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Chapter 6

Basic mechanics

Basic principles of statics
Statics is the branch of mechanics that deals with the 
equilibrium of stationary bodies under the action of 
forces. The other main branch – dynamics – deals with 
moving bodies, such as parts of machines.

Static equilibrium
A planar structural system is in a state of static 
equilibrium when the resultant of all forces and all 
moments is equal to zero, i.e.

y

x

∑Fx = 0

∑Fy = 0

∑Ma = 0

or

∑Fx = 0

∑Ma = 0

∑Mb = 0

or

∑Fy = 0

∑Ma = 0

∑Mb = 0

or

∑Ma = 0

∑Mb = 0

∑Mc = 0

where F refers to forces and M refers to moments of 
forces. 

Static determinacy
If a body is in equilibrium under the action of coplanar 
forces, the statics equations above must apply. In general, 
three independent unknowns can be determined from 
the three equations. Note that if applied and reaction 
forces are parallel (i.e. in one direction only), then only 
two separate equations can be obtained and thus only 
two unknowns can be determined. Such systems of 
forces are said to be statically determinate.

Force
A force is defined as any cause that tends to alter the 
state of rest of a body or its state of uniform motion 
in a straight line. A force can be defined quantitatively 
as the product of the mass of the body that the force is 
acting on and the acceleration of the force.

P = ma 

where 
P = applied force 
m = mass of the body (kg) 
a = acceleration caused by the force (m/s2)

The Système Internationale (SI) units for force are 
therefore kg m/s2, which is designated a Newton (N). 
The following multiples are often used:

1 kN = 1 000 N, 1 MN = 1 000 000 N

All objects on earth tend to accelerate toward the 
centre of the earth due to gravitational attraction; hence 
the force of gravitation acting on a body with the mass 
(m) is the product of the mass and the acceleration due 
to gravity (g), which has a magnitude of 9.81 m/s2:

F = mg = vρg 

where:
F = force (N) 
m = mass (kg) 
g = acceleration due to gravity (9.81m/s2) 
v = volume (m³) 
ρ = density (kg/m³)

Vector
Most forces have magnitude and direction and can be 
shown as a vector. The point of application must also be 
specified. A vector is illustrated by a line, the length of 
which is proportional to the magnitude on a given scale, 
and an arrow that shows the direction of the force.

Vector addition
The sum of two or more vectors is called the resultant. 
The resultant of two concurrent vectors is obtained by 
constructing a vector diagram of the two vectors.

The vectors to be added are arranged in tip-to-tail 
fashion. Where three or more vectors are to be added, 
they can be arranged in the same manner, and this is 
called a polygon. A line drawn to close the triangle 
or polygon (from start to finishing point) forms the 
resultant vector.

The subtraction of a vector is defined as the addition 
of the corresponding negative vector.
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Resolution of a force
In analysis and calculation, it is often convenient to 
consider the effects of a force in directions other than 
that of the force itself, especially along the Cartesian 
(xx-yy) axes. The force effects along these axes are 
called vector components and are obtained by reversing 
the vector addition method.

Fy is the component of F in the y direction Fy = F sinθ
Fx is the component of F in the x direction Fx = F cosθ
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Concurrent coplanar forces
Forces whose lines of action meet at one point are 
said to be concurrent. Coplanar forces lie in the same 
plane, whereas non-coplanar forces have to be related 
to a three-dimensional space and require two items 
of directional data together with the magnitude. Two 
coplanar non-parallel forces will always be concurrent.

Equilibrium of a particle
When the resultant of all forces acting on a particle is 
zero, the particle is in equilibrium, i.e. it is not disturbed 
from its existing state of rest (or uniform movement).

The closed triangle or polygon is a graphical 
expression of the equilibrium of a particle.

The equilibrium of a particle to which a single force 
is applied may be maintained by the application of a 
second force that is equal in magnitude and direction, but 
opposite in sense, to the first force. This second force, 
which restores equilibrium, is called the equilibrant. 
When a particle is acted upon by two or more forces, the 
equilibrant has to be equal and opposite to the resultant 
of the system. Thus the equilibrant is the vector drawn 
closing the vector diagram and connecting the finishing 
point to the starting point.
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Free-body diagram of a particle
A sketch showing the physical conditions of a problem 
is known as a space diagram. When solving a problem it 
is essential to consider all forces acting on the body and 
to exclude any force that is not directly applied to the 
body. The first step in the solution of a problem should 
therefore be to draw a free-body diagram.

A free-body diagram of a body is a diagrammatic 
representation or a sketch of a body in which the body 
is shown completely separated from all surrounding 
bodies, including supports, by an imaginary cut, and 
the action of each body removed on the body being 
considered is shown as a force on the body when 
drawing the diagram.

To draw a free-body diagram:
1.	 Choose the free body to be used, isolate it from 

any other body and sketch its outline. 
2.	 Locate all external forces on the free body and 

clearly mark their magnitude and direction. This 
should include the weight of the free body, which 
is applied at the centre of gravity. 

3.	 Locate and mark unknown external forces and 
reactions in the free-body diagram. 

4.	 Include all dimensions that indicate the location 
and direction of forces. 

The free-body diagram of a rigid body can be 
reduced to that of a particle. The free-body of a particle 
is used to represent a point and all forces working on it. 

Example 6.1  
Determine the tension in each of the ropes AB and AC

B

A

Space diagram

C

ABT

ACT

ABT

ACT

A

980 N

Free body diagram
for point A

980 N

Example 6.2 
A rigid rod is hinged to a vertical support and held 
at 50° to the horizontal by means of a cable when a 
weight of 250 N is suspended as shown in the figure. 
Determine the tension in the cable and the compression 
in the rod, ignoring the weight of the rod.

The forces may also be calculated using the law of sines:

Point of concurrency
Three coplanar forces that are in equilibrium must all 
pass through the same point. This does not necessarily 
apply for more than three forces.

ABT

ACT

ABT

ACT

A

980 N

Free body diagram
for point A

980 N

50°

Space diagram

250 N

75° A

40°

65°

Free-body diagram for point A

40°

65°

Tension 180 N

Compression
265 N

250 N

75°

Force triangle

 
 sin 65°

250 N
 =  

 sin 40°
Tension in cable

 = 
 sin 75°

Compression in rod
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If two forces (which are not parallel) do not meet at 
their points of contact with a body, such as a structural 
member, their lines of action can be extended until they 
meet.

Collinear forces
Collinear forces are parallel and concurrent. The sum of 
the forces must be zero for the system to be in equilibrium.

Coplanar, non-concurrent, parallel forces 
Three or more parallel forces are required. They will be 
in equilibrium if the sum of the forces equals zero and 
the sum of the moments around a point in the plane 
equals zero. Equilibrium is also indicated by two sums 
of moments equal to zero.

