
     

    

  

    

            
         

    

         
         

 

     

   

          
      

         
     

         
     

       

       
  

         

          

          

TITLE 2. STRUCTURAL ANALYSIS 

CHAPTER V. STRUCTURAL ANALYSIS 


Section 17. General 

The structural analysis consists of obtaining the effect of actions on all or part of 
the structure in order to check the ultimate limit states and serviceability limit states 
defined in Section 8. 

Such an analysis must be conducted for the different design situations given in 
Section 7 using adequate structural models that consider the influence of all relevant 
variables. 

Section 18. Idealisation of the structure 

18.1. Structural models 

In order to conduct the analysis, both the geometry of the structure and the 
actions and support conditions are idealised by means of an adequate mathematical 
model, which must also roughly reflect the stiffness conditions of the cross-sections, 
members, joints and interaction with the ground. 

The structural models must allow to consider the effects of movements and 
deformations in those structures or part thereof, where second-order effects increase 
the effects of the actions significantly. 

In certain cases, the model must incorporate the following into its stiffness 
conditions: 

- the non-linear response of the material outside the elastic analysis; 

- the effects of shear lag in sections with wide flanges; 

- the effects of local buckling in compressed sheet panels; 
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- the effects of the catenary (using a reduced modulus of elasticity, for example) 
and of displacement on structures with cables; 

- the shear deformability of certain structural members; 

- the stiffness of the joints; 

- interaction between the ground and the structure. 

Where it is necessary to conduct dynamic analyses, the structural models must 
also consider the properties of mass, stiffness, resistance and damping of each 
structural member, as well as the mass of other, non-structural, members. 

Where it is appropriate to perform a quasi-static approximation of the structure's 
dynamic effects in accordance with the codes or regulations in force, such effects may 
be included in the static values of the actions, or dynamic amplification factors 
equivalent to such static actions could even be applied. 

In some cases (e.g. vibrations caused by wind or earthquake), the effects of the 
actions may be obtained from linear elastic analyses using the modal superposition 
method. 

Structural analyses for fire require specific models that are considered in Chapter 
XII. 

In some cases, the results of the structural analysis may undergo marked 
variations regarding to possible fluctuations in some model parameters or in the design 
hypotheses adopted. In such cases, the Designer shall perform a sensitivity analysis 
that allows to limit the probable range of fluctuations in the structural response. 

18.2. Member models 

For purposes of the analysis, structural members are classified as one­
dimensional when one of the dimensions is much greater than the others, two­
dimensional when one of the dimensions is small in comparison with the other two, and 
three-dimensional when none of the dimensions is significantly greater than the others. 

The Designer shall in each case select the most suitable member type to show 
the structural response satisfactorily. 

The directrix of the member will usually follow the alignment of the elastic centres 
of mass of the cross-sections. 

18.2.1. Design spans 

Unless especially justified, the design span of a one-dimensional member shall 
be the distance between the support axes or the intersection points of its directrix and 
those of adjacent members. 

18.2.2. Static shear magnitudes of cross-sections 

The global structural analysis may in most cases be performed using the gross 
cross-sections of the members, based on their nominal dimensions. 

For one-dimensional members, the static magnitudes to be considered are the 
area, the principal moments of inertia and the uniform torsion modulus. 
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The shear area and effects of distortion on the section and warping torsion need 
only be taken into account in some special cases. 

The effects of shear lag in sections with wide flanges, and the effects of local 
buckling of compressed sheet panels, on member stiffness must be taken into account 
when these may have a significant impact on the results of the structural analysis. 

The effect of shear lag on flanges may be taken into account by considering 
effective widths, in accordance with Section 21. 

The effect of local buckling of compressed panels on member stiffness may be 
taken into account by means of equivalent effective sections in the case of slender 
cross-sections of class 4, in accordance with subsection 20.7. 

In the case of sections with principal axes that do not coincide with the planes 
where load is acting, the Designer must use structural models that a correct estimation 
of the actual response of the members subject to biaxial bending. 

