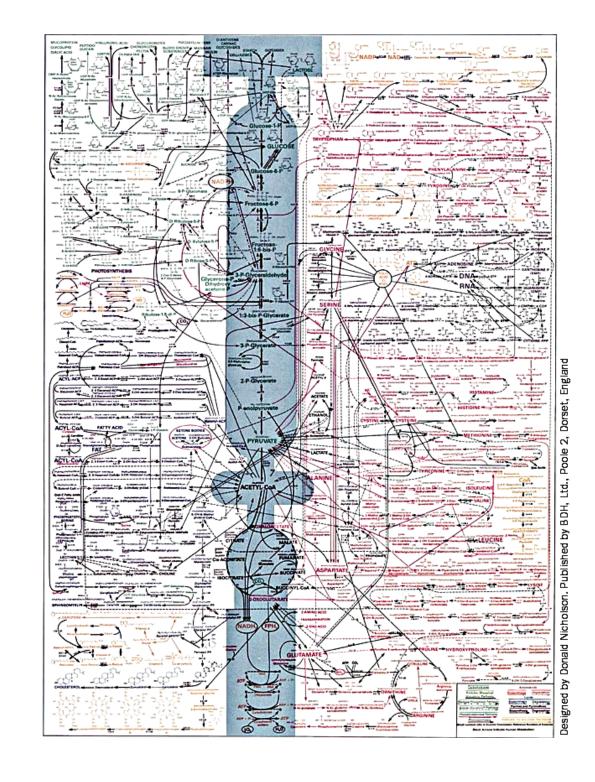
Introduction to Bioenergetics

Thermodynamics

Free energy


Equilibrium

Coupled reactions

Steady state

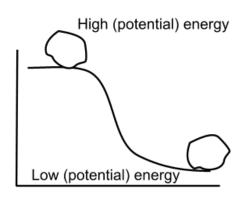
High energy bonds

Redox potential

Thermodynamics Review

First Law: For any physical or chemical change, the total amount of energy in the universe remains constant. Energy may change form or be transported, but it cannot be created or destroyed.

Second Law: In all natural processes, the entropy of the universe (total S) increases.


- Key terms we will deal with in this chapter:
 - System / Surroundings / Universe
 - Energy, Heat, Work influence on system

$$1 J = (Kg-m / sec)$$
; $1 cal = 4.184 J$

- Enthalpy (H) and Entropy (S)

$$H = E + PV$$
 or $\Delta H = \Delta E + P\Delta V$
 $S = k lnW$ or $\Delta S = k ln(W_f/W_i)$

```
Joule (J)
    1 J = 1 kg \cdot m^2 \cdot s^{-2} 1 J = 1 C V(coulomb volt)
    1 J = 1 N \cdot m (newton meter)
Calorie (cal)
   1 cal heats 1 g of H<sub>2</sub>O from 14.5 to 15.5°C
   1 \text{ cal} = 4.184 \text{ J}
Large calorie (Cal)
   1 \text{ Cal} = 1 \text{ kcal}
                             1 \text{ Cal} = 4184 \text{ J}
Avogadro's number (N)
   N = 6.0221 \times 10^{23} \,\mathrm{molecules} \cdot \mathrm{mol}^{-1}
Coulomb (C)
   1 \text{ C} = 6.241 \times 10^{18} \text{ electron charges}
Faraday (F)
   1 \mathcal{F} = N electron charges
   1 \mathcal{F} = 96,485 \,\mathrm{C} \cdot \mathrm{mol}^{-1} = 96,485 \,\mathrm{J} \cdot \mathrm{V}^{-1} \cdot \mathrm{mol}^{-1}
Kelvin temperature scale (K)
   0 \text{ K} = \text{absolute zero} 273.15 \text{ K} = 0^{\circ}\text{C}
Boltzmann constant (k_{\rm B})
   k_{\rm B} = 1.3807 \times 10^{-23} \, \text{J} \cdot \text{K}^{-1}
Gas constant (R)
    R = Nk_{\rm B}  R = 1.9872 \, {\rm cal \cdot K^{-1} \cdot mol^{-1}}
    R = 8.3145 \,\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1} R = 0.08206 \,\mathrm{L} \cdot \mathrm{atm} \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1}
```


$$\Delta E = E_p - E_r$$

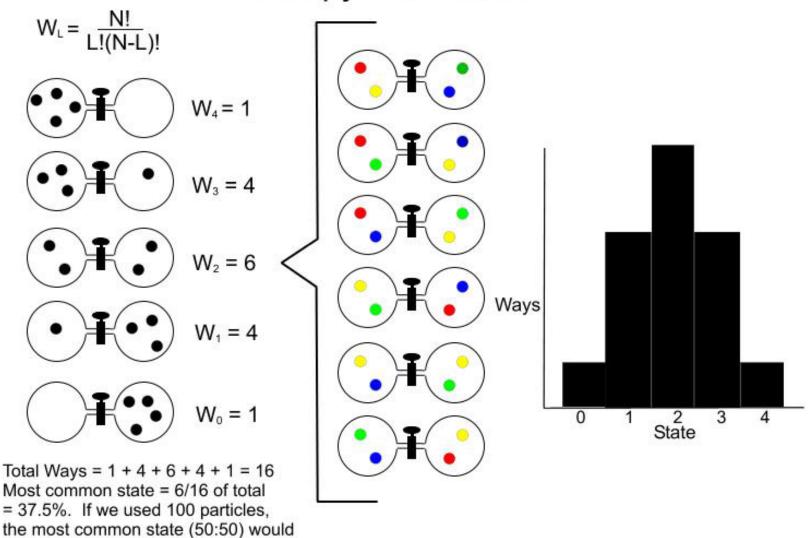
∆E will be negative for "spontaneous event"

First law of thermodynamics: total enegy is conserved in ordinary reactions

Energy is exchanged, in chemistry, in 2 main ways, heat and work (electrical work will be dealt with later).

