
Elementary Notes on

Classical Thermodynamics

It has been said over and over again that Thermodynamics is not an easy subject to learn
and understand. Some students think the mathematics level required to study it is too high
for them. This is probably just partly true, as much of the subject requires only derivatives
(partial derivatives too) and integrals. What makes Thermodynamics not terribly intuitive is its
non-visualizability. This means that to many thermodynamic variables and concepts it is not
always easy to associate intuitive and pictorial notions. Speed, force and angular momentum in
Mechanics, for instance, are easily imagined in terms of bodies moving under some form of push
or pull, and rotating or spinnning. Or consider how, in Electromagnetism, a field is made real by
the arrangement of iron filings on a piece of paper held on a natural magnet. But what can we
imagine when somebody talks about the entropy of a gas; or, what exactly is Gibbs free energy?
The famous italian physicist Enrico Fermi, in his book on Thermodynamics [2], writes:

...thermodynamical results are generally highly accurate. On the other hand, it is
sometimes rather unsatisfactory to obtain results without being able to see in detail
how things really work, so that in many respects it is very often convenient to complete
a thermodynamical result with at least a rough kinetic interpretation.

Fermi, thus, anticipates that a proper understanding of Thermodynamics implies some knowledge
of Statistical Thermodynamics. In these notes we will, first, introduce briefly some key concepts
of classical Thermodynamics, trying to relate their meaning to things that can be measured in
experiments. A following paper will, then, try to explain the same concepts from a microscopic
point of view, by using Statistical Thermodynamics.

1 The state of a system in thermal equilibrium

The key ingredients of the kind of Thermodynamics we will be dealing with are systems in thermal
equilibrium. In short, we observe transformations of a system from one equilibrium state to the
next, but we will be able to describe mathematically only equilibrium states, rather than the
transformations themselves. So, for instance, we have some gas at a temperature T , contained
in a cylinder made up of isolating material, and whose top side is a movable piston. If the piston
is not moved, the gas in the cylinder will be in thermal equilibrium, because its temperature
never changes, due to the isolating nature of the cylinder’s walls. If some external force (a hand,
for example) push the cylinder downwards, experience tells us that the gas gets heated, and the
heating will go on until the piston stops. Then, after a while, convective motions within the
gas will cease and a new stationary temperature is reached; the system has made the transition
to a new equilibrium state. There is no much we can say in between equilibrium states, but
we can measure the gas macroscopic quantities, like pressure, volume and temperature at the
equilibrium states.
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A system in thermal equilibrium will be characterised mathematically through a so-called
equation of state, which links pressure, volume and temperature of the system. This equation
can be generally written as:

f(p, V, T ) = 0 (1)

One of the better known systems in thermodynamic equilibrium is the ideal gas. The majority
of the gases studied in introductory courses are well approximated by the ideal gas. What
characterises this system is its equation of state, that can be written as follows,

pV = nRT (2)

In this equation n is the number of gas moles and R is a universal constant known as gas constant ;
its value is 8.3145 JK−1mol−1.

EXAMPLE 1.
Prove that the gas constant is measured in JK−1mol−1.
Solution.
Before using the ideal gas equation to derive R’s dimensions, we need to be reminded about the
various units used for the other variables in the equation. We have:

• p is measured in Pascals (Pa). Given that pressure is force divided by area, a Pa is measured
in Newtons (N) divided by square meters, Pa=Nm−2;

• V , the volume, is obviously measured in cubic meters, m3;

• n is the number of moles, which we simply indicate as mol;

• T , the absolute temperature, is measured in Kelvin degrees, K.

We can now use the ideal gas equations to derive R units. First of all,

pV = nRT ⇒ R =
pV

nT

Therefore,

[R] =

[

pV

nT

]

=
[p][V ]

[n][T ]
=

Nm3

m2mol K
=

Nm

K mol

N times m equals work’s unit, i.e. joules, J. Thus, eventually,

[R] =
J

K mol
≡ JK−1mol−1

EXAMPLE 2 (from reference [1]).
Using equation (2) find out what pressure is exerted by 1.25 g of nitrogen gas in a flask of volume
250 mL, at 20◦C.
Solution.
The pressure is readily obtained by re-arranging equation (2):

p =
nRT

V

Now, 1 mol of nitrogen gas (whose formula is N2) has a molar mass equal to 28.02 g mol−1.
Therefore 1.25 g of this gas corresponds to 1.25/20.02=0.04461 mol. Also, given that 1L equals
a volume of 1dm3=10−3m3, 250 mL equals 250 × 10−6m3. To finish, if we assume that the
absolute zero lies at -273◦C, 20◦C correspond to 293 K. Replacing all these numbers into the
above equation, we obtain:

p =
0.04461 × 8.3145 × 293

250 × 10−6
= 434717Pa ≈ 435kPa
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Figure 1: Thermodynamics system + surroundings. Conventions are normally adopted to define
the sign of work done on the system and heat received by the system; we will define them both
as positive.

2 The first law of Thermodynamics

Thermodynamics has a wide scope because the concept of thermodynamic system is a very general
one. We can basically assume that any object, or group of objects, that can be separated well
enough from the rest of the universe, forms a system. Once a system is defined, the rest of the
universe is automatically defined as the surroundings (see Figure 1). System and surroundings
form the whole of the universe:

SYSTEM + SURROUNDINGS = UNIVERSE

The system can exchange energy with the surroundings. This energy can be exchanged as either
work or heat. A convention is normally adopted to define the sign of both work and heat. We
will follow a definition according to which the heat received by the system, and the work done by
the surroundings on the system are both positive quantities. Why do we need this convention?
Because we have to balance these quantities to find out whether energy has been gained or lost
by the system. The energy of the universe is conserved, it is a constant quantity; therefore if the
system increases its energy, this has to be provided by the surroundings, either as heat or work.
This is, in a nutshell, the first law of Thermodynamics,

the variation of energy of a system, due to the exchange of heat and

work with the surroundings, has to balance the variation of energy of its

surroundings, so that the energy in the universe is left unchanged

If we indicate with ∆U the variation of system energy, then the first law can be quantitatively
expressed as,

∆U = Q + W (3)

Some few words on the nature of the heat received by the system are needed here. In Mechanics
we have been used to consider work as a vehicle to carry energy. For instance, work can be done
to raise a stone from the sea level to a 100 meters; as a consequence the stone has now a potential
energy higher than before. A furher proof that work is energy comes from its measure units, that
is joules. Heat is, as far as we know, measured in calories (cal). It was once believed to be a sort
of fluid. But a brilliant series of experiments by James Joule at the beginning of the nineteenth
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century established, beyond any doubt, that heat is another vehicle for energy. It, too, should
be measured in joules. In fact Joule found the energy equivalent of a calorie,

1 cal = 4.186 J (4)

Let us, now, briefly comment equation (3). That equation is about energy change. We can think
of the system as possessing a certain amount of energy due to various processes which are taking
place inside it. It is important to understand that in Thermodynamics we are not interested to
the energy acquired or lost by the system as a consequence of overall rotational or translational
motion; this is, really, the realm of Mechanics. We can rather talk of an internal energy that the
system has as a result of the numerous micro-processes happening inside it. We do not need to
be concerned with the exact nature of these processes, as this would require a deepening of the
molecular nature of the system (and thus an exploration of Statistical Thermodynamics). We
can be happy enough by thinking of a system as possessing internal energy, U , whose variation
obeys equation (3). In this way we will never know the exact value of U in the system, but this
is of no interest to us, as only energy variations can be measured by thermodynamic experiments.