When the shear force centre does not coincide with the centre of mass of the 
cross-section, mainly in open sections, the structural model must also take due account 
of the actions, static magnitudes and geometry of the members, so as to reproduce the 
effects of bending and torsion on the structure reliably, as well as any mutual 
interaction and load eccentricities. 

18.2.3. Consideration of the effects of distortion on closed section members 

In members subjected to torsion, and areas where significant concentrated loads 
are applied, the effects resulting from deformations owing to distortion of the cross­
section must be considered if they are significant. 

In order to monitor the magnitude of such effects in large closed sections (bridge 
box girders, for example), it will usually be necessary to have an internal stiffness 
system using transverse members called diaphragms, which may be frames, 
triangulations or plate girders. 

The effects of distortion may be discounted when the actual stiffness or 
dimensions of the cross-section (hollow sections, for example), and/or of any 
diaphragms, limit the effects of the distortion, once they have been added, by less than 
10 % of the material's reduced yield strength in the member in question under the 
relevant local or eccentric actions. 

Where diaphragms are necessary, they must be designed for the stresses 
resulting from their stiffening effect on the closed section, for the torsion actions (under 
eccentric loads or in members of curve directrix in plan) or when they are close to 
concentrated loads (intermediate and supports), according to Annex 3. 

In the presence of dynamic actions, the effects of distortion on the members and 
any diaphragms must always be considered when checking the structure‟s fatigue limit 
state. 

18.2.4. Consideration of the effects of mixed torsion on members with open 
or closed sections 

The content of this subsection only applies directly to linear members subjected 
to torsion where the distance between points where there is no moment is equal to or 
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greater than 2.5 times its depth, and the width is less than or equal to four times its 
depth, and the directrix is straight or curved. 

The response of linear members to torsion, where the effects of distortion on the 
members may be discounted, is the sum of two mechanisms: 

a)	 uniform or Saint-Venant torsion that only generates shear stresses in the cross­
section and the stiffness of which is characterised by the torsion modulus It of the 
cross-section; 

b)	 non-uniform or warping torsion that generates both direct and shear stress in the 
different sheet panels of the cross-section. Its stiffness remains characterised by 
its warping modulus, Iw. 

The response of a member to torsion may be obtained through an elastic 
analysis that incorporates the general equations for mixed torsion, depending on the 
static torsional magnitudes of the cross-sections, It and Iw, the material deformation 
modulus, E and G, the connecting factors for rotation and warping at the ends of the 
member, and the distribution of torsion action along it. Alternatively, the structural 
analysis for torsion may be approached through finite elements models for the part. 

It may be permitted for the effects of warping stress to be discounted in a suitably 
approximate way, to analyse just the uniform torsion in members in the following cases: 

a)	 members that have freedom to warp at their extremities and which are required 
solely for moment at such extremities; 

b)	 members in which the warping module of the cross-section, Iw, is of negligible or 
small magnitude in comparison with the torsion module, It. This is the case for the 
following: 

–		 solid sections (round, square, rectangular, etc.); 

–		 open cross-sections made up of rectangles that are sheared at a given point 
(angles, cross-shaped sections, single T units, etc.); 

–		 closed cross-sections (tubes, single-cell or multi-cell boxes with no distortion, 
etc.). 

Additionally, by way of simplification, it may be permitted for the effects of uniform 
torsion to be discounted, and only analyse the warping stress, in the case of beams 
with thin-walled open sections such as double T, U, H, Z sections, etc. 

Where the static equilibrium of a structure basically depends on the torsion 
resistance of one or more members, such members shall mainly be designed using 
closed sections. In such cases, open sections cannot usually be recommended for 
resisting torsion loads, although for bridges or special parts that are straight or slightly 
curve on plan it may be possible to use double-beam or double-girder open sections 
that are designed to provide sufficient resistance to torsion resulting from eccentric 
actions. 

