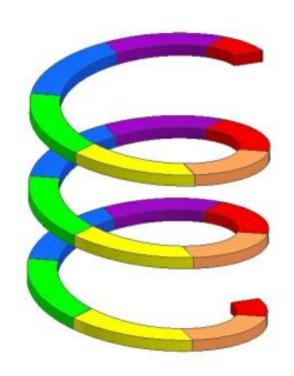
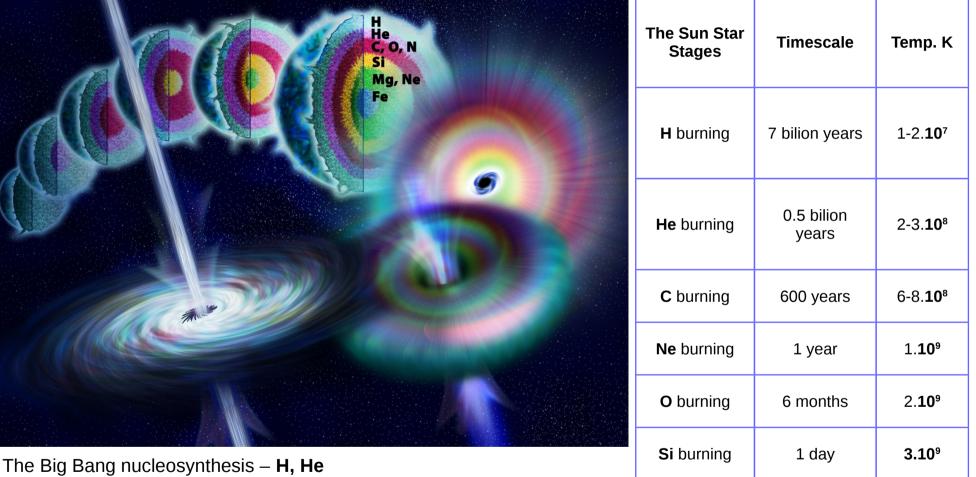