EXAMPLE 3 (from reference [1]).
Nutritionists are interested in the use of energy by the human body, and we can consider our own
body as a thermodynamic system. Calorimeters have been constructed which can accomodate
a person to measure (nondestructively) their net energy output. Suppose in the course of an
experiment a person does 622 kJ of work on an exercise bicycle and loses 20 kcal of energy as
heat. What is the change in internal energy of the person?
Solution.
The first thing to do is to translate calories into joules. Using equation (4),

4.186
J

cal
× 20 × 103 cal = 83.72 kJ,

i.e. 20 kcal are equivalent to 83.72 kJ. The system (the person who is cycling) is doing work, not
receiving work. Therefore, using our sign convention, W = −622 kJ. Also the heat is given to
the surroundings, so that Q = −83.72 kJ. Through equation (3) we can calculate the variation
in internal energy of the human body,

∆U = −622 − 83.72 = −705.72

as being -705.72 kJ. Thus the person’s internal energy decreases of 705.72 kJ.

The internal energy is a state property of the system. It does not depend on how the sys-
tem evolved into a given state (how it was prepared). The same cannot be said, for example, of
the work and heat received by the system. These are quantities depending very much on the way
the system was taken to a given state. For instance, a gas inside a cylinder could go from state
(p1, V1, T1) to state (p2, V2, T2) by maintaining a constant volume (that is, only heat is exchanged
with the surroundings) until the very end of the transformation, by insulating the cylinder to
avoid heat to be exchanged with the surroundings (adiabatic transformation, only work is ex-
changed with the surroundings), or with a combination of the previous two transformations. We
can clearly see how the system is taken to the same final state (p2, V2, T2) by providing different
amounts of work and heat. This difference in behaviour between the internal energy on one side,
and work and heat on the other, is mathematically described when variations of these quantities
are considered. The first law of Thermodynamics will, then, be written as,

dU = δQ + δW (5)
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Figure 2: Two different paths are followed to take an ideal gas from state (p1, V1) to state (p2, V2).
The first corresponds to an isotherm transformation and, in the picture, goes from 1 straight to
2. The second is made up of two separate transformations, one going from 1 to 3 (isochoric) and
one going from 3 to 2 (isobaric).

and both the d and δ symbols will indicate infinitesimal variations, and therefore follow the
standard rules of differential calculus, but δ will point out to a variation depending on the way
the transformation is carried out. A simple quantitative example of what has just been said
can be made using reversible transformations in an ideal gas [3] (see Figure 2). Let us consider
the gas enclosed in the usual cylinder with the piston. At the beginning the state is described
by pressure p1, volume V1 and temperature T0 ≡ p1V1/(nR), as given by the equation of state.
The gas can, then, transform to a final state (p2, V2, T0) in two ways, either with an isotherm
(constant temperature) transformation, or with the combination of an isochoric (constant volume)
and an isobaric (constant pressure) transformation where the intermediate temperature varies,
but reaches a final value T0. In both cases, the infinitesimal work done by the surroundings on
the system has to be defined as a positive quantity (remember our convention). Now, when the
gas expands its infinitesimal volume variation is a positive quantity. The surroundings volume
variation is, correspondingly, a negative quantity. Thus, given that pressure is a positive quantity,
the infinitesiaml work has to be defined as,

δW = −pdV (6)

We can, at this point, calculate the work for both transformations. For the isothermal one,

WA = −

∫ V2

V1

pdV = −nRT0

∫ V2

V1

dV

V
= −nRT0 ln

(

V2

V1

)

A different value for the work taking the gas from 1 to 2 is obtained by the isochoric + isobaric
transformations,

WB = −

∫ V1

V1

pdV −

∫ V2

V1

nRT0

V2
dV = 0 − nRT0

V2 − V1

V2
= −nRT0

V2 − V1

V2

where we have used, again, the equation of state to calculate the final pressure as nRT0/V2.
Given that ln(V2/V1) 6= (V2 − V1)/V2, we easily deduce that WA 6= WB . We should not be
surprised to find here a negative value for work; in an expansion from volume V1 to volume V2

the gas is actually doing work on the surroundings and, due to our convention, this work has to
be considered as negative because it takes internal energy away from the system.
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3 Heat capacity

So far we have introduced heat as a quantity related to energy, but we have spent not many
words on it. We relate heat to our sensory perception of hot and cold objects, but we need an
objective way of measuring it. An interesting and important physical observation which comes
into place here is that if we provide an equal amount of heat to two bodies with same volumes
but different materials, then the increase of temperature will in general be different in the two
bodies. The same can be observed with bodies of a same material but with different volumes.
We could, then, use such a temperature variation to have a quantitative measure of the heat
administered to a body. In order to do so we will need to choose a representative substance
and certain fixed conditions that are easily reproducible. This is, in truth, how the calorie is
defined; it is the amount of heat needed to increase the temperature of a gram of pure water, at
atmospheric pressure, from 14◦C to 15◦C. The heat over temperature ratio, which is a key factor
in the definition of heat measuring unit, is an important quantity in Thermodynamics. In general,
the heat capacity (or thermal capacity) of a body is, by definition, the ratio (δQ/dT ) between an
infinitesimal quantity of heat absorbed by the body and the related, infinitesimal increase of its
temperature. When the temperature changes its value the system changes its state. The heat
dispersed or absorbed in this process depends, as we have seen, on the specific way in which the
transformation has occurred. It is of no surprise, then, to discover that the heat capacity will be
different according as to whether the body is heated at constant volume or at constant pressure;
heat capacities corresponding to these two cases will be denoted, respectively, as CV and Cp.
Through the mathematical expression of the first law of Thermodynamics, heat capacities can
be related to the internal energy. Let us consider the usual gas example, with work expressed as
δW = −pdV ,

dU = δQ − pdV

If we choose V and T as the independent variables (remember that the three variables defining
the gas’ state are not all independent, due to the equation of state), then U will depend on them
and,

dU =

(

∂U

∂T

)

V

dT +

(

∂U

∂V

)

T

dV

where the subscripts outside the parenthesis indicate that the variations are performed with that
particular variable kept constant. By replacing this last expression for dU in the previous one
we obtain,

(

∂U

∂T

)

V

dT +

(

∂U

∂V

)

T

dV = δQ − pdV

or,

δQ =

(

∂U

∂T

)

V

dT +

[

p +

(

∂U

∂V

)

T

]

dV (7)

An expression of heat capacity at constant volume can now be readily obtained by using its
definition and relation (7),

CV ≡

(

δQ

dT

)

dV =0

=

(

∂U

∂T

)

V

dT

dT

Thus,

CV =

(

∂U

∂T

)

V

(8)

The expression for the heat capacity at constant pressure can be derived in a similar way. The
final result is,

Cp =

(

∂U

∂T

)

p

+ p

(

∂V

∂T

)

p

(9)
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A B

Figure 3: Schematic diagram showing Joule experiment for proving that U = U(T ) for an ideal
gas.