However, in hyperstatic structures there are often open-section members 
(transverse beams for grids or twin box bridge decks, for example) being subject to 
torsion owing solely to the compatibility conditions resulting from differential bending 
between longitudinal members. 
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The effects of warping stress must be taken into account, where they are 
significant, for the checking on the structure‟s serviceability limit states and fatigue limit 
state, including those members subjected to compatibility torsion. For ultimate limit 
states, these effects need only be considered for members loaded with equilibrium 
torsion and members subjected to compatibility torsion, the stiffness of which under 
torsion has been considered in the calculation of forces for the global analysis of the 
structure and has a significant influence on the results of the calculation. 

The use of structural models, mainly of bars, that only incorporate the uniform 
torsion stiffness of the members usually underestimates the effects of torsion in open 
sections. Where greater precision is required, for example in the case of slender 
sections or fatigue checking, It torsion modulus must be used, corrected so that they 
approximate the uniform torsion stiffness to the member‟s actual mixed-torsion 
stiffness, estimated by means of analytical solutions or sub-models of finite elements, 
under the actual loading and connecting conditions to which they will be subjected. 
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Table 18.2.4. Coordinates for the shear force centre, torsion modulus and warping 
modulus in some frequently used cross-sections 

SECTION 
COORDINATES OF THE 
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Table 18.2.4 (continued) 

SECTION 
COORDINATES OF 

THE SHEAR 
CENTRE 

TORSION MODULE WARPING MODULE 

FORMULAE THAT ARE ALSO VALID FOR 
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In cross-sections 8 and 9, “c” is the distance between the axis of the flange and 
the centre of gravity of the flaps at the ends. 
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18.2.5. Torsion stiffness of semi-closed sections with triangulations or 
frames on any of their sides 

This is the case, for example, for open subsections of mixed box sections that 
provisionally close their torsion circuits during construction phases by means of 
triangulations or Vierendeel frames on any of their sides. There may also be members 
made only of steel that include such arrangements (columns and composite supports, 
for example). In order to design the uniform torsion modulus for such members, the 
equivalent thickness „t‟ of a fictitious sheet panel may be considered, where the 
deformation energy of such a panel under uniform torsion is equal to that of the 
corresponding triangular panel or Vierendeel frame. 

Figure 18.2.5 gives the expressions that yield the equivalent thickness „t‟ for the 
most common arrangements: 
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Figure 18.2.5. Equivalent thickness „t‟ for the most common arrangements of semi ­
closed sections with triangulations or frames on any of their sides 

where: 

A1, A2, I1, I2 area and second moment of area of each chord; 
Ad area of a diagonal; 
Am, Im area and second moment of area of an upright; 
a, b, d dimensions given in the adjoining diagrams; 
E and G modulus of the steel‟s elasticity and transverse deformation. 
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18.3. Models for the stiffness of joints 

Depending on their relative stiffness in relation to the members that are to be 
joined, subsection 57.4 classifies joints as follows: nominally pinned joints, rigid joints 
or fixing, and semi-rigid joints the deformability of which remains characterised by their 
moment-rotation curves (see subsection 57.2). 

The stiffness, resistance and ductility requirements are discussed in Section 57. 

In the case of semi-rigid joints, the structural model must be able of reproducing 
the effects of their non-linear performance on the distribution of forces throughout the 
structure and on the structure's global deformations, unless such effects are 
insignificant. 

For bridges and structures subjected to dynamic loads, the check on joints must 
include verification of whether they respond to fatigue correctly. 

Joint design is usually studied to minimise eccentricities between the barycentric 
axes of the connected members, in such a way as to minimise the secondary forces 
owing to possible stiffness of joints when they rotate. 

Subsection 55.4 discusses the conditions that allow such effects to be discounted 
in the event of nodes in triangular structures. Section 64 also sets out specific 
conditions for direct joints in hollow section members. In other situations, the resistance 
and fatigue checking, both for the actual joints and for the connected members, must 
include such secondary forces, and the structural model must adequately incorporate 
the geometry of the eccentricities quoted. 

18.4. Models for the stiffness of foundations 

In some structures, the performance of which is affected significantly by the 
deformability conditions of the ground foundations, the analysis shall be approached 
using structural models that adequately incorporate the effects of interaction between 
the ground and the structure. 

