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Introduction

We now turn our attention to solving linear differential
equations of order n. The general form of such an equation is

a0(x)y
(n) + a1(x)y

(n−1) + · · ·+ an−1(x)y
′ + an(x)y = F (x),

where a0, a1, . . . , an, and F are functions defined on an
interval I.

The general strategy is to reformulate the above equation as

Ly = F,

where L is an appropriate linear transformation. In fact, L will
be a linear differential operator.
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Linear differential operators

Recall that the mapping D : Ck(I)→ Ck−1(I) defined by
D(f) = f ′ is a linear transformation. This D is called the
derivative operator. Higher order derivative operators
Dk : Ck(I)→ C0(I) are defined by composition:

Dk = D ◦Dk−1,

so that

Dk(f) =
dkf

dxk
.

A linear differential operator of order n is a linear
combination of derivative operators of order up to n,

L = Dn + a1D
n−1 + · · ·+ an−1D + an,

defined by

Ly = y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any,

where the ai are continous functions of x. L is then a linear
transformation L : Cn(I)→ C0(I). (Why?)
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Example

If L = D2 + 4xD − 3x, then

Ly = y′′ + 4xy′ − 3xy.

We have

L (sinx) = − sinx+ 4x cosx− 3x sinx,

L
(
x2
)
= 2 + 8x2 − 3x3.

Example

If L = D2 − e3xD, determine

1. L
(
2x− 3e2x

)
= −12e2x − 2e3x + 6e5x

2. L
(
3 sin2 x

)
= −3e3x sin 2x− 6 cos 2x
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Homogeneous and nonhomogeneous equations

Consider the general n-th order linear differential equation

a0(x)y
(n) + a1(x)y

(n−1) + · · ·+ an−1(x)y
′ + an(x)y = F (x),

where a0 6= 0 and a0, a1, . . . , an, and F are functions on an
interval I.

If a0(x) is nonzero on I, then we may divide by it and relabel,
obtaining

y(n) + a1(x)y
(n−1) + · · ·+ an−1(x)y

′ + an(x)y = F (x),

which we rewrite as
Ly = F (x),

where L = Dn + a1D
n−1 + · · ·+ an−1D + an.

If F (x) is identically zero on I, then the equation is
homogeneous, otherwise it is nonhomogeneous.
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The general solution

If we have a homogeneous linear differential equation

Ly = 0,

its solution set will coincide with Ker(L). In particular, the
kernel of a linear transformation is a subspace of its domain.

Theorem
The set of solutions to a linear differential equation of order n
is a subspace of Cn(I). It is called the solution space. The
dimension of the solutions space is n.

Being a vector space, the solution space has a basis
{y1(x), y2(x), . . . , yn(x)} consisting of n solutions. Any
element of the vector space can be written as a linear
combination of basis vectors

y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x).

This expression is called the general solution.
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The Wronskian

We can use the Wronskian

W [y1, y2, . . . , yn](x) =

∣∣∣∣∣∣∣∣∣
y1(x) y2(x) · · · yn(x)
y′1(x) y′2(x) · · · y′n(x)

...
...

. . .
...

y
(n−1)
1 (x) y

(n−1)
2 (x) · · · y

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣
to determine whether a set of solutions is linearly independent.

Theorem
Let y1, y2, . . . , yn be solutions to the n-th order differential
equation Ly = 0 whose coefficients are continuous on I. If
W [y1, y2, . . . , yn](x) = 0 at any single point x ∈ I, then
{y1, y2, . . . , yn} is linearly dependent.

To summarize, the vanishing or nonvanishing of the Wronskian
on an interval completely characterizes the linear dependence
or independence of a set of solutions to Ly = 0.
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The Wronskian

Example

Verify that y1(x) = cos 2x and y2(x) = 3− 6 sin2 x are
solutions to the differential equation y′′ + 4y = 0 on (−∞,∞).

Determine whether they are linearly independent on this
interval.

W [y1, y2](x) =

∣∣∣∣ cos 2x 3− 6 sin2 x
−2 sin 2x −12 sinx cosx

∣∣∣∣
= −6 sin 2x cos 2x+ 6 sin 2x cos 2x = 0

They are linearly dependent. In fact, 3y1 − y2 = 0.
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Nonhomogeneous equations

Consider the nonhomogeneous linear differential equation
Ly = F . The associated homogeneous equation is Ly = 0.