EXAMPLE 4.
Prove that, for an ideal gas, the difference between heat capacities at constant pressure and
volume equals the gas constant, i.e.,

Cp − CV = R (10)

Solution.
In order to prove this important result we have to introduce, first, another key feature of ideal
gases:

for an ideal gas the internal energy depends only on temperature

Although the above finding can be rigorously proved using the second law of Thermodynamics, we
will introduce it using a simplification of an experiment actually performed by Joule (see Figure
3). Two containers, A and B, connected by a pipe are immersed in the water of a calorimeter.
At the beginning of the experiment a certain amount of gas fills copletely chamber A. The gas
cannot diffuse through to chamber B because of a stopcock in the connecting tube. After the gas
in A has settled, and the whole system has reached thermal equilibrium, the stopcock is opened
and the gas is allowed to flow freely from A to B. We wait until the system settles to a new
thermal equilibrium and then measure any temperature change. No variation in temperature
is observed, i.e. the heat given or absorbed by the A+B system is null. Using the first law of
Thermodynamics, equation (3), we deduce that,

∆U = W

At the beginning of the experiment the volume of the whole system is VA +VB because, although
the gas was initially contained only in A, yet the whole A+B system is contained in the calorime-
ter. At the end of the experiment the volume is still VA + VB , i.e. it is unchanged. Therefore the
system has done no work on the surroundings and vice versa, W = 0. The first law turns thus
into,

∆U = 0

The above equation means that the internal energy (due to all molecules of the gas) has not
changed. If we, now, focus on the gas we can notice that a change in the gas volume (from VA to
VA + VB) has no bearings on its internal energy. Before the experiment was performed we might
have assumed, quite generally, that the internal energy of the gas depended on two variables (the
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Figure 4: Adiabatic expansion of an ideal gas in a thermally insulated cylinder.

third is constrained by the gas equation), say T and V . But, given that no change in internal
energy is observed for a change in volume, we deduce that the internal energy does not depend
on V , U = U(T ): the energy of an ideal gas is a function of the temperature only. Let us now
proceed to prove what the problem asked as to do. Using relation (8) (without V subscript given
that, as we have just seen, U depends on T only) in the first law we have,

dU = δQ − pdV ⇒ δQ = CV dT + pdV (11)

Let us now consider the equation of an ideal gas for one mole of substance,

pV = RT

and let us differentiate it,
pdV + V dp = RdT

Replacing this in (11) we get:
δQ = CV dT + RdT − V dp

⇓

δQ = (CV + R)dT − V dp (12)

By definition, Cp = (δQ/dT )p, where the subscript means that there is no pressure variation,
dp = 0. From equation (12) we obtain, then,

Cp = CV + R

which is what we wanted to prove.

4 The adiabatic transformation

In an adiabatic transformation there is neither heat transmission nor heat absorption, the system
is thermally insulated. In order to find out how pressure and volume are related in an adiabatic
transformation, let us focus on an adiabatic gas expansion (see Figure 4). To avoid heat exchange
with the surroundings, the gas can be considered enclosed in a cylinder whose walls are thermally
insulated. At the beginning the gas, at temperature Tini, fills a volume Vini; after the expansion
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has taken place the volume is V > Vini, and the new temperature is T . We can use equation (11)
to re-write the first law:

δQ = CV dT + pdV

Now, the heat exchanged at any little step of the expansion is null, because this is adiabatic.
Also, we can eliminate p through the equation of state (which is supposed to hold at any time
during the transformation). Thus, the previous relation becomes,

CV dT + RT
dV

V
= 0

where only one mole of gas is being considered. Finally, by dividing both members by CV T , we
get

dT

T
+

R

CV

dV

V
= 0

The gas constant is given by Cp − CV so that the quantity R/CV becomes Cp/CV − 1. It is
customary to call γ ≡ Cp/CV . Therefore the previous equation is re-written as,

dT

T
+ (γ − 1)

dV

V
= 0 (13)

The above equation is readily integrated, between Tini and T and between Vini and V , to give,

ln

(

T

Tini

)

+ (γ − 1) ln

(

V

Vini

)

= const

⇓

ln

(

T

Tini

)

+ ln

(

V

Vini

)(γ−1)

= const

⇓

ln

[

T

Tini

(

V

Vini

)(γ−1)
]

= const

Eventually, taking the exponential of both sides,

TV (γ−1) = const (14)

Equation (14) is what we were looking for. Sometimes it is better to express the same transfor-
mation using pressure and volume, rather than temperature and volume. Using T = pV/R in
the above equation leads us to:

pV γ = const (15)

with γ > 1, given that Cp is always larger than CV . The difference between an isotherm,
pV = const, and an adiabatic, pV γ = const, transformation is the γ, a number always greater
than 1. So, in a (p, V ) diagram, the curves describing an adiabatic transformation will always
be similar to hyperbolae, like the isotherms, but slightly steeper, due to γ (see Figure 5 for an
example of that).
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p

V

Figure 5: In this (p, V ) diagram the full line corresponds to an isotherm transformation, pV = κ,
while the dotted line corresponds to an adiabatic transformation, pV γ = κ, with γ = 1.5. The
adiabatic curve is markedly steeper than the isotherm one.

5 The efficiency of engines

The first law of Thermodynamics tells us that in any process the energy is conserved. We can
convert heat into work, but during the process no further energy is created or lost. Scientists
have been, and still are, particularly interested in how well a given quantity of heat can be
transformed into useful work. Experience tells us that some, or a lot of, heat is never converted
into work. This is where the second law of Thermodynamics comes into play. It has to do with
engines (which convert heat into work and vice-versa) and their efficiencies. It is important that
we define the concept of efficiency before discussing the second law in all its aspects.
A generic engine is an apparatus which operates between two heat reservoirs at two different
temperatures, and which absorbs heat to produce some work (see Figure 6). The engine itself
can be roughly identified with a substance operating in a cycle, i.e. the initial and final state of

HOT BODY

COLD BODY

E

Q

Q

W

2

1

Figure 6: Schematic representation of a generic engine. The engine E works by absorbing a
quantity of heat Q1 from a hot reservoir, by producing work W and rejecting a quantity of heat
Q2 into a cold reservoir.
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Figure 7: The Carnot cycle. During one cycle the engine has done positive work on the sur-
roundings, equivalent to the shaded area.

this substance are the same. If W is the amount of work produced by the engine (according to
our previous sign convention, -W is the work done by the surroundings on the engine), and if Q1

heat is absorbed from an hot reservoir, while Q2 heat is released to the cold reservoir, then the
variation of internal energy of the engine is:

∆U = Q1 − Q2 − W

Given that the substance forming the engine operates in a cycle, the internal energy of the initial
state is equal to the internal energy of the final state; it follows that ∆U = 0. From the previous
equation we obtain, thus, an important result,