Introduction to Inorganic Chemistry

											J								
		I.A	II.A											III.A	IV.A	V.A	VI.A	VII.A	VIII.A
к	name	Hydrogen			S	Alkali	s-Monoels												Helium
1		Н																	He
1.	symbol				S					DIATOMIC		INERT	1				~ .		
	elneg	2,2		electronega		METAL	р	METALLOI		NONMETAI		NOBLE	l .	n Triels		Pnictogens			4,16
	z	1	the atomi	c number	d	Transition	6	р	p	POLYATOMI	ł	RARE		p-Triels	p-Tetrels	p-Pentels	p-nexels	p-nepteis	2
		s1	s2		d,p	Poststransi								p1	p2	p3	p4	p5	p6
L	name	Lithium	Berylium		f	anthanide	5	GAS		FLUID		SOLID		Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
2.		Li	Be						DADIOACT					В	С	Ν	0	F	Ne
2.	symbol		De		f	Actinides		l	RADIOACT	J	ARTIFICIAL	J			~				ne
	elneg	1	1,3			S ¹	one e- miss	sing in s-orb	oital					2	2,5	3	3,5	4	4,79
	z	3	4					5						5	6	7	8	9	10
м	name	Sodium	Magnesium					Platinum g	group meta	als (PGMs)		d-Monoels	d-Diels	Aluminium	Silicon	Phosphorus	Sulphur	Chlorine	Argon
3.	symbol	Na	Mg	d-Triels	d-Tetrels	d-Pentels	d-Hexels	d-Heptels	d Octole	d-Nonels	d-Decels	d-Alkali m.	d Earth m	AI	Si	Р	S	CI	Ar
5.	elneg	0,9	1,31	d1	d2	d3	d4	d5	d6	d7	d8	d-Aikali III.	d10	1.6	1.9	2.2	2.6	3,2	3,24
	-	11	12	I.B	II.B	III.B	IV.B	V.B	VI.B	VII.B		CONTRACTOR OF STREET, S	and the second	13	14	15	16	17	18
N	z name	Potassium	Calcium	Scandium	Titanium	Vanadium		V.D Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Galium	14 Germanium	Arsenic	Selenium	Bromine	Krypton
	name							-											
4.	symbol	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	elneg	0,8	1	1,4	1,5	1,6	1,7	1,6	1,8	1,9	1,9	1,9	1,7	1,8	2	2,2	2,6	3	2,97
~	Z	19 Debidiers	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
0	name	Rubidium	Strontium	Yttrium	Zirconium	Niobium	lolybdenur	Technetium		Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Telurium	lodine	Xenon
5.	symbol	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
	elneg	0,8	1	1,2	1,3	1,6	2,2	1,9	2,2	2,3	2,2	1,9	1,7	1,8	2	2	2,1	2,7	2,6
	Z	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Р	name	Caesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
6.	symbol	Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	elneg	0,8	0,9	1,1	1,3	1,5	2,4	1,9	2,2	2,2	2,3	2,5	2	1,6	2,3	2		2,2	2,6
	z	55	56														2		
Q	name		20	57-71	72	73	74	75	76	77	78	79	80	81	82	83	2 84	85	86
-	nume	Francium	Radium	57-71 Actinium	utherfordiu		74 Seaborgium	75 Bohrium		77		79	80						
/			Radium	Actinium	utherfordiu	Dubnium	Seaborgium	Bohrium	76 Hassium	77 Meitnerium	78 Darmstadtiur	79 oentgeniur	80 Copemiciun	81 Nihonium	82 Flerovium	83 <mark>Moskovium</mark>	84 Livermoriun	85 Tenesin	86 Oganeson
1.	symbol	Fr	Radium Ra	Actinium AC	utherfordiu Rf	Dubnium Db	Seaborgium Sg	Bohrium Bh	76 Hassium HS	77 Meitnerium Mt	78	79	80 Copemicium Cn	81 Nihonium Nh	82 Flerovium	83 Moskovium MC	84 Livermoriun LV	85 Tenesin Ts	86 Oganeson Og
7.			Radium	Actinium	utherfordiu	Dubnium	Seaborgium	Bohrium	76 Hassium	77 Meitnerium	78 Darmstadtiur	79 oentgeniur	80 Copemiciun	81 Nihonium	82 Flerovium	83 <mark>Moskovium</mark>	84 Livermoriun	85 Tenesin	86 Oganeson
7.	symbol elneg	Fr 0,7	Radium Ra 0,9	Actinium AC 1,1	utherfordiu Rf ? 104	Dubnium Db ? 105	Seaborgium Sg 106	Bohrium Bh ? 107	76 Hassium HS ? 108	77 Meitnerium Mt ? 109	78 Darmstadtiur DS ? 110	79 toentgeniur Rg ? 111	80 Copemiciun Cn ? 112	81 Nihonium Nh ? 113	82 Flerovium Fl ? 114	83 Moskovium Mc ? 115	84 Livermoriun LV ? 116	85 Tenesin Ts ? 117	86 Oganeson Og ?
7.	symbol elneg	Fr 0,7	Radium Ra 0,9	Actinium AC 1,1	utherfordiu Rf ? 104 f1	Dubnium Db ?	Seaborgium Sg 106 f3	Bohrium Bh ?	76 Hassium HS ?	77 Meitnerium Mt ? 109 f6	78)armstadtiur DS ?	79 bentgeniur Rg ? 111 f8	80 Copemiciun Cn ? 112 f9	81 Nihonium Nh ? 113 f10	82 Flerovium Fl ?	83 Moskovium Mc ?	84 Livermoriun Lv ?	85 Tenesin Ts ? 117 f14	86 Oganeson Og ?
7.	symbol elneg	Fr 0,7	Radium Ra 0,9	Actinium AC 1,1	utherfordiu Rf ? 104	Dubnium Db ? 105	Seaborgium Sg 106	Bohrium Bh ? 107	76 Hassium HS ? 108	77 Meitnerium Mt ? 109	78 Darmstadtiur DS ? 110	79 bentgeniur Rg 111 f8 VIII.C	80 Copemiciun Cn ? 112	81 Nihonium Nh ? 113	82 Flerovium Fl ? 114	83 Moskovium Mc ? 115	84 Livermoriun LV ? 116	85 Tenesin Ts ? 117 f14 XIV.C	86 Oganeson Og ?
/. Р	symbol elneg	Fr 0,7	Radium Ra 0,9	Actinium AC 1,1	utherfordiu Rf ? 104 f1	Dubnium Db ? 105 f2 II.C	Seaborgium Sg 106 f3 III.C	Bohrium Bh ? 107 f4	76 Hassium HS ? 108 f5 V.C	77 Meitnerium Mt ? 109 f6	78)armstadtiur DS ? 110 f7	79 bentgeniur Rg 111 f8 VIII.C	80 Copemiciun Cn ? 112 f9	81 Nihonium Nh ? 113 f10	82 Flerovium Fl ? 114 f11	83 Moskovium Mc ? 115 f12	84 ivermoriun LV ? 116 f13	85 Tenesin Ts ? 117 f14	86 Oganeson Og ?
	symbol elneg z name	Fr 0,7	Radium Ra 0,9	Actinium Ac 1,1 89-103	utherfordiu Rf ? 104 f1 I.C Cerium	Dubnium Db ? 105 f2 II.C Promethium	Seaborgium Sg 106 f3 III.C Neodymiun	Bohrium Bh ? 107 f4 IV.C Promethium	76 Hassium HS ? 108 f5 V.C Samarium	77 Meitnerium Mt ? 109 f6 VI.C Europium	78 Darmstadtiur DS ? 110 f7 VII.C Gadolinium	79 poentgeniur Rg 111 f8 VIII.C Terbium	80 Copemiciun ? 112 f9 IX.C Dysprosiun	81 Nihonium Nh ? 113 f10 X.C Holmium	82 Flerovium Fl ? 114 f11 XI.C Erbium	83 Moskovium MC ? 115 f12 XII.C Thulium	84 ivermoriun ? 116 f13 XIII.C Ytterbium	85 Tenesin TS ? 117 f14 XIV.C Lutetium	86 Oganeson Og ?
/. Р	symbol elneg z name symbol	Fr 0,7	Radium Ra 0,9	Actinium AC 1,1	Itherfordiu Rf ? 104 f1 I.C Cerium Ce	Dubnium Db ? 105 f2 II.C Promethium	Seaborgium Sg ? 106 f3 III.C Neodymiun Nd	Bohrium Bh ? 107 f4 IV.C Promethium Pm	76 Hassium Hs ? 108 f5 V.C Samarium	77 Meitnerium Mt ? 109 f6 VI.C Europium Eu	78 Damstadtiur Ds 110 f7 VII.C Gadolinium Gd	79 ioentgeniur Rg ? 111 f8 VIII.C Terbium Tb	80 Copemiciun 7 112 f9 IX.C Dysprosiun Dy	81 Nihonium Nh ? 113 f10 X.C Holmium HO	82 Flerovium FI ? 114 f11 XI.C Erbium Er	83 Moskovium MC ? 115 f12 XII.C Thulium Thulium	84 Lvemoriun ? 116 f13 XIII.C Ytterbium Yb	85 Tenesin TS ? 117 f14 XIV.C Lutetium	86 Oganeson Og ?
	symbol elneg z name symbol elneg	Fr 0,7	Radium Ra 0,9	Actinium Ac 1,1 89-103	Itherfordiu Rf ? 104 f1 I.C Cerium Ce 1,1	Dubnium Db ? 105 f2 II.C Promethium Pr 1,1	Seaborgium Sg ? 106 f3 III.C Neodymiun Nd 1,1	Bohrium Bh ? 107 f4 IV.C Promethium Pm 1,1	76 Hassium Hs ? 108 f5 V.C Samarium Sm 1,2	77 Meitnerium Mt ? 109 f6 VI.C Europium Eu 1,2	78 Darmstadtiur Ds ? 110 f7 VII.C Gadolinium Gd 1,2	79 coentgeniur Rg ? 111 f8 VIII.C Terbium Tb 1,2	80 Copemiciun ? 112 f9 IX.C Dysprosium Dy 1,2	81 Nihonium Nh ? 113 f10 X.C Holmium HO 1,2	82 Flerovium Fl ? 114 f11 XI.C Erbium Err 1,2	83 Moskovium MC ? 115 f12 XII.C Thulium Thulium 1,3	84 Lvemoriun ? 116 f13 XIII.C Ytterbium Yb 1,1	85 Tenesin Ts ? 117 f14 XIV.C Lutetium Lu 1,3	86 Oganeson Og ?
6.	symbol elneg z name symbol elneg z	Fr 0,7	Radium Ra 0,9	Actinium Ac 1,1 89-103	Itherfordiu Rf ? 104 f1 I.C Cerium Ce 1,1 58	Dubnium Db ? 105 f2 II.C Promethium Pr 1,1 59	Seaborgium Sg 106 f3 III.C Neodymiun Nd 1,1 60	Bohrium Bh ? 107 f4 IV.C Promethium Pm 1,1 61	76 Hassium Hs ? 108 f5 V.C Samarium Sm 1,2 62	77 Meitnerium Mt ? 109 f6 VI.C Europium Eu 1,2 63	78 Darmstadtiur Ds ? 110 f7 VII.C Gadolinium Gd 1,2 64	79 poentgeniur Rg ? 111 f8 VIII.C Terbium Tb 1,2 65	80 Copemiciun ? 112 f9 IX.C Dysprosiun Dy 1,2 66	81 Nihonium Nh ? 113 f10 X.C Holmium HO 1,2 67	82 Flerovium FI ? 114 f11 XI.C Erbium Er 1,2 68	83 Moskovium PC ? 115 f12 XII.C Thulium Tm 1,3 69	84 ivermoriun Lv ? 116 f13 XIII.C Ytterbium Yb 1,1 70	85 Tenesin Ts ? 117 f14 XIV.C Lutetium Lu 1,3 71	86 Oganeson Og ?
6. 9	symbol elneg z name symbol elneg	Fr 0,7	Radium Ra 0,9	Actinium Ac 1,1 89-103	Itherfordiu Rf ? 104 f1 I.C Cerium Ce 1,1 58 Thorium	Dubnium Db ? 105 f2 II.C Promethium Pr 1,1 59 Protactinium	Seaborgium Sg ? 106 f3 III.C Neodymiun Nd 1,1 60 Uranium	Bohrium Bh ? 107 f4 IV.C Promethium Pm 1,1 61 Neptunium	76 Hassium Hs ? 108 f5 V.C Samarium Sm 1,2 62 Plutonium	77 Meitnerium Mt ? 109 f6 VI.C Europium Eu 1,2 63 Americium	78 Darmstadtiur DS ? 110 f7 VII.C Gadolinium Gd 1,2 64 Curium	79 poentgeniur Rg ? 111 f8 VIII.C Terbium Tb 1,2 65 Berkelium	80 Copemiciun ? 112 f9 IX.C Dysprosiun Dy 1,2 66 Califonium	81 Nihonium Nh ? 113 f10 X.C Holmium HO 1,2 67 Einsteinium	82 Flerovium Fl ? 114 f11 XI.C Erbium Er 1,2 68 Fermium	83 Moskovium Mc ? 115 f12 XII.C Thulium 1,3 69 Iendeleviur	84 ivermoriun Lv ? 116 f13 XIII.C Ytterbium Yb 1,1 70 Nobelium	85 Tenesin Ts ? 117 f14 XIV.C Lutetium Lu 1,3 71 .awrencium	86 Oganeson Og ?
6. 9	symbol elneg z name symbol elneg z	Fr 0,7	Radium Ra 0,9	Actinium Ac 1,1 89-103	Itherfordiu Rf ? 104 f1 I.C Cerium Ce 1,1 58	Dubnium Db ? 105 f2 II.C Promethium Pr 1,1 59	Seaborgium Sg 106 f3 III.C Neodymiun Nd 1,1 60	Bohrium Bh ? 107 f4 IV.C Promethium Pm 1,1 61	76 Hassium Hs ? 108 f5 V.C Samarium Sm 1,2 62	77 Meitnerium Mt ? 109 f6 VI.C Europium Eu 1,2 63	78 Darmstadtiur Ds ? 110 f7 VII.C Gadolinium Gd 1,2 64	79 poentgeniur Rg ? 111 f8 VIII.C Terbium Tb 1,2 65	80 Copemiciun ? 112 f9 IX.C Dysprosiun Dy 1,2 66	81 Nihonium Nh ? 113 f10 X.C Holmium HO 1,2 67	82 Flerovium FI ? 114 f11 XI.C Erbium Er 1,2 68	83 Moskovium PC ? 115 f12 XII.C Thulium Tm 1,3 69	84 ivermoriun Lv ? 116 f13 XIII.C Ytterbium Yb 1,1 70	85 Tenesin Ts ? 117 f14 XIV.C Lutetium Lu 1,3 71	86 Oganeson Og ?
6. 9	symbol elneg z name symbol elneg z name symbol	Fr 0,7	Radium Ra 0,9	Actinium Ac 1,1 89-103	Itherfordiu Rf ? 104 f1 I.C Cerium Cee 1,1 58 Thorium Th	Dubnium Db ? 105 f2 II.C Promethium Pr 1,1 59 Protactinium Pa	seaborgium Sg ? 106 f3 III.C Veodymiun Nd 1,1 60 Uranium U	Bohrium Bh ? 107 f4 IV.C Promethium Pm 1,1 61 Neptunium Np	76 Hassium Hs ? 108 f5 V.C Samarium Sm 1,2 62 Plutonium Pu	77 Meitnerium Mt ? 109 f6 VI.C Europium Eu Lucopium Eu 1,2 63 Americium	78 Damstadtiur Ds 110 f7 VII.C Gadolinium Gd 1,2 64 Curium Cm	79 veentgeniur Rg ? 111 f8 VIII.C Terbium Tb 1,2 65 Berkelium Bk	80 Copemiciun 7 112 f9 IX.C Dysprosium Dy 1,2 66 Califonium Cf	81 Nihonium Nh ? 113 f10 X.C Holmium HO 1,2 67 Einsteinium ES	82 Flerovium Fl ? 114 f11 XI.C Erbium Er 1,2 68 Fermium	83 Moskovium Mc ? 115 f12 XII.C Thulium Tm 1,3 69 Iendeleviur Md	84 ivemoriun Lv ? 116 f13 XIII.C Ytterbium Yb 1,1 70 Nobelium No	85 Tenesin Ts ? 117 f14 XIV.C Lutetium Lu 1,3 71 .awrencium	86 Oganeson Og ?
6. 9	symbol elneg z name symbol elneg z name	Fr 0,7	Radium Ra 0,9	Actinium Ac 1,1 89-103	Itherfordiu Rf ? 104 f1 I.C Cerium Ce 1,1 58 Thorium	Dubnium Db ? 105 f2 II.C Promethium Pr 1,1 59 Protactinium	Seaborgium Sg ? 106 f3 III.C Neodymiun Nd 1,1 60 Uranium	Bohrium Bh ? 107 f4 IV.C Promethium Pm 1,1 61 Neptunium	76 Hassium Hs ? 108 f5 V.C Samarium Sm 1,2 62 Plutonium	77 Meitnerium Mt ? 109 f6 VI.C Europium Eu 1,2 63 Americium	78 Darmstadtiur DS ? 110 f7 VII.C Gadolinium Gd 1,2 64 Curium	79 poentgeniur Rg ? 111 f8 VIII.C Terbium Tb 1,2 65 Berkelium	80 Copemiciun ? 112 f9 IX.C Dysprosiun Dy 1,2 66 Califonium	81 Nihonium Nh ? 113 f10 X.C Holmium HO 1,2 67 Einsteinium	82 Flerovium Fl ? 114 f11 XI.C Erbium Erbium Er 1,2 68 Fermium	83 Moskovium Mc ? 115 f12 XII.C Thulium 1,3 69 Iendeleviur	84 ivermoriun Lv ? 116 f13 XIII.C Ytterbium Yb 1,1 70 Nobelium	85 Tenesin Ts ? 117 f14 XIV.C Lutetium Lu 1,3 71 .awrencium	86 Oganeson Og ?