Theorem
Suppose {y1, y2, . . . , yn} are n linearly independent solutions to
the n-th order equation Ly = 0 on an interval I, and y = yp is
any particular solution to Ly = F on I. Then every solution to
Ly = F on I is of the form

y = ︸ ︷︷ ︸c1y1 + c2y2 + · · ·+ cnyn + yp,

= yc + yp

for appropriate constants c1, c2, . . . , cn.

This expression is the general solution to Ly = F . The
components of the general solution are

I the complementary function, yc, which is the general
solution to the associated homogeneous equation,

I the particular solution, yp.
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Something slightly new

Theorem
If y = up and y = vp are particular solutions to Ly = f(x) and
Ly = g(x), respectively, then y = up + vp is a solution to
Ly = f(x) + g(x).

Proof.
We have L(up + vp) = L(up) + L(vp) = f(x) + g(x). Q.E .D.
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An example

Example

Determine all solutions to the differential equation
y′′ + y′ − 6y = 0 of the form y(x) = erx, where r is a constant.

Substituting y(x) = erx into the equation yields

erx(r2 + r − 6) = r2erx + rerx − 6erx = 0.

Since erx 6= 0, we just need (r + 3)(r − 2) = 0. Hence, the two
solutions of this form are

y1(x) = e2x and y2(x) = e−3x.

Could this be a basis for the solution space? Check linear
independence. Yes! The general solution is

y(x) = c1e
2x + c2e

−3x.
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Example

Determine the general solution to the differential equation

y′′ + y′ − 6y = 8e5x.

We know the complementary function,

yc(x) = c1e
2x + c2e

−3x.

For the particular solution, we might guess something of the
form yp(x) = ce5x. What should c be? We want

8e5x = y′′p + y′p − 6yp = (25c+ 5c− 6c)e5x.

Cancel e5x and then solve 8 = 24c to find c = 1
3 .

The general solution is

y(x) = c1e
2x + c2e

−3x + 1
3e

5x.
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Introduction

We just found solutions to the linear differential equation

y′′ + y′ − 6y = 0

of the form y(x) = erx. In fact, we found all solutions.
This technique will often work. If y(x) = erx then

y′(x) = rerx, y′′(x) = r2erx, . . . , y(n)(x) = rnerx.

So if rn + a1r
n−1 + · · ·+ an−1r + an = 0 then y(x) = erx is a

solution to the linear differential equation

y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = 0.

Let’s develop this approach more rigorously.
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The auxiliary polynomial

Consider the homogeneous linear differential equation

y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = 0

with constant coefficients ai. Expressed as a linear differential
operator, the equation is P (D)y = 0, where

P (D) = Dn + a1D
n−1 + · · ·+ an−1D + an.

Definition
A linear differential operator with constant coefficients, such as
P (D), is called a polynomial differential operator. The
polynomial

P (r) = rn + a1r
n−1 + · · ·+ an−1r + an

is called the auxiliary polynomial, and the equation P (r) = 0
the auxiliary equation.



Higher Order
Linear

Differential
Equations

Math 240

Linear DE

Linear
differential
operators

Familiar stuff

Example

Homogeneous
equations

The auxiliary polynomial

Example

The equation y′′ + y′ − 6y = 0 has auxiliary polynomial

P (r) = r2 + r − 6.

Examples

Give the auxiliary polynomials for the following equations.

1. y′′ + 2y′ − 3y = 0

2. (D2 − 7D + 24)y = 0

3. y′′′ − 2y′′ − 4y′ + 8y = 0

r2 + 2r − 3

r2 − 7r + 24

r3 − 2r2 − 4r + 8

The roots of the auxiliary polynomial will determine the
solutions to the differential equation.
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Polynomial differential operators commute

The key fact that will allow us to solve constant-coefficient
linear differential equations is that polynomial differential
operators commute.

Theorem
If P (D) and Q(D) are polynomial differential operators, then

P (D)Q(D) = Q(D)P (D).

Proof.
For our purposes, it will suffice to consider the case where P
and Q are linear. Q.E .D.

