sources and one entanglement swapping resulting in 1 BELL

test.

Alice Charlie-1 Charlie-2 Charlie-3 Bob

Alice Charlie-1 Charlie-2 Bob

Alice Charlie-1 Bob

Alice Bob

Figure 3.15: Schemes with 1,2,3 and 4 sections (entanglement swapping for 4 sections at
Charlie-2)

We can generalize this to n sections. We will
⌊
n−1
2

⌋
BELL tests and hence
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pn =
(
F

1
n η +

(
1− F 1

n

)
2D
)

(1−D) (3.69)

psignal,n =
1

2

(
1

2

)bn−1
2 c (

F
1
n ηV (1−D)

)n
(3.70)

ptotal,n =
1

2
p
2−2bn−1

2 c
n

(
p2n −

1

2
(1− 2D)(F

1
n η)2(1−D)2

)bn−1
2 c

(3.71)

VB,n =
psignal,n
ptotal,n

=

(
1
2

)bn−1
2 c

(
F

1
n ηV (1−D)

)n
p
2−2bn−1

2 c
n

(
p2n − 1

2 (1− 2D)(F
1
n η)2(1−D)2

)bn−1
2 c

(3.72)

Bob’s visibility for different values of n and for a distance between 0 and 1000km is plotted
below:
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Figure 3.16: Comparison of VB,n for n varying from 1 to 10

Note that imperfect entanglement or imperfect quantum teleportation/entanglement swapping
introduce noise and so we cannot split our channel into an arbitrarily large number of sections
as the ratio signal to noise will also tend to zero. There is a way, using quantum memory and
entanglement purification, to allow an arbitrarily large number of sections and arbitrarily long
communication channels. This is referred to as quantum repeaters and was historically the first to
be proposed, but are more complicated and less attainable in the foreseeable future.

3.4 Device Independent Quantum Key Distribution

In section 3.2, we made the assumption that the measurement apparatus owned by Alice and
Bob could be trusted. The aim of Device Independent Quantum Key Distribution is to design an
unconditionally secure protocol without making any assumptions on the measurement devices.
They are seen as black boxes that produce a classical output from a quantum and classical input
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(the classical input is the choice of the basis). The most extreme case, where the measurement
apparatus has been created by the eavesdropper Eve is envisaged.

DIQKD is also used when referring to designing a protocol where the source cannot be trusted.

In [44], which is one of the first paper to talk about device independent quantum key distribu-
tion, and which proposed the first implementation of such a protocol, proposed a proof to see why
classic QKD is not secure. The basic idea is that, if the measurement apparatus and the source can-
not be trusted, they can be in a larger space than a two-qubit space. They could be in a four-qubit
space, where the chosen state and chosen measurement operators reproduce the correlations (i.e.
totally correlated when Alice and Bob choose the same basis, and uncorrelated otherwise) but the
extra space allows Eve to get a tripartite state and to get information.

The basic idea of DIQKD protocols is to test the measurement devices with BELL’s inequality.
The Ekert91 protocol makes use of BELL’s inequality, and some DIQKD protocols are in fact mod-
ified versions of the Ekert91 protocol. For instance, a protocol that was proposed in [45] and
further analysed in [41] is a modified version of Ekert91 and it goes as follows: Alice and Bob
share a Quantum Channel that can be eavesdropped and a classical channel that can be passively
eavesdropped. Alice chooses between three possible orientations for measurement: a0, a1, a2, and
Bob chooses from two possible orientations: b1, b2. An EPR source emits particles that are sent
to both Alice and Bob. When Alice chooses a0 and Bob chooses b1, the two measurements are
perfectly correlated. When other bases are chosen, the results are uncorrelated. This protocol is a
bit more efficient than EKERT’s one as fewer bases are used. Here 4

5 of the results are uncorrelated
whereas it would have been 7

9 for EKERT’s protocol.

Then the results of measurement when the bases a1, q2, b1, b2 are used to estimate

S = E(a1, b1) + E(a1, b2) + E(a2, b1)− E(a2, b2) (3.73)

As in Ekert’s protocol, the rules of quantum mechanics say that

S = 2
√

2p (3.74)

(the state in the quantum channel is ρ = p |Φ+〉 〈Φ+|+ (1− p)14 ).

And for classically correlated data, we should find

S ≤ 2 (3.75)

(Note that BELL’s inequality is not exactly the same as before, because different angles are
chosen).

DIQKD is impossible if the value of S is below the classical limit (i.e. p ≤ 1√
2
).

In [45], the protocol was proven to be secure against individual attacks from an eavesdropper
that is limited only by the non-signaling principle (which basically states that the measurement of
an entangled state cannot transfer information to another observer), and in [41], this protocol was
proven secure against collective attacks (Eve applies the same attack to Alice’s and Bob’s systems).

In the paper, they discussed loopholes in BELL experiments and DIQKD, and especially:

• the locality loophole: no information should travel between the moment one party made
the measurement and the other party making the measurement. This means that the mea-
surements should be performed sufficiently far apart and fast, and the basis’ choice should
be truly random. This loophole is in fact only a problem for BELL experiments and can be
overcome in the context of DIQKD by ensuring that Alice’s and Bob’s physical locations are
isolated and that no signal/photon other than the ones needed for the protocol travel from
Alice to Bob;

• the detection loophole: detectors must have sufficient detection efficiency to perform BELL

tests and DIQKD. According to [41], for the BELL’s inequality to be valid it is needed to have
η > 82.8%. This is a real problem for DIQKD as the measurement apparatus is given by an

50 50



3.4. Device Independent Quantum Key Distribution Chapter 3. Quantum Key Distribution

untrusted party. A solution proposed in the paper is to use an experiment that is immune to
the detection loophole [46].

In 2020, a slight modification of this protocol was proposed to make it more robust and seems
to look like EKERT’s protocol [47]. Instead of using 1 possibility to have correlated outcomes,
there are proposing a protocol, where Alice has the choice between 2 orientations and Bob has the
choice between 4 orientations, and the 2 orientations of Alice are in the set of Bob’s orientations.
In this way, there are 2 possibilities that give correlated outcomes. In the first proposal of DIQKD,
a potential eavesdropper would know which orientation gives the correlated outcomes and can
optimise here attack knowing this fact, i.e. maximise the amount of information she gained when
this set of measurements is chosen from Alice and Bob. In the other case, there are two possibilities,
as the two measurements can both maximise Eve’s gain of information, there will at least one
that will not maximise Eve’s gain of information. This protocol was proven to be secure against
collective attacks.

We won’t discuss it in this paper, but there is also research to do other quantum cryptographic
tasks device independent including the tasks that we will see in the following chapters.
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Chapter 4

Public key, digital signatures and
fingerprinting

In this chapter, we examine how the law of Quantum Mechanics can help to design unconditionally
secure public crypto-systems : public-key, fingerprinting and digital signatures.

4.1 Digital fingerprints

4.1.1 Classical fingerprinting

A fingerprint, or digest, or checksum, or hash of a message or string is a smaller message or string
produced by a cryptographic hash function. This cryptographic hash function is a function that is
one way (see the discussion in the next section but it is basically a function that is easy to compute
and hard to invert) and has ideally the following properties (see [48]):

1. A given message has always the same hash;

2. It is impossible to compute the original message from its hash (pre-image resistance);

3. The hash is unique, meaning that two different messages have different hash (2nd pre image
resistance). Also, given a hash value, it is not possible to find a message such that its hash is
the given hash value;

4. Two different messages should have hashes that differ significantly (near-collision resis-
tance);

5. A small change in the message should result in a significant change in the hash (non-
correlation and avalanche effect);

6. Even if the message can be any size, the hash has always the same size.

Some cryptographic hash functions may have slightly-less strong properties in practice.

Today, there are several cryptographic hash functions that are used: md5, the SHA family, or
BLAKE (2 or 3), the third version being very recent (January 2020).

Let’s take the md51 scheme, for example. It was designed in 1991 by Ronald RIVEST and was
standardised in RFC1321 [49].

It is a scheme that produces a fingerprint of 128 bits for any given message. It is today consid-
ered as insecure because some properties that are given above were proved to be not fulfilled but
the scheme is still widely used.

Let’s take the message
1MD stands for Message Digest
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IMPERIAL COLLEGE LONDON

The fingerprint produced by the md5 algorithm is

1ba7043ffcc86c417c072aa74d649202

If we introduce a slight modification in the string, for instance

IMPERIAL COLLGE LONDON

we obtain a totally different hash:

242de8694a5ffac6bd993e12322f8d8a

(the digests are printed in hexadecimal format).

If we compare the two results byte to byte, we find that they have no bytes in common, even
with all permutations of bytes allowed. If we compare the two digests bit to bit, we find that they
have 59 bits in common over 128 (two random strings would have approximatively 128/2 = 64
bits in common), so the two digests appear to be decorrelated.