The Recent Periodic Table of Elements

(C) Václav Šícha, 2017



The Amazing Vertical Form Of The Periodic Table of Elements

http://www.jitrnizeme.cz/view.php?cisloclanku=2012030004

The origin of all chemical elements...

UNIVERZITA J. E. PURKYNĚ V ÚSTÍ NAD LABEM

Cosmic ray spallation - Li, Be, B

Stellar nucleosynthesis – from C to Fe, and Supernova and other nucleosynthesis – all other chemical elements

https://www.forbes.com/sites/startswithabang/2016/05/11/which-elements-will-never-be-made-by-our-sun/#654834ce1aba https://geo.libretexts.org/Core/Geochemistry/The Earth and its Lithosphere/Origin of the chemical elements E. M. Burbidge; G. R. Burbidge; W. A. Fowler; F. Hoyle (1957). "Synthesis of the Elements in Stars". Reviews of Modern Physics. 29 (4): 547-650.

Atom

Results of the Ernest **<u>Rutherford's experiment</u>** (Thin Gold foil, alpha particles irradiation):

There is very small and heavy **nucleus** in the centre of each atom, composed from **nucleones** =

positively charged protones (**p**⁺) and zero charged neutrones (**n**⁰). Each atomic nuclei in electroneutral

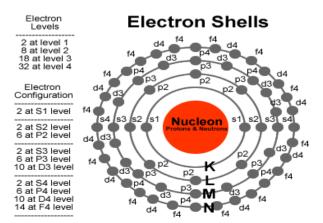
atom is surrounded by very light negatively charged electrones (e^{-}) in the **core**.

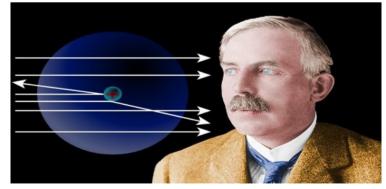
Electrones are located in so called atomic orbitals (AO) - "statistically the most probable place

of the electrone occurence in the core of the atom".

The **number** of protones in the nuclei and electrones in the core of the electroneutral atom must be equal.

The **magnitude** of the atom is at about 10.000 times greater than the magnitude of the nuclei.

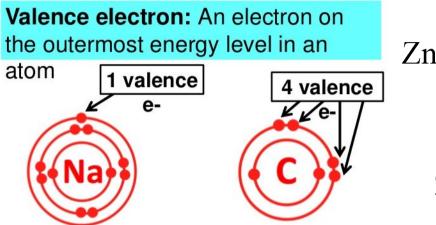

There is a lot of space in the core layer. All the smallest particles behave realativistic,


the particle-wave dualism, have their own magnetic movement moment (spin).

The subject of Physics is to study transformations of **enormous nuclear energies** and nuclear transmutations.

Chemistry focuses on study of much smaller energies, which allow to make huge number of chemical **bonds**

between atoms, elements.



Ernest Rutherford (1871 - 1937)

https://www.famousscientists.org/ernest-rutherford/; http://animatedphysics.com/energylevels/2d_atomic_orbitals.gif

Valence shell electronic configuration

Elements use only the last (valence) shell of electrones to make chemical bonds !!!

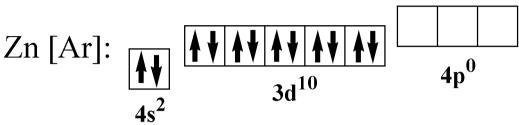
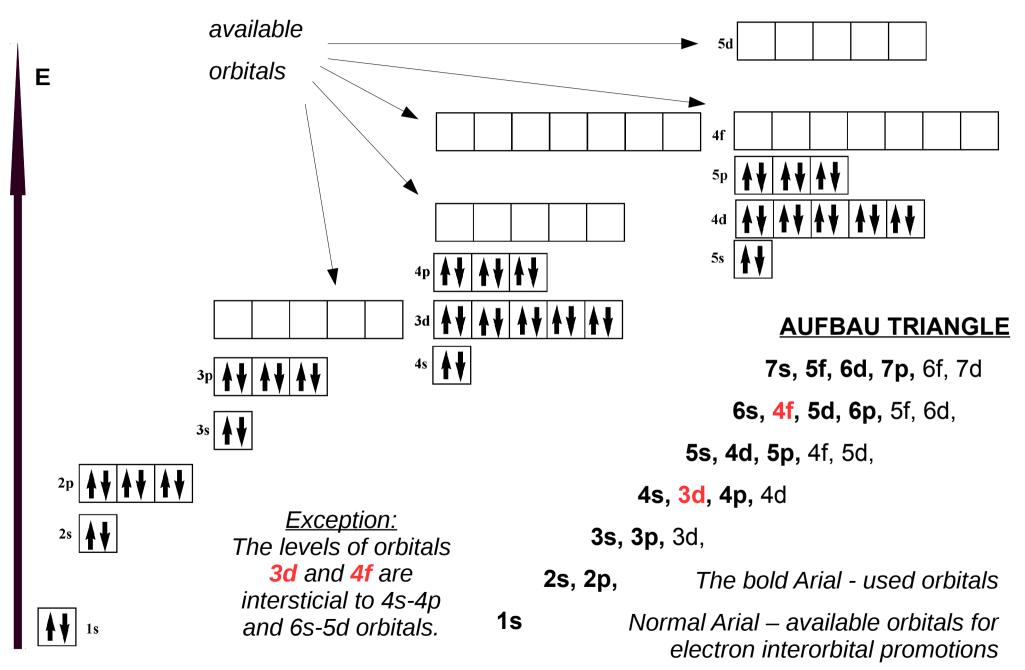


Fig. 2 – The example of the valence shell electronic configuration of Zinc atom using the **genial learning concept:** frame drawings of orbitals with vertical arrows as electrones.