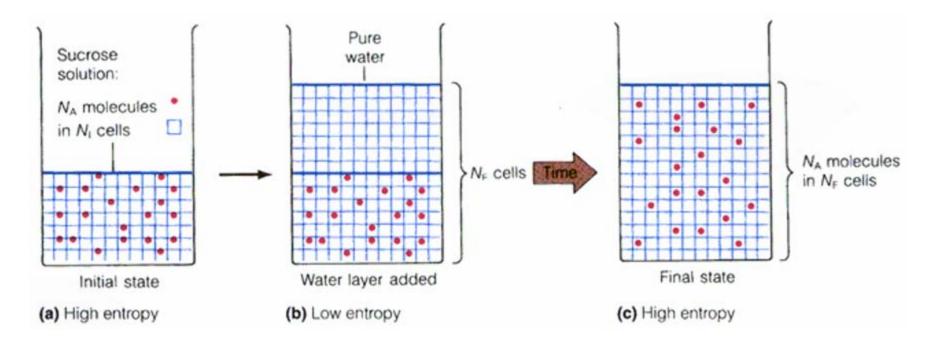
In a chemical reaction

 $\Delta E = q - w$ (ie heat added TO the system - work done BY the system)


heat change is basically a measure of difference in bond energies between reactants and products.

If only $P\Delta V$ work is possible, then $\Delta E = q - w = q - P\Delta V$

Define enthalpy as $\Delta H = \Delta E + P\Delta V$ that is the heat release observed due to changes in internal energy and PV work .


In biological reactions, $P\Delta V$ work is so small we can think of ΔH as a change in internal energy, that is bond strengths.

Entropy and States

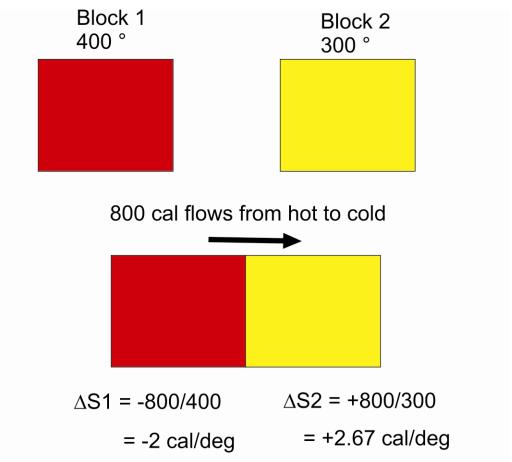
account for 99.5% of the total. For molar numbers, the most common state is effectively the ONLY state. The magnitude of these numbers make a logarithmic definition better: S = k_BInW

Entropy of dilution

S = k In W where W = "ways" of arranging solute.

There are N_l ways to place first solute, N_l -1 for second etc. BUT since N_l >>>NA, these are all \approx same, $\therefore W_l \approx N_l \times N_l \times N_l \dots = N_l^{NA}$ and $W_F = N_F^{NA}$.

The Δ entropy upon dilution is $S_F - S_I$

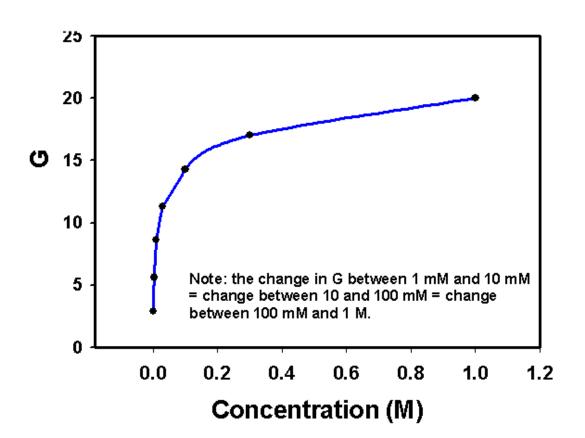

$$\begin{split} \Delta S &= k \text{ In } N_F^{NA} - k \text{ In } N_I^{NA} = \\ k \text{ In } [N_F^{NA} / N_I^{NA}] &= N_A \text{ k In } N_F / N_I \\ \text{For } N_A &= 1 \text{ mole, } \Delta S &= R \text{ In } N_F / N_I \text{ and given } \\ \text{that } V_F &\sim N_F \text{ etc.} \\ \Delta S &= R \text{ In } V_F / V_I \end{split}$$

A similar, but more complicated derivation shows for a given solute: $\Delta S = R \ln C_F/C_I$