Where the structural response may be regarded as being significantly affected by 
possible variations in the deformation parameters of the ground in relation to their 
estimated mean value, the structural analysis shall include a sensitivity analysis to 
ensure that the structure responds correctly within the probably fluctuation range for 
such parameters, which shall be set out and justified in the geotechnical design report. 

In order to incorporate the stiffness of connections between the foundations and 
the ground into the structure model, elastic or non-linear springs (for horizontal, vertical 
and turning displacement) or, if necessary, a model of finite elements from the adjacent 
area of ground may be used. 

The stiffness of deep foundations must include any possible group effect of piles, 
as well as the stiffness of the piles and pile caps together. 

Where the structural response is affected significantly by interaction with the 
ground, the structure‟s design shall cover any uncertainties in the model so as to 
ensure that its global response has adequate ductility, as well as the different members 
affected together with their joints. 
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Section 19. Global analysis  

19.1. Analysis methods 

Any structural analysis must satisfy the equilibrium and compatibility conditions, 
taking into account the laws that affect the performance of the materials. 

Methods for the global analysis of a structure are classified as follows: 

a)	 linear analyses, based on the elastic-linear performance hypothesis for the 
materials considering the equilibrium on the structure without deformation (first­
order analysis); 

b)	 non-linear analyses, which take account of mechanical non-linearity, i.e. the non-
linear performance of materials, and geometric non-linearity, i.e. considering the 
equilibrium conditions on the deformed structure (second-order analysis); 

c)	 non-linear analyses in turn may study one or more of the non-linear causes 
mentioned. 

Non-linear performance implies the invalidity of the superposition principle, which 
must be taken into account when applying the safety format described in Chapters II, III 
and IV. 

In cases of non-linearity, the structural response depends on the load history, and 
it is usually worth proceeding gradually, covering the elastic and elastic-plastic ranges 
until the structure fails. 

A non-linear analysis usually requires an iterative process of successive linear 
analyses for a given load level until they converge on a solution that satisfies the 
material equilibrium, compatibility and performance conditions. Such conditions are 
checked on a set of sections, depending on discretisation, which must be sufficient to 
ensure that the structural response is adequately approximated. 

The corresponding fatigue limit state checks shall be conducted based on the 
results of a linear global analysis of the structure. 

Serviceability limit state checks are also usually to be conducted by means of 
linear analyses. Exceptions to this are certain one-off structures that are very slender 
or anchored, where it may be necessary to consider the effect of deformations under 
service loads. Section 41 also considers the possibility of allowing limited plasticising in 
service situations for certain structures subjected to predominantly static loads. 

Possible consideration of the effects of shear lag on the global analysis of the 
structure is discussed in subsections 18.2.2 and 21.2. 

The effects of the instability of thin, compressed sheets may dictate the type of 
global analysis to be performed on the structure, in accordance with Section 20. The 
effects of local buckling on the stiffness of members to be considered in the global 
analysis of the structure are discussed in subsection 18.2.2. For slender sections of 
class 4, please also see subsection 19.3. 
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19.2. Consideration of material non-linearity 

Depending on the way in which the effects of material non-linearity are 
considered or not, the methods for global analysis of the structure are classified as 
follows: 

a) elastic global analysis; 

b) plastic global analysis; 

c) elastic-plastic global analysis. 

The elastic global analysis may be used in all cases, with the precautions set out 
in subsection 20.6. 

Conventional building structures may, in certain cases, use an elastic linear 
analysis with limited redistribution, in accordance with subsection 19.3.1. 

The elastic-plastic global analysis described in subsection 19.5 may always be 
used to test the ultimate limit states. 

The plastic global analysis cannot be used for bridges or structures subject to 
mobile or iterative significant overloads. 

19.3. Elastic global analysis 

The elastic global analysis is based on the assumption that the stress-strain 
performance of the material is linear, whatever the stress level is. 

It is a linear method that allows for the principle of superposition. 