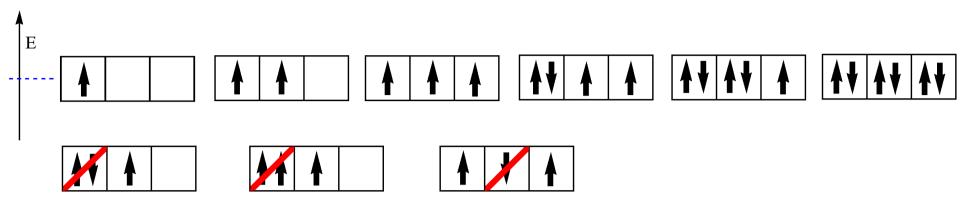
https://www.slideshare.net/beb7714/lesson-1-37179816

Rules for filling of orbitals:

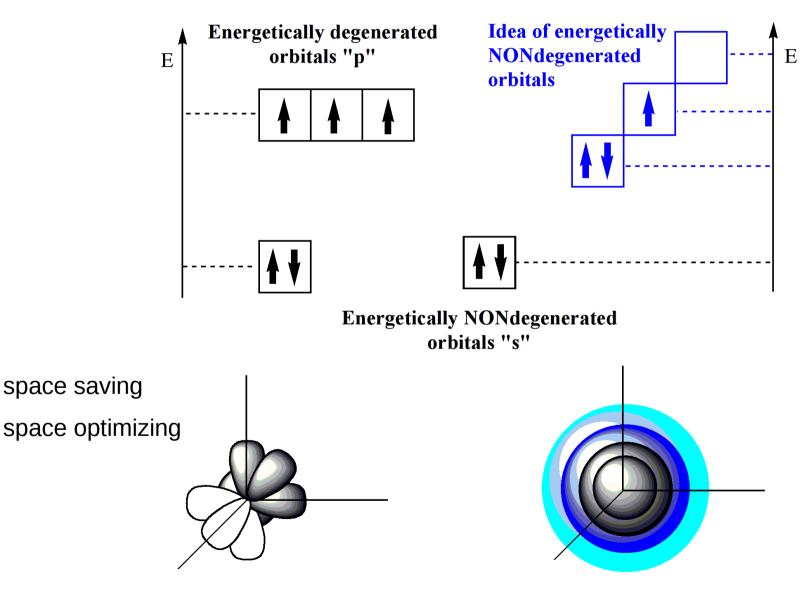

Aufbau principle – a maximum of two electrons are put into orbitals in the order of increasing orbital energy: the lowest-energy orbitals are filled before electrons are placed in higher-energy orbitals.

Hund's rule: electrones with the same quantum of energy can occupie each suborbital of energetically degenerated p, d, f, g.. orbitals (means suborbitals at the same energy level!) independently electrones occupie each suborbital at the same energy level independently.

Pauli's rule: Each orbital could be filled by one or two electrones. No two electrons in the same atom can have the same values of the four quantum numbers. Paired electrones must differ in their spins (+1/2, -1/2) of each orbital at least.


https://en.wikipedia.org/wiki/Electron_configuration

Aufbau principle on the Noble gases example


An graphical description of some allowed energetical quants of electrones.

Hund's rule

- The principles of the electron filling using the Hund's rule shown on the examples of various porbitals.
- There are **energetically degenerated** (on the same energy level) **p**, **d**, **f**.. **orbitals**, each have got 3, 5, 7...suborbitals, that can be filled by 0-6, 0-10, 0-14...electrones using the Hund's rule.
- Hund's rule say, that these type of orbitals could be occupied **at first by single electrones** only, and after that could be respective electrone couples paired as shown on the picture above.
- All electrones filling **the same** energetically degenerated orbital have **the same** quantum of energy, **equal** to the energy level of the orbital.
- Couples making electrones (s = -1/2) are waking up the **electronic repulsion** (both have negative charge!) in the orbital, so the pairing of electrones need some small extra energy.

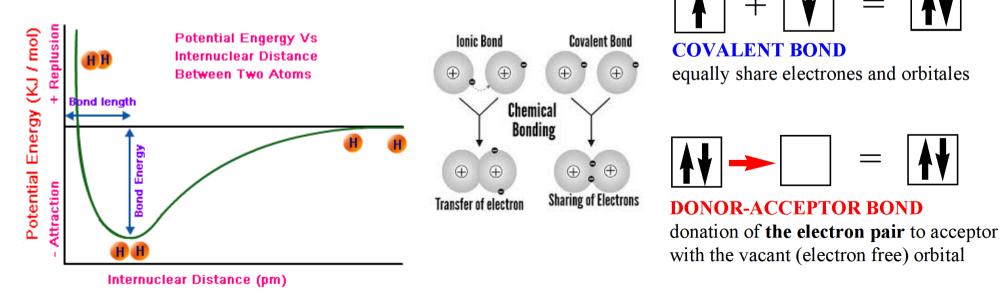
What could happen with degenerated orbitals when the spherical s-orbitals should be mentioned only?

Pauli's rule

Zero, one or two spin different electrons may occupie each atomic orbital only.

In the same atom there could not exist two electrons with the same set of quantum numbers (n, l, m, s).

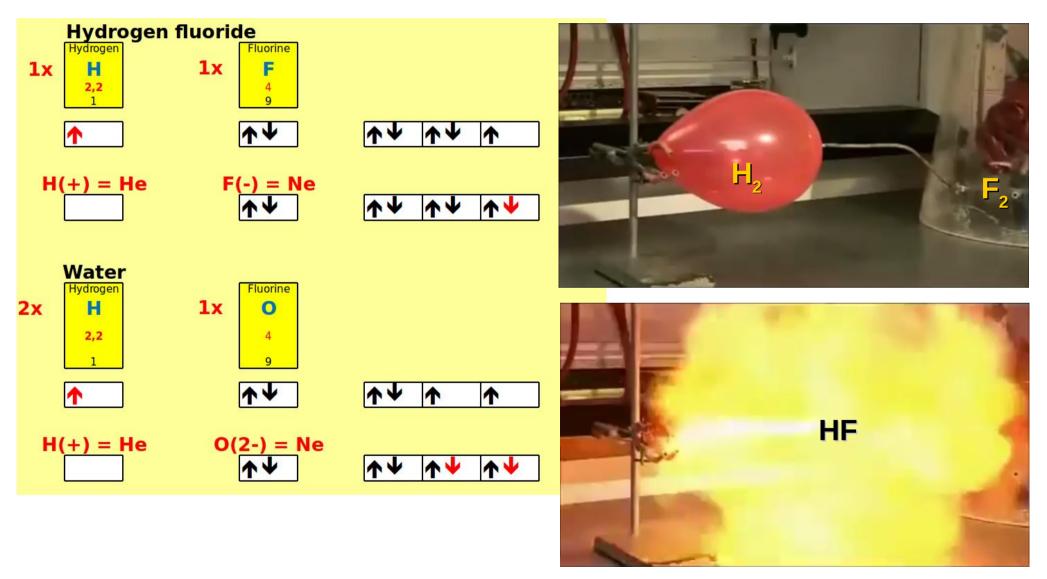
They must so differ minimally in their spin numbers (+1/2, -1/2).



Chemical bond

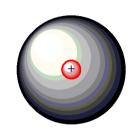
is the **attractive force interaction** of atoms assemble into molecules.

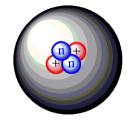
There are significant changes of bonding particles in energies of **the valence shell** electrones and orbitals.


The System wants **to minimize the energy content** – isolated atoms have got higher energies than molecules. **Bond energy** dissipate into surrounding in order to minimalise the Energy of the System.

^{1.} http://chemistry.tutorvista.com/organic-chemistry/chemical-bonds.html 2. http://myassignmenthelp.net

How elements reacts together?

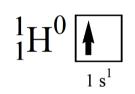



https://www.youtube.com/watch?v=rDpM9_G3Giw

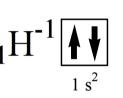
https://www.youtube.com/watch?v=ce6imsXTkGQ

How looks like the simplest stable atom/molecule and their electronic configuration?

 $-1 e^{-1}$ $+1 e^{-1}$

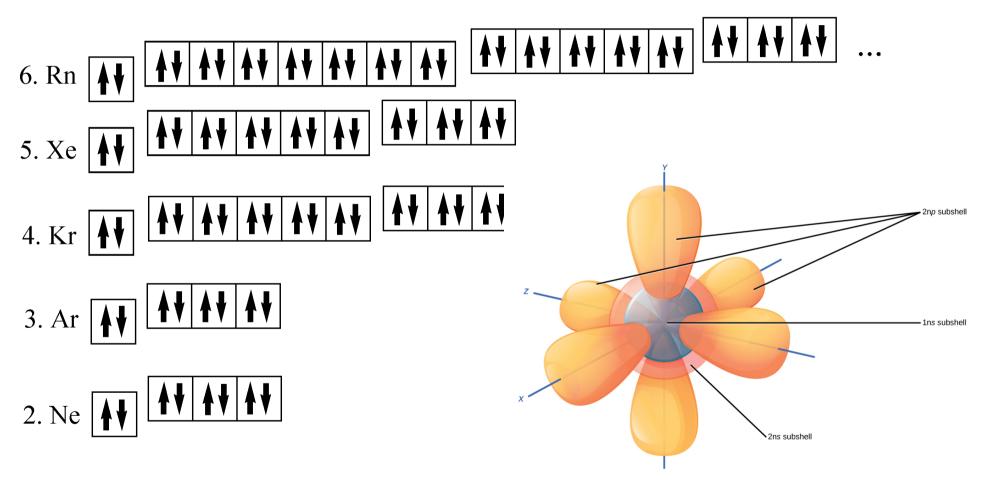

 $_{2}\text{He}^{0}$

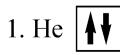
Helium 1st stable, nonreactive neutral atom. Full atomic orbital, electron pair. 1st non reactive, inert, noble, rare gas! The standard of the most stable electronic configuration! Can not form He₂ molecules.


