Chapter 25 : Electric circuits

- Voltage and current
- Series and parallel circuits
- Resistors and capacitors
- Kirchoff's rules for analysing circuits

Electric circuits

- Closed loop of electrical components around which current can flow, driven by a potential difference

- Current (in Amperes A) is the rate of flow of charge
- Potential difference (in volts V) is the work done on charge

Electric circuits

- May be represented by a circuit diagram. Here is a simple case:

- R is the resistance (in Ohms Ω) to current flow

Electric circuits

- Same principles apply in more complicated cases!

Electric circuits

- How do we deal with a more complicated case? What is the current flowing from the battery?

Electric circuits

- When components are connected in series, the same electric current flows through them

Series circuit

- Charge conservation : current cannot disappear!

Electric circuits

- When components are connected in parallel, the same potential difference drops across them

Parallel circuit

- Points connected by a wire are at the same voltage!

Electric circuits

- When there is a junction in the circuit, the inward and outward currents to the junction are the same

$$
I_{1}=I_{2}+I_{3}
$$

- Charge conservation : current cannot disappear!

Consider the currents $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3} as indicated on the circuit diagram. If $\mathrm{I}_{1}=2.5 \mathrm{~A}$ and $I_{2}=4 \mathrm{~A}$, what is the value of I_{3} ?

1. 6.5 A
2. 1.5 A
3. -1.5 A
4. OA
5. The situation is not possible

Consider the currents $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3} as indicated on the circuit diagram. If $\mathrm{I}_{1}=2.5 \mathrm{~A}$ and $I_{2}=4 \mathrm{~A}$, what is the value of I_{3} ?

current in = current out

$$
\begin{gathered}
I_{1}=I_{2}+I_{3} \\
I_{3}=I_{1}-I_{2} \\
I_{3}=2.5-4=-1.5 \mathrm{~A}
\end{gathered}
$$

(Negative sign means opposite direction to arrow.)

A 9.0 V battery is connected to a 3Ω resistor. Which is the incorrect statement about potential differences (voltages)?

$$
\begin{aligned}
& \text { 1. } V_{b}-V_{a}=9.0 \mathrm{~V} \\
& \text { 2. } \mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{c}}=0 \mathrm{~V} \\
& \text { 3. } \mathrm{V}_{\mathrm{c}}-\mathrm{V}_{\mathrm{d}}=9.0 \mathrm{~V} \\
& \text { 4. } \mathrm{V}_{\mathrm{d}}-\mathrm{V}_{\mathrm{a}}=9.0 \mathrm{~V}
\end{aligned}
$$

Resistors in circuits

- Resistors are the basic components of a circuit that determine current flow : Ohm's law I = V/R

Resistors in series/parallel

- If two resistors are connected in series, what is the total resistance?

same current $\longrightarrow I$

Potential drop $V_{1}=I R_{1} \quad$ Potential drop $V_{2}=I R_{2}$

Total potential drop $V=V_{1}+V_{2}=I R_{1}+I R_{2}=I\left(R_{1}+R_{2}\right)$

Resistors in series/parallel

- If two resistors are connected in series, what is the total resistance?

Potential drop $V=I R_{\text {total }}=I\left(R_{1}+R_{2}\right)$

$$
R_{\text {total }}=R_{1}+R_{2}
$$

- Total resistance increases in series!

Resistors in series/parallel

- Total resistance increases in series!

Resistors in series/parallel

- If two resistors are connected in parallel, what is the total resistance?

Resistors in series/parallel

- If two resistors are connected in parallel, what is the total resistance?

Total current $I=I_{1}+I_{2}=\frac{V}{R_{1}}+\frac{V}{R_{2}}=V\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)$

Resistors in series/parallel

- If two resistors are connected in parallel, what is the total resistance?

Current $\mathrm{I}=\frac{V}{R_{\text {total }}}=V\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)$

$$
\frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

- Total resistance decreases in parallel!

Resistors in series/parallel

- Total resistance decreases in parallel!

Resistors in series/parallel

- What's the current flowing?

(1) Combine these 2 resistors in parallel:

$$
\begin{aligned}
& \frac{1}{R_{\text {pair }}}=\frac{1}{30}+\frac{1}{50} \\
& R_{\text {pair }}=18.75 \Omega
\end{aligned}
$$

(2) Combine all the resistors in series:

$$
R_{\text {total }}=20+18.75+20=58.75 \Omega
$$

$$
\text { (3) Current } I=\frac{V}{R_{\text {total }}}=\frac{10}{58.75}=0.17 \mathrm{~A}
$$

If an additional resistor, R_{2}, is added in series to the circuit, what happens to the power dissipated by R_{1} ?

1. Increases

2. Decreases
3. Stays the same

$$
V=I R
$$

$$
P=V I=I^{2} R=\frac{V^{2}}{R}
$$

If an additional resistor, R_{3}, is added in parallel to the circuit, what happens to the total current, I?