Its application to serviceability limit state and fatigue limit state checking for steel 
structures means that the effects of the following must be considered: 

–		 the different resistance diagrams and load application sequences in the case of 
progressive assembly; 

–		 heat actions (expansion and gradient); 

–		 actions caused by supports drops or any imposed deformation applied to the 
structure (pre-stressing, imposed movement of supports, etc.). 

Such effects may be discounted when checking the ultimate limit states of the 
structure, if all the critical or potentially critical sections are of class 1 (see Section 20). 

The elastic global analysis may be applied to obtain the forces in the structure, 
including even when the resistance checks on sections for ultimate limit states are 
determined by local buckling of their sheets (sections of class 4), or take their plastic 
reserves into account (sections of class 1 or 2), with the exceptions made in subsection 
20.6. 
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19.3.1. Elastic global analysis with limited redistribution 

This is where the forces of the combined actions to be considered are obtained 
from a linear elastic global analysis, in order to check the structure‟s ultimate limit 
states, as described in subsection 19.3, and redistribution of forces subsequently 
made. 

Its application is limited to continuous beams in conventional building structures 
in which adequate ductility conditions are ensured. To this end, the following conditions 
must be fulfilled: 

a)	 redistribution in the elastic laws of bending moments for each span are limited to 
15 % of its maximum value in the member; 

b)	 the forces in the structure must be in equilibrium with the loads applied, once such 
forces have been redistributed; 

c)	 the cross-sections of all members for which redistributions are made must be of 
class 1 or class 2, in accordance with Section 20; 

d)	 the lateral stability of the beams and of their compressed flanges must be 
adequately controlled. 

19.4. Plastic global analysis 

Methods based on the plastic global analysis of steel structures may only be 
applied to the checking of ultimate limit states of conventional building structures, or 
structures subjected to predominantly static loads, and in the absence of iterative 
significant overloads. 

Plastic methods are approached in accordance with the theory of plastic hinges, 
and allow for full redistribution of forces inside the structure, ensuring that the plastic 
resistance moment obtained by successive plastic hinges remain unchanged until the 
last plastic hinge is formed, which converts the structure into a mechanism. 

Plastic methods may be based on any one of the basic plasticity theorems: the 
static or of lower limit and the kinematic or of upper limit. 

These methods do not allow to consider the loading sequences and phases for 
developing structures, nor thermal action, imposed deformation or any self-balancing 
system of actions that load the structure, and it may be assumed an steady growth in 
the amplification factors of the actions until the collapse mechanism is achieved for the 
different combinations of actions considered. The principle of superposition cannot be 
applied. 

A plastic global analysis is only permitted where the different members of the 
structure have sufficient ductility to ensure redistribution of the forces required by the 
plastic collapse mechanisms that are considered. Verifying that the conditions set out 
in subsection 20.5 have been met ensures this. 

In the case of supports or lintels subjected to compression forces, any estimate of 
their rotary capacity must consider the influence of the compression axil on reducing 
the ductility of the moment-curvature (M-χ) laws governing the cross-sections. 

TITLE 2	 page 12 



     

       
         

         
        
     

   

      
       

     
       

   

    
        

       
        

      
       

         
       

       
  

         
   

    

      
        
        

      

    

       

     

         

         

        

     

        

        

          

Plastic analyses must not usually be used where the second-order effects due to 
deformations cannot be disregarded, since in such cases the collapse of the structure 
may be achieved before all the plastic hinges of the first-order plastic failure 
mechanism are developed. In such cases, the general, non-linear analysis method 
described in subsection 24.4 must be used. 

19.5. General, elastic-plastic, non-linear analysis method 

The elastic-plastic method considers the influence of the non-linear response of 
steel on the moment-curvature diagrams for different cross-sections, which are usually 
obtained under steadily increasing loads until ultimate resistance is achieved. Moment­
curvature diagrams must include consideration of possible axial force that might act at 
the same time. 

The cross-sections remain elastic until they achieve deformation corresponding 
to the yield strength in the most stressed fibre. Under increasing loads, the section 
undergoes gradual plastification until the maximum strains are achieved for 
compression or traction in the most stressed fibre. 