 ${}_{1}H^{+1}$

(+)

"Protone" cation $_1H^0 - 1 e^- = {}_1H^{+1}$ One e^- ionized, excited byionization quantum of energy!Free (vacant) orbital.The simplest cation,Lewis acid,central atom, electrophile.

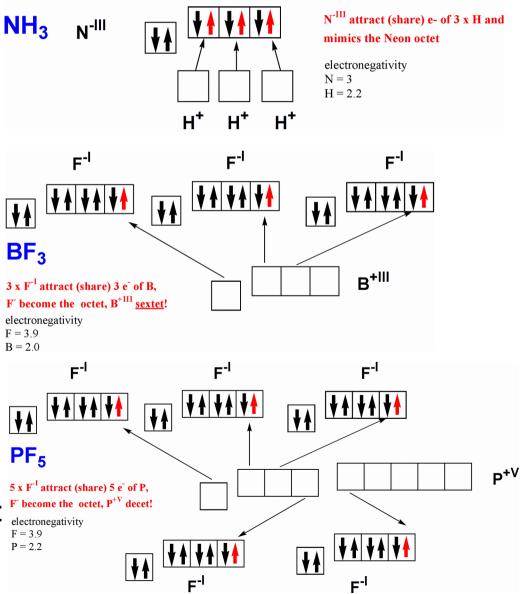

Hydrogen gas - "protium" The simplest, lightest neutral atom, chemical element. 1H is very reactive, right form H₂! Looking for the stable electron configuration = free (e⁻ donor) or fully filled (e⁻ acceptor) valence atomic orbitals (mimic el. config. of He)



<u>"Hydridic" anion</u> ${}_{1}H^{0} + 1 e^{-} = {}_{1}H^{-1}$ when absorb 1 e⁻. During that process emit Electrone affinity energy. Full atomic orbital. Electron pair! The simplest anion,

> Lewis base, ligand, nucleophile.

Why Noble gases exist as independent atoms and do not form molecules as H_2 , O_2 , N_2 etc.?


Why elements reacts together?

"<u>The Stable Octet Rule</u>" – all other elements than Noble gases want to mimic their extremely stable ("fullfilled") electronic configuration by the reaction with other elements - "octet" generally means valence orbitals filled with all electrones

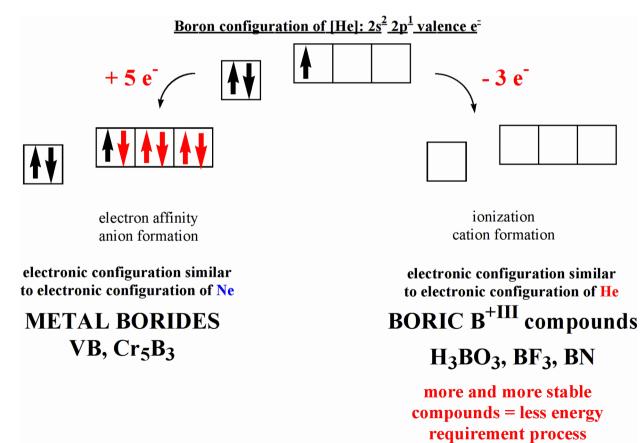
Exceptions from the Octet Rule: HYPOvalency – less than octet 3 valence e⁻ - only 6 shared e⁻!

HYPERvalency – more than octet

5 valence e- means 10 shared e-!

How to recognize the most stable compound of each element?

K		I.A	II.A			A1112	1							III.A	IV.A	V.A	VI.A	VII.A	VIII.A
к 1.	name symbol	Hydrogen			s s		s-Monoels		D	DIATOMIC		INERT							Helium He
	elneg	2,2	-	electronega	tivity	METAL		METALLOI	jo i	NONMETA		NOBLE]	n Triele	n Tatrala		Chalcogens		4,16
	Z	s1	the atomic s2	c number	d d n	Transition Poststransi		р	р	Polyatomic	ł	RARE		p-Triels		p-Penteis	p-Hexels p4	p-Hepteis	2 p6
L	name	Lithium	Berylium	Ì.	d,p f	anthanide		GAS	1	FLUID	μ II	SOLID]	Boron	p2 Carbon	Nitrogen	Oxygen	Fluorine	Neon
2.	symbol	Li	Be		f	Actinides			RADIOACT		ARTIFICIAL			В	С	Ν	0	F	Ne
	elneg	1	1,3												2,5	3	3,5	4	4,79
м	z name	3 Sodium	4 Magnesium					Platinum	group meta	als (PGMs)		d-Monoels	d-Diels	Aluminium	6 Silicon	7 Phosphorus	8 Sulphur	9 Chlorine	10 Argon
3.	symbol	Na	Mg	d-Triels	d-Tetrels	d-Pentels	d-Hexels	d-Heptels	d-Octels	d-Nonels	d-Decels	d-Alkali m.	d-Earth m.	AI	Si	Р	S	CI	Ar
	elneg	0,9	1,31	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	1,6	1,9	2,2	2,6	3,2	3,24
N	z name	11 Potassium	12 Calcium	I.B Scandium	II.B Titanium	III.B Vanadium	IV.B	V.B Manganes	VI.B	VII.B Cobalt	VIII.B.a Nickel	VIII.B.b	VIII.B.c Zinc	13 Galium	14 Germanium	15 Arsenic	16 Selenium	17 Bromine	18 Krypton
1		K	Calcium	Scandium	Ti	Vanadium	Cr	Mn	Fe	Cobait	Nicker	Copper Cu	Zn	Gaium	Ge	Arsenic	See	Br	Krypton
4.	symbol elneg	0,8		1,4	1,5	1,6	1.7	1,6	1,8	1,9	1,9	1,9	1,7	1,8	2	2,2	2,6	3	2,97
	Z	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
0	name	Rubidium	Strontium	Yttrium	Zirconium	Niobium	lolybdenui	Technetiun		Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Telurium	lodine	Xenon
5.	symbol	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
	elneg z	0,8 37	1 38	1,2 39	1,3 40	1,6 41	2,2 42	1,9 43	2,2 44	2,3 45	2,2 46	1,9 47	1,7 48	1,8 49	2 50	2 51	2,1 52	2,7 53	2,6 54
Р	name	Caesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
6.	symbol	Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	elneg	0,8	0,9	1,1	1,3	1,5	2,4	1,9	2,2	2,2	2,3	2,5	2	1,6	2,3	2	2	2,2	2,6
Q	z name	55 Francium	56 Radium	57-71 Actinium	72 utherfordiu	73 Dubnium	74 Seaborgiur	75 Bohrium	76 Hassium	77 Meitnerium	78 Parmstadtiui	79 oentgeniur	80 Copernicium	81 Nihonium	82 Flerovium	83 Moskovium	84 Livermoriun	85 Tenesin	86 Oganeson
7		Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Oq
···	symbol elneg	0,7	0,9	1,1	?	?	?	?	?	?	7	2	?	?	?	?	?	?	?
	z	87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
					f1	f2	f3	f4	f5	f6	f7	f8	f9	f10	f11	f12	f13	f14	
					I.C	II.C	III.C	IV.C	V.C	VI.C	VII.C	VIII.C	IX.C	X.C	XI.C	XII.C	XIII.C	XIV.C	
P	name				Cerium	Promethium		Promethium	and the second		Gadolinium	Terbium	Dysprosiun	Holmium	Erbium	Thulium	Ytterbium	Lutetium	
6.	symbol			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
	elneg				1,1	1,1	1,1	1,1	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,3	1,1	1,3	
Q	z name				58 Thorium	59 Protactinium	60 Uranium	61 Neptunium	62 Plutonium	63 Americium	64 Curium	65 Berkelium	66 Califonium	67 Einsteinium	68 Fermium	69 Iendeleviu	70 Nobelium	71 _awrencium	
7				Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
	symbol			And Ser				1.4											
	elneg				1.3	1.5	1,4	4	1,3	1.3	1.3	1,3	1,3	1.3	1.3	1.3	1,3	1.3	


How to recognize the most stable compound of each element?

- H_3BO_3 primary source of B element in the nature
- $H_{3}^{+}B_{3}^{+}$ boron has 3 valence e⁻ in 4 valence atomic orbitals (1 x s AO, 3 x p AO)

Strategy of boron to mimic the stable electronic configuration of a nearest Noble gas element:

- 1. choice B release all **3** e^{-} , originate $B^{+|||}$ (boric acid, borax etc.)
- 2. choice B involve most **5** e⁻, originate B^{-I}, B^{-III}, B^{-V} (varoius metal borides)

Chemical elements with the odd (even) numbers of valence electrones PREFERE to build stable compounds with the same odd (even) oxidation number.

 $3 e^{-} B = BCl_{3} (B^{+111})$

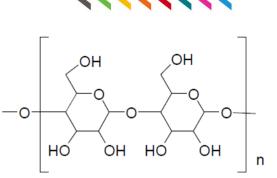
 $4 e^{-} C = CO (C^{+11}), CO_{2} (C^{+1V})$

5 $e^{-} N = N_2 O(N^{+1}), N_2 O_5(N^{+V})$

How to recognize acid, base, salt or complex?