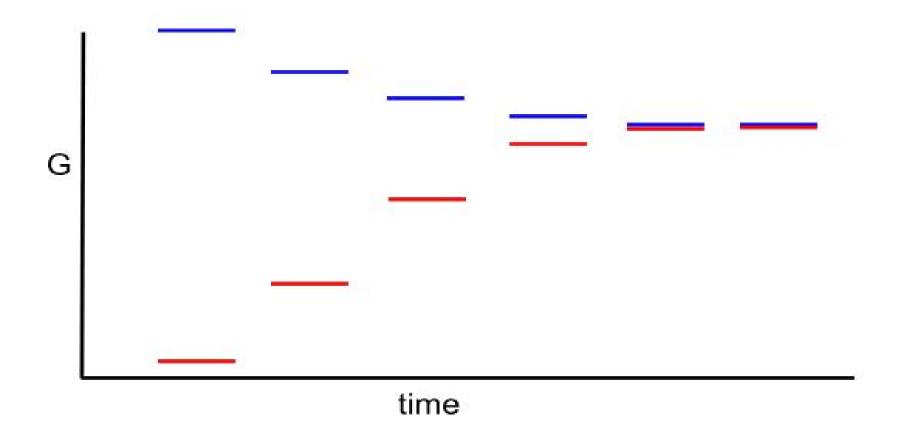
Heat and entropy

- The statistical models are almost useless in Biochem. It can be shown, though, that entropy can be measured via heat change.
- A small addition of heat to a hot system adds little entropy (already stirred up), but adding the same heat to a cold system makes a larger entropic change.
- Δ S ~ q/T the lower the absolute T, the greater entropy change
- The system we are focused on may increase or decrease entropy during a living reaction, but the entropy of the universe always increases.
- If the temperature is NOT constant, we must sum heat change over each T as: ∆S > ∫ dq/T

An example of spontaneous reaction


Block 1 got more ordered as it lost heat, and its entropy decreased, but Block 2 increased even more.

 $\Delta Su = \Delta S1 + \Delta S2 = 0.67 \text{ cal/deg}$


The entropy change of the universe always increases.

Free energy combines enthalpy and entropy

- G = H-TS this is property is non-linear with concentration (recall the logarithmic nature of the entropy)
- For any molecule, G varies with concentration.
- G=G⁰ + RT InC
- $=G^0 + RT 2.303 logC$
- $=G^0 + 5.7 \text{ KJ/mol logC}$

As systems go to equilibrium, ΔG goes to zero

∆ G controls Equilibrium

In the system $A + B \Leftrightarrow C + D$

$$\begin{split} \Delta G &= G_C + G_D \text{ -}(G_A + G_B) = G_P \text{ -} G_R \\ &\text{However, for each species } G_i = G_i^0 + RT \ln C_i \text{ therefore,} \\ \Delta G &= G_C^0 + RT \ln C_C + G_D^0 + RT \ln C_D \text{ -} (G_A^0 + RT \ln C_A + G_B^0 + RT \ln C_B) \\ &= \Delta G^0 + RT \ln[(C) \text{ (D)/(A) (B)}] = \Delta G^0 + RT \ln[(C) \text{ (D)/(A) (B)}] \\ &\text{At T=298 K, and converting natural logs to base 10 we get:} \\ \Delta G &= \Delta G^0 + 1.36 \text{ Kcal/mol log [(C) (D)/(A) (B)]} \\ &= \Delta G^0 + 5.7 \text{ KJ/mol log [(C) (D)/(A) (B)]} \end{split}$$

For a system at equilibrium, $\Delta G = 0$. This connects ΔG to equilibrium distribution since the transport between reactants and products has now "settled down" and the ratio reflects Keq.

$$0 = \Delta G^0 + 1.36$$
 Kcal/mol log Keq $= \Delta G^0 + 5.7$ KJ/mol log Keq or $\Delta G^0 = -1.36$ Kcal/mol log Keq $= -5.7$ KJ/mol log Keq

so $\Delta G^o = -RT \ln Keq$; $\Delta G^o = -2.3RT \log Keq$

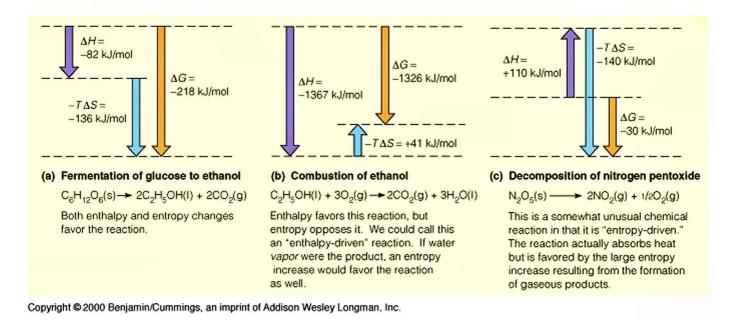
Note: RT = (8.314J/m-K)(298K) = 2.48 kJ/m

 $\Delta G^{o} = -5.7 \text{ kJ/m} (\log \text{Keq}) \text{ at } 25\text{C}$

$K_{ m eq}$	$\Delta G^{\circ}(\mathrm{kJ \cdot mol^{-1}}) \ 25^{\circ}\mathrm{C}$
10^6	- 34.3
10^4	- 22.8
10^2	- 11.4
-10^{1}	- 5.7
10^{0}	0.0
10^{-1}	5.7
10^{-2}	11.4
10^{-4} 10^{-6}	22.8
10^{-6}	34.3

Gibbs Free Energy and Spontaneity

Note: the standard free-energy tells us the direction a reaction will go when the initial concentration of each component is 1M, pH = 7, T = 298K, and P = 1 atm.


Spontaneous processes are favored if they are energetically "down hill"

(i.e. exothermic, neg. $\Delta \mathbf{H}$) and have an increase in entropy (pos. $\Delta \mathbf{S}$)

 $(\Delta G < 0 - exergonic / "spontaneous")$

 $(\Delta G = 0 - at equilibrium)$

 $(\Delta G > 0 - endergonic / "non-spontaneous")$

Free energies of formation have been worked out for many biologically important molecules