The maximum strain for steel is given in subsections 19.5.1 to 19.5.3, including 
the consideration of possible instability phenomenon in compressed sheets. 

The properties of the reduced design section, for considering the effects of sheet 
instability on slender cross-sections of class 4, are obtained depending on the 
maximum strain of the compressed members, increasing steadily, in accordance with 
subsection 20.7. 

The effects of shear lag under increasing loads are taken into account based on 
the effective widths given in subsections 21.3 and 21.4 for the elastic phase, and in 
subsection 21.5 for the elastic-plastic phase. 

The elastic-plastic global analysis is approached for the combinations of actions 
to be considered for the ultimate limit states by means of non-linear design algorithms 
based on the moment-curvature (M-χ) laws governing the different cross-sections. The 
principle of superposition cannot be applied. 

19.5.1. Sections without longitudinal stiffeners 

The following limit strains shall be adopted: 

a) compressed steel members: 

İcu = 6 İy for sections of class 1; 

İcu = 3 İy for sections of class 2; 

İcu = İy for sections of classes 3 and 4; 

b) tensioned steel members: 

εtu = 2 % for sections of classes 1 and 2; 

εtu = 6 εy for sections of classes 3 and 4, 

where İy is the strain corresponding to the reduced yield strength of the steel. 
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In slender cross-sections of class 4, the effective widths of the sections are 
obtained using the criteria set out in subsection 20.7 and in Tables 20.7.a and 20.7.b, 
based on the deformity plane under consideration. In order to calculate the reduction 
factor ρ for compressed panels, the maximum compression strain of the panel shall be 

adopted to evaluate p for this deformity plane. This shall hold for both the 

compressed flange and the fully or partially compressed web: 

cr

c
p






max

The effective width for the shear lag of a panel may be estimated, in accordance 
with subsection 21.5, using a linear interpolation of the reduction factors ψ for 
intermediate curvatures χ, between the elastic χel and the ultimate elastic-plastic χu. 

19.5.2. Sections with longitudinal web stiffeners 

The same limit strains for tension and compression are adopted as for subsection 
19.5.1. 

In order to obtain the effective widths for slender webs, it shall be considered that 
every stiffener divides the web sheet into independent sub-panels. A similar criterion is 
applied to each sub-panel to the one set out in subsection 19.5.1, and the value İcmax is 

considered as the maximum strain on the most highly compressed depth of the panel 
(see Figure 19.5.2). 

compressed flange 

neutral axis of the 
gross section 

neutral axis of the 
reduced flange 
section neutral axis of the 

reduced section 

tensioned flange 

GROSS SECTION REDUCED FLANGE REDUCED SECTION 
SECTION 

Figure 19.5.2. Effective sections with stiffeners 

19.5.3. Sections with longitudinal stiffeners for compressed flanges 

The elastic-plastic analysis of cross-sections with compressed, stiffened flanges 
essentially depends on the latter, the response of which may be assimilated into a 
series of stiffeners with the associated effective width of compressed flange at each 
side of their axis. These stiffeners perform as compressed supports resting elastically 
on transverse stiffeners (or anti-distortion diaphragms of the box girder sections). 
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Annex 6 discusses possible approximate models for the non-linear elastic-plastic 
response of compressed, stiffened sheet panels, which may be used to estimate the 
moment-curvature laws that govern the full cross-section. 

19.6. Effects of deformed geometry of the structure 

The global analysis of the structure may usually be performed by means of: 

a)	 a first-order analysis, using the initial geometry of the structure; 

b)	 a non-linear second-order analysis, taking into account the effects of the 
deformed geometry of the structure. 

The second-order effects due to deformation of the structure, must be considered 
if they increase the action effects (forces and deformation) significantly in the structural 
response. 

Geometric and mechanical imperfections must be considered in order to evaluate 
this, in accordance with Section 22. The principle of superposition cannot apply as it is 
a non-linear analysis. 