The ARRHENIUS Theory	The BRØNSTED-LOWRY Theory	The LEWIS Theory
Acids are substances that contain hydrogen H . Bases are substances that contain hydroxyl OH , group.	An acid is a proton donor (H+) . A base is a proton acceptor.	Acids are electron pair acceptors. Bases are electron pair donors.
HCI and NaOH	NH ₃ and H ₂ Ο	\mathbf{BF}_{3} and \mathbf{NH}_{3}
neutralization HCl + NaOH = H ₂ O + NaCl + heat	neutralization $NH_3 + H_2O = NH_4^+ + OH^-$ $NH_3 + HCI = NH_4^+ + CI^-$	neutralization BF ₃ + NH ₃ = BF ₃ .NH ₃ complex !!!
$H^+ + OH^- = H_2O$ Limited use only.	$H_2O + H_2O = H_3O^+ + OH^-$ Solvent Dependent Theory!	Nearly Universal Theory.
BA – Brǿnsted acid	Conjugate Acid-Base Pair	\mathbf{H}^+ , the simplest Lewis acid
LA – Lewis acid BB – Brǿnsted base	Bronsted-Lowry Base Acid	^e 5B [He]: \downarrow \downarrow \downarrow vacant orbital
LB – Lewis base	H_2O + NH_3 \longrightarrow OH^- + NH_4 Water Ammonia ion	
S - salt C - complex	Bronsted-Lowry Acid Base	$_{7}N$ [He] $\downarrow \downarrow \downarrow \downarrow$

Conjugate Acid-Base Pair


н н

H.

electron pair

https://www.quora.com/What-are-the-characterictis-of-an-acid

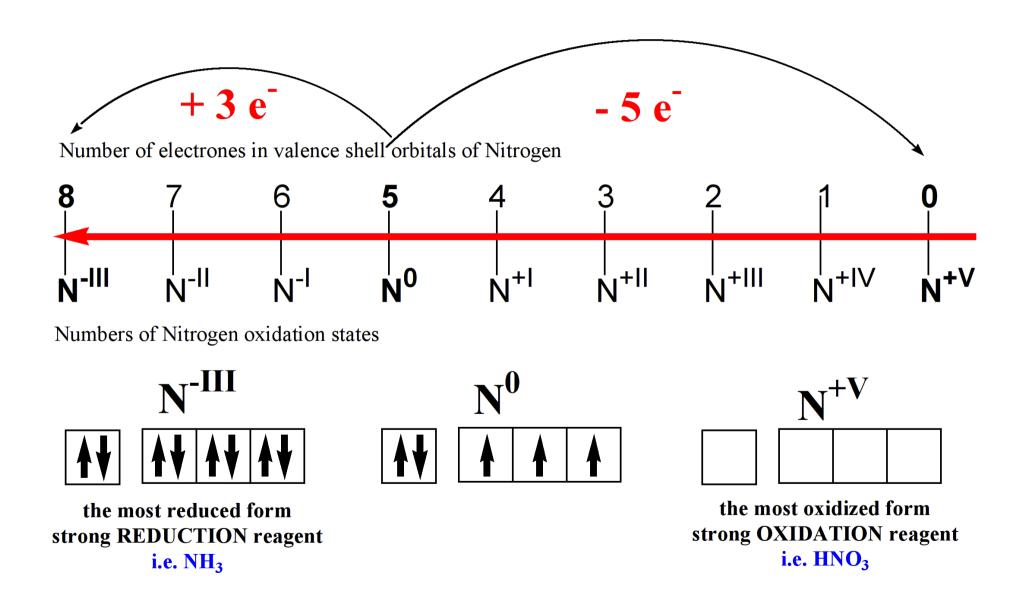
1. The similar can dissolve similar! The non/polar solute attract/dissolve compounds of the similar polarity. Water dissolve NaCl, sugar, acids, and water attract water, acids...

UNIVERZITA J. E. PURKYNĚ V ÚSTÍ NAD LABEN

celulosa

2. Polar solute is being repulsed on the nonpolar (hydrophobic) surface, nonpolar analyte on the polar surface (hydrophilic).

celulose = polar surface (many of -OH groups) celulose knows how to separate some nonpolar drugs...


 $H_2O...H-O-H...OH_2$...hydrogen bond O...H-O

H₂O polar O-H (differencial electronegativities counts 1,3)

Is there any important practical application?

CHROMATOGRAPHY

Reduction.....Oxidation

Standard electrode potentials of metals

lithium	-3,0401	
cesium	-3,026	
rubidium	-2,98	
potassium	-2,931	
barium	-2,912	
strontium	-2,899	
calcium	-2,868	
sodium	-2,71	
magnesium	-2,372	
beryllium	-1,85	
aluminium	-1,66	
titanium	-1,63	
manganese	-1,185	
zinc	-0,7618	
chromium	-0,74	
iron	-0,44	
cadmium	-0,40	
indium	-0,34	
thallium	-0,34	
cobalt		
CUDAIL	-0,28	
nickel	-0,28 -0,25	
nickel	-0,25	

copper+0,34bismut+0,2osmium-ruthenium+0,3silver+0,7996mercury+0,8platinum+1,188gold+1,52	bismut+0,2osmium	hydrogen	0
osmium +0,3 ruthenium +0,7996 silver +0,7996 mercury +0,8 platinum +1,188	osmium +0,3 ruthenium +0,7996 silver +0,7996 mercury +0,8 platinum +1,188	copper	+0,34
ruthenium +0,3 silver +0,7996 mercury +0,8 platinum +1,188	ruthenium +0,3 silver +0,7996 mercury +0,8 platinum +1,188	bismut	+0,2
silver+0,7996mercury+0,8platinum+1,188	silver+0,7996mercury+0,8platinum+1,188	osmium	
mercury +0,8 platinum +1,188	mercury +0,8 platinum +1,188	ruthenium	+0,3
platinum +1,188	platinum +1,188	silver	+0,7996
		mercury	+0,8
gold +1,52	gold +1,52	platinum	+1,188
		gold	+1,52
		gold	+1,52
		gold	+1,52

Metals with more negative standard electrode potential can spontaneously substitute the metals with more positive standard electrode potencial.

$$2 \text{ Na} + \text{MgCl}_2 = 2 \text{ NaCl} + \text{Mg}$$

$$Mg + 2 AgNO_3 = Mg(NO_3)_2 + Ag$$

$$AI + Fe_2O_3 = AI_2O_3 + Fe$$

 $Fe + CuSO_4 = Cu + FeSO_4$

 H_2 is evolved during the acidic hydrogen substitution.

 $Zn + 2 HCl = ZnCl_2 + H_2$

 $Zn + 2 NaOH + 2 H_2O = Na_2[Zn(OH)_4] + H_2$

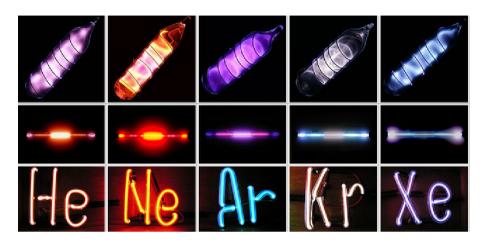
https://en.wikipedia.org/wiki/Standard_electrode_potential_(data_page)

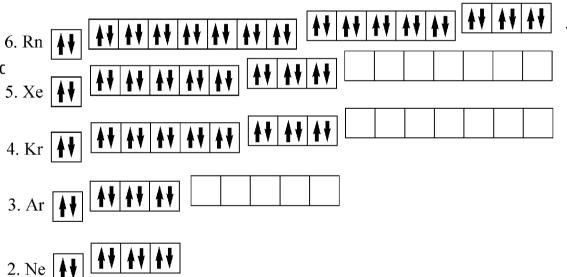
Noble / Inert Gases "p-Octels" (8 val. e⁻)

He – Helium gas, cca 3% in the natural gas mixture atomic gas, inert gas, He balloons – lighter than air mixture, collision gas in MS detectors, carrier gas in GC etc.
Ne – Neon (0,0018 %), neon red lighting,
Are – Argen (1.0(), laboratory and industrial inert etmocrahere.

Ar - Argon (1 %), laboratory and industrial inert atmosphere

Kr – Krypton (0,0001 %), light.


Xe - Xenon (0,000 005 %), car lights, anesthetic


Rn – Radon, **radioactive**! Use the air ventilation of home!

Og – Oganesson, manmade radioactive liquid.

Reactivity of Noble Gases:6. $1962 - Xe^+[PtF_6]^- - 1^{st}$ Noble gas containing compound
XeF2 XeF4 XeF6 5.
strong fluorination agents5.melting points12911749°C 4.XeF_6 + H2O = HF + XeO3 ...strong oxidizing agent4.