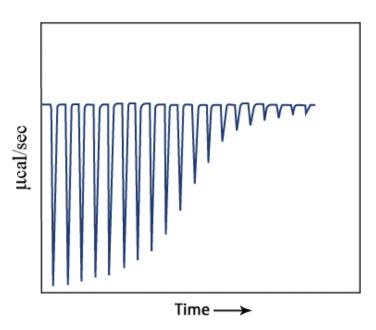
Compound	$-\Delta G_{\mathrm{f}}^{\circ} \left(\mathrm{kJ \cdot mol^{-1}}\right)$	Glucose-6-phosphate ²⁻	1760.2
Acetaldehyde	139.7	Glyceraldehyde-3-phosphate ²⁻	1285.6
Acetate	369.2	H^+	0.0
Acetyl-CoA	374.1ª	$H_2(g)$	0.0
cis-Aconitate ³⁻	920.9	$\mathrm{H_2O}(\ell)$	237.2
$CO_2(g)$	394.4	Isocitrate ³⁻	1160.0
$CO_2(aq)$	386.2	α -Ketoglutarate ²⁻	798.0
HCO_3	587.1	Lactate ⁻	516.6
Citrate ³⁻	1166.6	L-Malate ²⁻	845.1
Dihydroxyacetone phosphate ²⁻	1293.2	OH^-	157.3
Ethanol	181.5	Oxaloacetate ²⁻	797.2
Fructose	915.4	Phosphoenolpyruvate ³⁻	1269.5
Fructose-6-phosphate ²⁻	1758.3	2-Phosphoglycerate ³⁻	1285.6
Fructose-1, 6-bisphosphate ⁴⁻	2600.8	3-Phosphoglycerate ³⁻	1515.7
Fumarate ²⁻	604.2	Pyruvate ⁻	474.5
α-D-Glucose	917.2	Succinate ²⁻	690.2
The Distriction	711.2	Succinyl-CoA	686.7ª

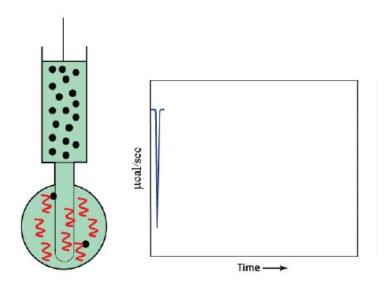
Keq can be calculated from free energies of formation

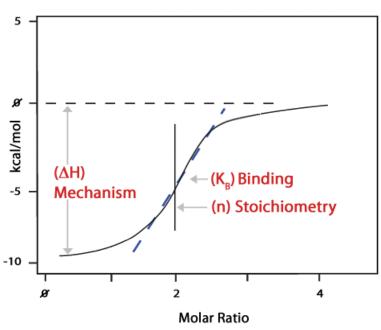
example:

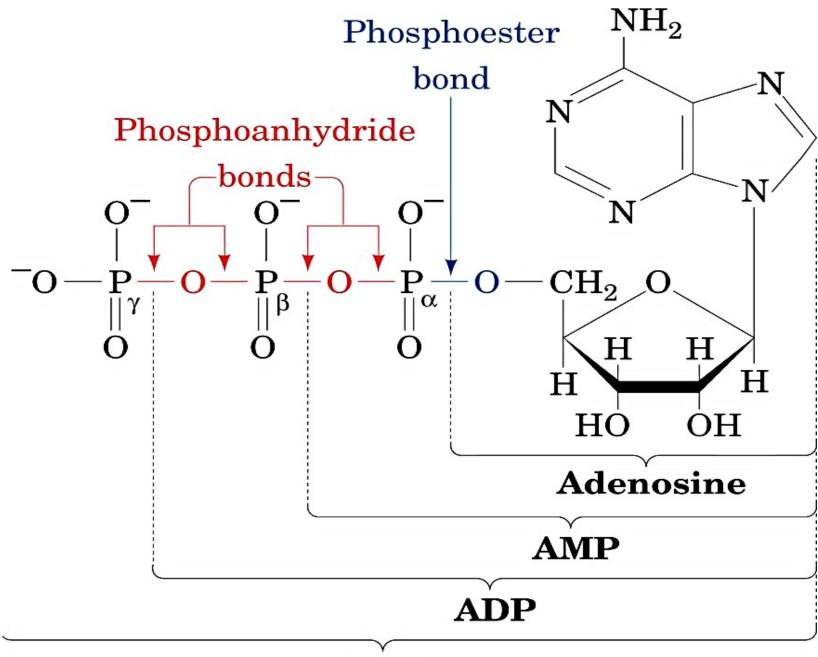
find Keq for hydrolysis of gly-ala + H₂O ⇔ gly + ala

tables show G_f^0 as:


gly =
$$-87.7$$
 Kcal/mol; ala = -87.3 Kcal/mol; gly-ala = -114.7 Kcal/mol; $H_2O = -56.2$ Kcal/mol


$$\Delta G^0 = G^0_P - G^0_R = (-87.7 - 87.3) - (-114.7 - 56.2) =$$
-4.1 Kcal/mol from $\Delta G^0 = -1.36$ Kcal/mol log Keq
-4.1 Kcal/mol = -1.36 Kcal/mol log Keq
3.01 = log Keq; Keq = 103.01 = 1034 = 1.03 x 10³


Isothermal Calorimetry


A very useful tool in drug discovery and design.