1. Increases

2. Decreases
3. Stays the same
4. Depends on R values

Parallel resistors: reciprocal effective resistance is sum of reciprocal resistances

$$
\frac{1}{R_{e f f}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots
$$

Series vs. Parallel

CURRENT Same current through all series elements

VOLTAGE Voltages add to total circuit voltage
RESISTANCE Adding resistance increases total R

Current "splits up"
through parallel branches
Same voltage across all parallel branches

Adding resistance reduces total R

String of Christmas lights - connected in series
Power outlets in house - connected in parallel

Voltage divider

Consider a circuit with several resistors in series with a battery.

Current in circuit: $\quad I=\frac{V}{R_{\text {total }}}=\frac{V}{R_{1}+R_{2}+R_{3}}$

The potential difference across one of the resistors (e.g. R_{1})

$$
V_{1}=I R_{1}=V \frac{R_{1}}{R_{1}+R_{2}+R_{3}}
$$

The fraction of the total voltage that appears across a resistor in series is the ratio of the given resistance to the total resistance.

What must be the resistance R_{1} so that $\mathrm{V}_{1}=2.0 \mathrm{~V}$?

1. 0.80Ω

2. 1.2Ω
3. 6.0Ω
4. 30Ω

Capacitors

- A capacitor is a device in a circuit which can be used to store charge

A capacitor consists of two charged plates ...

It's charged by connecting it to a battery ...

Capacitors

- A capacitor is a device in a circuit which can be used to store charge

Example : store and release energy ...

Capacitors

- The capacitance C measures the amount of charge Q which can be stored for given potential difference V

- Unit of capacitance is Farads [F]
(Value of C depends on geometry...)

Resistor-capacitor circuit

- Consider the following circuit with a resistor and a capacitor in series

What happens when we connect the circuit?

Resistor-capacitor circuit

- When the switch is connected, the battery charges up the capacitor

- Move the switch to point a
- Initial current flow I=V/R
- Charge Q flows from battery onto the capacitor
- Potential across the capacitor $\mathrm{V}_{\mathrm{C}}=\mathrm{Q} / \mathrm{C}$ increases
- Potential across the resistor V_{R} decreases
- Current decreases to zero

Resistor-capacitor circuit

- When the switch is connected, the battery charges up the capacitor

Resistor-capacitor circuit

- When the battery is disconnected, the capacitor pushes charge around the circuit

- Move the switch to point b
- Initial current flow $I=V_{C} / R$
- Charge flows from one plate of capacitor to other
- Potential across the capacitor $\mathrm{V}_{\mathrm{C}}=\mathrm{Q} / \mathrm{C}$ decreases
- Current decreases to zero

Resistor-capacitor circuit

- When the battery is disconnected, the capacitor pushes charge around the circuit

Capacitors in series/parallel

- If two capacitors are connected in series, what is the total capacitance?

Potential drop $V_{1}=Q / C_{1} \quad$ Potential drop $V_{2}=Q / C_{2}$
Total potential drop $V=V_{1}+V_{2}=\frac{Q}{C_{1}}+\frac{Q}{C_{2}}=Q\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)$

Capacitors in series/parallel

- If two capacitors are connected in series, what is the total capacitance?

Potential drop $V=\frac{Q}{C_{\text {total }}}=Q\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)$

$$
\frac{1}{C_{\text {total }}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}
$$

- Total capacitance decreases in series!

Capacitors in series/parallel

- If two capacitors are connected in parallel, what is the total capacitance?

Total charge $Q=Q_{1}+Q_{2}=C_{1} V+C_{2} V=\left(C_{1}+C_{2}\right) V$

Capacitors in series/parallel

- If two capacitors are connected in parallel, what is the total capacitance?

Total charge $Q=C_{\text {total }} V=\left(C_{1}+C_{2}\right) V$

$$
C_{\text {total }}=C_{1}+C_{2}
$$

- Total capacitance increases in parallel!

Two 5.0 F capacitors are in series with each other and a 1.0 V battery. Calculate the charge on each capacitor (Q) and the total charge drawn from the battery $\left(\mathrm{Q}_{\text {total }}\right)$.

1. $\mathrm{Q}=5.0 \mathrm{C}, \mathrm{Q}_{\text {total }}=5.0 \mathrm{C}$
2. $\mathrm{Q}=0.25 \mathrm{C}, \mathrm{Q}_{\text {total }}=0.50 \mathrm{C}$
3. $\mathrm{Q}=2.5 \mathrm{C}, \mathrm{Q}_{\text {total }}=2.5 \mathrm{C}$
4. $Q=2.5 \mathrm{C}, \mathrm{Q}_{\text {total }}=5.0 \mathrm{C}$

$Q=C V$

$$
\frac{1}{C_{\text {total }}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\cdots
$$

Two 5.0 F capacitors are in series with each other and a 1.0 V battery. Calculate the charge on each capacitor (Q) and the total charge drawn from the battery $\left(\mathrm{Q}_{\text {total }}\right)$.