Why these elements are so noble and inert? Because they have got electrones filled into all available atomic orbitals.



https://www.evolvingsciences.com/Group%200%20Noble%20gases%20.html

Hydrogen (1 val. e⁻) **,Н:**

 \mathbf{H}^+ : 1s⁰ protone, hydrogen cation: the simplest Lewis acid = electron free, vacant AO Compounds: H₃O⁺hydroxonium cation, all acids: HF, H₂SO₄...,

H^{\cdot}: 1s² hydridic anion: the simplest Lewis base = full electrone pair AO

Compounds: OH hydroxide anion, all metal hydrides - LiH, CaH₂, B₂H₆, PtH_x

THE SIMPLEST NEUTRALIZATION REACTION	Methods of useful laboratory preparations:	A large scale production methods:
$H^+ + H^- = H_{a}$ (salt) + heat	$3 \text{ HCl} + \text{Al} = \mathbf{H}_2 + \text{AlCl}_3$	1. dehydrogenation of hydrocarbons (petrochemistry)
$H_{3}O^{+} + OH^{-} = 2 H_{2}O$ (salt) + heat	4 NaOH + AI = \mathbf{H}_2 + Na[AI(OH) ₄]	2. $CH_4 + H_2O$ (heat) = $H_2 + CO$
$H_{3}O = OH = 2H_{2}O (Out) + Hout$	sodium tetrahydroxidoaluminate	3. H_2O =electrolysis = $H_2 + O_2$ (solar energy)
	H_2O =electrolysis= $H_2 + O_2$	
Preparation of various metal hydrides:	Typical use of metal hydrides:	Reactivity - important reactions:

 $WO_3 + 3H_2 = W + 3H_2O$ reduction of metal

H ₂ + 2 Na = 2 NaH	$\mathbf{NaH} + \mathbf{C}_{2}\mathbf{H}_{5}\mathbf{OH} = \mathbf{C}_{2}\mathbf{H}_{5}\mathbf{ONa} + \mathbf{H}_{2}$	$H_2 + F_2 = 2 HF$ explosion under 30 K
$X H_2 + Pt = PtHx$	PtH _x + substrate = Pt + hydrogenated substrate	$2 H_2 + O_2 = 2 H_2 O$ explosion after iniciation
(intersticial nonstoichiometric hydrides)		$3 H_2 + N_2 = 2 NH_3$ heat, pressure and catalyst needed!
		Haber-Bosch process – megatons of NH_3 per year!

https://en.wikipedia.org/wiki/Hydrogen#/media/File:Hydrogen discharge tube.jpg

Alkali metals (1 val. e⁻)

The most electrondeficient and reactive metals, low melting points.

Li, Na, K, Rb, Cs, Fr

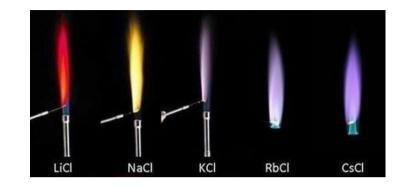
The common "octet" oxidation state: +1, odd

Metal cations with a free orbitals in the valence shell react with bases as acids Lithium batteries; many Li compounds are soluble in organic solvents Baking, cleaning "soda", sodalime, Na-K channels...

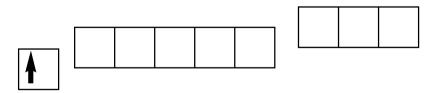
Flame ionization (excitation) – characteristic colors in the flame! Fireworks.

 $2 Li + H_2 = 2 LiH$ lithium hydride

 $Li + N_2 = Li_3N$ lithium nitride (unique reaction - occurs at standard conditions!!!) $Li_3N + H_2O = LiOH + NH_3$ lithium hydroxide


1. step4 Li + $O_2 = 2$ Li2Odilithium oxide1. step2 Na + $O_2 = Na_2O_2$ sodium peroxide (orange)

2. step $Na_2O_2 + 2 Na = 2 Na_2O$ (yellow) disodium oxide


1. step $K + O_2 = KO_2$ potassium **hyperoxide** (the same for Rb, Cs)

Na + $H_2O = H_2$ + NaOH sodium **hydroxide** Na₂O + $H_2O = 2$ NaOH NaOH + CO₂ = Na₂CO₃ + H_2O **soda**

All alkali metals are good soluble in liquid ammonia NH_3 (-33°C).

Alkaline Earth Metals (2 val. e⁻)

The common "octet" oxidation state: +2, even

Less reactive metals than alkali metals: **Be, Mg, Ca, Sr, Ba, Ra** Ca + $H_2O = Ca(OH)_2 + H_2$

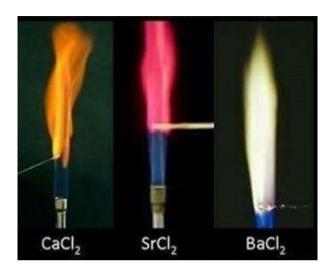
Characteristic colors in the flame (ionization). Fireworks.

Metal cations with a free orbitals in the valence shell react with bases as acids. **Ba** – water soluble compounds are **toxic**, not soluble non-toxic $Ba_2O_2 + H_2SO_4 = H_2O_2 + BaSO_{4...}a$ white pigment

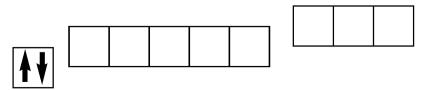
Mg – central atom in **chlorophyl** complexes with four pyrrol ligands Mg,Al light hard **construction alloys** (airplanes, bikes etc.) **Grignard reagents** – soluble in organic solvents

the Karst effect

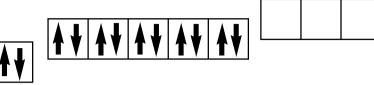
 $CaCO_3 + H_2O + CO_2 = Ca(HCO_3)_2$ is more soluble in water CaCO₃ is not soluble in pure water, but in the presents of slightly acidic CO₂ slowly react to more soluble acidic, but not so stable Ca(HCO₃)₂.


Building construction chemistry

 $CaCO_3 = CaO + CO_2$ (after heating above 1000°C) $CaO + H_2O = Ca(OH)_2$ $Ca(OH)_2 + CO_2 = CaCO_3$


Desulfatation of exhalations SO₂ + CaO = CaSO₃

https://middleczech.kr-stredocesky.cz/cs/konepruske-jeskyne/


https://www.quora.com/What-is-the-flame-test-and-what-are-its-applications

Zinc metals (12 val. e⁻)

Transition metals: Zn, Cd, Hg, Cp

Full d-AO (10 e-), 2 e- in s-AO ... mimics Alkaline Earth Metals!

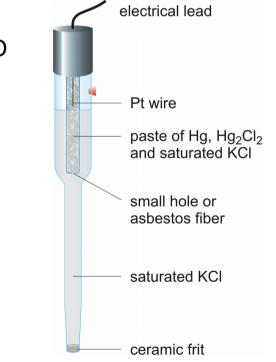
Stable oxidation states: +2

metal cations with a free orbitals in the valence shell react with bases as acids

•
$$Zn + HCl = H_2 + ZnCl_2$$

 ZnO_2 white pigment, **amphoteric oxide** = does not react with H_2O

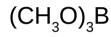
 $ZnO_2 + HCI = ZnCI_2 + H_2O$

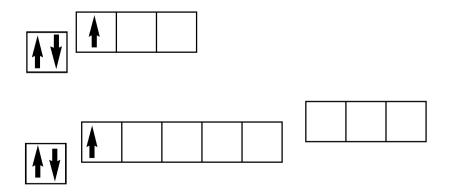

 $ZnO_2 + 2KOH = K_2[Zn(OH)_4] + H_2O$

HgCl₂ (Hg+") – water soluble, very toxic!

 $HgCl_2 + Hg = Hg_2Cl_2$ (2 Hg⁺¹)...white precipitate in water

calomel referention electrodes in electrochemistry (ISE, pH)


Hg liquid + metals = solid **amalgam alloys**, thermometers


Triels, Scandium metals (3 val. e⁻)

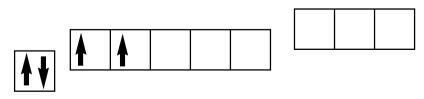
- p-Triels: B semiconductor, metalloid
- Green flame color, volatile esters
- Pyrex glass, peroxoborates
- metals: Al, Ga, In, Tl, Nh
- d-Triels Scandium metals: Sc, Y, La, Ac
- The common stable oxidation state: +3, odd
- Thalium "an inert s-pair" (prefere TI+ before TI+)
- Triel cations react with bases as Lewis acids
- 2 BCl₃ + 3 H₂O = 2 H₃BO₃ + 6 HCl
- $H_3BO_3 + CH_3OH + H_2SO_4 = (CH_3O)_3B + H_2O$
- $AI_{0} + NaOH = H_{2^{0}} + Na[AI_{111}(OH_{1})_{4}]$
- Al₂O₃ not soluble in water alumosilicates
- Al construction metal, in alloys (airplanes)
- $Sc_2O_3 + HNO_3 = Sc(NO_3)_3 + H_2O$