"High energy" bonds useful in biology

ATP

-Reasons for "high-energy":

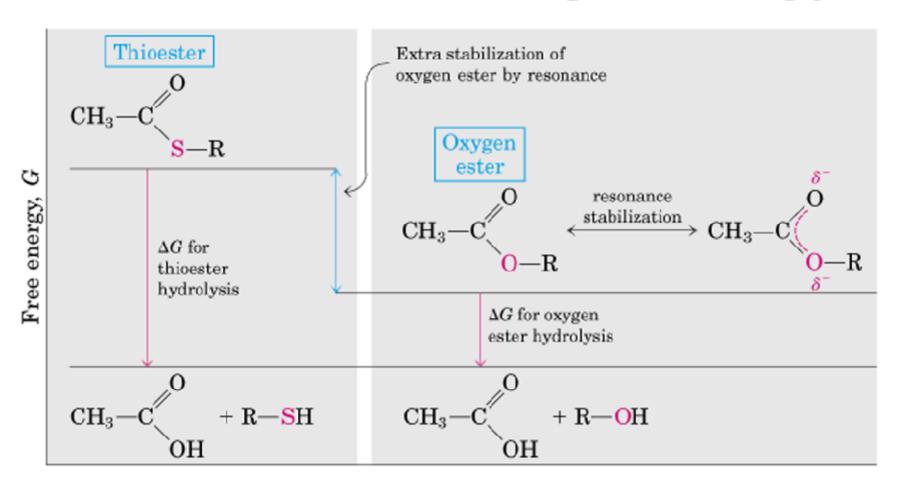
- charge separation
- - product stabilization
- greater hydration

Other "High Energy" compounds

Other "High Energy" phosphorylated compounds:

PEP - enol phosphates

1,3-BPG - acyl phosphate (mixed anhydride)

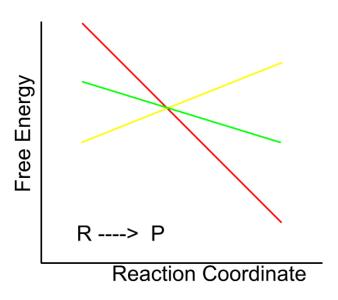

Phosphocreatine

(phosphoguanidines)

Other "High Energy" compounds: Thioesters (acetyl-CoA)

Hydrolysis
$$COO^ COO^ C$$

Thioesters are "high energy"


Compound	$\Delta G \;\; (\mathrm{kJ} \cdot \mathrm{mol}^{-1})$
Phosphoenolpyruvate	-61.9
1,3-Bisphosphoglycerate	-49.4
Acetyl phosphate	-43.1
Phosphocreatine	-43.1
PP_i	-33.5
$\mathbf{ATP} \; (\to \mathbf{AMP} + \mathbf{PP}_i)$	-32.2
$\mathbf{ATP} \; (\to \mathbf{ADP} + \mathbf{P}_i)$	-30.5
Glucose-1-phosphate	-20.9
Fructose-6-phosphate	-13.8
Glucose-6-phosphate	-13.8
Glycerol-3-phosphate	-9.2

Source: Jencks, W.P., in Fasman, G.D. (Ed.), Handbook of Biochemistry and Molecular Biology (3rd ed.), Physical and Chemical Data, Vol. I, pp. 296–304, CRC Press (1976).

Coupled Reactions

Using a favorable reaction to drive an unfavorable one.

Note that the new, coupled, reaction has the desired products but that Keq for reactions 1 and 2 has not changed. We write a NEW reaction which gives us what we want.

Energy coupling showing phosphate transfer potential

Exergonic half-reaction 1
$$CH_2 = C$$
 + H_2O \rightleftharpoons $CH_3 - C - COO^-$ + P_i -61.9