W = Q1 − Q2, (16)

i.e. the work produced by an engine is equivalent to the difference between the heat absorbed and
the heat released to the reservoirs. To measure how well a certain amount of heat is transformed
into work, or how well work is transformed into heat, the ratio between work done over heat
absorbed is used. More specifically, using the notation previously introduced, the efficiency η of
the engine is defined as:

η ≡
W

Q1
(17)

or, using equation (16),

η = 1 −
Q2

Q1
(18)

Quite often the efficiency is expressed as a percentage, i.e. the definition of equation (18) is
multiplied by 100.
Among the many engines created by engineers or that can be designed, the Carnot engine plays
a fundamental role in Thermodynamics. This is defined as any engine that operates between only
two reservoirs and it is reversible, meaning that if the engine inverts its cycle, it will go through
the same steps as in the direct cycle. The Carnot engine is made up of four transformations,
two isotherms and two adiabatics, according to the scheme in Figure 7. The substance forming
the essential part of the engine starts at volume VA and temperature T1. Then it undergoes an
isotherm expansion up to volume VB , by accepting an amount of heat Q1. At this point the
system is thermally insulated and the expansion continues to volume VC ; this is, obviously, an
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adiabatic expansion, where the temperature drops to T2. Now the compression part of the engine
starts. First we have an isotherm compression, where heat Q2 is expelled. Then an adiabatic
compression, where the temperature raises again to the original value T1. After this the cycle is
repeated identically. As we know, in a (p, V ) diagram the work is equivalent to the area under
the curve representing each transformation. In a cycle, therefore, the work done by the system
is equivalent to the area enclosed by the curves forming it. The work done by the system will be
positive (i.e. the work done by the surroundings will be negative) if the cycle is run clockwise;
otherwise it will be negative. We will see few applications of the Carnot cycle in the next sections.

6 The second law of Thermodynamics: postulates

It is customary to introduce the second law of Thermodynamics through the enunciation of two
postulates, through the Kelvin-Planck and the Clausius statements. The reading of these, alone,
is probably not sufficient to a proper understanding of the law. We will, then, need to follow up
the enunciation with a qualitative discussion of the postulates’ consequences.

6.1 Kelvin-Planck statement

It is impossible to construct a device that, operating in a cycle, will pro-

duce no effect other than the extraction of heat from a single body at

a uniform temperature and the performance of an equivalent amount of

work

The above passage can, perhaps, be understood more clearly by looking at Figure 8. The engine
E extracts heat from a hot reservoir, but it does not release any heat to a cold reservoir, as
in a typical engine. Therefore all heat extracted will have to be converted into heat, W = Q.
Experience tells us that such a situation never occurs in nature. An engine exchanging heat
with just one reservoir can produce an amount of work always smaller than the amount of heat
extracted. We can never achieve an engine so efficient as to convert all the heat into work. The
engine forbidden in Kelvin-Planck’s postulate has Q2 = 0. Therefore, using formula (18), its
efficiency is,

η = 1 −
0

Q1
= 1

i.e. that would be an engine with a 100% efficiency.

HOT BODY

COLD BODY

E

Q

W=Q

Figure 8: The second law as contained in the Kelvin-Planck statement. The kind of engine here
depicted can never be realised in nature.
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HOT BODY

COLD BODY

E

Q

Q

Figure 9: The second law as contained in the Clausius statement. The kind of engine here
depicted can never be realised in nature.

6.2 Clausius statement

It is impossible to construct a device that, operating in a cycle, produces

no effect other than the transfer of heat from a colder to a hotter body

The device described in the above passage is schematically shown in Figure 9. We never observe
the spontaneous transfer of heat from a cold to a hot body. We could, in principle, design
an engine for doing that; after all, every refrigerator does just that. But the kind of machine
depicted in Figure 9 does not need to produce any work at all for allowing the transfer. From
a first-law point of view there is no problem as the quantity of heat absorbed, Q1 = Q is equal
to the quantity of heat released, Q2 = Q. But Clausius statement tells us that an engine like
the one just described can never be assembled. In other words, if heat has to be transfered from
a cold to a hot body, then we need work to carry out this process. If we were to compute the
efficiency of the engine in Figure 9 using formula (18) we would find η = 0. But this is contrary
to our intuition according to which an engine extracting heat from a cold body and pumping it
into a hot body (basically a refgrigerator) is more efficient if it carries out little work. We could,
then, adopt a different definition for the efficiency of refrigerators. there is, in fact, a quantity
customarily used, known as coefficient of performance of a refrigerator. This is defined as:

ηR ≡
Q2

W
(19)

For the engine described by the Clausius statement we have W = 0, Q2 = Q; therefore its
efficiency is infinite. This makes more sense, although we know we can never have real infinitely-
efficient refrigerators.

6.3 Equivalence of Kelvin-Planck and Clausius statements

The statements we have introduced are different, but both describe forbidden situations for
thermodynamic processes. In this section we are going to show that the two descriptions are, in
fact, equivalent. We will proceed by proving that if one of the statements is not true, then the
other one is wrong too.
Let us, first, suppose that Kelvin-Planck statement is wrong. An engine E, extracting heat Q1

and delivering work W = Q1 is, thus, possible. Close to this engine let us devise another engine,
a refrigerator R, which takes heat Q2 from the cold reservoir and releases heat Q1 + Q2 to the
hot reservoir. In order to obey the first law, R needs to do negative work W = −Q1. This is
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Q
1

W=Q
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Figure 10: Composite engine to prove the equivalence of Kelvin-Planck and Clausius statements.

simply equivalent to the work provided by E (see Figure 10). If we consider the composite engine
formed by E and R, we have as a result an engine which absorbs heat Q2 from a cold reservoir
and releases heat −Q1 +Q1 +Q2 = Q2 to a hot reservoir, without performing any work. Such an
engine, though, is equivalent to the one forbidden by Clausius statement. Therefore, by assuming
Kelvin-Planck not true we have to accept that Clausius is not true.
Next, let us assume Clausius statement to be false, i.e. we can build an engine R which absorbs
heat Q2 from a cold reservoir and release the same amount of heat into a cold reservoir, without
the need of any work. We are free, though, to side this engine with another one extracting
a quantity of heat Q1 from the hot reservoir and returning a quantity of heat Q2 to the cold
reservoir; this engine would, then, necessarily carry out work W = Q1 −Q2 in order to obey the
first law (see Figure 11). If we, now, consider the composite engine formed by R and E, we have
an engine which extracts heat Q1 − Q2 from the hot reservoir, returns heat Q2 − Q2 = 0, i.e.
no heat at all, to the cold reservoir, and carries out an amount of work W = Q1 − Q2. In other
words, we have an engine transforming all the extracted heat into work, precisely what Kelvin-
Planck statement forbids. This completes the proof that Kelvin-Planck and Clausius statements
are equivalent enunciates. They are different descriptions of Thermodynamics second law.

R
W=Q

HOT BODY

COLD BODY

E
1

Q
2

Q
1

Q
2

Q
2

Q
2

−

Figure 11: Composite engine to prove the equivalence of Clausius and Kelvin-Planck statements.
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W’ W W

Q’2

Q’1

Q’2=Q’ 1−W Q2=Q 1−W

Q1 Q1Q’1

Q2

Figure 12: Composite engine to prove Carnot theorem.