Reactions
Structural components are usually held in equilibrium 
by being secured to rigid fixing points; these are often 
other parts of the same structure. The fixing points or 

supports will react against the tendency of the applied 
forces (loads) to cause the member to move. The forces 
generated in the supports are called reactions.

In general, a structural member has to be held or 
supported at a minimum of two points (an exception to 
this is the cantilever). Anyone who has tried ‘balancing’ 
a long pole or a similar object will realize that, although 
only one support is theoretically necessary, two are 
needed to give satisfactory stability.

Resultant of gravitational forces
The whole weight of a body can be assumed to act at 
the centre of gravity of the body for the purpose of 
determining supporting reactions of a system of forces 
that are in equilibrium. Note that, for other purposes, the 
gravitational forces cannot always be treated in this way.

Example 6.3
A ladder rests against a smooth wall and a person 
weighing 900 N stands on it at the middle. The weight 

Table 6.1 
Actions and reactions

θ θ

N

N

F

Rx

Ry

y y y

H

M V

Smooth surfaces

Rough surfaces

Roller support

Pin support

Built-in support

Flexible cable or rope

Reaction is normal to the surface, i.e., at right angles to
the tangent.

Rough surface is capable of supporting a tangental
force as well as a normal reaction. Resultant reaction
is vectorial sum of these two.

Reaction is normal to the supporting surface only.

A freely hinged support is fixed in position, hence the
two reaction forces, but is not restrained in direction - it
is free to rotate.

The support is capable of providing a longitudinal
reaction (H), a lateral or transverse reaction (V), and a
moment (M). The body is fixed in position and fixed in
direction.

Force exerted by the cable or rope is always tension
away from the fixing, in the direction of the tangent to
the cable curve.
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of the ladder is 100 N. Determine the support reactions 
at the wall (RW) and at the ground (RG).

As the wall is smooth, the reaction RW must be at 
right angles to the surface of the wall and is therefore 
horizontal. A vertical component would have indicated 
a friction force between the ladder and the wall. At the 
bottom, the ladder is resting on the ground, which is 
not smooth, and therefore the reaction RG must have 
both a vertical and a horizontal component.

As the two weight forces in this example have the 
same line of action, they can be combined into a single 
force, reducing the problem from one with four forces 
to one with only three forces. The point of concurrency 

W = (900 + 100) N

Space diagram

3 m

6 
m

Rw A

1 000 N
RGx

RGy

Free-body diagram of ladder

A

Rw = 250 N

RG = 1 030.8
1 000 N

Force diagram

(A) can then be found, giving the direction of the 
ground reaction force. This in turn enables the force 
vector diagram to be drawn, and hence the wall and 
ground reactions determined.

Example 6.4
A pin-jointed framework (truss) carries two loads, 
as shown. The end A is pinned to a rigid support, 
while the end B has a roller support. Determine the 
supporting reactions graphically:

1.	 Combine the two applied forces into one and 
find the line of action.

2.	 Owing to the roller support reaction RB will be 
vertical. Therefore the resultant line (RL) must 
be extended to intersect the vertical reaction of 
support B. This point is the point of concurrency 
for the resultant load, the reaction at B and the 
reaction at A. 

3.	 From this point of concurrency, draw a line 
through the support pin at A. This gives the line 
of action of the reaction at A. 

4.	 Use these three force directions and the magnitude 
of RL to draw the force diagram, from which RA 
and RB can be found.

Answer:	RA = 12.2 kN at 21° to horizontal.
	 RB = 12.7 kN vertical.

12 kN

15 kN
BA

RL

RL 15

12

RB

C

RL

RL

RB

RB

RA

RA

C
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The link polygon (see an engineering handbook) 
may also be used to determine the reactions to a beam 
or a truss, though it is usually quicker and easier to 
obtain the reactions by calculation, the method shown in 
Example 6.4, or a combination of calculation and drawing.

However, the following conditions must be satisfied.
1.	 All forces (apart from the two reactions) must be 

known completely, i.e. magnitude, line of action 
and direction. 

2.	 The line of action of one of the reactions must 
be known. 

3.	 At least one point on the line of action for the 
other reaction must be known (2 and 3 reduce the 
number of unknowns related to the equations of 
equilibrium to an acceptable level).

Moments of forces
The effect of a force on a rigid body depends on its point 
of application, as well as its magnitude and direction. It 
is common knowledge that a small force can have a 
large turning effect or leverage. In mechanics, the term 
‘moment’ is used instead of ‘turning effect’.

The moment of force with a magnitude (F) about 
a turning point (O) is defined as: M = F × d, where 
d is the perpendicular distance from O to the line of 
action of force F. The distance d is often called lever 
arm. A moment has dimensions of force times length 
(Nm). The direction of a moment about a point or 
axis is defined by the direction of the rotation that the 
force tends to give to the body. A clockwise moment 
is usually considered as having a positive sign and an 
anticlockwise moment a negative sign.

The determination of the moment of a force in a 
coplanar system will be simplified if the force and its 
point of application are resolved into its horizontal and 
vertical components.

Example 6.5 
As the ladder in Example 6.3 is at rest, the conditions 
of equilibrium for a rigid body can be used to calculate 
the reactions. By taking moments around the point 
where the ladder rests on the ground, the moment of 
the reaction RG can be ignored as it has no lever arm 
(moment is zero). According to the third condition 
for equilibrium, the sum of moments must equal zero, 
therefore:

(6 × RW) - (900 N × 1.5 m) - (100 N × 1.5 m) = 0
RW = 250 N

The vertical component of RG must, according to the 
second condition, be equal but opposite to the sum of 
the weight of the ladder and the weight of the person 
on the ladder, because these two forces are the only 
vertical forces and the sum of the vertical forces must 
equal zero, i.e. 

RGy = 1 000 N

Using the first condition of equilibrium it can be seen 
that the horizontal component of RG must be equal but 
opposite in direction to RW, i.e.

RGX = 250 N

Because RG is the third side of a force triangle, where 
the other two sides are the horizontal and vertical 
components, the magnitude of RG can be calculated as:

(1 0002 + 2502)½  = 1 030.8 N

Resultant of parallel forces
If two or more parallel forces are applied to a 
horizontal beam, then theoretically the beam can be 
held in equilibrium by the application of a single force 
(reaction) that is equal and opposite to the resultant R. 
The equilibrant of the downward forces must be equal 
and opposite to their resultant. This provides a method 
for calculating the resultant of a system of parallel 
forces. However, two reactions are required to ensure 
the necessary stability, and a more likely arrangement 
will have two or more supports.

The reactions RA and RB must both be vertical because 
there is no horizontal force component. Furthermore, 
the sum of the reaction forces RA and RB must be equal 
to the sum of the downward-acting forces.

Beam reactions

The magnitude of the reactions may be found by the 
application of the third condition for equilibrium, i.e. 
the algebraic sum of the moments of the forces about 
any point must be zero.