Potential difference across each capacitor $=0.5 \mathrm{~V}$
Charge on each capacitor $Q=C V=5 \times 0.5=2.5 C$

$$
\begin{gathered}
\frac{1}{C_{\text {total }}}=\frac{1}{C_{1}}+\frac{1}{C_{2}} \rightarrow \frac{1}{C_{\text {total }}}=\frac{1}{5}+\frac{1}{5}=\frac{2}{5} \rightarrow C_{\text {total }}=2.5 \mathrm{~F} \\
Q_{\text {total }}=C_{\text {total }} \mathrm{V}=2.5 \times 1=2.5 \mathrm{C}
\end{gathered}
$$

Two 5.0 F capacitors are in parallel with each other and a 1.0 V battery. Calculate the charge on each capacitor (Q) and the total charge drawn from
 the battery $\left(\mathrm{Q}_{\text {total }}\right)$.

$$
\begin{aligned}
& \text { 1. } Q=5.0 \mathrm{C}, \mathrm{Q}_{\text {total }}=5.0 \mathrm{C} \\
& \text { 2. } \mathrm{Q}=0.2 \mathrm{C}, \mathrm{Q}_{\text {total }}=0.4 \mathrm{C} \\
& \text { 3. } \mathrm{Q}=5.0 \mathrm{C}, \mathrm{Q}_{\text {total }}=10 \mathrm{C} \\
& \text { 4. } \mathrm{Q}=2.5 \mathrm{C}, \mathrm{Q}_{\text {total }}=2.5 \mathrm{C}
\end{aligned}
$$

$$
Q=C V \quad C_{\text {total }}=C_{1}+C_{2}+C_{3}+\cdots
$$

Two 5.0 F capacitors are in parallel with each other and a 1.0 V battery. Calculate the charge on each capacitor (Q) and the total charge drawn from
 the battery $\left(\mathrm{Q}_{\text {total }}\right)$.

Potential difference across each capacitor $=1 \mathrm{~V}$
Charge on each capacitor $Q=C V=5 \times 1=5 C$

$$
Q_{\text {total }}=10 C
$$

Resistors vs. Capacitors

Resistors vs. Capacitors

Kirchoff's rules

- Sometimes we might need to analyse more complicated circuits, for example ...

$$
V_{1}=9 \mathrm{~V} \frac{\square}{\square}
$$

Q) What are the currents flowing in the 3 resistors?

- Kirchoff's rules give us a systematic method

Kirchoff's rules

- What are the currents flowing in the 3 resistors?

Kirchoff's junction rule : the sum of currents at any junction is zero

Kirchoff's rules

- The sum of currents at any junction is zero
- Watch out for directions : into a junction is positive, out of a junction is negative

Kirchoff's rules

- What are the currents flowing in the 3 resistors?

Kirchoff's junction rule : the sum of currents at any junction is zero

Kirchoff's rules

- What are the currents flowing in the 3 resistors?

Kirchoff's loop rule : the sum of voltage changes around a closed loop is zero

Kirchoff's rules

- Sum of voltage changes around a closed loop is zero

- Consider a unit charge ($\mathrm{Q}=1$ Coulomb) going around this loop
- It gains energy from the battery (voltage change +V)
- It loses energy in the resistor (voltage change - I R)
- Conservation of energy : V - I R = 0 (or as we know, V = I R)

Kirchoff's rules

- What are the currents flowing in the 3 resistors?

Kirchoff's loop rule : the sum of voltage changes around a closed loop is zero

$9-4 I_{1}+1 I_{2}=0$

Kirchoff's rules

- What are the currents flowing in the 3 resistors?

Kirchoff's loop rule : the sum of voltage changes around a closed loop is zero

Kirchoff's rules

- What are the currents flowing in the 3 resistors?

We now have 3 equations:

$$
\begin{array}{r}
I_{1}+I_{2}+I_{3}=0 \\
9-4 I_{1}+I_{2}=0 \\
-6-I_{2}+2 I_{3}=0 \tag{3}
\end{array}
$$

To solve for I_{1} we can use algebra to eliminate I_{2} and I_{3} :

$$
(1) \rightarrow \quad I_{3}=-I_{1}-I_{2}
$$

Sub.in (3) $\rightarrow I_{2}=-2-\frac{2}{3} I_{1}$

$$
\text { Sub.in }(2) \rightarrow I_{1}=1.5 \mathrm{~A}
$$

Consider the loop shown in the circuit. The correct Kirchoff loop equation, starting at " a " is

1. $I_{1} R_{1}+\varepsilon_{1}+I_{1} R_{2}+\varepsilon_{2}+I_{2} R_{3}=0$
2. $-I_{1} R_{1}-\varepsilon_{1}-I_{1} R_{2}-\varepsilon_{3}-I_{3} R_{4}=0$
3. $I_{1} R_{1}-\varepsilon_{1}+I_{1} R_{2}-\varepsilon_{2}-I_{2} R_{3}=0$
4. $I_{1} R_{1}-\varepsilon_{1}+I_{1} R_{2}+\varepsilon_{2}+I_{2} R_{3}=0$

Chapter 25 summary

- Components in a series circuit all carry the same current
- Components in a parallel circuit all experience the same potential difference
- Capacitors are parallel plates which store equal \& opposite charge Q = C V
- Kirchoff's junction rule and loop rule provide a systematic method for analysing circuits