4.1.2 Application of such fingerprints

Fingerprints have several applications, that we try to list and explain below:

• Ensuring the integrity of a message. If you receive a large message and you want to ensure
that there were no errors during transmission or that nobody tricked you by making you
download a message that only looks like the legitimate message. You could calculate the hash
and your own and compare it to a publicly available hash. For example, if you go to the Arch
Linux download page, https://www.archlinux.org/download/, you will find 4 different
checksum, one being the md5 checksum: cd918e38b3d468de98c1a523990500ef2. This is
useful to check that you ave indeed the right file (as they have several distribution servers,
one file may have been corrupted for example, or could be corrupted during download);

• Storing password. Instead of storing the plain-text password in databases, that have disas-
trous consequences when the database is compromised, it is possible to store the hash of
the password. Each time a user inputs a password, you calculate the hash and compare it
to the hash in the database. If they are the same, the user has entered the good password.
This method is no longer considered secure because of the so-called rainbow tables (they are
tables of correspondence between commonly used passwords and their hash, which allow
malicious parties to just do a search in a list to find a password). The recommended method
for storing the password is salted-hashing.

• Produce a more readable verifier for humans. PGP keys are based on a trusted network. In
order to construct this trust network, people gather at Key Signing Parties (KSP) where you
verify that a person does indeed the key he claims to hold (by sending him an encrypted
message and verify he can decrypt it) and verify he is the man he claims to be (by verifying
an identity card with a photograph). In the beginning, to verify that you are signing and
trusting the good key, you compare the fingerprints of the keys.

The fingerprint of my PGP key is

438C 07EC 20B6 45D0 5BBE 4C83 DC24 C578 7C94 3389

and my complete public PGP key can be found at https://nanoy.fr/media/yoann_pietri.
asc but has over 15500 characters it;

2This checksum was extracted on August, 22nd 2020. A different checksum could be available at the download page at
later times.
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• Fingerprints can be used as file identifiers. For example, git the versioning software used
hashes to uniquely identify files and commits. In the same idea, it can be used to solve the
Two Generals’ problem by creating a unique identifier for a message that needs to be only
interpreted once [50].

• Verify that a shared secret is the same. Imagine that Alice and Bob want to verify that they
share the same secret string. They can do it by comparing the fingerprint of their respective
strings;

• Fingerprints are used in digital signature schemes. We speak of them in section 4.3.

In the end, such identifiers are very important and there are used in lots of different situations.

4.1.3 Quantum fingerprinting

In analog to the CNOT gate, we can define the Controlled-SWAP or CSWAP or FREDKIN gate, which
is a gate that takes 3 qubits as input and outputs 3 qubits, where the second and third qubit are
swapped if the first qubit is |1〉. The first qubit is not changed.

CSWAP(|0〉 |φ〉 |ψ〉) = |0〉 |φ〉 |ψ〉
CSWAP(|1〉 |φ〉 |ψ〉) = |1〉 |ψ〉 |φ〉

(4.1)

and if |c〉 = α |0〉+ β |1〉 is a general control qubit

CSWAP(|c〉 |φ〉 |ψ〉) = α |0〉 |φ〉 |ψ〉+ β |1〉 |ψ〉 |φ〉 (4.2)

This can be represented by the matrix

CSWAP =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


=

(
14 04

04 SWAP

)
(4.3)

in the {|000〉 , |001〉 , |010〉 , |011〉 , |100〉 , |101〉 , |110〉 , |111〉} basis.

In quantum circuits, we represent it by

|1〉 |1〉

|φ〉 |ψ〉

|ψ〉 |φ〉

Figure 4.1: Representation of the CSWAP gate

The SWAP test is a test that allows us to see how two states are different, i.e. to estimate the
overlap | 〈ψ|φ〉 |2.

Let’s consider two states |φ〉 and |φ〉 and the following quantum circuit:
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|0〉 H H

|φ〉

|ψ〉

1 2 3 4

Figure 4.2: SWAP test circuit

Just before, measurement, in step 3, the system is in the state

(H ⊗ 1⊗ 1)︸ ︷︷ ︸
2 to 3

(CSWAP)︸ ︷︷ ︸
1 to 2

(H ⊗ 1⊗ 1)︸ ︷︷ ︸
Init to 1

|0〉 |φ〉 |ψ〉︸ ︷︷ ︸
Init

(4.4)

and with some computations:

(H ⊗ 1⊗ 1)(CSWAP)(H ⊗ 1⊗ 1) |0〉 |φ〉 |ψ〉 =
1√
2

(H ⊗ 1⊗ 1)(CSWAP)(|0〉 |φ〉 |ψ〉+ |1〉 |φ〉 |ψ〉)

=
1√
2

(H ⊗ 1⊗ 1)(|0〉 |φ〉 |ψ〉+ |1〉 |ψ〉 |φ〉)

=
1

2
(|0〉 |φ〉 |ψ〉+ |1〉 |φ〉 |ψ〉+ |0〉 |ψ〉 |φ〉 − |1〉 |ψ〉 |φ〉)

and hence, the final state before the measurement is

1

2

(
|0〉
(
|φ〉 |ψ〉+ |ψ〉 |φ〉

)
+ |1〉

(
|φ〉 |ψ〉 − |ψ〉 |φ〉

))
(4.5)

Hence the probability of measuring 1 as an outcome is

p =
1

2
(〈φ| 〈ψ| − 〈ψ| 〈φ|)1

2
(|φ〉 |ψ〉 − |ψ〉 |φ〉)

=
1

4
(1− | 〈ψ|φ〉 |2 − | 〈φ|ψ〉 |2 + 1)

=
1

2
− 1

2
| 〈φ|ψ〉 |2

(4.6)

As for the probability of measuring 0, it is

1− p =
1

2
+

1

2
| 〈φ|ψ〉 |2 (4.7)

It means that if the two states are equal to each other 〈φ|ψ〉 = 1, then the result of the mea-
surement will only be 0.

If you repeat the SWAP test n times, and store each result as ri, the average value of the r′is
should be the expected value of the SWAP test which is p ((1− p)× 0 + p× 1) i.e.

1

n

n∑
i=1

ri '
1

2
− 1

2
| 〈φ|ψ〉 |2 (4.8)

that can be rewritten

| 〈φ|ψ〉 |2 ' 1− 2

n

n∑
i=1

ri (4.9)
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and in a more formal way

| 〈φ|ψ〉 |2 = 1− lim
n→∞

2

n

n∑
i=1

ri (4.10)

The SWAP test was introduced in a paper called Quantum Fingerprinting published in 2001 by
BUHRMAN et al. [51]. It seems to be the only paper, as this day, treating of the subject of quantum
fingerprinting. In this paper, the problem was introduced as follow (it is called simultaneous
message passing and it was introduced in [52]): Alice and Bob have each a string of n bits, let
denote them by x and y and the goal is, for a third party, called the referee, to get the right value
of f(x, y) with

f(x, y) =

{
1 if x = y
0 if x 6= y

(4.11)

i.e. to know whether Alice and Bob share the same string or not. Of course, this could be
done if Alice and Bob send their respective string to the referee, but this method is nor optimal nor
private.

The basic idea is the following:

1. Apply an error correction code to the strings;

2. Build a quantum fingerprint of the string;

3. Send the fingerprint to the referee;

4. The referee performs the SWAP test to know whether the fingerprints are the same or not.

Let’s try to understand deeper and especially why we need an error correction code.

4.1.4 Error correction codes

This subsection is here to recap about error correction codes. It will cover simple properties in
order to understand the fingerprinting protocol. We consider error correction codes on strings of
bits, and we follow standard notations that may not agree with [51].

We will only consider linear block codes here, meaning that a whole message is split into smaller
messages, each of the same size. Each message is then transformed into a longer message called a
block.

An error correction code C is a map

C : {0, 1}k → {0, 1}n (4.12)

with k, and n being integers. k is called the message length and it is the number of bits per
block. n is called the block size. C is required to be injective (two different messages can’t have
the same code block).

The rate R is the ratio

R =
k

n
≤ 1 (4.13)

The quantity of information coded into one block increases as R increases.

Now let’s define the minimum distance of a code. For that, we need the concept of HAMMING

distance. We consider two strings of bits, of the same length. For each position of bit, we can have
either the same bit on the two strings or two different bits. The HAMMING distance is the number
of differences.

0110110

0101010
(4.14)
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From the example above, the HAMMING distance is the number of bits in red, so it is 3.

The HAMMING distance between two strings s1 and s2 is denoted ∆(s1, s2) and we have

0 ≤ ∆(s1, s2) ≤ length(s1) (4.15)

where the left equality occurs when s1 = s2 and the right when s1 is the exact opposite, bit to
bit, of s2.