Take the moments around point A, then:

(80 × 2) + (70 × 4) + (100 × 7) + (30 × 10) - (RB × 12) = 0; 

Giving RB = 120 kN

RA is now easily found with the application of the 
second condition for equilibrium.

RA - 80 - 70 - 100 - 30 + RB=0; with RB = 120 kN gives: 

RA=160 kN.

80 kN 70 kN 100 kN 30 kN

RA RB

2 m 3 m 3 m 2 m 2 m 
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Couples
Two equal, parallel and opposite but non-collinear 
forces are said to be a couple.

A couple acting on a body produces rotation. Note 
that the couple cannot be balanced by a single force. 
To produce equilibrium, another couple of equal and 
opposite moment is required.

Loading systems
Before any of the various load effects (tension, 
compression, bending, etc.) can be considered, the 
applied loads must be rationalized into a number of 
ordered systems. Irregular loading is difficult to deal 
with exactly, but even the most irregular loads may 
be reduced and approximated to a number of regular 
systems. These can then be dealt with in mathematical 
terms using the principle of superposition to estimate 
the overall combined effect.

Concentrated loads are those that can be assumed to 
act at a single point, e.g. a weight hanging from a ceiling, 
or a person pushing against a box.

Concentrated loads are represented by a single arrow 
drawn in the direction, and through the point of action, of 
the force. The magnitude of the force is always indicated.

Uniformly distributed loads, written as UDL, are 
those that can be assumed to act uniformly over an area 
or along the length of a structural member, e.g. roof 
loads, wind loads, or the effect of the weight of water 
on a horizontal surface. For the purpose of calculation, 
a UDL is normally considered in a plane. 

In calculating reactions, uniformly distributed loads can 
in most, but not all, cases be represented by a concentrated 
load equal to the total distributed load passing through the 
centre of gravity of the distributed load.

150 mm

F=20N

F=20N150 mm

This technique must not be used for calculation of 
shear force, bending moment or deflection.

Example 6.6
Consider a suspended floor where the loads are supported 
by a set of irregularly placed beams. Let the load arising 
from the weight of the floor itself and the weight of any 
material placed on top of it (e.g. stored grain) be 10 kPa. 
Determine the UDL acting on beam A and beam C.

It can be seen from the figure below that beam A carries 
the floor loads contributed by half the area between the 
beams A and B, i.e. the shaded area L. Beam C carries 
the loads contributed by the shaded area M.

Therefore beam A carries a total load of:

1 m × 4 m × 10 kPa = 40 kN, or 40 kN / 4 = 10 kN / m.

In the same way, the loading of beam C can be 
calculated to 25 kN / m. The loading per metre run can 
then be used to calculate the required size of the beams.

4·
0 

m
 

2·0 m 

FLOOR PLAN

FLOOR SECTION

BEAM

A B C D

3·0 m 2·0 m 

4·
0 

m
 

2·0 m 3·0 m 2·0 m 

1·0 m 1·0 m 

2·5 m 

L M
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Distributed load with linear variation is another 
common load situation. The loading shape is triangular 
and is the result of such actions as the pressure of water 
on retaining walls and dams.

Shear force and bending moment of beams
A beam is a structural member subject to lateral loading 
in which the developed resistance to deformation is of a 
flexural character. The primary load effect that a beam 
is designed to resist is that of bending moments but, in 
addition, the effects of transverse or vertical shearing 
forces must be considered.

Shear force (V) is the algebraic sum of all the 
transverse forces acting to the left or to the right of the 
chosen section.

Bending moment (M) at any transverse cross-section 
of a straight beam is the algebraic sum of the moments, 

10kN/m

4·0 m

25 kN/m

Loading of beam C

Loading of beam A

4·0 m

Distributed loads with linear variation

taken about an axis passing through the centroid of the 
cross-section, of all the forces applied to the beam on 
either side of the chosen cross-section.

Consider the cantilever AB shown in (A). For 
equilibrium, the reaction force at A must be vertical and 
equal to the load W.

The cantilever must therefore transmit the effect of 
load W to the support at A by developing resistance 
(on vertical cross-section planes between the load and 
the support) to the load effect called shearing force. 
Failure to transmit the shearing force at any given 
section, e.g. section x-x, will cause the beam to fracture 
as in (B). 

The bending effect of the load will cause the beam 
to deform as in (C). To prevent rotation of the beam at 
the support A, there must be a reaction moment at A, 
shown as MA, which is equal to the product of load W 
and the distance from W to point A.

The shearing force and the bending moment 
transmitted across the section x-x may be considered as 
the force and moment respectively that are necessary to 
maintain equilibrium if a cut is made severing the beam 
at x-x. The free-body diagrams of the two portions of 
the beam are shown in (D).

Then the shearing force between A and C = Qx = 
W and the bending moment between A and C = Mx = 
W × AC.

Note: Both the shearing force and the bending 
moment will be zero between C and B.

(A) W

X

X

R=W

C

BA

(B)

W

A

X

X

R

C

B
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Definitions
Shear force (Q) is the algebraic sum of all the transverse 
forces acting to the left or to the right of the chosen 
section.

Bending moment (M) at any transverse cross section 
of a straight beam is the algebraic sum of the moments, 
taken about an axis passing through the centroid of the 
cross section, of all the forces applied to the beam on 
either side of the chosen cross section.

Table 6.2 shows the sign convention for shear 
force (Q) and bending moment (M) used in this book. 
Shearing forces, which tend to make the part of the 
beam to the left move up and the right part move 
down, are considered positive. The bending moment is 
considered positive if the resultant moment is clockwise 
on the left and anticlockwise on the right. These tend to 
make the beam concave upwards and are called sagging 
bending moments. If the moment is anticlockwise on 
the left and clockwise on the right, the beam will tend 
to become convex upwards – an effect called hogging.

Table 6.2
Shearing and bending forces

Load 
effect Symbol

Sign convention

UnitsPositive (+) Negative (–)

Shearing 
force Q

Up on the left Down on the left

N 
kN

Bending 
moment M Sagging

(top fibre in compression)
Hogging

(top fibre in tension)

Nm 
kNm 
Nmm

Shear-force variation
Concentrated loads will change the value of the shear 
force only at points where they occur, i.e. the shear 

(C)

MA

MA

QX

QX
MX

MX

W

X

X

C

B
A

(D)

W

X

R

force remains constant in between. When the load is 
uniformly distributed, however, the shear force will 
vary at a uniform rate. Thus it will be seen that uniform 
loads cause gradual and uniform change of shear, while 
concentrated loads bring a sudden change in the value 
of the shear force.

Bending moment variation 
Concentrated loads will cause a uniform change of the 
bending moment between the points of action of the 
loads. In the case of uniformly distributed loads, the 
rate of change of the bending moment will be parabolic. 
Maximum bending moment values will occur where the 
shear force is zero or where it changes sign.