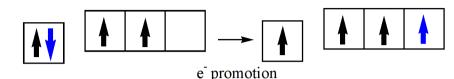
p-Tetrels, Titanium metals (4 val. e⁻)

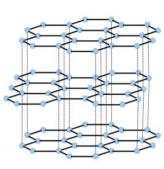
- p-Tetrels: C nonmetal, alotrops (graphite, grafen fullerene, diamond, nanotubes...),
- Si, and Ge metalloids, semiconductors!
- Sn, Pb, Fl metals ... Pb2+
- d-Tetrels: Ti, Zr, Hf, Rf metals

The common stable oxidation state: -4, +4, even

Pb+2 ("an inert s-pair")


CO – toxic gas, triple bond between C and O

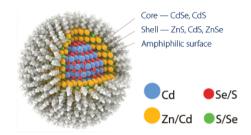

$$CO_{2(g)}$$
, $SiO_{2(s)}$, $GeO_{2(s)}$, $SnO_{2(s)}$, $PbO_{2(s)}TiO_{2(s)}$, $ZrO_{2(s)}$


PbO, red Pb_3O_4 (PbO + PbO₂)

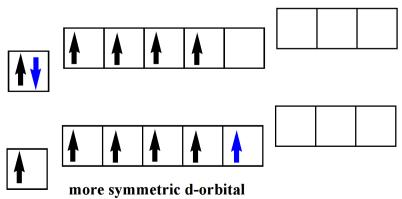
CS₂, CaCO₃ (Karst effect),

- Titanium alloys, steels
- ZrO_2 modern ceramic, chromatography

ComputerHope.com


https://middleczech.kr-stredocesky.cz/cs/konepruske-jeskyne/

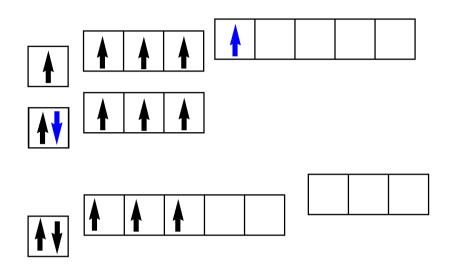
http://www.electroboom.com/?p=835


https://www.dreamstime.com/stock-photo-fullerene-c60-image23786180

Chalcogenes, Chromium metals (6 val. e⁻)

- Chalkogenes: **O**, **S** nonmetals
- Se metalloid, Te, Po, Lv metals

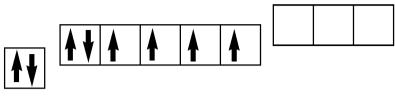
- Cr metals = Cr, Mo, W, Sg an important exception in the valence shell electronic configuration: 1 e⁻ in s-AO and 5 e⁻ in d-AO (symmetry preference!)
- The common stable oxidation states: (-2) in oxides, sulfides, selenides, telurides, Cr+2/Cr+3 salts, , +6, even (+4)
- H₂O; H₂O₂; O₂


http://www.taopatch.com/blog/quantum-dots-entangled-with-single-photons/

Pentels, Vanadium metals (5 val. e⁻)

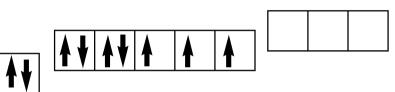
- p-Pentels: N, P nonmetals
- As metalloid, Sb, Bi, Mc metals
- Vanadium metals: V, Nb, Ta, Db
- The common stable oxidation state: -3, +5, odd
- Bi+3 ("an inert s-pair")
- NH₃ + O₂ –Cr₂O₃- NO
- NO + O₂ = NO₂
- $NO_2 + H_2O = HNO_3 + HNO_2$ 2 $HNO_2 = N_2O_3 + H_2O$
- $N_2O_3 = NO + NO_2$ disproportionation reaction (two oxidation states of the element in products)
- $P_4 + O_2 = P_4 O_{10}$...dimer of $P_2 O_5$
- $P_2O_5 + H_2O = H_3PO_4$
- $V_2O_5 + H_2O$ not react!

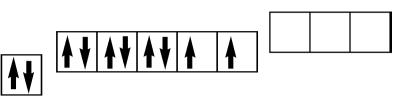
http://alloy-artifacts.org/armstrong-bros-p2.html



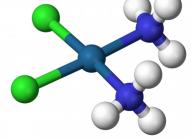
Halogenes, Manganese metals (7 val.e⁻)

- p-Heptels = Halogenes: F, Cl, Br, I, At, Ts
- d-Heptels = Mn, Tc, Re, Bh
- The common stable oxidation state: -1,...+7, odd
- Compounds CI: NaCI, NaCIO, NaCIO₃, NaCIO₄
- Compounds Mn: MnCl₂, MnO₂, KMnO₄,
- Ferromangan, Oxidation agents for fireworks, waste water regeneration
- Mn⁺//+/V...Photosystem II water decomposition
- $2 H_2 O = O_2 + 4 H_1 + 4e_2$
- Tc artificialy radioactive, radioimaging

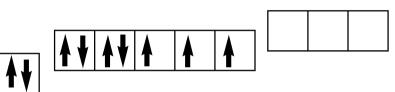

Iron metals (2+6 val. e⁻)


- **Fe**, Ru, Os, Hs
- The common stable oxidation states: +II, +IV, +VI
- Extraordinary oxidation states: Fe+vi, Ru+vii, Os+viii
- Iron mostly Fe²⁺/Fe³⁺ Fe₂O₃, Fe₃O₄ (FeO + Fe₂O₃) magnetit, hemoglobin – O₂/CO₂ transfer
- Corrosion: 4 Fe + $2H_2O$ + 3 O_2 = 2 Fe₂ O_3 . H_2O
- Complexes: K₃[Fe(CN)₆], [Ru(bpy)₃]²⁺, OsO₄
- Catalysis

Cobalt metals (2+7 val. e⁻)


- Co, Rh, Ir, Mt
- Co (-I ... +IV) CoCl₂, Co₃O₄ (CoO + Co₂O₃), cobalamin B_{12}
- Rh = +I, +III
- Ir = +I, +III, +IV
- heterogenous catalysts
- anticorosive coatings
- iron steel alloys, stainless steel

Nickel metals (2+8 val. e⁻)



- Ni, Pd,Pt, Ds
- NiO + H₂ + CO = Ni + Co –(330 K)- [Ni(CO)₄]
- [Ni(CO)₄] --(440 K)- Ni + 4 CO Mondo's process
- Pd, Pt +II, +IV
- catalysts, intersticial black hydrides PdH_x, PtH_x
- Resistent to O₂, H⁺; Soluble in Aqua Regia
- Cancer chemotheraphy "cis-Platin" disqualify DNA of rapid proliferating cells

Cobalt metals (2+7 val. e⁻)

- Co, Rh, Ir, Mt
- Co (-I ... +IV) CoCl₂, Co₃O₄ (CoO + Co₂O₃), cobalamin B_{12}
- Rh = +I, +III
- Ir = +I, +III, +IV
- heterogenous catalysts
- anticorosive coatings
- iron steel alloys, stainless steel

Question – periodicity

Please, look on the vertical form of the Periodic table of elements (PTE) – 7th column – Cl, Mn.
Please, mark oxidation states of stable compounds of Cl, Mn.
Cl: -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 Cl-compound:

Mn: -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 Mn-compound:

Have they some compounds with the same oxidation number and similar chemical properties? Please, describe facts on the example.

Are there some other pairs of elements shown in the vertical PTE with similar consequences? Please, describe facts on the example.

Questions – stable oxidation states

Please, try to mark the predominant oxidation states of some stable compounds of these elements:

Li: -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 Li-compound:

Ca: -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 Ca-compound:

Zn: -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 Zn-compound:

F: -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 F-compound:

Questions – Acids and Bases

Please, add the correct explanation (BA, BB, LA, LB, S, C) of mentioned compounds in order to evaluate their acidity or basicity.

- i.e.: H₂O BA and also BB, LB, S
- CO ...
- HCI ...
- NH₃...
- SO₂ ...
- SO₃ ...

Question – Chemical bond

please, describe respective chemical bonds of these compounds

Compound	Differencial Electronegativity	The type of chemical bond
K ₂ O		
Cl ₂		
KCI		
O ₂		
HBr		
N ₂		
NaF		
H ₂ O ₂		

Qestions – "Octet rule"

Please, decide if both elements in compounds shown in the Table could mimic the electronic configuration of the nearest Noble gas or not.

compound	number of shared valence e ⁻	number of shared valence orbitals	Could both elements mimic the Noble gas e ⁻ configuration?
H ₂ O			
B ₂			
O ₂			
SF_6			

Recomended Bibliography

Housecroft C. E., Sharpe A. G., Inorganic Chemistry, 2nd Ed., Pearson Education Ltd., 2005, 987 p. ISBN 0130-39913-2.

Saito, T., Inorganic Chemistry, Kanagawa University, 2004, 194 p. PDF downloaded from: http://www.t.soka.ac.jp/chem/iwanami/inorg/