Now we define the minimal distance d of an error correction code C by

d = min
s1,s2∈{0,1}k

s1 6=s2

∆(C(s1), C(s2)) (4.16)

i.e. the minimal HAMMING distance between two different code blocks. As C is injective, d is at
least one.

Ok let’s take an example. We consider a very simple error correction code which is a parity
code. We consider k = 1 and n = 3 and the following map:

p(1, 3) : {0, 1} → {0, 1}3

p(1, 3)(0) = 000

p(1, 3)(1) = 111

(4.17)

We are just repeating the bit three times. This will make the whole message much longer (3
times longer actually) but more resistant to errors if we considerer that the probability of two
errors happening during the transmission is very less than the probability of one error happening.

Indeed considerer the case, where the initial message is 0, then the transmitted block is 000
and during the transmission, an error makes the second bit flip. After transmission, the block is
010, and assuming that only one error occurred, we find that the initial message was 0. If two or
three errors occur, we will guess the wrong initial message.

In this error correction code there are only two codes: 000 and 111 and the Hamming distance
between this two codes is 3. Then we deduce that for this code, d = 3.

4.1.5 Back to the fingerprinting protocol

Now let’s consider Alice and Bob with their respective strings x and y, each of length k. We suppose
we have an error correction code

C : {0, 1}k → {0, 1}n (4.18)

with n bigger than k and we denote by d the minimal distance of C.

For i between 1 and n we denote by Ci(x) the i-th bit of C(x).

Now, we define the quantum fingerprint

|hx〉 =
1√
n

n∑
i=1

|i〉 |Ci(x)〉 (4.19)

Now let’s compute the overlap 〈hy|hx〉
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〈hy|hx〉 =

 1√
n

n∑
j=i

〈j| 〈Cj(y)|

( 1√
n

n∑
i=1

|i〉 |Ci(x)〉

)

=
1

n

n∑
i,j=1

〈j|i〉 〈Cj(y)|Ci(x)〉

=
1

n

n∑
i,j=1

δij 〈Cj(y)|Ci(x)〉

Hence

〈hy|hx〉 =
1

n

n∑
i=1

〈Ci(y)|Ci(x)〉 (4.20)

But Ci(x) is either 0 or 1 and same for Ci(y) and then the overlap 〈Ci(y)|Ci(x)〉 has only two
possible values:

〈Ci(y)|Ci(x)〉 =

{
1 if Ci(x) = Ci(y)
0 if Ci(x) 6= Ci(y)

(4.21)

Hence, we have

n∑
i=1

〈Ci(y)|Ci(x)〉 = number of bit-to-bit equalities between C(x) and C(y)

= n− number of bit-to-bit differences between C(x) and C(y)

(4.22)

and remembering the definition of the HAMMING distance given above

〈hy|hx〉 =
1

n
(n−∆(C(x), C(y))) = 1− ∆(C(x), C(y))

n
(4.23)

This is an occasion to verify that fingerprints are unique. Let’s imagine that |hx〉 = |hy〉, then we
have 〈hy|hx〉 = 1 and hence we deduce ∆(C(x), C(y)) = 0 and then C(x) = C(y). Remembering
that error corrections code are injective, we deduce x = y and then two different strings will have
different fingerprints.

x = y ⇔ |hx〉 = |hy〉 (4.24)

Considering equation 4.23 and the definition of the distance d of C, we infer that, when x 6= y

〈hy|hx〉 ≤ 1− d

n
(4.25)

But we have a way to estimate 〈hy|hx〉 with the SWAP test. If we perform the test on the
fingerprints (when x 6= y):

p ≥ 1

2
− 1

2

(
1− d

n

)2

(4.26)

This means that when x = y, the probability of obtaining 1 is 0 and when x 6= y, the probability
of obtaining 1 is at least 1

2 −
1
2

(
1− d

n

)2
.

Hence, the SWAP test with one copy of the fingerprints with the output

"Yes the two strings are identical" if the SWAP test result is 0
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"No, the two strings are different" if the SWAP test result is 1

will always give a correct result if x = y and will give a wrong result with probability at most
1
2 + 1

2

(
1− d

n

)2
if x 6= y.

Now consider the case where Alice and Bob send 2 copies of their fingerprints to the referee.
Then we consider the two-round swap test:

"Yes the two strings are identical" if the two SWAP test results are 0

"No, the two strings are different" if one the two SWAP test result is 1

will always gave a correct result if x = y and will fail, in the case x 6= y it the two results of the
SWAP tests are 0, i.e., with a probability of at most(

1

2
+

1

2

(
1− d

n

)2
)2

(4.27)

More generally, if Alice and Bob send k copies of their fingerprints, the SWAP test

"Yes the two strings are identical" if the k SWAP test results are 0

"No, the two strings are different" if one the k SWAP test result is 1

have the following probability of failure:

{
0 if x = y(

1
2 + 1

2

(
1− d

n

)2)k
if x 6= y

(4.28)

This probability can be made arbitrarily smaller than ε for any ε > 0 if we allow enough copies
of fingerprints.

In fact, in order to have

(
1

2
+

1

2

(
1− d

n

)2
)k

< ε (4.29)

we would require

k >
1

a
log

(
1

ε

)
(4.30)

where a = − log
(

1
2 + 1

2

(
1− d

n

)2)
> 0.

4.2 Public key

In this section, we first review the goals of public-key encryption and how it is implemented today.
Then we proceed to quantum versions of public-key cryptosystems.
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4.2.1 Goal of public-key encryption

We already explained in the introduction section the basics of public-key encryption, also referred
to as asymmetric cryptography.

Each people can generate a private secret key from a key generation program, usually using
or generating a large random number as input. The key generation program can also generate a
public key using the private key.

The private key must stay secret and is usually encrypted using a password and standard en-
cryption. On the other hand, the public key can be distributed to the open world without compro-
mising the security of the secret key.

The public key can be used to encrypt a message. On the other hand, the private key is used
to decrypt the message. The private cannot be recovered from the public key and the public key is
insufficient to decrypt a message.

There are two main applications of public-key encryption:

• Exchange encrypted data;

• Use it as a digital signature (authentication method) to verify the authenticity of the sender
of a message for instance.

Public-key encryption has many advantages (easy to use and understand, scalable, secure)
but is computationally heavy, especially when there is a need to encrypt large files. To encrypt a
large amount of data (a document, an email, etc...), it has to do a lot more computations than
using symmetric keys. Often, protocols are then hybrid: they exchange a one-time secret key
(i.e. a secret key that will only be used for this exchange) and exchange the key using public-key
encryption.

Let’s suppose, Alice wants to send an email to Bob. This goes like this:

1. Alice gets Bob’s public key (on public-key open servers for example);

2. Alice generates a completely new and random symmetric key;

3. Alice encrypts the email using the symmetric key;

4. Alice encrypts the symmetric key using Bob’s public key;

5. Alice sends the encrypted email and the encrypted symmetric key to Bob.

To decrypt the email, Bob performs the following operations:

1. He decrypts the symmetric key using his private key;

2. He decrypts the email using the symmetric key.

This kind of hybrid cryptosystems is used for example with the PGP (to exchange encrypted
emails), SSH (to authenticate on remote servers), and SSL/TLS (widely used for example for web
browsing) protocols.

If we forget about the email, we see that au public-key encryption algorithm can allow two
parties to share a common symmetric key.

There are some security issues with the use of public-key encryption.

If the size of the key is too small, brute force attacks can be used. But as long as large keys are
used and that quantum computers are not available, there is no way to deduce the private secret
key in a reasonable amount of time.

One way to cheat is a man-in-the-middle attack or authenticity issues when the public key is
exchanged. Imagine that Mr. X posts a public key claiming it to be Mr. Y’s public key. Then Mr. X
can read all encrypted messages sent to Mr. Y (and Mr. Y can’t read the messages).
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4.2.2 Quantum public-key

Classically, public cryptosystems are implemented using one-way functions. They are functions
such that they are "easy" to compute, and "hard" to invert, and this is basically the case for integer
factorisation. It means that you can compute the function in polynomial time, but that there is a
negligible probability that a polynomial-time algorithm succeeds in inverting the function.

In fact, what is used in classical cryptosystems are trapdoor one-way functions. They are func-
tions that are "easy" to compute and "hard" to invert unless you have additional information.
Hence, you can encrypt a message using this function and no one can invert it with high prob-
ability unless he has the trapdoor information, i.e. the secret key.