Shear-force (SF) and bending-moment (BM) 
diagrams 
Representative diagrams of the distribution of shearing 
forces and bending moments are often required at 
several stages in the design process. These diagrams 
are obtained by plotting graphs with the beams as the 
base and the values of the particular effect as ordinates. 
It is usual to construct these diagrams in sets of three, 
representing the distribution of loads, shearing forces 
and bending moments respectively. These graphical 
representations provide useful information regarding: 

1.	 The most likely section where a beam may fail in 
shear or in bending.

2.	 Where reinforcement may be required in certain 
types of beam, e.g. concrete beams.

3.	 The shear-force diagram will provide useful 
information about the bending moment at any 
point.

4.	 The bending-moment diagram gives useful 
information on the deflected shape of the beam. 

Some rules for drawing shear-force and bending-
moment diagrams are:

1.	 In the absence of distributed loads, the shear-
force diagram consists of horizontal steps and the 
bending-moment diagram is a series of straight 
lines.

2.	 For a beam (or part of a beam) carrying a UDL 
only, the shear-force diagram is a sloping straight 
line and the bending diagram is a parabola.

3.	 At the point where the shear-force diagram 
passes through zero (i.e. where the SF changes 
sign), the BM has a maximum or minimum value.

4.	 Over a part of the span for which SF is zero, the 
bending moment has a constant value.

5.	 At a point where the bending-moment diagram 
passes through zero, the curvature changes from 
concave upwards to concave downwards or vice 
versa. This point is referred to as point of inflexion.

6.	 If a beam is subjected to two or more different 
systems of loading, the resulting shear and 
bending moment at a given section is the algebraic 
sum of the values at the section. This is referred to 
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as the principle of superposition and applies also 
to bending stresses, reactions and deflections.

The following example demonstrates the construction 
of diagrams representing shearing forces and bending 
moments.

Example 6.7
The distribution of loads in a simply supported beam is 
as given in the diagram below. Determine the reactions 
at the supports and draw the shear-force and bending-
moment diagram.

Solution:

(a)	Draw the free-body diagram of the beam.

(b)	Determine the reactions at the supports. First use 
the condition for equilibrium of moments about 
a point:

∑ ME = 0
ME = (P × a) + (w1 × b × b / 2 ) + w2 × c(b+c / 2) 

- RG (b + c) = 0
ME = -(10 × 10) + (2 × 10 × 5) + 4 × 10 × (15)

- RG (20) = 0 
RG = 30 kN
∑Fy = 0 hence
∑Fy = RE + RG - P-(w1 × b) - ( w2 × c) = 0
∑ Fy = RE + 30 -10 - (2 × 10) - (4 × 10) = 0
RE = 40 kN

(c)	Draw the shear-force diagram (SFD) directly 
below the loading diagram and choose a 
convenient scale to represent the shear force.

Calculate the values of the shear force to the left and 
to the right of all critical points. Critical points are:

•	 at concentrated loads; 
•	 at reactions; 
•	 at points where the magnitude of a distributed 

load changes.  

W1 = 2 kN/m
P = 10 kN

D F
E G

W2 = 4 kN/m

b = 10 ma = 10 m c = 10 m

2 kN/m
P = 10 kN

D F

ER R= 40 kN = 30 kN

E G

G

4 kN/m

b = 10 ma = 10 m c = 10 m

1.	 Consider a section through the beam just to 
the left of D, and find the algebraic sum of all 
vertical forces to the left of this section. ∑Fy = 0, 
therefore, shear force to the left of D is zero.

2.	 Consider a section just to the right of D, algebraic 
sum of forces to the left of this section is 10 kN 
down to the left. Hence, shear force to the right 
of D is 10 kN (negative).

3.	 The same result as in point 2 above will be found 
for any such section between D and E. The 
shear-force diagram between D and E is thus a 
horizontal line at -10 kN. 

4.	 Consider a section just to the right of E; the 
algebraic sum of forces to the left of this section 
is made up of P and RE given that the shear force 
equals (-10 + 40)  kN = + 30  kN, i.e. up to the 
left of section. Thus at E the shear-force diagram 
changes from -10 kN to + 30 kN. 

5.	 As we approach the right-hand end of the beam 
we find the mathematics easier to consider on 
the right-hand side of any section. Section just 
to the left of F. Shear force = (4 kN / m × 10 m) 
- (30 kN) using the sign convention to determine 
positive or negative. Shear force here equals + 
40 - 30 = + 10 kN. 

6.	 Section just to the right of F. Shear force = + 40 - 
30 = + 10 kN (i.e. no sudden change at F). 

7.	 Section just to the left of G. Shear force = -30 kN 
8.	 Variation of shear under a distributed load must 

be linear. 

Note the following from the shear-force diagram:
•	 Maximum shear force occurs at E and G where 

the values are + 30 kN and - 30 kN respectively. 
These two transverse sections are the two most 
likely points for failure in shear. 

•	 The maximum bending moment will occur where 
the shear force is zero or where the shear force 
changes sign. However, note that cantilevered 
beams will always have maximum bending at the 
fixed end. 

2 kN/m
P = 10 kN

D F

ER = 40 kN

-30 kN

E G

= 30 kNRG

4 kN/m

b = 10 ma = 10 m c = 10 m

0 10
-10 kN

20

H

30
m

30

20

10

0

-10

-20

-30

kN + 30 kN

+ 10 kN
S.F.D.
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The shear-force diagram in the example has two 
points where the shear force is zero. One is at E and 
the other is between H and G. The position of H can 
be calculated from the fact that at F the shear force 
is 10  kN and, under the action of UDL to the right 
of F, it reduces at the rate of 4 kN / m. It will read a 
value of zero after 2.5 m, i.e. the point H is 2.5 m to 
the right of F.

(d)	Draw the bending-moment diagram directly 
under the shear-force diagram and choose 
a convenient scale to represent the bending 
moment. Calculate values of the bending moment 
at all critical points. Critical points for bending 
moment are:

•	 ends of the beam; 
•	 where the shear force is zero or changes sign; 
•	 other points that experience has shown to be 

critical.

Values of bending moment are calculated using the 
definition and sign convention, and considering each 
load (to one side of the point) separately. It is the effect 
that one load would have on the bent shape at the 
chosen point that determines the sign.

1.	 For the bending moment at D consider the left 
side of this point MD = 0

 
2.	 For the bending moment at E consider the left 

side of this point ME = P × a and the beam would 
assume a hogging shape:

ME = -(10 × 10) = -100 kNm 

3.	 For the bending moment at F consider the loads 
to the right of this point, a sagging beam results 
and:

MF = -(4 × 10 × 10 / 2) + (30 × 10) = 100 kNm 

4.	 The bending moment at G is obviously zero
 
5.	 At point H we have the maximum bending 

moment: considering the forces to the right of 
this point gives

MH = -(4 × 7 512 × 7 5) + (30 × 7 5) 
= 112.5 (sagging) 

6.	 The variation of the bending moment under a 
UDL is parabolic

 
7.	 If the inclusion of other points would be helpful 

in drawing the curve, they should also be plotted.