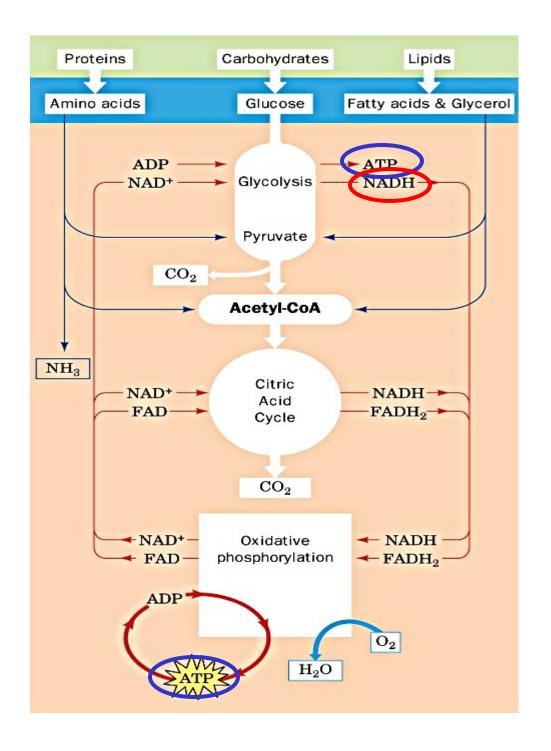
Phosphoenolpyruvate Pyruvate

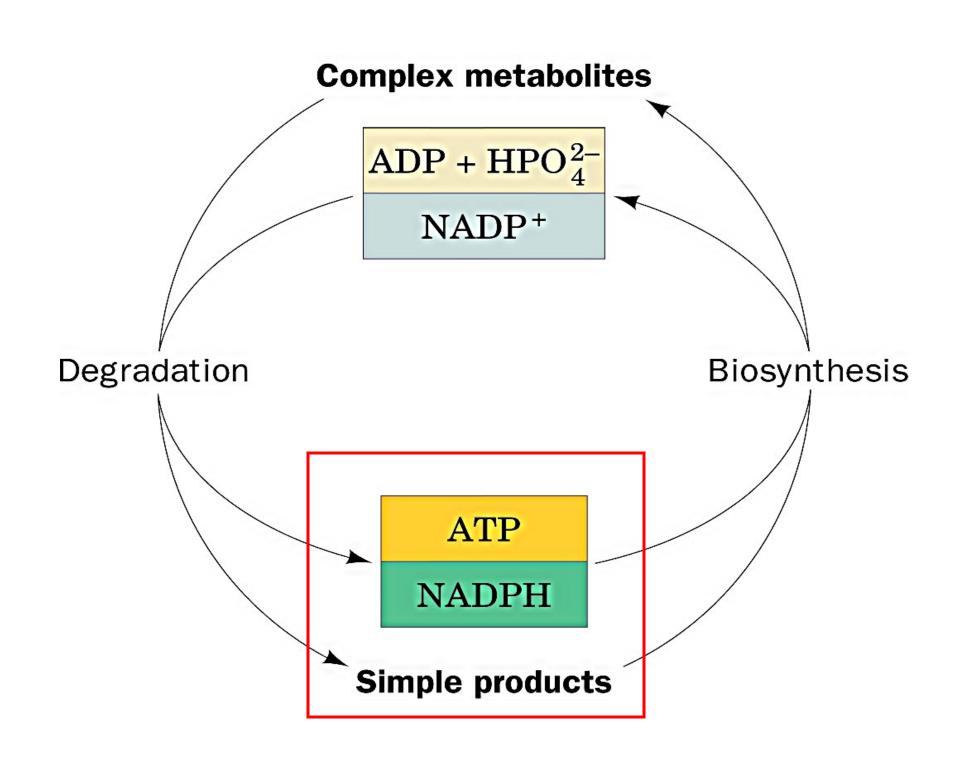
Endergonic half-reaction 2 $ADP + P_i \rightleftharpoons ATP + H_2O$ $+30.5$

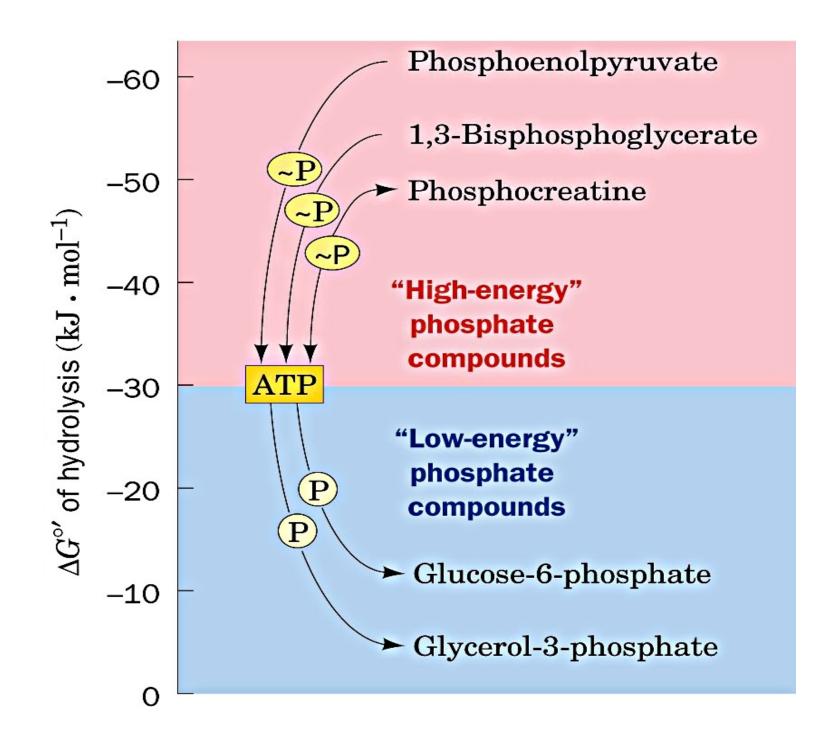
Overall coupled reaction $CH_2 = C$ + $ADP \rightleftharpoons CH_3 - C - COO^-$ + ATP -31.4

Example: Gln synthesis

This coupling involves the transfer of Pi from ATP to the Glu side chain to create a high energy mixed anhydride which is attacked by the ammonia nucleophile


to release Pi.


Living cells are **NOT** at equilibrium; they are in a **steady state**


```
Find \Delta G' for ATP hydrolysis in a living E. coli, where (ATP) \approx 8 mM, (ADP) \approx 1 mM, and (Pi) \approx 8 mM \Delta G' = \Delta G^{o'} + \text{RT In (ADP)(Pi)/(ATP)}
= -31 \text{ KJ/mol} + 5.71 \log \left[ (8x10^{-3}) (1x10^{-3}) / (8x10^{-3}) \right]
= -49 \text{ KJ/mol} \qquad \text{(Note: concentrations are MOLAR)}
OR
= -7.3 \text{ Kcal/mol} + 1.36 \log \left[ (8x10^{-3}) (1x10^{-3}) / (8x10^{-3}) \right]
= -7.3 -4.1 = -11.4 \text{ Kcal/mol}
```

In Metabolism

- role of ATP
- role of NADH

Roles of ATP in Metabolism

Used for:

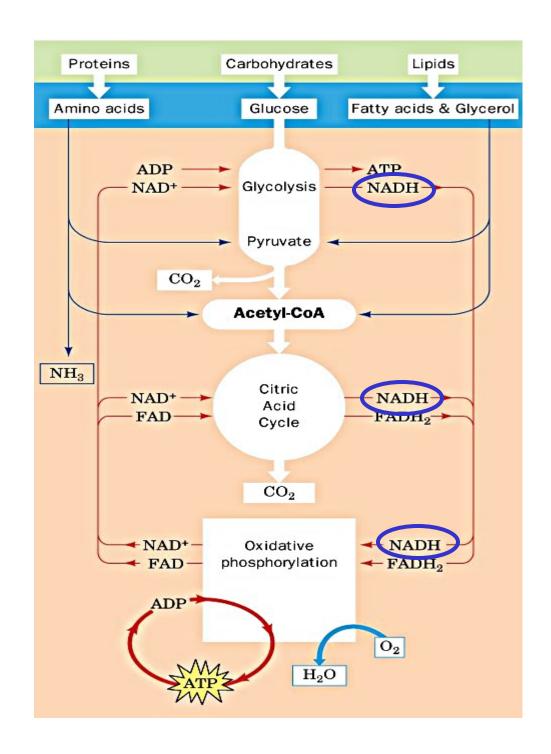
Activate nutrient breakdown

Biosynthetic reactions

Physiological processes

Formed by:

Substrate-level phosphorylation


Oxidative phosphorylation / Photophosphorylation

Turnover - humans have about 50g ATP (0.09 moles); basal metabolism burns ~ 3 mol / hr; active metabolism is much higher.