We can define, following [53, 54], similar concepts in Quantum Cryptography:

Definition (Quantum One-Way function): A quantum one way function (sometimes abbrevi-
ated quantum OWF, QOWF or QOW) f : x 7→ |φx〉 is a function that takes an input string and
outputs a quantum state such that it is "easy" to compute but "hard" to invert, in the following
sense:

• We can find a quantum circuit that given the input x, compute the output |φx〉 in a poly-
nomial time;

• Given |φx〉, there is no polynomial quantum algorithm that recovers xwith a non-negligible
probability, or written in a more mathematical sense:

P(f(y) = f(x)) <
1

nc
(4.31)

y being the output of the polynomial algorithm, Pr the probability, n the size of x, and c
any integer.

Note that even if the basic idea of a quantum one-way function is always the same, the exact
definition varies between publications.

Now, as in the classical case, a quantum one-way function is not very useful because neither
eavesdroppers nor legitimate users can decrypt messages. We need to keep the hard inversion for
non-legitimate users and make the inversion easy for legitimate users.

Definition (Quantum Trapdoor One-Way function): A quantum trapdoor one way function
f : x 7→ |φx〉 is a function that takes an input string and outputs a quantum state such that it is
"easy" to compute but "hard" to invert, in the following sense:

• We can find a quantum circuit that given the input x, compute the output |φx〉 in a poly-
nomial time;

• Given |φx〉, and additional information called trapdoor information, we can recover the
input x in polynomial time;

• Given |φx〉, and without the trapdoor information mentioned above, there is no polyno-
mial quantum algorithm that recovers x with a non-negligible probability, or written in a
more mathematical sense:

P(f(y) = f(x)) <
1

nc
(4.32)

y being the output of the polynomial algorithm, Pr the probability, n the size of x, and c
any integer.

Now the whole challenge is to find some practical quantum trapdoor one-way functions.

Now before examining the candidates for such functions, let’s define a quantum public-key
encryption scheme:
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Definition (Quantum Public-Key Encryption scheme): A quantum public key encryption is
composed of three quantum functions, that we can call G,E and D. E can be seen as quantum
trapdoor one way function and D its inverse:

• G is a function that takes the size of the key n and produces a secret key s and a public
key p;

• E is the encryption function, that takes as an input p and a message m and outputs an
encrypted message E(p,m);

• G is a decryption function that takes e and an encrypted message E(p,m) and outputs m.

First, we will see general ideas on quantum public-key cryptosystems, then research that has
been done on the subject. I cite a slide presentation from Daniel GOTTESMAN for this first part [55]
(who was one of the first working on the subject):

• The public key will be a quantum state, meaning that a quantum network infrastructure is
needed to send the public key;

• Another implication of the fact that the public key is a quantum state is the fact that quantum
memory may be needed, at least during the time needed to encrypt data. The owner of the
public key doesn’t require quantum memory as the key can be regenerated from the private
key (which is classical), and the public key can be sent to the sender just before encryption
to minimise the time needed for quantum memory;

• Another remark that we can draw from the public key being a quantum state is the fact
that the information that can be obtained about the private key contained in the public key
is bounded, by virtue of Holevo’s theorem. However, the more copies of the public key
in circulation, the more information on the private key a malicious party has. This means
that there is a maximum number of copies of the public key that we can distribute before
it is needed to regenerate one. This is a key difference with classical public schemes with
publishing a new copy of the public key does not provide any supplementary information;

• Quantum public key does not seem more efficient than classical public-key cryptosystems(and
even seems less efficient) but will be more secure to a post-quantum attacker.

In [55], a sketch of a quantum public-key scheme is provided:

Alice starts by generating a random secret key k. This key is used to generate a unitary operator
Uk, but the knowledge of Uk does not give the full knowledge of k (easy to compute, hard to
invert).

Then the public key is given by

(1⊗Uk)(|00〉+ let11) (4.33)

This state is sent to Bob through a quantum channel (even if they are not discussed here, keep
in mind the authentication problem).

Now let’s say that Bob went to send the state |φ〉 (it may contain classical data encoded in a
quantum way but this is not the issue we address here). To encrypt, Bob teleports the state using
the public key. It will obtain one of four results, giving one of the Pauli matrices σ. Bob ends up
with the encrypted state

Ukρ |φ〉 (4.34)

in the second register of the state that was previously the public key. Next, Bob sends the
state to Alice, along with the Pauli matrix that was obtained during the teleportation and Alice can
decrypt the data, first by applying U−1

k then the Pauli operator σ (remember that they square to
1).
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Note that the copy of the public key is destroyed in the process.

There were somme additional developments in the subject [54, 56, 57].

Let’s see an example of a public key scheme, that was described in [56]:

Alice generates her private key by choosing a random function F : {0, 1}n → {0, 1}n. She
randomly generates s ∈ {0, 1}n and computes k = F (s). k is a n-bit string and we denote k1, . . . kn
the bits of k. Alice randomly generates an even n-bit string i1, i2, . . . in (i.e. the bits that compose
the string sum to 0, modulo 2) and encodes it in the Bz basis in the state |i〉 = |i1〉 ⊗ . . . ⊗ |in〉.
Alice applies Hk = Hk1 ⊗Hk2 ⊗ . . .⊗Hkn to |i〉. Here H is the Hadamard gate, when the bit is
0 it stays ine the Bz basis and change to Bx when the bit from k is 1. (s,Hk |i〉) is a copy of Alice’s
public key. She sends it to Bob.

Bob receives the public key. He wants to send m = 0/1 to Alice. Bob then generates a n-bit
string j1, . . . , jn with j1 ⊕ j2 ⊕ . . .⊕ jn = m. He applies σj

y = σj1y ⊗σj2y ⊗ . . .⊗σjny to Hk |i〉. Bob
sends (s,σj

yH
k |i〉) to Alice.

Alice receives (s,σj
yH

k |i〉) and applies again Hk to σj
yH

k |i〉.
Now we are interested in the value of

Hkσj
yH

k (4.35)

Let 1 ≤ α ≤ n, we are interested in Hkα × σjα
y × Hkα . If jα = 0, then this is equal to(

H2
)kα

= 1 since H2 = 1. If jα = 1, then we distinguish between kα = 0/1. If kα = 0, this is
trivially equal to σy. Finally, if kα = 1, then we compute H ×σy ×H = −σy. Hence, we have, up
to a sign, the same expression as σj

y. The sign is the number of times when we have kα = jα = 1
and so

Hkσj
yH

k = (−1)j·kσj
y (4.36)

σy will flip the bit, up to a phase and so σjy will flip the bit of |i〉 every time the bit of j is 1, and
hence, the final state is up to a global phase |i⊕ j〉. As i was chosen to be even, the parity of i⊕ j
is m, the one-bit message that Bob wanted to send.

Let’s draw some general remarks:

• F is chosen between (2n)
2n functions. This can be done by generating 2n random bits;

• The public key is not unique, as opposed to the classical case. It depends on a precomputed
secret that will change for each secret key. This will help to reduce the amount of information
on F that is given in one copy of the public key;

• Here the quantum one-way trapdoor function is the one that maps j to σj
yH

k |i〉. The knowl-
edge of k is needed to recover j;

• This scheme was proven to be information-theoretically secure or ciphertext-indistinguishable
under quantum chosen plaintext attack. Without giving a proper definition, here is what it
means. Imagine a game where the malicious party, which has access to the public key, gives
2 plaintext bit strings to the owner of the key, who performed encryption on one of the two
strings, randomly. The ciphertext is then sent back to the malicious party. We say that the
scheme is ciphertext-indistinguishable under quantum chosen plaintext attack if the informa-
tion owned by the malicious party (the two plain texts) only give him a negligible advantage
over a random guess;

• One copy of the public key was needed to encrypt one bit of classical data.

In [56], a scheme based on entanglement was also proposed.

Now before closing, this section, I would like to come back on a point that seems to be one
of the key differences between classical and quantum public-key encryption which is the fact that
there is a maximal number of copies allowed.
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First, we need to emphasize that a malicious party can have two different goals: the first one
is to decrypt a message, i.e. recovering the plaintext from the ciphertext, and the second one is
to obtain the private key. The accomplishment of the second task immediately makes the first one
trivial but might be much more difficult.

In [57], a quantum public-key scheme based on qubit rotations. The basic idea is again the
same, Alice generates a private key and a copy of the quantum public key and sends this copy to
Bob. Bob makes an interaction between his message and the public key and sends the public key
back to Alice, who can apply operations bases on the private key to recover the original message.

In this paper, the authors proved that the VON NEUMANN entropy of the states of τ copies of
one public qubit of the key was bounded, and hence by virtue of HOLEVO’s bound, the information
that Eve could access. It was proven that the bound is

I ≤ log2(τ + 1) (4.37)

It was also proven that the map that takes the private key to generate τ copies of the public key
was quantum one way at the condition that n >> log2(τ + 1) where n is a security parameter, that
is chosen at the beginning of the protocol.