Note the following from the bending-moment 
diagram:

•	 The maximum negative bending-moment hogging 
(100 kNm) occurs at E and the maximum positive 
bending moment sagging (112.5 kNm) occurs at a 
point between F and G. When designing beams in 
materials such as concrete, the steel reinforcement 
would have to be placed according to these 
moments. 

•	 The bending-moment diagram will also give 
an indication as to how the loaded beam will 
deflect. Positive bending moments (sagging) cause 
compression in the top fibres of the beam, hence 
they tend to bend the beam with the concave side 
downwards. 

•	 At the supported ends of a simple beam and at the 
free end of a cantilevered beam, where there can 
be no resistance to bending, the bending moment 
is always zero.

Forces in pin-jointed frames
Designing a framework necessitates finding the forces 
in the members. For the calculation of primary stresses, 
each member is considered to be pin-jointed at each 
end so that it can transmit an axial force only in the 
direction of the line connecting the pin joints at each 
end. The force can be a pure tension (conventionally 
designated positive), in which case the member is called 
a tie, or a pure compression (conventionally designated 
negative), when the member is called a strut.

These are internal forces that must be in equilibrium 
with the external applied forces.

- -

+

0 10 20
2∙5 m

30
m

30

20

10

0
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-30

kN + 30 kN

+ 10 kN
S.F.D.

2 kN/m
P = 10 kN

D F

ER = 40 kN

E G

= 30 kNRG

4 kN/m

b = 10 ma = 10 m c = 10 m

-

+

30
m

100

50

0

-50

-100 -100 kNm

+112.5 kNm

B.M.D.
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A number of different techniques can be used to 
determine the forces in the members.

Joint analysis: This is based on considering the 
equilibrium of each joint in turn and using the free-
body diagram for each joint.

Method of sections: The free-body diagram 
considered is for a portion of the framework to one side 
or the other of a cut section. The forces in the members 
cut by the section are included in the free-body 
diagram. Application of the equations of equilibrium 
will solve the unknown forces in the cut section. This 
provides an analytical solution and is most useful when 
requiring the answers for one or two members only.

Example 6.8

Find the forces and their direction in the members BH 
and HG by using the method of sections.

FHG is found by taking a moment about point C, 
considering the right hand section (RHS) of the cut 
1-1 is in equilibrium. The forces FHC and FBC have no 
moment about point CBL because they intersect at and 
pass through the point.

TIE

STRUT

INTERNAL FORCE

EXTERNAL FORCE

( all 30°, 60°, 90° triangle)

10 m

A E
H

B C D

G
30°

F

9 kN 9 kN12 kN

10 m 10 m 10 m

12 kN

C

1

1

D

G F
E

RE

9 kN

∑Mc = 0 (FHG × CG) + (9 × CD) - (RE × 20) = 0 

CG = FX = 10 tan 30° = 5.774

CD = DE = FE / cos 30°

FE = EX / cos 30° = 11.547 m

CD = 11 547 / cos 30° = 13.333 m

RE = (9 + 12 + 12 ) / 2 = 15 kN

Hence (FHG × 5.774) + (9 × 13.333) - (15 × 20) = 0
	 FHG = 31.17

Take section 2-2.

HC = FE = 11.547 (FBH × 11.547) + (9 × 13.333) 
- (15 × 20) = 0 FBH = 15.59 kN

It can therefore be seen that FGH and FBH must be 
clockwise to have equilibrium about point C. The 
members GH and HB are therefore in tension.

Mechanics of materials

Direct stress
When a force is transmitted through a body, the body 
tends to change its shape. Although these deformations 
are seldom visible to the naked eye, the many fibres 
or particles that make up the body transmit the force 
throughout the length and section of the body, and the 
fibres doing this work are said to be in a state of stress. 
Thus, a stress may be described as a mobilized internal 
reaction that resists any tendency towards deformation. 
As the effect of the force is distributed over the cross-
section area of the body, stress is defined as force 
transmitted or resisted per unit area.

Thus  
Area
Force
 Stress =

The SI unit for stress is Newtons per square metre 
(N / m²). This is also called a Pascal (Pa). However, it 
is often more convenient to use the multiple N / mm².

12 kN

C

2

2

D

GH F
E

RE

9 kN
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Note that 1 N / mm² = 1 MN / m² = 1 MPa

Tensile and compressive stress, which result from forces 
acting perpendicular to the plane of cross-section in 
question, are known as normal stress and are usually 
symbolized with σ (the Greek letter sigma), sometimes 
given a suffix t for tension (σt) or c for compression 
(σc). Shear stress is produced by forces acting parallel 
or tangential to the plane of cross-section and is 
symbolized with τ (Greek letter tau). 

Tensile stress

Example 6.9

Consider a steel bar that is thinner at the middle of its 
length than elsewhere, and that is subject to an axial 
pull of 45 kN.

If the bar were to fail in tension, it would be as a 
result of breaking where the amount of material is at a 
minimum. The total force tending to cause the bar to 
fracture is 45 kN at all cross-sections but, whereas the 
effect of the force is distributed over a cross-sectional 
area of 1 200 mm² for part of the length of the bar, it is 
distributed over only 300 mm² at the middle position. 
Thus, the tensile stress is greatest in the middle and is:

 

MPa 150  =
mm2 300

 kN 45
 =σt

  1 000 kPa or 1 MPa =  
m2 0.49
kN 490

 =  = Stress σc

Compressive stress

Example 6.10
A brick pier is 0.7 metres square and 3 metres high and 
weighs 19 kN / m³. It is supporting an axial load from 
a column of 490 kN. The load is spread uniformly over 
the top of the pier, so the arrow shown in the diagram 
merely represents the resultant of the load. Calculate 
(a)  the stress in the brickwork immediately under the 
column, and (b) the stress at the bottom of the pier.

12 mm

25
 m

m

24 mm

15
0 

m
m

45 kN

45 kN

Solution a
Cross-section area = 0.49 m²

MPa 150  =
mm2 300

 kN 45
 =σt

  1 000 kPa or 1 MPa =  
m2 0.49
kN 490

 =  = Stress σc

Solution b
Weight of pier = 0.7 m × 0.7 m × 3.0 m × 19 kN / m³  
	 = 28 kN

Total load = 490 + 28 = 518 kN and

1 057 kPa=
m2 0.49
kN 518

= = Stress σc

 MPa 76 =  
mm2 78.5

 kN 6
 =  = Shear stress τ

L
∆Lε ===

 original length
 Change in length

 Direct strain

Shear stress

Example 6.11
A rivet is used to connect two pieces of flat steel. If the 
loads are large enough, the rivet could fail in shear, i.e. 
not breaking but sliding of its fibres. Calculate the shear 
stress of the rivet when the steel bars are subject to an 
axial pull of 6 kN.