Storage – Creatine Kinase (muscle, nerve cells)

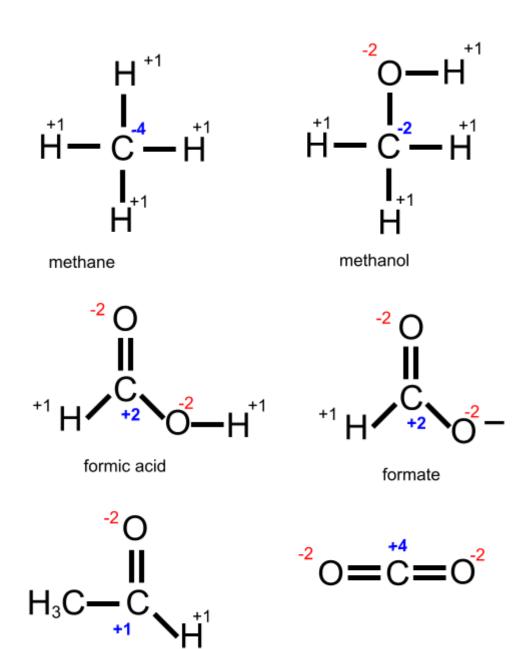
In Metabolism

- role of NADH

Formal Oxidation States

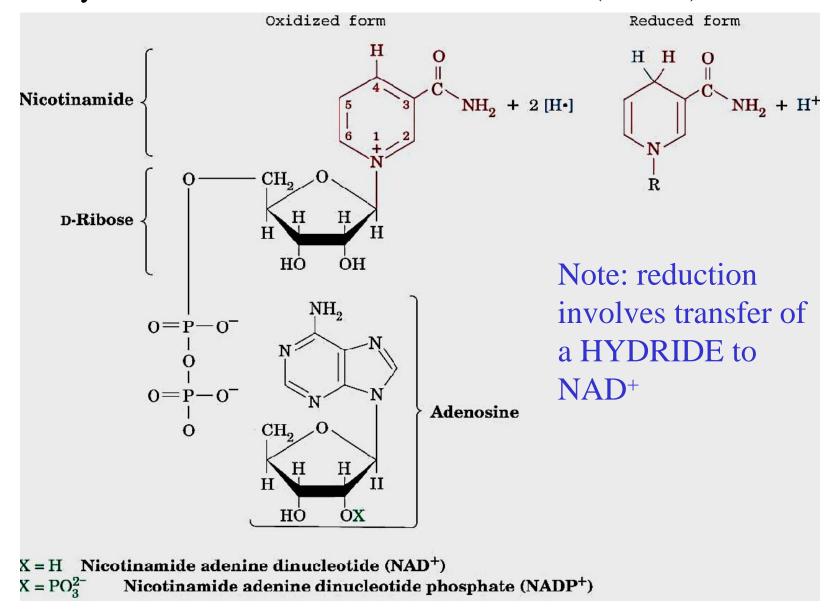
Formal oxidation state (FOS) analysis is useful in examining redox reactions. Recall these rules from General Chem

- 1. C-C bonds are shared equally
- 2. More electronegative atoms take formal possession of the shared electrons
- 3. Sum of formal charges = charge on the molecule
- 4. Oxygen has FOS = -2; H has FOS =+1


Formal Charge Examples

To find formal charge on central C of methane note that there are 4 Hs each with +1, and sum for this neutral molecule =0. Therefore formal charge on C must be -4, as shown in blue.

For methanol, central carbon must be -2 to balance fixed charges on O and Hs.


Note the charge on formic acid, +2, is the same as formate; the formal charges must sum to zero, or -1 respectively.

The acetaldehyde model reminds us that C-C bonds generate no formal charges, and the carbon dioxide molecule shows the wide range of formal charges on C. It can be any value between -4 and +4.

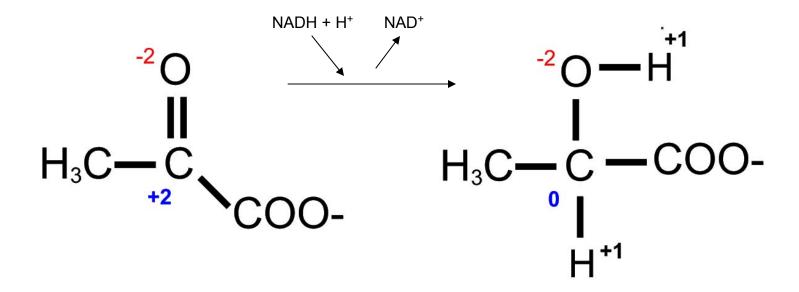

acetaldehyde Carbon dioxide

Fig. 13-2 The molecular formula and **redox reactions** of the coenzyme nicotinamide adenine dinucleotide (NAD+).

A redox example

If CH₃-CO-COO- is reduced by NADH, to CH₃-CHOH-COO-, the central carbon state goes from +2 to 0. It is reduced while NADH is oxidized to NAD+

Redox Reactions

Oxidation of food stuffs releases energy. Some of the released energy is "converted" into high energy, reduced coenzymes such as NADH

Oxidation is a loss of electrons, hydrogen, or hydride, or the addition of oxygen. Reduction is a gain of electrons, hydrogen, or hydride, or the loss of oxygen.