It was nevertheless proven in the article that even if Eve gains a negligible amount of informa-
tion on the private key, due to this bound, she could successfully decrypt a message, which is an
easier task.

4.2.3 Are quantum public-key cryptosystems really useful ?

As said in the introduction and at the beginning of this chapter, symmetric cryptosystems are more
efficient than asymmetric cryptosystems and secure enough if there are used rights. One of the
main issues was to distribute the secret key without someone eavesdropping on it. In the past, it
was done with guys traveling with a case handcuffed to their hand and, today is it done, as we
explained with hybrid cryptosystems, using public keys. But with Quantum Key Distribution, we
can distribute secret keys without bothering for public keys. So why are we investigating public
keys at all?

First, even if the security of QKD is theoretically secure, there are flaws in practical realisations.

Also as explained before, secret key cryptography does not scale well and if we want to have
secure communication between two users, they need a secret key for each message and also a
way to distribute the secret key between two end-users, this means having very complex quantum
networks, in order to be able to perform QKD end-to-end. On the other hand, quantum public-key
cryptography can use classical channels.

4.3 Digital signatures

4.3.1 What are digital signatures ?

A digital signature scheme is a cryptographic scheme that allows a sender to sign a document, or a
message and the receiver to verify the signature, verifying that the message was issued by the good
person (at least by the detainer of a private key that should be in practice verified, for instance,
in Key Signing Parties (see the previous section)) and to verify the integrity of the document or
message (that the message was not altered in any way, intentionally or not).

In practice, if Alice wants to send a signed document to Bob:

1. Once the document is finished, Alice generates a signature of the document using her private
key;

2. She sends her document and the signature to Bob;

64 64



4.3. Digital signatures Chapter 4. Public key, digital signatures and fingerprinting

3. Bob verifies that the document and signature match. This will use some additional informa-
tion (Alice’s public key).

4. If the document and signature don’t match, then Alice and Bob will proceed to a new ex-
change. If they match, Bob knows that: the integrity of the message is correct and the sender
was in possession of Alice’s private key.

Two remarks:

• One might be worried if only the signature is altered. In fact, if the signature is altered,
the document and signature won’t match and Alice and Bob will proceed to a new exchange
anyway. One could be worried that the document and the signature are altered in such a
way that there is a match anyway, but that is very not likely (see formal definition);

• This looks like a fingerprint, and for that reason, they are in the same chapter, but there is
one key difference: the use of public and private keys. In fingerprinting schemes, any party
can run the algorithm that produces the signature. Hence, Eve could place herself between
Alice and Bob and replace Alice’s message by a completely different one, with a different
document and a valid fingerprint. Doing that with a digital signature scheme will only work
if Eve had Alice’s private key to generate the signature.

This document was signed using a PGP key (see appendix A for more detail)

But. If someone gains access to someone else’s private key, he could impersonate that person
and send a message. Well yes. The private key must at all cost remains secret. Sometimes, it can’t
be done. That’s why, when creating a key, you also generate revoking certificates. They should be
kept secret but are less sensitive than the private key. Also, the owner of the private key must keep
several copies of these revoking certificates. Thus, if the key is lost or stolen, the original owner
revokes the key (by sending the certificates to key servers) and all messages signed or encrypted
with this private key from this date should be considered insecure. However note that if this key
was used as a public key cryptosystem private key, the thief will be able to decrypt any messages
encrypted with the corresponding public key.

One could say that digital signatures are a mix between fingerprinting and public-key encryp-
tion.

Also, remember how it is important, for QKD for instance, to have an authenticated quantum
channel (even if quantum digital signature may not be a good solution. See [25] for a discussion
an authentication of quantum channels for QKD, using a pre-shared secret, that is coupled to the
photon used for QKD).

4.3.2 Quantum digital signature

As for public-key encryption, we have a formal definition of what is a quantum digital signature
scheme.

Definition (Digital signature scheme): A digital signature schema is composed of 3 polyno-
mial functions (G,S, V ):

• G is called the key generator. It generates a private key s and the associate public key p
on input 1n.

• S is the signing function. On an input message m and the private key s, it returns a
signature t = S(m, s)

• V is the verification function, that takes as input the message m, the public key p and the
signature t and outputs 1 if everything is correct and 0 otherwise.

A digital signature scheme (G,S, V ) is correct if, for any message m

65 65



4.3. Digital signatures Chapter 4. Public key, digital signatures and fingerprinting

P (V (m, p, S(m, s)) = 1) = 1

s, p = G(1n)
(4.38)

In the slides that were cited for public-key encryption [55], there was also some ideas on
quantum digital signature. The first statement is that it is impossible to sign an unknown quantum
state. There is no equivalent classically as it is always possible to know a message.

We will give an example of a quantum signature scheme, that was designed in 2001 by GOTTES-
MAN and CHUANG [58]. The scheme works as follows.

Let’s say Alice wants to send a signed bit b = 0/1. Alice, and all other parties involved, have at
their disposal the same quantum one-way function f : k 7→ |fk〉. Alice start by generating M pairs
composed of 2 L-bit private keys: {ki0, ki1} for 1 ≤ i ≤ M . Then Alice compute the correspondent

public keys
∣∣∣fki0〉,

∣∣∣fki1〉. We suppose that the keys are then available to each party involved (we
will see how there are distributed later).

Then, to send the signed bit, Alice sends the classical message, over a classical channel, that is
not authenticated: (b, k1b , b

2
b , . . . , k

M
b ). Then the other participants can use the quantum one-way

function to compute the public key and verify that the message was indeed sent by someone that
possessed the private keys prior to the exchange.

Here, we supposed that everyone has a perfect copy of Alice’s public keys, which may not be
the case if the channels are noisy. It is possible, in the protocol to define thresholds to accept or
refuse a message (and even something in between where the message is accepted but is marked
unsafe to be transferred).

After the exchange, Alice discards all the private keys (used or unused).

Now, how Alice sends the copies of the public key. First option: she has an authenticated
channel with all the parties involved, in which case, a digital signature scheme isn’t really needed.
Second option: a key distribution center where a party, which is supposed truthful has an authen-
ticated channel with everyone. Then Alice can send her public keys to the key distribution center,
enough copies for all participants, and then the kye distribution center sends the public keys to
the parties. The key distribution center may perform swap tests to verify that Alice has indeed
sent the same keys for everyone. But in that case, Alice can send a message to the key distribution
center through the authenticated, and the message is then sent to the other parties through an
authenticated channel. In this case, the distribution center acts more like a certification authority
that proves the authenticity of the message.

In any case, it is possible to do quantum digital signatures and there is research on the subject.
However, it needs a lot of resources and has common issues with quantum public-key encryption.
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Chapter 5

Other quantum components for
cryptography

In this last chapter, we review how quantum mechanics can be applied to other cryptographic tasks.
First, in section 5.1, we see how we can use quantum mechanics to generate randomness. True
randomness, as we saw in this paper is a prerequisite for both classical and Quantum Cryptography.
Next, in sections 5.2 and 5.3, we see historic applications of Quantum Cryptography. Finally, we
see how we can design quantum voting scheme in section 5.4.

5.1 Quantum randomness

I think it is pretty clear from what we saw in this paper why we need true random generators, in
order to perform both classical and Quantum Cryptography.

A random generator is a device, either physical or computational, that generates random num-
bers (or characters) that cannot be predicted better than the random guesses.

The term pseudo-random random generator is used whenever we have something that looks
likes random numbers but is in fact deterministic. A simple example is to use the decimal of π
is a random generator for numbers between 0 and 9. If we look at the repartition over the first
1000000 of decimals we have

0 1 2 3 4
0.099959 % 0.099758 % 0.100026 % 0.100229 % 0.10023 %

5 6 7 8 9
0.100359 % 0.099548 % 0.0998 % 0.099985 % 0.100106 %

Table 5.1: Repartition of numbers in the first 1000000 of π

It is close to a uniform distribution 1.

Now let’s consider a random generator, that chooses at random the first decimal (for instance
the 145098th decimal) and goes one by one to generate random numbers. It will look random but
it is totally deterministic.

To have a suitable random numbers generator for cryptography, there exist requirements for
Cryptographically Secure Pseudo-Random Number Generator (CSPRNG). There are two main re-
quirements:

• First, the algorithm must pass the next-bit test. It the test for randomness and it works like
this: if you have k bits of a random sequence generated by the CSPRNG, it passes the test if

1A real number that verifies the property of having its decimal uniformly distributed is called a normal number. π has
not be proven to be a normal number but numerical experiments tends to confirm that.
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there is no polynomial-time algorithm that guesses the (k+1)th bit with a probability greater
than 1

2

• Secondly, the algorithm must hold against attacks, even if the initial state or the current state
is revealed. Suppose that the state of the CSPRNG is given for the k-th bit. Then the test is
passed if it’s impossible to reconstruct the sequence of (k−1) bits that precede the revealing.