7 The second law of Thermodynamics: Carnot’s theorem and
the absolute thermodynamic scale of temperature

With an argument similar in nature to those presented to prove the equivalence between Kelvin-
Planck and Clausius statements, we can now show that

no engine operating between two reservoirs can be more efficient than a

Carnot engine operating between those same two reservoirs

Let us consider, then, an hypothetical engine E operating between a hot and a cold reservoir.
The engine extracts heat Q

′

1 from the hot reservoir and returns heat Q
′

2 to the cold reservoir
performing, at the same time, work W

′

. Let us also consider a Carnot engine, C, operating
between the same two reservoirs. It extracts heat Q1 and returns heat Q2, performing work W .
Let us assume, for the reminder, that the hypothetical engine has a higher efficiency than the
Carnot engine. If W

′

= W :
η ≥ ηC (20)

Using definition (17), the above conditions leads to the following result:

W

Q
′

1

≥
W

Q1
⇒ Q1 ≥ Q

′

1

At this point let us reverse the cycle of C and make it act as a refrigerator (see Figure 12). Given
that this refrigerator can function thanks to the work provided by E, we have a composite E+C
engine which extracts heat,

Q2 − Q
′

2 ⇔ (Q1 − W ) − (Q
′

1 − W ) = Q1 − Q
′

1

from the cold reservoir and returns positive heat Q1−Q
′

1 to the hot reservoir, without performing
any amount of net work. But this is exactly what Clausius statements of the second law forbids.
Things can be re-adjusted only if we make Q1 − Q

′

1 a negative or null quantity. This, in turn,
means to make engine E efficiency smaller or equal to the efficiency of the Carnot engine, which
is what we wanted to prove.
With an analogous argument we can easily show that any two different Carnot engines, operating
between the same reservoirs, have exactly the same efficiency. So, if heat Q1 and heat Q2 are
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respectively extracted from the hot reservoir and returned to the cold reservoir by a first Carnot
engine C, while Q

′

1 and Q
′

2 are exchanged between the same reservoirs by another Carnot engine
C’, then the previous statement is equivalent to the following relation:

ηC = ηC
′ ⇔ 1 −

Q2

Q1
= 1 −

Q
′

2

Q
′

1

⇒
Q2

Q1
=

Q
′

2

Q
′

1

Thus, whichever amount of heat is exchanged between a hot and cold reservoir by a Carnot
engine, the ratio of heat returned to heat absorbed seems to be a constant. It will, therefore,
depend only on the temperatures of the two reservoirs. We can describe this mathematically
with the following relation,

Q2

Q1
= f(T2, T1) (21)

where the exact analytic form of function f(T2, T1) is, at the moment, unknown. This function,
though, has a couple of interesting properties. Consider, for example, a Carnot engine working
in a direct cycle. It extracts heat Q from a hot reservoir at temperature T and returns heat Q0

to a cold reservoir with temperature T0. From equation (21) we have, for this engine,

Q0

Q
= f(T0, T ) (22)

If we revert the cycle for this engine, heat Q0 is extracted from the cold reservoir and it is
transferred to the hot reservoir. In this case equation (21) reads,

Q

Q0
= f(T, T0)

but, given that Q0/Q = 1/(Q/Q0),
Q0

Q
=

1

f(T, T0)

Comparing this expression with (22) we have, as a result,

f(T, T0) =
1

f(T0, T )
(23)

Be now C1 a Carnot engine working between a hot and a cold reservoir at temperature T1 and
T0, respectively. From equation (21) it follows that,

Q0

Q1
= f(T0, T1)

Similarly, be C2 a Carnot engine working between temperatures T0 and T2. We have:

Q2

Q0
= f(T2, T0)

Multiplying the previous two relations we get:

Q0

Q1

Q2

Q0
= f(T0, T1)f(T2, T0)

or, using property (23),
Q2

Q1
=

f(T2, T0)

f(T1, T0)
(24)
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Finally, comparing (21) with (24), we arrive at another interesting property:

f(T2, T1) =
f(T2, T0)

f(T1, T0)
(25)

Given that temperature T0 is totally arbitrary (we could have taken another value instead), it
has to be factorized in the expressions for f(T2, T0) and f(T1, T0). There are not many functions
like this which obey properties (23) and (25). A simple choice is the following:

f(T2, T1) =
T2

T1
(26)

This is not a uniquely determined choice, given the arbitrariety of f(T2, T1), but is a valid one
and has the advantage of being quite simple; we will, then, adopt it. From (21) and (26) it
immediately follows this important relation:

Q2

Q1
=

T2

T1
(27)

Through a Carnot engine and relation (27) we have established an important and objective way
of measuring temperatures independently of any substance. No matter which Carnot engine is
used between the two temperatures to be used, their ratio is still going to be equal to the ratio of
the heat extracted. One of the two temperatures has, of course, still to be fixed arbitrarily, but
this is true of any other temperature scale. The temperature scale defined in this way is known
as absolute thermodynamic scale of temperature. The interesting thing that can be proved, but
we will not carry out the demonstration here, is that the absolute scale coincides with the scale
defined through an ideal gas. We do not need, then, to carry out any modification in all the
equations containing T that have been previously introduced.

EXAMPLE 5.
What is the maximum efficiency of a thermal engine operating between an upper temperature of
360 ◦C and the lower temperature of 18 ◦C?

Solution.
The efficiency of any real thermal engine is smaller or equal than the efficiency of a Carnot engine
operating between the same temperatures. Using equations (18) and (27), we can express this
efficiency as a function of temperatures only according to,

ηc = 1 −
Tlower

Tupper

The efficiency η of a real engine operating between Tupper and Tlower is smaller or equal to ηC .
Therefore its maximum is ηC = 1 − (18 + 273)/(360 + 273) ≈ 0.540. It is important to notice
that we have used the absolute scale of temperatures here, where the absolute zero is roughly at
-273 ◦C.

8 The second law of Thermodynamics: the concept of Entropy

There is an important inequality in Thermodynamics which goes under the name of Clausius
inequality. This is key to understanding the concept of entropy. In order to introduce such
inequality let us consider the complex cyclical process described as follows (see Figure 13). A
system S (can be an engine or something else) works in a cyclical fashion, returning to its original
state after one cycle. During each cycle the system exchanges heat with a series of reservoirs T1,
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Figure 13: Composite system used to illustrate Clausius inequality. The combination of system
S and a series of n Carnot machines Ci in a) is equivalent to a single system S + C absorbing
heat Q from the principal reservoir at temperature T0 and returning work W , in b).
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T2, ..., Tn. For instance, while in its state 1, it absorbs heat Q1 from a reservoir at temperature
T1 and makes a transition to state 2. Then it absorbs heat Q2 from a reservoir at temperature
T2 and makes a transition to state 3, and so on. Eventually, while in its state n, it absorbs heat
Qn from a reservoir at temperature Tn and makes a transition to the starting state 1. We can
add to this picture a series of Carnot engines, C1, C2, ..., Cn. Each engine absorbs heat from
a principal common reservoir at temperature T0, produces work and returns heat to a different
reservoir. More specifically, an engine Ci absorbs heat Qi,0 from the principal reservoir, returns
heat Qi to the reservoir at temperature Ti, and produces some work Wi. Using equation (27),
we know that Qi/Qi,0 = Ti/T0 and, therefore, Qi,0 = T0(Qi/Ti). If we now look at the composite
system, the absorbed heat is,

