
Electrical circuits as manifolds
Introduction

Once we have shown how to make a link between electrical networks and
parametrized surfaces, it becomes interesting to look at circuits like
manifolds. Kron’s technique becomes under this idea, the method to
construct some systems made of ”primitive manifolds”. The purpose of
this presentation is to introduce the approach, starting from simple and
usual components like resistances, inductances, etc.
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Electrical circuits as manifolds: resistances
A resistance a gives a simple law under first order hypothesis between a
current x and a potential difference y : y = ax . In order to draw the
figures described by this kind of law, we have to choose a waveform for
x . In major applications, waveforms can be set as a sum of Gaussian
pulses. Considering one, we can compute x(t) for t given by:

x(t) = e−( t−τ
σ )2

(1)

Knowing x(t) we can draw the three dimensions surface (t, x , y) for
various values of R. It gives the kind of image shown figure 1.

Figure 1



Electrical circuits as manifolds
Resistances

Taking a look to figure 2, we understand that, whatever x and t values, a
common axe belongs to all the graphic giving the increasing of y
depending on R.

Figure 2

If x(θ) = x0sin(θ), the surface drawn is a cylinder Cy where R is the
straight line L coefficient; line multiplied by the circle C0 made by (x , t):
Cy = L× C0.



Electrical circuits as manifolds
Resistances

If we draw the vectors associated with the time running and the common
axe R, we can find a normal vector to the surface n as shown figure 3.
The surface can be faced that all along, n points out in the same side of
the surface.

Figure 3

It must be noted that all the points that doesn’t belongs to the surface
give all the cases that are not solutions of the simple circuit attached
with the Ohm’s law, for the chosen x(t) waveform.



Electrical circuits as manifolds
Capacitor

Same exercize can be done with a capacitor. The surface obtained for
various values of 1/C can be faced and has a common axe of increasing
linked with 1/C . Figure 4 shows the computation.

Figure 4



Electrical circuits as manifolds
Inductance

For inductance, a problem appears. It stills possible to find a coefficient
followed for the amplitude: L. But the total surface cannot be faced. As
shown figure 5, the direction of the normal vector n changes when going
through the surface from the positive time derivative part to the negative
one. By the fact, one common direction cannot be find.

Figure 5



Electrical circuits as manifolds
Inductance

This appears clearly on figure 6 where the curve has been turned in order
to present its front side. Note that the variable derivative of the
inductance operator leads to 0: ∂xL∂tx = 0.

Figure 6



Electrical circuits as manifolds

In all the cases where a direction can be found, it is clear that this
direction says how change y when x changes. So, these directions can be
seen as directions of a space: the basic vector of a parametrized surface.
When we look to the resistance, it is written y = R.x . If we compute
∂xy = R. A basic vector component for the parameter x becomes R:

b = (R) (2)

It means that y = R.x becomes the coordinate x of a vector y on a line
of base R. For a capacitor, it’s a little more complicated:

∂x
1

C

∫ T

t

dtx(t) =
1

C

∫ T

t

dt∂xx(t) =
T

C
= bi (3)

So that:

y =
1

C

∫ T

t

dtx(t) =
bi
T

∫ T

t

dtx(t) = F0bi (4)

F0 being the first Fourier’s coefficient for the periodic signal x(t).



Electrical circuits as manifolds
Another way to see the direction is to cut the time axis in a (x , y , t)
representation. For a given time, the surface becomes a straight line that
we can project in the (x , y) plan. For two of these projections, and for a
given value of R, R appears clearly as the director coefficient of the
tangential function to the curve (figure 6 bis. This time R is one chosen
fixed value, not a direction).

Figure 6bis



Electrical circuits as manifolds

Figure 7 shows the global strategy to define understandable base and
metric.

Figure 7



Electrical circuits as manifolds: chords as fundamental
metric

Kron’s considered that inductances give the metric of the mesh space, by
analogy with the ds2 expression in relativity, and due to the fact that the
magnetic field can present similar expressions to general relativity in
electrical machines. But this hypothesis wasn’t directly confirmed by
equations. Starting from parametrized surface theory in differential
geometry, we can find a rigorous definition for a metric in Kron’s method.
Seeing that impedances can be seen as space direction, we consider the
equations obtained under the Kron’s method: eµ = zµν iν (using mute
index notation as Feynman) as a parametrized surface. Taking eµ = 0 we
obtain N equations zµν iν . Various equations can come from various
physics involved in the system studied. With a new space configuration,
we associate iν → xν . All equations can be seen as a vector of functions

ψk . This allows to generate basic vectors bi = ∂ψk

(
∂x i
)−1

. From the bi
can be defined a jacobian matrix Jki = [bi ].



Electrical circuits as manifolds: chords as fundamental
metric

The exercise now is to find the original equation established in the mesh
space eµ = zµν iν with J. If the system can be written (excluding the
inductance, as we have seen they generate 0 for basic vector coordinate):

eµ − Lµν ẋ
ν = Jµνx

ν ⇒ Γβµ (eµ − Lµν ẋ
ν) = ΓβµJµνx

ν (5)

with Γβν = (Jµν)T . If Lβν = ΓβµLµν and ΓβµJµν = Gβν . Setting
Γβµeµ = Tβ we obtain:

Tβ − Lβν ẋν = Gβνx
ν (6)

Which is a fundamental result, showing that inductances can be linked
with a rigorous and classical metric definition but not directly equal to it,
using the jacobian transposed matrix.