But, with quantum mechanics, we can use a non-deterministic process to generate true ran-
domness. Quantum mechanics is already used to generate random numbers, see for example
https://qrng.anu.edu.au/.

For instance, if we want to represent a random generator using quantum gates we could do the
following:

1. Initialize the qubit in the |0〉.

2. Apply the Hadamard gate. The qubit will end up in the |+〉 = |0〉+|1〉√
2

state.

3. Measure in the {|0〉 , |1〉} basis. This will lead to the result 0 with probability 1
2 and 1 with

probability 1
2 .

|0〉 |+〉
0/1

H

Figure 5.1: Quantum randomness using a Hadamard gate

In fact, just remember the conjugate coding principle: if we send a photon diagonally polarised
and we make a measurement in the rectilinear basis, we should have a completely random out-
come.

IDQ was the first company to develop a quantum random number generator ship and they today
sell those kinds of chips. In this chip, the method used is photon counting [59]. On the website
https://qrng.anu.edu.au/, the method uses the vacuum fluctuations [60]. Other methods are
radioactive decay, noise, branching path, time of arrival, attenuated pulse, the phase noise of
lasers, amplified spontaneous emission, RAMAN scattering, optical parametric oscillators, noise in
electronics components, measurement on trapped ions, spin noise (for a full review of quantum
random number generator, see [61]).

Without entering more in detail, let’s just note that detectors’ imperfections and errors may
disturb the primary source of randomness, and often some kind of filters are used to purify the
random data. Also, note that there are specifications and tests to verify random number generation
schemes (some of them are published by the NIST for instance) and that some quantum chips have
already passed those tests (some quantum schemes are even self-testing).

On an amusing note, IDQ and SK Telecom released in 2020 a smartphone equipped with a
quantum random number generator chip: the Galaxy A quantum [62].

Hence, quantum random number generators has been extensively studied and is being used in
real applications today. As we saw, a first smartphone was released with a quantum chip to generate
a random number, which means that the chip was small enough to get into a smartphone. We can
expect a democratisation of quantum random number generators in PCs and smartphones in the
next few years. Will it have a real impact on our everyday life? Probably not.

5.2 Quantum Coin Flipping

5.2.1 The first-ever protocol

When we described the BB84 protocol and quantum key distribution in general, we assume implic-
itly that Alice and Bob trust each other. The idea of coin-flipping by telephone was first introduced
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by Manuel BLUM in 1981 [63]. The basic idea is to share information between 2 parties that do
not trust each other, for example, Alice flips a coin and asks Bob to make a guess over the phone.
But as Bob doesn’t see the actual result of the flip, Alice could cheat easily. Here, we are interested
in a quantum version of coin-flipping.

We make the same assumptions as for the QKD protocol except for the first one. This protocol
was also proposed by BENNETT and BRASSARD in 1984. It goes as follow:

1. Alice chooses a random basis Bz or Bx.

2. Alice chooses a random bit string, encodes it in the chosen basis, and send it to Bob over the
quantum channel.

3. At each qubit received, Bob chooses a random basis Bz or Bx and measures the qubit in this
basis. He keeps the results in two separate columns (one for each basis).

4. Over the classical channel, Bob makes a guess on the basis used by Alice to encode her bits2.
Alice says if Bob is right or wrong.

5. To prove she is not lying, she sends, over the classical channel, the bit string. The string
should agree on Bob’s column of the basis she claims have used.

Here is an example of how it can go:

Alice’s Basis Bx
Alice’s Bits 0 1 0 0 1 1 0

Qubits |+〉 |−〉 |+〉 |+〉 |−〉 |−〉 |+〉
Bob’s basis Bz Bz Bx Bz Bx Bx Bx
Bz register 0 0 1
Bx register 0 1 1 0

Table 5.2: Example of realisation of quantum coin flipping

We see that, as expected, the input bits and the Bx register agree, as the Bx basis was used to
encode the bits:

Alice’s Bits 0 1 0 0 1 1 0
Bx register 0 1 1 0

Table 5.3: Comparison of input bits and Bx register

On the contrary, the Bz register and the input bits will probably not be equal:

Alice’s Bits 0 1 0 0 1 1 0
Bz register 0 0 1

Table 5.4: Comparison of input bits and Bz register

For each bit, the probability that they are different is 1
2 and so, if Bob measures k times in the

B) basis, the probability that the input bits and the register are different is

1−
(

1

2

)k
(5.1)

Now imagine that Bob makes the guess Bx. He is right but Alice tries to cheat and says Bob is
wrong, Now she has to provide a string that matches Bob’s Bz register. But this register is basically
a random string, and so Alice would have to do a completely random guess.

2Note that the measurements made by Bob don’t give him any information on the basis used by Alice
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5.2.2 Can Alice and Bob cheat ?

In this protocol, there is a simple way for Alice to cheat. Instead of using a single-photon source,
she uses an EPR source and send one particle of an entangled pair to Bob and keeping the other
particle to herself, using quantum memory. Once Bob has made his guess, she can do all the
measurements in the opposite basis, and create a string that will match Bob’s register.

In fact, this is not an isolated case. Quantum coin flipping was studied after the original pro-
posal from BENNETT and BRASSARD, and unfortunately, things are not going well for quantum
coin-flipping. In 1998 LO and CHAU proved that secure ideal quantum coin tossing (and also bit
commitment which is a cryptographic task close to coin tossing) was not possible [64]. They did
not only disprove the security of existing schemes but of all possible schemes. Basically, those
schemes are not robust against EPR attacks. However, the authors posed the question of a non-
ideal quantum coin tossing protocol. For that we have to identify three types of coin tossing:

• Ideal coin tossing: Each party has a probability of 0 of success when they try to bias the
outcome;

• Weak coin tossing with bias ε: Alice cannot bias the outcome by more than ε in her favor and
Bob cannot bias the outcome by more than ε in his favor;

• Strong coin tossing with bias ε: Alice and Bob cannot bias the outcome by more than ε in any
direction.

Mathematically this can be defined as follow:

Definition (Weak quantum coin tossing protocol): A weak quantum coin tossing protocol
with bias ε is one that verifies:

• If Alice and Bob are honest, then P(Alice wins) = P(Bob wins) = 1
2 ;

• If Alice cheats and Bob is honest, then P(Alice wins) ≤ 1
2 + ε;

• If Bob cheats and Alice is honest, then P(Bob wins) ≤ 1
2 + ε;

Note: here we have defined a balanced protocol, in the sense that if Alice and Bob are honest
they have the same chance of success. It is also possible to define unbalanced weak coin tossing
protocols.

Definition (Strong quantum coin tossing protocol): A weak quantum coin tossing protocol
with bias ε is one that verifies:

• If Alice and Bob are honest, then P(Alice wins) = P(Bob wins) = 1
2 ;

• If Alice cheats and Bob is honest, then max(P(Alice wins),P(Bob wins)) ≤ 1
2 + ε;

• If Bob cheats and Alice is honest, then max(P(Alice wins),P(Bob wins)) ≤ 1
2 + ε;

(see [65] for the definitions for instance).

Ideal quantum coin tossing is not possible, but weak and strong quantum coin tossing are
possible. Weak quantum coin tossing can be performed with arbitrarily small bias [66] whereas
strong quantum coin tossing can be performed with a minimal bias which is

√
2
2 −

1
2 [67], but the

bias can be made arbitrarily close to this value of
√
2
2 −

1
2 [68]. In [67], it was however proven

that, even if weak quantum coin tossing can be performed, this is not very efficient as at least
exp
(

Ω( 1√
ε
)
)

rounds of communication are needed for bias ε.

5.3 Quantum money

In the first paper of Quantum Cryptography, written by Stephen WIESNER [16], which we discussed
previously as it introduces conjugate coding, there was a proposal for quantum money or money
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that is physically impossible to copy.

According to the Bank of England [69], a small fraction of the banknotes circulating in the UK
are counterfeits (around 0.02%), representing around 10 million pounds of fake and worthless
money.

Another reason to be interested in Quantum Money is the potential security breach in crypto-
moneys. The most famous crypto-money is Bitcoin, and it has been more and more used in the last
few years. The issue is that in the end, the Bitcoin (an other crypto-moneys) relies on public-key
cryptosystems that could be become insecure with quantum computational power.

We will briefly see several implementations of quantum money here, but all of them have the
requirement of quantum memory that can store the quantum states for a long time (the lifetime of
the banknote or credit card), which is not yet available (and not believed to be in the near future).