Q =
n

∑

i=1

Qi,0 = T0

n
∑

i=1

Qi

Ti

while the produced work is given by the sum of all individual works by the Carnot engines:

W =
n

∑

i=1

Wi

Given that no heat is returned to any reservoir by the composite system, we have simply,

W = Q

This means that the composite system absorbs heat Q from the principal reservoir and transforms
it all into work W . This is, actually, forbidden by the second law of Thermodynamics. The
picture just described can only be accepted if work is carried out on the composite system, and
the produced heat is returned, not absorbed, by the principal reservoir. This means that Q needs
to be negative, i.e. ultimately,

n
∑

i=1

Qi

Ti
≤ 0 (28)

The number of auxiliary Carnot engines can be increased. The temperature of S makes a contin-
uous transition from its initial value to other values, during the cycle, and then back to its initial
value. Each Carnot engine was introduced relatively to a temperature value of the system during
the cycle. The introduction of more Carnot engines ultimately means a finer sampling of the tem-
peratures range of S during the cycle. We can even think of a limiting process where the number
of Carnot engines tends to infinity. In such a case the temperature is sampled continuously, and
inequality (28) is transformed in the following one:

∮

δQ

T
≤ 0 (29)

Equation (29) is known as Clausius inequality. The process through which such an inequality has
been derived is quite an artificial one. Yet, the inequality is one of the key points of Thermody-
namics, as well soon shall see. The equal sign in (29) occurs, as it can easily be proved, when the
process is a reversible one. Consider, then, a reversible process (for example a gas undergoing
a cyclical transformation) in which a system goes through an initial state α to a final state ω,
and then back to the initial state (see Figure 14). Given that the transformation is reversible,
Clausius inequality holds with the equal sign,

∮

δQ

T
= 0
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Z

Figure 14: pV diagram of a reversible cycle. The system goes from α to ω, and then back to α,
in one cycle. Integral

∫

δQ/T from α to ω is the same for both path γA and path γZ .

The integral over the closed path can, though, be broken into two integrals over open paths,

∮

δQ

T
=

∫ ω

α γA

δQ

T
+

∫ α

ω γZ

δQ

T
= 0

So:
∫ ω

α γA

δQ

T
= −

∫ α

ω γZ

δQ

T

⇓
∫ ω

α γA

δQ

T
=

∫ ω

α γZ

δQ

T

This last equation shows that each integral is independent on the chosen path. Thus, it can be
computed as the difference of a function, which we will indicate as S, between α and ω:

∫ ω

α γA

δQ

T
= Sω − Sα

In other terms, δQ/T is the exact differential of a state function, called entropy :

δQ

T
= dS (30)

In the above equation the difference in nature between δQ and dS is clear: the second is an
exact differential, while the first is not. In fact, the entropy is a state function, while the heat
exchanged depends on the specific transformation involved.
Entropy is an important thermodynamic quantity describing the direction in which systems
undergo transformations. To see this let us consider an irreversible cycle. This could be formed
by an irreversible transformation from α to ω (in this case there is no path connecting the two
states as the transformation is irreversible) and a reversible one from ω to α, along a curve γ.
Clausius inequality forces us to write:

∮

δQ

T
=

∫ ω

α

δQ

T
+

∫ α

ω γ

δQ

T
≤ 0

20

James Foadi - Oxford 2011



Now, using the entropy:
∫ ω

α

δQ

T
+ Sα − Sω ≤ 0

This leads to the following important result:

Sω − Sα ≥

∫ ω

α

δQ

T
(31)

What happen if the system considered is isolated? In such a case there is no heat exchange,
δQ = 0, thus:

Sω ≥ Sα

This is a very important conclusion:

for any transformation occurring in an isolated system, the entropy of the

final state can never be less than that of the initial state.

For reversible transformations the entropy will, of course, remain unchanged. The stated result
provides us with an indicator for any process direction. An isolated system with constant energy
can progress through a whole series of transformations compatible with its energy (first law). But,
once its state of maximum entropy has been reached, the system will no progress any further.
We can say that the state of maximum entropy is the most stable state for an isolated system.

9 Entropy as a function of T and V (and rigorous demonstration
of Joule experiment).

In equation (7) the infinitesimal amount of heat was expressed as a function of T and V differ-
entials,

δQ =

(

∂U

∂T

)

V

dT +

[

p +

(

∂U

∂V

)

T

]

dV

Using definition (30) is, therefore, immediate to express the entropy differential as a function of
T and V :

dS =
1

T

∂U

∂T
dT +

1

T

[

p +
∂U

∂V

]

dV (32)

where we have dropped the T and V suffixes because we know that S is here considered to depend
on these two variables only. Now, dS is an exact differential. From standard Calculus we learn
that if an expression like,

M(x, y)dx + N(x, y)dy

is an exact differential, then the following condition holds:

∂M

∂y
=

∂N

∂x
(33)

For dS, which is an exact differential, condition (33) reduces to,

∂

∂V

(

1

T

∂U

∂T

)

=
∂

∂T

[

1

T

(

p +
∂U

∂V

)]

⇓

1

T

∂2U

∂V ∂T
= −

1

T 2

(

p +
∂U

∂V

)

+
1

T

∂p

∂T
+

1

T

∂2U

∂T∂V

21

James Foadi - Oxford 2011



and eventually, after carrying out few simplifications,

(

∂U

∂V

)

T

= T

(

∂p

∂T

)

V

− p (34)

where we have re-introduced the T and V suffixes for future clarity. We will now use equation
(34) to prove mathematically a result previously introduced and described using an experiment
by Joule, the dependency of the internal energy of an ideal gas exclusively on T : U = U(T ). For
one mole of ideal gas the result pV = RT is valid. Thus, ∂p/∂T = R/V and equation (34) gives,

(

∂U

∂V

)

T

= T
R

V
−

RT

V
= 0

which means that U(T, V ) depends only on T . So, like we said some time ago, this result can be
rigorously proved using the second law of Thermodynamics.

10 Calculation of entropy change for irreversible processes

Entropy is calculated as an integral of quantity (30) only for reversible processes. This can be
understood by thinking to the way entropy was introduced as a state function. There we had to
use Clausius inequality with the equal sign; therefore the infinitesimal amount of heat exchanged,
δQ corresponded to a reversible transformation. In other words, when we define dS as δQ/T , we
are allowed to consider infinitesiaml heat variations for reversible processes only. What can we
do, then, when an entropy change needs to be computed for irreversible transformations? After
all this is what normally occurs in nature. We are indeed lucky that entropy is a state function
and, as such, depends exclusively on the initial and final states of the transformation, not on the
specific transformation is carried out. Irreversible transformations do not possess, for example, a
defined curve between two states in a (p, V ) diagram, but their entropy variations exist because
initial and final states are well defined.
When we are required to compute the entropy variation for an irreversible process, then, we can
simply compute δQ/T for any reversible process taking the system from the initial to the final
state of the ireversible process. Any path from the initial to the final state will produce the same
answer, because the integral is independent on the chosen path.