Simple RL example

If we consider two resistance - inductance circuits (R, L1) and (σ, L2),
cross talked by a mutual inductance M. It leads to the system in the
Kron’s mesh space: {

e1 = Ri1 + L1
di1
dt −M di2

dt

e2 = −M di1
dt + σi2 + L2

di2
dt

(7)

We look at this system as if it was a surface ψk made of k equations of
parameters uk giving point coordinates xk through the system:{

x1 = Ru1 + L1
du1

dt −M du2

dt

x2 = −M du1

dt + σu2 + L2
du2

dt

(8)

Making the analogy ik → uk and ek → xk . This parametrized surface
allows to define the basic vectors b with:

bα|k =
∂ψk

∂uα
(9)



Simple RL example
We find:

b1 =

(
R
0

)
b2 =

(
0
σ

)
(10)

and so:

[J] = [b1,b2] =

(
R 0
0 σ

)
With [M] =

(
L1 −M
−M L2

)
, we obtain:

Tβ = [J]T
(

x1
x2

)
=

(
Rx1
σx2

)
[L] = [J]T [M] =

(
RL1 −RM
−σM σL2

)

[G ] = [J]T [J] =

(
R2 0
0 σ2

)
You can verify that:

Tβ = Gβνu
ν + Lβνuν ⇔ eµ = zµν iν (11)



Simple RL example

One could say: what’s the advantage of this new formulation?
Firstly it gives us a theoretical access to the manifold properties. Here,
the space is flat. It means that in the two axes reference R, σ, the current
amplitudes are the coordinates of points that belong to the manifold. If
D1 and D2 are the domains giving all the values possible for u1 and u2,
the geometrical form obtain from (11) computing xk for all possible
values of uk is the space where all functional states of the system are. If
an external excitation x ′k is applied and do not belongs to this space, it
will make the system in an abnormal state of unknown behaviour.

One way to verify this risk, we can compare the distance
√

Gβνuβuν

with
√
T ′βu

β − Lβν ∂u
ν

∂t u
β where T ′β is a new constraint hypothesis. If

this second distance is greater than the first one (in average,
instantaneously, et., depending on the criterion chosen), the risk is
detected for the system.



Simple RL example

We apply the previous technique to the RL circuit. In a first phase we
compute the currents for a ”normal” circuit activity. These gives the

waited
√
Gβνuβuν limit. Then we compute

√
T ′βu

β − Lβν ∂u
ν

∂t u
β for a

new external excitation of different time waveform. We obtain the
difference between the two curves shown figure 9 (in blue the original
curve).

Figure 9

Computing qt−1max

∫
t
dt
√
Gβνuβuν and qt−1max

∫
t
dt
√
T ′βu

β − Lβν ∂u
ν

∂t u
β

we obtain respectively here 35,4[J] and 22,6[J]. No risk here!



RLC example

Is the average energy the best criterion? Let’s take another example with
two RLC circuits cross talked through a mutual inductance. The
fundamental tensor in the mesh space is given by (s is the Laplace’s
operator):

z =

(
R + 1

sC + L1s −Ms
−Ms σ + 1

sD + L2s

)
(12)

This leads to next objects:

J =

(
R + 1

sC 0
0 σ + 1

sD

)
M =

(
L1 −M
−M L2

)
G = J2 (13)

so that:

T =

( (
R + 1

sC

)
y1(

σ + 1
sD

)
y2

)
L =

( (
R + 1

sC

)
L1 −M

(
R + 1

sC

)
−M

(
σ + 1

sD

) (
σ + 1

sD

)
L2

)
(14)



RLC example

As previously we obtain the same equations as in (11) and this time the
distance is given by:

ds =

√
R2(u1)2 + σ2(u2)2 +

(q1)2

C 2
+

(q2)2

D2

(sqk = uk) which includes not only the joule effects but also the electric
energy stored in capacitors and that can create spar gaps.
We can take a look to some extrema:∫

t

dt
√
Gβνuβuν (15)

which is an image of the cumulated energy normalized on q. So, it’s
similar to the classical ds2.



RLC example

But another criterion that can be interesting is the action written using
past dissipated and stored energy and new one coming from a new
constraint. This is given by:

δSm =
∂

∂um

∫
t

dt

{√
T ′mu

m − Lkmu̇kum −
√
Gkmukum

}
(16)

This equation gives the variations of constraint on each current, i.e. on
each mesh.

What can be noticed is that under this relation, the sources T cannot be
inferior to Lkmu̇

kum. But in fact, without sources, there isn’t any
currents...



Previous expression leads in the first case to:

δSm =
∫
t
dt

[
1

2
√
...

T,L

{(
Rx1

0

)
−
(

RL1u̇
1 − RMu̇2

−σMu̇1 + σL2u̇
2

)}

− 1
2
√
...

G

{(
R2u1

σ2u2

)}] (17)

with
√
. . .

T ,L =
√
T ′mu

m − Lkmu̇kum and
√
. . .

G
=
√
Gkmukum.



RLC example
Figure 10 shows the curve obtained for the first case, to compare with
figure 9. It clearly shows where the new constraint is higher than the
original one supported and give the deviation in ohm. It means that at
the beginning for example, all appears as if the R axis of the base was
multiplied in dimension by 3700 !

Figure 10



Conclusion

This last result is very incentive. It gives a clear criterion to compute the
real time risk applied on a system in front of a new environment.
Depending on the expression if the metric G and inertia L, it gives a
theory to detect where are the weakness of the system. More particularly,
often only some ports are directly concerned by the environment.
Studying them will give all the information to detect the risk without
looking at all the currents of the system.

Another important point is that expression (16) will make appear the
curvature of space through the derivatives of G and L versus uk . This
means that changing the environment can change this curvature and
increase the distance to the reference.