There are two categories of quantum money:

• private quantum money: only the bank can verify that the money is no counterfeit;

• public quantum money: anyone can verify that the money is no counterfeit;

The schemes of these two categories are composed of three functions:

• a generating function G that generates a key (private quantum money) or a public/private
keys pair (public quantum money);

• a mint function M that is used to create new money (the function uses either the key (private
quantum money) or the private key (public quantum money))

• a verify function V that is used to verify that the money is no counterfeit (it uses either the
key (private quantum money) or the public key (public quantum money)).

There are several quantum money schemes that have been designed over the years, since WIES-
NER’s first proposition, with very little experimental implementations. Also, it is possible to note
that the idea of quantum money is related to fingerprinting (since they have common goals).

5.3.1 WIESNER’s scheme

The first proposal of quantum money, by WIESNER, is a private quantum money scheme. The
money is issued by the bank and can only be verified by the bank.

A banknote is composed of three different parts:

• classical financial information (the value, the currency, the bank that issued the banknote,
etc...);

• a classical serial number;

• a quantum key, that for now, is composed of only one qubit.

The quantum key is composed one qubit, encoded in one the two bases Bz or Bx. When creating
the banknote, the bank chooses a random bit and encodes it in a basis chosen at random. This
classical information (bit and basis) is stored with the serial number, securely at the bank.

Whenever a banknote needs to be verified, the bank looks at the serial number record and
makes a measurement according to the basis in the record. If the measurement outcome is the
same as in the record, they declare the banknote legit, and they declare it counterfeit otherwise.

A malicious party cannot create a banknote with a completely new serial number but can
try to copy one. To maximise the chance of creating a legit copy, the malicious party makes a
measurement in a basis chosen at random and encodes the outcome measurement in the same
basis.
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• The good basis is chosen with probability 1
2 (assuming that both the bank and the malicious

party choose the basis with equal probability). In this case, the banknote will always pass
the test of the bank.

• The wrong basis is chosen with probability 1
2 . In this case, the banknote will pass the test of

the bank with probability 1
2 .

Overall, the copy operation has a success probability of 3
4 . This is pretty high but, like in the

BB84 protocol when Alice and Bob reveal bits trying to detect a potential eavesdropper, the bank
can store k qubits in the banknote, and the then the overall probability of success when trying to
copy a banknote is

(
3
4

)k
and can therefore be made arbitrarily small.

5.3.2 BOZZIO et al.’s scheme

In 2018, BOZZIO et al. proposed a quantum money scheme close, presented as a quantum credit
card [70]. We do not handle the payment mechanism, but we are interested in a scheme that
doesn’t allow a copy of the card.

The bank emits a prepaid card, which has a unique card number. Then a quantum key is stored
on the card. The quantum key is a qubit pair, the two qubits begin encoded in different bases. The
bit encoded can be 0 or 1 so there are eight possibilities. This eight possibilities can be encoded on
3 classical bit {b, c0, c1}. c0 and c1 are the values of the encoded bits and b = 0 if the first basis is
Bz and the second basis is Bx and b = 1 if the first basis is Bx and the second Bz. There eight of
those pairs, each with a corresponding secret key:

Pair |0+〉 |0−〉 |1+〉 |1−〉 |+0〉 |+1〉 |−0〉 |−1〉
Code {0, 0, 0} {0, 0, 1} {0, 1, 0} {0, 1, 1} {1, 0, 0} {1, 0, 1} {1, 1, 0} {1, 1, 1}

Table 5.5: 8 possible pairs for the quantum card code

The quantum pair is stored on the card. The classical code is stored at the bank, alongside with
the serial number of the card.

Now let’s see how the card is verified. When a transaction is to be done, the seller, through a
payment terminal, verifies the card with the following steps:

1. The payment terminal randomly chooses a challenge between two possible challenges: Qzz
or Qxx. The Qzz challenge is the challenge that always gets the correct bit for the one
encoded in the Bz whereas Qxx is the one that always gets the correct bit for the one encoded
in the Bx basis. Qzz is implemented by the σz ⊗ σz measurement and Qxx is implemented
through σx ⊗ σx;

2. When the measurement is performed, the payment terminal ends up with two classical bits.
There are sent (along with information about the card like the serial number, that is read
classically) to the bank. The chosen challenge is also sent to the bank;

3. The bank checks the bits that should match (it depends on b and the chosen challenge). If
they match, the card is declared correct, and if not it is counterfeit.

Let set an example:

1. The bank issues the card with the quantum code |0−〉, which corresponds to the classical
code {0, 0, 1};

2. The legitimate user uses the card. The payment terminal chooses the Qxx challenges and
ends up with the result {1, 1}. The result is sent to the bank;

3. The bank knows that the qubit encoded in the Bx basis is the second one, so it verifies that
the second bit of the classical code and of the measurement outcome. They match and the
bank sends the answer to the payment terminal, where the transaction can take place.
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Now let’s see how a malicious party would try to copy the key. The basic idea to do that is to
guess the value of b (i.e. randomly make an assumption whether b = 0 or b = 1) and make the
measurements. With probability 1

2 , the value of b is correct and then, the malicious party has a
perfect copy of the card. In the other case, the card will be encoded using the wrong bases and
hence, the card is detected to be wrong with probability 1

2 at each transaction.

One of the main advantages of this protocol is that it only requires classical communication
to verify a card, whereas, in WIESNER’s protocol, the bank should have access to the qubits, and
hence it needed some sort of quantum communication.

As before, the number of quantum pairs stored and the card can be augmented to lower the
probability of successfully copying a card.

5.3.3 Semi quantum money

In the first subsection, where we reviewed WIESNER’s scheme, we saw a scheme that requires:

• a quantum bank;

• a quantum user;

• quantum communication for minting and verifying money.

In the second subsection, where we reviewed BOZZIO et al.’s scheme, we saw a scheme that
requires:

• a quantum bank (the bank only needs to be quantum for the minting process);

• a quantum user;

• a classical channel for verifying money;

• a quantum channel for minting and sending money to the user.

In 2019 Roy RADIAN and Or SATTATH proposed the idea of semi quantum money [71]. In a
public semi quantum scheme:

• the user is quantum;

• the bank is classical;

• the quantum money is minted by the user;

• only classical communications are needed for minting and verification.

There are several advantages of using only classical channels: the first being that we already
have the infrastructure for classical communication, also we have robust error corrections on clas-
sical channels, whereas losses and errors on quantum channels may yield invalid banknotes and
hence loss of money.

We won’t describe in detail semi quantum money schemes as a strong background is needed.

To conclude on quantum money, even if we research have been done and protocols exist, it
requires long-term quantum memory, which we don’t have at our disposal today, and for some
protocols, a heavy quantum communication infrastructure.

5.4 Quantum voting

5.4.1 Electronic voting

Electronic voting refers to two types of voting methods:
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• First, when electronic devices are placed at voting locations, i.e. under the responsibility of
government officials;

• Secondly, when internet voting is used, i.e. citizens can vote from wherever they want.

Two main requirements for voting were identified in [72, 73], and were proved to be not
fulfilled with electronic voting:

• First, the vote needs to be anonymous. It must not be possible to identify how an individual
voted afterward;

• Secondly, the vote needs to be trustworthy. An individual must know that his vote was taken
into account.

It is impossible to fulfill these requirements with electronic voting, even more, when vote over
the internet is used.

5.4.2 Quantum voting

It is clear that quantum voting will not be used for large scale votes before a pretty long time, and
that for two reasons:

• It would very expensive in quantum resources,

• It is not possible to expect the public to understand quantum physics, and they cannot trust
something they don’t understand.

Nevertheless, quantum voting can be interesting to study. Also, it shows how far can quantum
principles be used in cryptographic protocols.

Following [74, 75], we are going to specify in more detail the requirements of a voting scheme.
An open ballot system is a voting scheme where users sign their ballot or make them identifiable
in some way. In this system, each voter can know what an other voter has voted. For instance, a
"show of hands" vote in a general assembly or when MPs cry "aye" or "no" in the UK Parliament
are examples of open ballot systems. Opposed to those systems are the closed ballot systems, or
anonymous systems, that have 3 main requirements:

1. Correctness: a vote that is considered valid (i.e. with no identifying mark and from a valid
voter) should be counted. A vote that is no considered valid should not be counted;

2. Anonymity: Votes are anonymous (i.e. no identifying mark on the ballot);

3. Receipt-free: there should not be any way to know how a voter voted or even if he has voted
after the election.

Often, an additional requirement is that a valid voter should be able to vote only once.

Several quantum voting schemes have been designed [74, 75, 76, 77] and we will review one
of them in more details (the scheme for OKAMOTO et al.).