When something is oxidized, something else must be reduced.

$$A_{ox}^{n+} + B_{red} \Leftrightarrow A_{red} + B_{ox}^{n+}$$

In this reaction, A is reduced (gains e⁻ s), and B is oxidized (loses e⁻ s).

A is the oxidizing agent, or oxidant

B is the reducing agent, or reductant

Break the overall reaction into two half-reactions:

$$A_{ox}^{n+} + ne^{-} \rightarrow A_{red}$$

 $B_{red} \rightarrow B_{ox}^{n+} + ne^{-}$

The "propensity" to gain e⁻s and become reduced is called the reduction potential; it can be measured as a half cell potential or voltage, and tabulated.

Standard Reduction Potentials

Half-Reaction	€°′ (V)
$\frac{1}{2}O_2 + 2H^+ + 2e^- \Longrightarrow H_2O$	0.815
Cytochrome a_3 (Fe ³⁺) + $e^- \rightleftharpoons$ cytochrome a_3 (Fe ²⁺)	0.385
$O_2(g) + 2H^+ + 2e^- \Longrightarrow H_2O_2$	0.295
Cytochrome a (Fe ³⁺) + $e^- \Longrightarrow$ cytochrome a (Fe ²⁺)	0.29
Cytochrome c (Fe ³⁺) + $e^- \rightleftharpoons$ cytochrome c (Fe ²⁺)	0.235
Cytochrome b (Fe ³⁺) + $e^- \rightleftharpoons$ cytochrome b (Fe ²⁺) (mitochondrial)	0.077
Ubiquinone $+ 2H^+ + 2e^- \Longrightarrow$ ubiquinol	0.045
Fumarate ⁻ + $2H^+ + 2e^- \Longrightarrow succinate^-$	0.031
$FAD + 2H^{+} + 2e^{-} \Longrightarrow FADH_{2}$ (in flavoproteins)	-0.040
Oxaloacetate $^- + 2H^+ + 2e^- \Longrightarrow malate^-$	-0.166
Pyru ate $^- + 2H^+ + 2e^- \Longrightarrow lactate^-$	-0.185
Acetaldehyde $+ 2H^+ + 2e^- \Longrightarrow$ ethanol	-0.197
$FAD + 2H^+ + 2e^- \Longrightarrow FADH_2$ (free coenzyme)	-0.219
Lipoic acid $+ 2H^+ + 2e^- \Longrightarrow$ dihydrolipoic acid	-0.29
$NAD^{+} + H^{+} + 2e^{-} \Longrightarrow NADH$	-0.315
$NADP^+ + H^+ + 2e^- \Longrightarrow NADPH$	-0.320
Cystine $+ 2H^+ + 2e^- \Longrightarrow 2$ cysteine	-0.340
Acetoacetate ⁻ + $2H^+$ + $2e^- \Longrightarrow \beta$ -hydroxybutyrate	-0.346
$H^+ + e^- \rightleftharpoons \frac{1}{2}H_2$	-0.421
Acetate ⁻ + $3H^+ + 2e^- \Longrightarrow$ acetaldehyde + H_2O	-0.581

Reduction potential depends on concentration: the Nernst Equation

Here \mathcal{E} is redox potential, not the internal energy.

$$\mathcal{E}' = \mathcal{E}'^0 + (RT/nF)\ln(ox/red) = \mathcal{E}'^0 - (RT/nF)\ln(red/ox)$$

Substituting for R, T, F, and converting to base 10 logs, gives: $\mathcal{E}' = \mathcal{E}'^0 + (0.06/n)\log(ox/red)$.

For example, a system where FAD=10 mM and FADH2 = 1 mM $\mathcal{E}' = -0.219 + (0.06/2)\log(0.01/0.001) = -0.219 + 0.03 = -0.189$.

The energetics of redox systems can be converted to more traditional free energy as: $\Delta \mathbf{G} = -\mathbf{n}\mathbf{F}\mathcal{E}$

Note a system is spontaneous when ΔG is negative or \mathcal{E} is positive.

A worked example

In the first stage of the ETS, electrons from NADH are passed through complex 1 to CoQ. NADH is oxidized and CoQ reduced.

The overall reaction, and subsequent voltage drop is:

Note: written as oxidation.

NADH + H⁺ → NAD⁺ + 2e⁻ +2H⁺
$$\mathcal{E}^{0'}$$
 = 0.315 V
CoQ + 2e⁻ + 2H⁺ → CoQH₂ $\mathcal{E}^{0'}$ = 0.045 V

NADH + H⁺ + CoQ \rightarrow NAD⁺ + CoQH₂ $\mathcal{E}^{0'}$ = 0.36 V In terms of more conventional free energy measures:

$$\Delta G^{0'} = -nF \mathcal{E}^{0'} = -2 \times 96 \text{ KJ/molV} \times 0.36 \text{ V} = -69.5 \text{ KJ/mol}$$

Or:
$$\Delta G^{0'} = -nF \mathcal{E}^{0'} = -2 \times 23 \text{ Kcal/molV} \times 0.36 \text{ V} = -16.6 \text{ Kcal/mol}$$

Thermo Home Work (Sorry)

- Problems from Voet & Voet 3rd Ed
- I don't care if you work alone or communally or what, but I strongly suggest you practice these thermo problems.
- Chapter 3: 2, 5, 8, 10b, 11
- Chapter 16: 6, 11
- Turn in for credit, and be aware problems related to this WILL be on the next test.