490 kN

3 
m

0∙7 m 0∙7 m

6 kN
6 kN

6 kN
6 kN

10 mm
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Note that although the rivets do, in fact, strengthen 
the connection by pressing the two steel bars together, 
this strength cannot be calculated easily owing to 
friction and is therefore neglected,  i.e. the rivet is 
assumed to give all the strength to the connection.

Cross-section area of rivet = 1/4 × π × 102 = 78.5 mm²

1 057 kPa=
m2 0.49
kN 518

= = Stress σc

 MPa 76 =  
mm2 78.5

 kN 6
 =  = Shear stress τ

L
∆Lε ===

 original length
 Change in length

 Direct strain

Strain
When loads of any type are applied to a body, the body 
will always undergo dimension changes; this is called 
deformation. Tensile and compressive stresses cause 
changes in length, torsional-shearing stresses cause 
twisting, and bearing stresses cause indentation in the 
bearing surface.

In farm structures, where a uniaxial state of stress 
is the usual stress considered, the major deformation is 
in the axial direction. Although there are always small 
deformations present in the other two dimensions, they 
are seldom significant.

1 057 kPa=
m2 0.49
kN 518

= = Stress σc

 MPa 76 =  
mm2 78.5

 kN 6
 =  = Shear stress τ

L
∆Lε ===

 original length
 Change in length

 Direct strain

By definition strain is a ratio of change and thus it is a 
dimensionless quantity.

Elasticity
All solid materials deform when they are stressed and, 
as the stress increases, the deformation also increases. 
In many cases, when the load causing the deformation 
is removed, the material returns to its original size and 
shape and is said to be elastic. If the stress is steadily 
increased, a point is reached when, after the removal of 
the load, not all of the induced strain is recovered. This 
limiting value of stress is called the elastic limit. 

Within the elastic range, strain is proportional to the 
stress causing it. This is called the modulus of elasticity. 
The greatest stress for which strain is still proportional 
is called the limit of proportionality (Hooke’s law).

Thus, if a graph is drawn of stress against strain as 
the load is gradually applied, the first portion of the 
graph will be a straight line. The slope of this straight 
line is the constant of proportionality, modulus of 

Original length L Elongation ∆L

Strained length

L + ∆L

elasticity (E), or Young’s modulus and should be 
considered as a measure of the stiffness of a material.

    =
Strain
Stress

  =Modulus of elasticity
A∆L
FL 

E =

The modulus of elasticity will have the same units as 
stress (Pa). This is because strain has no units.

A convenient way of demonstrating elastic behaviour 
is to plot a graph of the results of a simple tensile test 
carried out on a thin mild steel rod. The rod is hung 
vertically and a series of forces are applied at the lower 
end. Two gauge points are marked on the rod and the 
distance between them is measured after each force 
increment has been added. The test is continued until 
the rod breaks.

Figure 6.1  Behaviour of a mild steel rod under tension

Example 6.12
Two timber posts, measuring 150  millimetres square 
and 4  metres high, are subjected to an axial load of 
108  kN each. One post is made of pine timber (E = 
7 800 MPa) and the other is Australian blackwood (E 
= 15 300 MPa). How much will they shorten because 
of the load?

Cross-section area A = 22 500 mm²; length L = 4 000 mm

Pine: mm 2.5 = 
800 7 × 500 22
000 4 × 000 108

==
AE
FL

∆L

mm 1.3  
300 15 × 500 22
000 4 × 000 108

===
AE
FL

∆L

Australian blackwood: 

mm 2.5 = 
800 7 × 500 22
000 4 × 000 108

==
AE
FL

∆L

mm 1.3  
300 15 × 500 22
000 4 × 000 108

===
AE
FL

∆L

Factor of safety
The permissible stresses must, of course, be less than 
the stresses that would cause failure of the members of 
the structure – in other words there must be an ample 
safety margin. (In 2 000 BC, a building code declared 
the life of the builder to be forfeit should the house 
collapse and kill the owner).

Ultimate or maximum stress

Upper yield
point

Stress (σ)

Srain (ε)

Stress at
failure

Lower yield point

Elastic limit

Plastic
El

as
ti

c

Limit of proportionality
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Also, deformations must be limited because excessive 
deflection may give rise to problems such as cracking of 
ceilings, partitions and finishes, as well as adversely 
affecting the functional needs.

Structural design is not an exact science and, while 
calculated values of reactions, stresses, etc. may be 
mathematically correct for the theoretical structure (i.e. 
the model), they may be only approximate as far as the 
actual behaviour of the structure is concerned.

For these and other reasons, it is necessary to ensure 
that the design stress, working stress, allowable stress 
and permissible stress are less than the ultimate stress 
or the yield stress. This margin is called the factor of 
safety.

 

factor of safety 
Ultimate (or yield) stress

 = Design stress 

In the case of a material such as concrete, which does 
not have a well defined yield point, or brittle materials 
that behave in a linear manner up to failure, the factor 
of safety is related to the ultimate stress (maximum 
stress before breakage). Other materials, such as steel, 
have a yield point where a sudden increase in strain 
occurs, and at which point the stress is lower than 
the ultimate stress. In this case, the factor of safety is 
related to the yield stress in order to avoid unacceptable 
deformations.

The value of the factor of safety has to be chosen 
with a variety of conditions in mind, such as the:

•	 accuracy in the loading assumptions; 
•	 permanency of the loads; 
•	 probability of casualties or big economic losses in 

case of failure; 
•	 purpose of the building; 
•	 uniformity of the building material; 
•	 workmanship expected from the builder; 
•	 strength properties of the materials; 
•	 level of quality control ensuring that the materials 

are in accordance with their specifications; 
•	 type of stresses developed; 
•	 cost of building materials.  

Values of 3 to 5 are normally chosen when the factor of 
safety is related to ultimate stress, and values of 1.4 to 
2.4 are chosen when related to yield-point stress.

In the case of building materials such as steel 
and timber, different factors of safety are sometimes 
considered for common loading systems and for 
exceptional loading systems, in order to save materials. 
Common loadings are those that occur frequently, 
whereas a smaller safety margin may be considered 
for exceptional loadings, which occur less frequently 
and seldom at full intensity, e.g. wind pressure, 
earthquakes, etc.

Structural elements and loading 

Applied loads
Applied loads fall into three main categories: dead 
loads, wind loads and other imposed loads.