In [75], the authors presented a voting scheme based on conjugate coding and uses the same
bases and states that the BB84 protocol. This voting scheme requires:

• a counter, or scrutinizer C. He will verify and count votes. He needs to be trusted.

• an administrator A. He will issue blank ballots. There is no need for total trust in the admin-
istrator as he can be supervised by C, or even split into several parties (each party can forge
a part of the ballot)

• v voters Vi (i = 1, . . . , n)
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In the beginning, the administrator A forges blank ballots for every voter. We now explain what
a blank ballot is:

We denote by n a security parameter which is the length of a blank piece. A blank ballot is
composed of several blank pieces.

At the beginning, the administrator randomly creates a secret K. This secret is the choice of
n+ 1 bases chosen between Bx and Bz:

K = (B1,B2, . . . ,Bn+1) (5.2)

To forge a blank piece, the administrator randomly chooses n bits b1, b2, . . . , bn, and bn+1 is
defined to be bn+1 = b1 ⊕2 b2 ⊕2 · · · ⊕ bn. The bits (b1, . . . , bn+1) are encoded into quantum states
using the bases of the secret K.

For instance, if n = 2, with K = (Bx,Bz,Bx). A valid blank piece would be, using b1 = 1,
b2 = 0,

(|−〉 , |0〉 , |−〉) (5.3)

To construct a blank ballot for voter Vi, the administrator constructs m blank pieces with
ri1, . . . , r

i
m,

rij = (bij,1 . . . , b
i
j,n+1) (5.4)

and bij,n+1 = bij,1 ⊕2 · · · ⊕2 b
i
j,n for j = 1, . . . ,m.

Next, one blank ballot is sent to each voter3

When the voter receives his ballot, he will first randomize the ballot. This step is here to
preserve the anonymity of the voter. This is done as follows: for each state of each blank piece
of the blank ballot, the voter will apply either the identity or the gate σxσz. For the n first states
of the blank piece, the gate to apply is chosen at random. For the last bit of the blank piece, the
gate is the identity, if the gate σxσz was applied an even number of times on the n first states and
σxσz if the gate σxσz was applied an odd number of times, this will make the blank piece stay
valid. The gate σzσx flips the state without changing its basis (the gate may change the overall
phase but this cannot be measured).

σxσz |0〉 = σx |0〉 = |1〉
σxσz |1〉 = −σx |1〉 = − |0〉
σxσz |+〉 = σx |−〉 = − |−〉
σxσz |−〉 = σx |+〉 = |+〉

(5.5)

By doing this step, the basis for each state remains the same, but the value if random. Also, the
blank pieces remain valid.

Now that the voter has to cast his vote. We suppose that the set of all possible votes is a subset
of {0, 1}m. To write his vote, the voter applies either the identity (if he wants to encode a 0) or the
gate σxσz (if he wants to encode a 1) to the last state of each blank piece.

Finally, the voter sends his vote to the counter C4. Once the counter has received all votes,
the administrator sends K to the counter through a secure classical channel. For each ballot, he
measures each piece using K. The value of the bit for the piece is retrieved by summing all the
results. The counter C verifies that the results are indeed a possible vote. If it is, the vote is
counted, and if not, the vote is discarded.

The security of this voting scheme relies on the fact that a malicious party cannot create a ballot
with a valid choice with high probability without knowing the secret K. In fact, the probability

3Here note that the channel used to send the ballot can be passively eavesdropped but is authenticated on both sides.
4Here, the channel can be passively monitored, but must be authenticated on the side of the receiver (C)
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for a ballot that was forged without K to be accepted is #candidates
2m . As the number of candidates is

constant, the probability can be made arbitrarily small by adding pieces to the ballot.

Let’s see a quick example before concluding this section. Let n = 3 and m = 3 with two possible
candidates: 010 and 101. The secret key is K = (Bz,Bx,Bx,Bz).

The administrator A forges the ballot

(|1〉 , |+〉 , |+〉 , |1〉)
(|0〉 , |−〉 , |+〉 , |1〉)
(|0〉 , |−〉 , |−〉 , |0〉)

(5.6)

(i.e r1 = (1, 0, 0, 1), r2 = (0, 1, 0, 1), r3 = (0, 1, 1, 0)).

The ballot is randomised by the voter:

(|1〉 , |+〉 , |+〉 , |1〉)
(|0〉 , |+〉 , |+〉 ,− |0〉)

(|1〉 , |−〉 , |+〉 , |0〉)
(5.7)

applying the following operators:

1⊗ 1⊗ 1⊗ 1
1⊗ σxσz ⊗ 1⊗ σzσx

σxσz ⊗ 1⊗ σxσz ⊗ 1
(5.8)

The voter wants to vote for 101 so he will flip the last states for the first and last pieces (the
blank ballot corresponds to 000), and the final ballot is hence

(|1〉 , |+〉 , |+〉 ,− |0〉)
(|0〉 , |+〉 , |+〉 ,− |0〉)

(|0〉 , |−〉 , |+〉 , |1〉)
(5.9)

applying the following operators

1⊗ 1⊗ 1⊗ σxσz

1⊗ 1⊗ 1⊗ 1
1⊗ 1⊗ 1⊗ σxσz

(5.10)

The counter C then makes measurements using the bases of K and finds the following results:

(1, 0, 0, 0)
⊕

2 = 1

(0, 0, 0, 0)
⊕

2 = 0

(0, 1, 1, 1)
⊕

2 = 1

(5.11)

where
⊕

2 is the sum modulo 2 over all the results of the measurements of one piece. C finds
the vote 101 which is a correct vote and count it.

This protocol uses conjugate coding to implement a voting scheme. It is unconditionally guar-
anteed anonymous and has the property of correctness if the one-more unforgettability. This as-
sumption is the following: there is no polynomial-time quantum algorithm that can create l + 1
blank pieces out of l blank pieces with high probability. However, to be implemented it requires
quantum memory.

Also, the counter must be absolutely trusted. A version can remove this assumption: where a
voter sends his vote to all other voters. The secret K is shared with every voter after all the votes
have been cast. This is however much heavier in quantum resources.
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Another protocol was proposed in [77], using GREENBERGER–HORNE–ZEILINGER state and en-
tanglement. In this scheme, the administrator A and the counter C supervise each other (at the
end, one of them must be however trusted).
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Conclusions

In this review, we saw the principles allowing the creation of unconditionally secure protocols
using Quantum Physics. We have first reviewed quantum key distribution, which is historically
the first application of quantum physics in cryptography if we omit the unnoticed propositions of
WIESNER. Several schemes were reviewed based on conjugate coding, entanglement, and BELL’s
inequality violation. The issue with the distance and fiber losses was treated and solutions includ-
ing quantum relays and repeaters were proposed. One aspect that was not reviewed and which
has been experimentally tested is satellite-to-ground quantum key distribution with propagation in
free space [78]. A key exchange using a stellite was performed between two points on Earth sepa-
rated by 7600 km [79] Finally, schemes based on BELL’s inequality violation were proven useful to
do device independent quantum key distribution.

Next, we went beyond QKD and explore quantum public cryptographic tasks: public-key, digital
signatures, and fingerprinting. It shows the range of possibilities and how we can extend Quantum
Cryptography. However, it seems that these tasks require a lot of resources, and sometimes devices
that are not available today.

Finally, we presented other quantum cryptographic tasks. Quantum randomness is already
commercialised while the other tasks do not seem attainable today (quantum money requires long
term quantum memory for example). One thing we could talk about in this section are quantum
games [80], which is an extension of the classical game theory, and have some interconnections
with Quantum Cryptography.
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Appendix A

End of document notes

To stay in line with cryptography, this paper was digitally signed without data encryption using
PGP signature 438C07EC20B645D05BBE4C83DC24C5787C943389.

You can find the signature of this document, along with my public key, at the address

https://signatures.nanoy.fr

(note that DNSSEC and secure http are enabled).

This is document

QFFF Dissertation - Quantum Cryptography

revision

25.09.2020.1

The quantum circuits were drawn using quantikz. As asked in the documentation, I cite their
paper because I found it useful [81].

The simulation were mainly coded with Simulaqron which is an open source quantum network
simulator available at http://www.simulaqron.org/[82].

79

https://signatures.nanoy.fr
http://www.simulaqron.org/


Appendix B

List of simulation codes

The simulation codes are available at https://github.com/nanoy42/qfff-dissertation-simulation
:

• bb84/bb84_simple : simulation without Eve and without losses;

• bb84/bb84_with_eve : simulation with Eve and without losses;

• bb84/bb84_losses : simulation with Eve and with losses;

• quantum_randomness : quantum randomness concept using cirq

Note that all the code is distributed under the GPLv3 license. More simulation may be added
afterwards including error correction and privacy amplification.
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