Commuting polynomial differential operators will allow us to
turn a root of the auxiliary polynomial into a solution to the
corresponding differential equation.
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Linear polynomial differential operators

In our example,
y′′ + y′ − 6y = 0,

with auxiliary polynomial

P (r) = r2 + r − 6,

the roots of P (r) are r = 2 and r = −3. An equivalent
statement is that r − 2 and r + 3 are linear factors of P (r).

The functions y1(x) = e2x and y2(x) = e−3x are solutions to

y′1 − 2y1 = 0 and y′2 + 3y2 = 0,

respectively.

Theorem
The general solution to the linear differential equation

y′ − ay = 0

is y(x) = ceax.
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Theorem
Suppose P (D) and Q(D) are polynomial differential operators

P (D)y1 = 0 = Q(D)y2.

If L = P (D)Q(D), then

Ly1 = 0 = Ly2.

Proof.

P (D)Q(D)y2 = P (D)
(
Q(D)y2

)
= P (D)0 = 0

P (D)Q(D)y1 = Q(D)P (D)y1

= Q(D)
(
P (D)y1

)
= Q(D)0 = 0 Q.E .D.

Example

The theorem implies that, since

(D − 2)y1 = 0 and (D + 3)y2 = 0,

the functions y1(x) = e2x and y2(x) = e−3x are solutions to

y′′ + y′ − 6y = (D2 +D − 6)y = (D − 2)(D + 3)y = 0.
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Linear polynomial differential operators

Furthermore, solutions produced from different roots of the
auxiliary polynomial are independent.

Example

If y1(x) = e2x and y2(x) = e−3x, then

W [y1, y2](x) =

∣∣∣∣ e2x e−3x

2e2x −3e−3x
∣∣∣∣

= e−x
∣∣∣∣1 1
2 −3

∣∣∣∣ = −5e−x 6= 0.
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Distinct linear factors

If we can factor the auxiliary polynomial into distinct linear
factors, then the solutions from each linear factor will combine
to form a fundamental set of solutions.

Example

Determine the general solution to y′′ − y′ − 2y = 0.

The auxiliary polynomial is

P (r) = r2 − r − 2 = (r − 2)(r + 1).

Its roots are r1 = 2 and r2 = −1. The functions y1(x) = e2x

and y2(x) = e−x satisfy

(D − 2)y1 = 0 = (D + 1)y2.

Therefore, y1 and y2 are solutions to the original equation.
Since we have 2 solutions to a 2nd degree equation, they
constitute a fundamental set of solutions; the general solution is

y(x) = c1e
2x + c2e

−x.
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Multiple roots

What can go wrong with this process? The auxiliary
polynomial could have a multiple root. In this case, we would
get one solution from that root, but not enough to form the
general solution. Fortunately, there are more.

Theorem
The differential equation (D − r)my = 0 has the following m
linearly independent solutions:

erx, xerx, x2erx, . . . , xm−1erx.

Proof.
Check it. Q.E .D.
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Multiple roots

Example

Determine the general solution to y′′ + 4y′ + 4y = 0.

1. The auxiliary polynomial is r2 + 4r + 4.

2. It has the multiple root r = −2.

3. Therefore, two linearly independent solutions are

y1(x) = e−2x and y2(x) = xe−2x.

4. The general solution is

y(x) = e−2x(c1 + c2x).
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Complex roots

What happens if the auxiliary polynomial has complex roots?
Can we recover real solutions? Yes!

Theorem
If P (D)y = 0 is a linear differential equation with real constant
coefficients and (D − r)m is a factor of P (D) with r = a+ bi
and b 6= 0, then

1. P (D) must also have the factor (D − r)m,

2. this factor contributes the complex solutions

e(a±bi)x, xe(a±bi)x, . . . , xm−1e(a±bi)x,

3. the real and imaginary parts of the complex solutions are
linearly independent real solutions

xkeax cos bx and xkeax sin bx

for k = 0, 1, . . . ,m− 1.
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Example

Determine the general solution to y′′ + 6y′ + 25y = 0.

1. The auxiliary polynomial is r2 + 6r + 25.

2. Its has roots r = −3± 4i.

3. Two independent real-valued solutions are

y1(x) = e−3x cos 4x and y2(x) = e−3x sin 4x.

4. The general solution is

y(x) = e−3x(c1 cos 4x+ c2 sin 4x).
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