Dead loads are loads resulting from the self-
weight of all permanent construction, including roof, 
walls, floor, etc. The self-weight of some parts of a 
structure, e.g. roof cladding, can be calculated from the 
manufacturer’s data sheets, but the self-weight of the 
structural elements cannot be accurately determined 
until the design is completed. Hence estimates of 
self-weight of some members must be made before 
commencing a design analysis and the values checked 
upon completion of the design.

Wind loads are imposed loads, but are usually treated 
as a separate category owing to their transitory nature 
and their complexity. Very often wind loading proves 
to be the most critical load imposed on agricultural 
buildings. Wind loads are naturally dependent on wind 
speed, but also on location, size, shape, height and 
construction of a building.

Specific information concerning various load types 
is presented in Chapter 8.

When designing a structure, it is necessary to 
consider which combination of dead and imposed loads 
could give rise to the most critical loading condition. 
Not all the imposed loads will necessarily reach their 
maximum values at the same time. In some cases (for 
example, light open sheds), wind loads may tend to 
cause the roof structure to lift, producing an effect 
opposite in direction to that of the dead load.

Imposed loads are loads related to the use of the 
structure and to the environmental conditions,  e.g. 
weight of stored products, equipment, livestock, vehicles, 
furniture and people who use the building. Imposed 
loads include earthquake loads, wind loads and snow 
loads where applicable, and are sometimes referred to as 
superimposed loads because they are in addition to the 
dead loads.

Dynamic loading results from a change of loading, 
resulting directly from the movement of loads. For 
example, a grain bin may be affected by dynamic 
loading if filled suddenly from a suspended hopper; it 
is not sufficient to consider the load solely when the bin 
is either empty or full.

Principle of superposition
This principle states that the effect of a number of loads 
applied at the same time is the algebraic sum of the 
effects of the loads applied singly.

 

3 kN

4 kN

1 kN

+

2 kN 6 kN

4 kN4 kN

=

2 kN 6 kN

5 kN7 kN

4 kN
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Using standard load cases and applying the principle 
of superposition, complex loading patterns can be 
solved. Standard case values of shear force, bending 
moment or deflection at particular positions along a 
member can be evaluated, after which the total value 
of such parameters for the actual loading system can be 
found by algebraic summation.

Effects of loading
After the loads have been transformed into definable 
load systems, the designer must consider how the loads 
will be transmitted through the structure. Loads are not 
transmitted as such, but as load effects.

It is usual practice to orientate the Cartesian z-z axis 
along the length of the member and the x-x and y-y axes 
along the horizontal and vertical cross-sectional axes 
respectively, when considering a structural member that 
occupies a certain space (see the figure below).

Primary load effects
A primary load effect is defined as being the direct 
result of a force or a moment, which has a specific 
orientation with respect to the three axes. Any single 
load or combination of loads can give rise to one or 
more of these primary load effects. In most cases, a 
member will be designed basically to sustain one load 
effect, usually the one producing the greatest effect. 

In more complex situations, the forces and moments 
are resolved into their components along the axes, after 
which the load effects are first studied separately for 
one axis at a time, and subsequently their combined 
effects are considered when giving the member its size 
and shape.

The choice of material for a member may be 
influenced to some extent by the type of loading. For 
instance, concrete has little or no strength in tension 
and is therefore unsuitable for use alone as a tie.

Tension, compression, shear, bending and torsion 
are all primary load effects. Secondary load effects, 
such as deflection, are derived from the primary load 
effects.

Y

Y

Z

Z

X

X

Structural elements

Cable
Cables, cords, strings, ropes and wires are flexible 
because of their small lateral dimensions in relation to 
their length, and therefore have very limited resistance 
to bending. Cables are the most efficient structural 
elements because they allow every fibre of the cross-
section to resist the applied loads up to any allowable 
stress. However, their application is limited by the fact 
that they can be used only in tension.

Rod
Rods, bars and poles are used to resist tensile or 
compressive loads. In a rod or a bar under axial tension, 
the full cross section can be considered and the full 
allowable stress for the material can be used in design 
calculations.

Column
Rods or bars under compression are the basis for vertical 
structural elements such as columns, stanchions, piers 
and pillars. They are often used to transfer load effects 
from beams, slabs and roof trusses to the foundations. 
They may be loaded axially or they may have to be 
designed to resist bending when the load is eccentric.

Ties and struts
When bars are connected with pin joints and the 
resulting structure loaded at the joints, a structural 
framework called a pin-jointed truss or lattice frame 
is obtained. The members are subjected only to axial 
loads and members in tension are called ties, while 
members in compression are called struts.
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Beam
A beam is a member used to resist a load acting across 
its longitudinal axis by transferring the effect over a 
distance between supports – referred to as the span.

S

S
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S S

S
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Span

Built - in ends

Deflection shape
Simply supported

Cantilever

The load on a beam causes longitudinal tension 
and compression stresses, and shear stresses. Their 
magnitudes will vary along, and within, the beam.

The span that a beam can usefully cover is limited by 
the self-weight of the beam, i.e. it will eventually reach a 
length when it is capable of supporting only itself. To a 
degree, this problem is overcome with the hollow web 
beam and the lattice girder or frame. The safe span for 
long, lightly loaded beams can be increased somewhat 
by removing material from the web, even though the 
shear capacity will be reduced.

Arch
The arch can be shaped such that, for a particular loading, 
all sections of the arch are under simple compression with 
no bending. Arches exert vertical and horizontal thrusts 
on their supports, which can prove troublesome in the 
design of supporting walls. This problem of horizontal 
thrust can be eliminated by connecting a tension member 
between the support points.

Frames
Plane frames are also made up of beams and columns, 
the only difference being that they are rigidly connected 
at the joints. Internal forces at any cross-section of the 
plane frame member are: bending moment, shear force 
and axial force.

Web

Flanges
Hallow web beam

Simple arch

BOW STRING ARCH

TIE
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Properties of structural sections
When designing beams in bending, columns in 
buckling, etc., it is necessary to refer to a number of 
basic geometrical properties of the cross-sections of 
structural members.

Area
Cross-section areas (A) are generally calculated in 
square millimetres, because the dimensions of most 
structural members are given in millimetres, and values 
for design stresses found in tables are usually given in 
Newtons per millimetre square (N / mm²).

Centre of gravity or centroid
This is a point about which the area of the section is 
evenly distributed. Note that the centroid is sometimes 
outside the actual cross-section of the structural element.

Reference axes
It is usual to consider the reference axes of structural 
sections as those passing through the centroid. In general, 
the x-x axis is drawn perpendicular to the greatest lateral 
dimension of the section, and the y-y axis is drawn 
perpendicular to the x-x axis, intersecting it at the centroid.

y

y

xx
C

y

y

xx
C

Moment of inertia
The area moment of inertia (I), or to use the more 
correct term, second moment of area, is a property that 
measures the distribution of area around a particular 
axis of a cross-section, and is an important factor in its 
resistance to bending. Other factors, such as the strength 
of the material from which a beam is made, are also 
important for resistance to bending, and are allowed for 
in other ways. The moment of inertia measures only 
how the geometric properties or shape of a section affect 
its value as a beam or slender column. The best shape 
for a section is one that has the greater part of its area as 
distant as possible from its centroidal, neutral axis.