EXAMPLE 6.
1 Kg of water is heated at atmospheric pressure from 20 ◦C to 100 ◦C. Knowing that the heat
capacity (with constant pressure) of water is Cp = 4.2 kJK−1, compute water entropy variation.

Solution.
The initial state and the final state are well defined for the system described in this problem.
The entropy variation, accordingly, is well defined. In order to compute it, though, we need to
find an expression for δQ of a corresponding reversible process, i.e. a transformation taking the
water from 20 ◦C to 100 ◦C at constant atmospheric pressure. A possibility is, quite obviously,
an isobaric process. In this case we have,

δQ = CpdT

(no work is carried out by the water or on the water), so that,

dS =
CpdT

T
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Theaentropy variation is given by the integral for the above expression between the absolute
temperature 20+273=293 and the absolute temperature 100+273=373:

∆S =

∫ 373

293
Cp

dT

T
= Cp [ln T ]373293 = Cp ln

(

373

293

)

= 4.2 × 103 ln

(

373

293

)

The result is, thus, ∆S ≈ 1.01 × 103JK−1.

EXAMPLE 7.
An ideal gas undergoes a free expansion, doubling its initial volume. Compute the entropy change
for this irreversible process.

Solution.
We have already seen a free expansion while describing Joule experiment. As it was clear from
the experiment, the process is irreversible because, once the stopcock is open, the gas diffuses
freely in the empty container and there is no way it freely goes back to the first container. We
need now to find a reversible process which takes a volume V of gas at temperature T to a new
volume 2V still at the same temperature, and where no heat exchange has occurred (adiabatic
process). The reversible process we will use here is one taking the gas to slowly expand by keeping
it in contact with a reservoir at temperature T (isothermal transformation). In such a case, from
the first law, δQ is given by:

δQ = dU + pdV = pdV

because dU = 0, given that the temperature is kept constant. For the infinitesiaml entropy we
have:

dS =
δQ

T
=

pdV

T

The quantity whose variation is directly observed in this transformation is the volume. From
pV = nRT we express p as a function of T and V , p = nRT/V , so that:

dS = nR
dV

V

The total entropy variation is obtained by integrating the above expression between V and 2V :

∆S =

∫ 2V

V

nR
dV

V
= nR[lnV ]2V

V = nR ln 2

EXAMPLE 8.
For the system described in EXAMPLE 6, compute the entropy variation for the whole universe.

Solution.
The universe is, in this case, formed by the water and the reservoir that has been used to heat the
water from Ti = 293 to Tf = 373 kelvin degrees. Such reservoir is, thus, at a fixed temperature
of Tf = 373 K. The heat absorbed by the water has been released by the reservoir. The entropy
variation for the reservoir is, thus,

∆Sres =
−Cp(Tf − Ti)

Tf

Consequently, the universe entropy is computed as follows:

∆Suni = ∆Swat + ∆Sres = Cp

[

ln

(

373

293

)

−
80

373

]

= 0.027Cp
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Reservoir at 373 K

Water

Q1

Q2

W

C

T

Figure 15: Heating of water using a Carnot engine.

It is, therefore, a positive quantity, as it should be.
It is instructive to calculate the entropy variation for the same experimental set up when the
heating is carried out in two steps: first the water temperature is raised from 20 ◦C to 60 ◦C and
then from 60 ◦C to 100 ◦C. As the initial and final states of the process are still the same, the
entropy variation for the water is still the same. But now we have two reservoirs, one at 333 K
and the other at 373 K. The entropy variation for the two reservoirs is, thus,

∆Sresvs = −

(

40

333
+

40

373

)

Cp

For the universe we have, this time,

∆Suni = ∆Swat + ∆Sresvs = Cp

[

ln

(

373

293

)

−
40

333
−

40

373

]

= 0.014Cp

It is interesting to observe that the entropy increase is still positive, as it should be, but smaller
than with just one reservoir. This is so because two reservoirs, and the related heat transfer
in smaller steps, make the process more akin to a quasi-static, reversible process (for which the
entropy change is zero).

EXAMPLE 9.
Calculate the universe entropy change for the water heating case (EXAMPLE 6), when heat is
supposed to be transfered by a Carnot machine operating between Tf = 373 K and Ti = 293 K.

Solution.
The experimental set up is shown at Figure 15. If the heat transfer at each cycle is small, we
have an engine working in a reversible way. Being the water at constant atmospheric pressure,
the heat δQ2 absorbed by the engine is CpdT . If δQ1 is the heat released by the reservoir then,
thanks to formula (27),

δQ1

δQ2
=

373

T
⇒ δQ1 =

373

T
δQ2

The entropy change for water is still the same as in EXAMPLE 6. For the reservoir, though,
δQ/T is equal to −δQ1/373, so that the entropy increase is:

∆Sres = −

∫ 373

293

δQ1

T
= −

1

373

∫ 373

293

373

T
CpdT = −Cp

∫ 373

293

dT

T
= −Cp ln

(

373

293

)
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For the universe the entropy variation will be:

∆Suni = ∆Swat + ∆Sres = Cp ln

(

373

293

)

− Cp ln

(

373

293

)

= 0

There is no entropy increase as, in this case, the heating is performed reversibly by a Carnot
engine.

11 The central equation of Thermodynamics

The first law in infinitesimal form was given in equation (5):

dU = δQ + δW

We also know (from equation (6)), that δW = −pdV for a reversible mechanical work. For the
same reversible process we can, in addition, write δS = δQ/T . Thus, in this case, the first law is
written as:

dU = TdS − pdV

We can extend the previous relation to irreversible processes as well, because it is exclusively
formed by state functions. The following relation,

TdS = dU + pdV (35)

is, thus, known as the central equation of Thermodynamics because in encompasses first and
second laws of Thermodynamics (containing the entropy), and it is valid for both reversible and
irreversible processes.

EXAMPLE 10.
Determine the entropy for a mole of ideal gas.

Solution.
For an ideal gas the internal energy is a function of temperature only, U = U(T ), therefore:

CV =

(

∂U

∂T

)

V

=
dU

dT

and dU = CV dT . The central equation of Thermodynamics will, accordingly, be written in the
following way:

TdS = CV dT + pdV

For one mole of ideal gas the equation of state reads, pV = RT , from which p = RT/V . With
this substitution we have:

TdS = CV dT + RT
dV

V
or,

dS = CV
dT

T
+ R

dV

V

Integrating this expression we obtain, finally,

S = CV ln(T ) + R ln(V ) + S0

where S0 is an arbitrary constant (entropy differences are what is measured experimentally).
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12 Thermodynamic potentials and Maxwell relations

We have introduced several physical quantities which are generally used in Thermodynamics,
like for instance the internal energy U or the entropy S. We could certainly investigate many
thermodynamic phenomena just using what we have introduced so far. But as Thermodynamics
is a very general science that can be applied to different fields, people have found it convenient to
work with additional quantities, like the enthalpy or the free energy. In this section we would like
to introduce, explain and work out with what are generally called thermodynamic potentials: the
enthalpy (H), the free energy (F ) and the Gibbs function (G). The internal energy is included
among the potentials and we will start from it to find the first of four relations known as Maxwell

relations.
The central equation of Thermodynamics can be re-written as,

dU = TdS − pdV (36)