For design purposes, it is necessary to use the 
moment of inertia of a section about the relevant axis 
or axes.

Calculation of moment of inertia
Consider a rectangle that consists of an infinite number 
of strips. The moment of inertia about the x-x axis of 
such a strip is the area of the strip multiplied by the 
square of the perpendicular distance from its centroid 
to the x-x axis, i.e. b × ∆y × y2

The sum of all such products is the moment of 
inertia about the x-x axis for the whole cross-section.

By applying calculus and integrating as follows, the 
exact value for the moment of inertia can be obtained.

∫
+

−

==
2d

2d 12
bd3

by2 dyIxx

64
Ixx

πD4

=

y

y

xx
C

b

d/2

d/2
y

∆y
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For a circular cross-section:
 

∫
+

−

==
2d

2d 12
bd3

by2 dyIxx

64
Ixx

πD4

=

Moments of inertia for other cross-sections are given later 
and in Table 4.3. For structural rolled-steel sections, the 
moment of inertia can be found tabulated in handbooks. 
Some examples are given in Appendix V.3.

Principle of parallel axes 
According to the principle of parallel axes, if the 
moment of inertia of any area (e.g. top flange of the 
beam shown below) about any axis is parallel to its 
centroidal axis, then the product of the area of the shape 
and the square of the perpendicular distance between 
the axes must be added to the moment of inertia about 
the centroidal axis of that shape.

Example 6.13
Determine the moment of inertia about the x-x axis and 
the y-y axis for the I-beam shown in the figure. The 
beam has a web of 10 mm plywood and the flanges are 
made of 38 mm by 100 mm timber, which are nailed and 
glued to the plywood web.

Solution:

The entire cross-section of both the beam and the 
cross-section of the web have their centroids on the x-x 
axis, which is therefore their centroidal axis. Similarly, 
the F-F axis is the centroidal axis for the top flange.

Ixx of the web using mm4106× 22.5

mm4106×7.2

=
12

3003 × 10
 =

12
bd3

=
12

1003 × 86

The moment of inertia of one flange about its own 
centroidal axis (F-F):

IFF of one flange = 

mm4106× 22.5

mm4106×7.2

=
12

3003 × 10
 =

12
bd3

=
12

1003 × 86

Timber 38x100 86

F

x x

10

F

Plywood

50
0

30
0

10
0

20
0

and from the principle of parallel axes, the Ixx of one 
flange equals:

(7.2 × 106) + (86 × 100 × 2002) = 351.2 × 106 mm4

Thus the total Ixx of the web plus two flanges equals:

Ixx = (22.5 × 106) + (351.2 × 106) + (351.2 × 106) 
= 725 × 106 mm4

The Iyy of the above beam section is most easily found 
by adding the Iyy of the three rectangles of which 
it consists, because the y-y axis is their common 
neutral axis, and moments of inertia may be added or 
subtracted if they are related to the same axis.

4mm 106 × 10.6 =

106 × 0.025 + 106 × 5.3 × 2 =
12

103 × 300
 + 

12
863 × 100

 × 2=yyI

Section modulus 
In problems involving bending stresses in beams, a 
property called section modulus (Z) is useful. It is the 
ratio of the moment of inertia (I) about the neutral axis 
of the section to the distance (C) from the neutral axis 
to the edge of the section.

Unsymmetrical cross-sections
Sections for which a centroidal reference axis is not an 
axis of symmetry will have two section moduli for that 
axis.

y1

Ixx =Zxx1 y2

Ixx =Zxx2;

86

10

300100

y

100

y

y1

y2
xx

y
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Radius of gyration
Radius of gyration (r) is the property of a cross-section 
that measures the distribution of the area of the cross-
section in relation to the axis. In structural design, 
it is used in relation to the length of compression 
members, such as columns and struts, to estimate their 
slenderness ratio and hence their tendency to buckle. 
Slender compression members tend to buckle about 
the axis for which the radius of gyration is a minimum 
value. From the equations, it will be seen that the least 
radius of gyration is related to the axis about which the 
least moment of inertia occurs.

Therefore, 
A

Ixxrxx =
A

Iyyryy = and 
A

Ixxrxx =
A

Iyyryy =

(general relationship I = Ar2)

Table 6.3
Properties of structural sections 

Section Area
(mm2)
or (m2)

Moment
of inertia

(mm4) or (m4)

Section
modulus

(mm3) or (m3)

Radius
of gyration
(mm) or (m)

Distance from 
extreme fibre

to centroid
(mm) or (m)

A Ixx Iyy Zxx Zyy rxx ryy y x

b

y

d
G

Rectangle

a

a G

x

x

y

y
y

x

Square

a

G
y

x

x x

y

y

Square 
with 
diagonal 
axes

G

y

x

x x

y

y Circle

Gd

D

y

x

x x

y

y Annulus

12
d

 
12
b

 
2
d

y =  bd
12
bd 3

 
12
db3

 
6

bd 2

 
6
db
 

12
 

d
12
b

 
2
d

y =  

12
a4

 
12
a4

 
6
a3

 
6
a3

 12
a

 
12
a

 y = =
2
a

xa2

y = =
2
a

xa2

12
a4

 
12
a4

 
26

a3

 
26

a3
 

12
a

 
12
a

 

4
D2π

 D4π
64

D3π
32

D3π
32

D4π
 

64
 

4
D 

4
D 

2
D

y =  

2
D

x =  

2
D

y =  

2
D

x =  

4

(D2 − d2)π

64

(D4 − d4)π

32

(D4 − d4)π

32

(D3 − d3)π
4 (D2 + d2) 4 (D2 + d2)

32

(D3 − d3)π
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Review questions
1.	 Sketch the shear and bending moment diagrams 

for the beams below, indicating values of shear 
force and bending moment at the key points.

2.	 Find the reactions on beam BC.

3.	 Two concentrated loads of 100 kN and 200 kN 
advance along a girder with a 20-metre span, the 
distance between the loads being 8 metres. Find 
the position of the section that has to support the 
greatest bending moment, and calculate the value 
of the bending moment. 

4.	 A load of 100  kN, followed by another load 
of 50  kN, at a distance of 10  metres, advances 
across a girder with a 100-metre span. Obtain an 
expression for the maximum bending moment at 
a section of the girder at a distance of z metres 
from an abutment.

W N/m

L
2
3 L

1
3

a)

b)

A

1

P

2

4

L/2 L/2

5
B C

60˚ 60˚
3
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