The presence in the above expression of the differentials dS and dV means that U can be thought
as a function of S and V : U = U(S, V ). We can, therefore, express the differential dU with the
general expression:

dU =

(

∂U

∂S

)

V

dS +

(

∂U

∂V

)

S

dV

A comparison of this last expression with equation (36) yields:

T =

(

∂U

∂S

)

V

, p = −

(

∂U

∂V

)

S

(37)

Also, given that dU is an exact differential, the following condition holds:

(

∂T

∂V

)

S

= −

(

∂p

∂S

)

V

(38)

The above condition is the first Maxwell relation. Let us proceed now to the second relation and
the concept of enthalpy. Enthalpy is a state function defined as:

H = U + pV (39)

If we differentiate the above expression, obtain:

dH = dU + V dp + pdV

But, from (36), dU + pdV = TdS. Thus:

dH = TdS + V dp (40)

So, now we have a function of the two variables S and p, H = H(S, p). For the differential we
would generally write:

dH =

(

∂H

∂S

)

p

dS +

(

∂H

∂p

)

S

dp

A comparison of this expression and (40) leads to:

T =

(

∂H

∂S

)

p

, V =

(

∂H

∂p

)

S

(41)
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Again, given that dH is an exact differential, the following condition, known this time as second

Maxwell relation, holds:
(

∂T

∂p

)

S

=

(

∂V

∂S

)

p

(42)

To derive the second Maxwell relation we have essentially acted analogously to what done for
deriving the first Maxwell relation. The only difference is that to derive the first relation the
accent is set on the internal energy, while for the second relation the enthalpy plays the more
decisive role. But: what is enthalpy? Consider a transformation carried out at constant pressure.
In this case equation (40) gives dH = TdS, because dp = 0. In a reversible reaction TdS equals
the heat exchanged, δQ. Thus the enthalpy is equivalent to the heat exchanged in a reversible
process at constant pressure:

dH = δQ in an isobaric and reversible process

Let us move on to the next thermodynamic potential, the free energy, known also as Helmholtz
function F . This free energy is defined as:

F = U − TS (43)

As done before, let us differentiate expression (43):

dF = dU − SdT − TdS

From (36) we derive dU − TdS = −pdV , therefore the previous expression can be re-written as,

dF = −pdV − SdT (44)

In the equation just derived F is a function of V and T , F = F (V, T ). This means:

dF =

(

∂F

∂V

)

T

dV +

(

∂F

∂T

)

V

dT

A comparison of this last form with form (44) for the differential yields:

p = −

(

∂F

∂V

)

T

, S = −

(

∂F

∂T

)

V

(45)

Also, given that dF is an exact differential, the following condition holds:
(

∂p

∂T

)

V

=

(

∂S

∂V

)

T

(46)

conditions called the third Maxwell relation.
At this point, before proceeding to the last thermodynamic potential, it is appropriate to give
some physical meaning to free energy. We can do this by considering the system depicted at
Figure 16. This system is in contact with a reservoir at temperature T0, from which it absorbs
heat Q. System and reservoir are enclosed by a thermally insulated membrane, so that heat
exchange with the rest of the universe does not occur, but this membrane is flexible i.e. it can
expand and contract. In this way the system can perform work or work can be performed on the
system. When the heat Q is absorbed by the system there is, as we know, an entropy change,
both for the system and for the reservoir. Given that the system and reservoir are thermally
insulated from the rest of the universe, the process is an adiabatic one and, therefore, the entropy
change has to be positive or null:

∆S + ∆S0 ≥ 0
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Figure 16: The system and reservoir illustrated in this picture are thermally isolated from the
rest of the universe by a membrane. This is not a rigid wall, but flexible enough to allow the
system to perform work.

where ∆S and ∆S0 are the entropy change for the system and reservoir respectively. The reservoir
loses heat Q and its temperature is unchanged during the whole process; its entropy change is,
thus, ∆S0 = −Q/T0. The above expression is consequently turned into the following one:

∆S −
Q

T0
≥ 0

or,
Q − T0∆S ≤ 0

In order to replace Q in the inequality just obtained we can make use of the first law which, for
the system here described, reads ∆U = Q−W . Thus Q = ∆U + W is replaced in the inequality,
which is transformed into:

∆U + W − T0∆S ≤ 0

Now, the change in free energy, U − TS, for this process is ∆F = ∆U − ∆(TS) = ∆U − T0∆S,
because the temperature of the system at th ebeginning and the end is T0. The inequality can,
thus, be re-written as,

∆(U − TS) + W ≤ 0 ⇒ ∆F + W ≤ 0

We have reached an important conclusion:

W ≤ −∆F, (47)

that can be summarized with the following words:

in a process in which the initial and final temperature is the same as the

surroundings, the maximum work obtainable is equal to the decrease in

free energy

In simpler words we can qualitatively link free energy to available work.
The last potential to be described is the Gibbs function. This is defined in the following way:

G = H − TS (48)
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U
(

∂T
∂V

)

S
= −

(

∂p
∂S

)

V

H
(

∂T
∂p

)

S
=

(

∂V
∂S

)

p

F
(

∂p
∂T

)

V
=

(

∂S
∂V

)

T

G
(

∂V
∂T

)

p
= −

(

∂S
∂p

)

T

Table 1: Maxwell thermodynamic relations.

As we are, by now, use to proceed let us differentiate equation (48):

dG = dH − SdT − TdS

Now, dH = d(U + pV ) = dU + V dp + pdV . Thus:

dG = dU + V dp + pdV − SdT − TdS

From equation (36) we have dU = TdS − pdV . Replacing this in the above expression we are
left with:

dG = V dp − SdT (49)

The differential expression (49) assumes G = G(p, T ). Through differentiation we, therefore,
have:

dG =

(

∂G

∂p

)

T

dp +

(

∂G

∂T

)

p

dT

A comparison of this with (49) yields,

V =

(

∂G

∂p

)

T

, S = −

(

∂G

∂T

)

p

(50)

Furthermore, the condition for dG to be an exact differential leads to the fourth Maxwell relation:

(

∂V

∂T

)

p

= −

(

∂S

∂p

)

T

(51)

The four Maxwell relations have been tabulated together in Table (1) where, in the first column,
the thermodynamic potential used to derive them is indicated.

13 A useful relation between ∆F and ∆G

Free energy and Gibbs function are used quite often in practical calculations. In many cases these
two quantities are used interchangeably without, in fact, fully justifying the approximation. There
is, anyway, an immediate relation between free energy and Gibbs function variations, from which
one can make up her mind whether to use one or the other. By definition:

F = U − TS

while,
G = H − TS = U + pV − TS

Therefore,
G = F + pV
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Translating this last relation to the finite-difference counterpart we obtain the relation we were
looking for:

∆G = ∆F + ∆(pV ) (52)

From (52) we understand, for instance, that if the variation in pV is small compared to the
variation in free energy, then G can easily be approximated by F and vice-versa.
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