The influence of second-order effects on the reduction of resistance capacity of 
certain individual members, such as wholly or partially compressed supports or 
constant section beams, is taken into account under this Code by means of reduction 
factors that are included in their resistance formulae, such as those stated in 
subsections 35.1, 35.2 and 35.3. 

Section 23 describes the methods to evaluate whether the second-order effects 
have a significant impact on the global response of the structure. 

Section 24 discusses the general analysis methodology that allows such effects 
to be taken into account if need be. 

Section 20. Classification of cross-sections 

20.1. Bases 

Grouping cross-sections into four classes allows to identify the influence of local 
instability phenomenon of sheets (local buckling) in the compressed areas on: 

–		 resistance, identifying the section capacity for achieving, or not, their elastic or 
plastic resistance moments (see Figure 20.1.a); 

–		 rotation capacity, identifying their ability to develop, or not, the ultimate 
curvatures required for a global analysis of forces using elastic or plastic 
methods (see Figure 20.1.b). 
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CLASS 1 (PLASTIC)
 

Mpl 

CLASS 2 (COMPACT) 

CLASS 3 (SEMI­
COMPACT)  LOCAL INSTABILITY 

POINT 

CLASS 4 (SLENDER) 

X 
Xel Xpl X PLASTIC 

HINGE 

Figure 20.1.a. Moment-curvature (M-χ) laws for cross-sections of classes 1 
to 4 

first plastification (each span) 

Class 3 

Class 2 

Class 1 

first plastic hinge (support) 

second plastic hinge (each span) 

Class 4 first plastification (support) 

local instability 

Figure 20.1.b. Elastic-plastic diagram up to fracture of a continuous lintel, 
depending on the class of the cross-sections. 

The assignment of a cross-section class only applies in relation to sheet 
instability phenomenon under the action of direct stresses. The problems associated 
with local buckling on sheets subjected to shear stresses are discussed in subsection 
35.5 and Section 40. 
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Table 20.1. Classification of cross-sections in relation to the checking ultimate limit 
states 

Class Performance model 
Design 

resistance 

Rotation 
capacity of 
the plastic 

hinge 

Global 
analysis 

of the 
structure 

1 

local 
buckling 

Mpl 

PLASTIC 

on the whole 
section 

fy 
significant 

elastic or 
plastic 

2 Mpl 

local 
buckling 

PLASTIC 

on the whole 
section 

fy limited elastic 

3 
Mpl 

Mel 

local 
buckling 

ELASTIC 

on the whole 
section 

fy 
none elastic 

4 
Mpl 

Mel 

local 
buckling 

ELASTIC 

on the effective 
section 

fy none elastic 

20.2. Classification of cross-sections 

Depending on the influence of sheet instability problems on its resistance 
response, four classes of cross-section are defined (see Figures 20.1.a and 20.1.b): 

–		 sections of class 1 (plastic) develop their plastic resistance capacity without 
being affected by local buckling in their compressed areas, and can form a 
plastic hinge with the rotation capacity required from plastic analysis without 
reduction of the resistance; 

–		 sections of class 2 (compact) may develop their plastic moment resistance, but 
the local buckling limit their rotation capacity to a level below that required for the 
plastic global analysis to be applied; 
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–		 sections of class 3 (semi-compact) are those in which the stress in the extreme 
compression fibre, assuming an elastic distribution of stresses, can reach the 
yield strength, but local buckling is liable to prevent the development of the 
plastic moment resistance; 

–		 sections of class 4 (slender) are those in which local buckling also inhibit the 
development of their elastic resistance capacity, and the yield strength cannot be 
reached in the extreme compression fibre. 

The classification of a cross-section depends on the following: 

a)	 the yield strength of the steel in the section; 

b)	 the geometry of the section and, in particular, the slenderness (dimension/thickness 
relationship) of its wholly or partially compressed sheets; 

c)	 any lateral connections in the compressed areas; 

d)	 sign of bending moment in the case of asymmetrical sections, in relation to their 
neutral fibre; 

e)	 the bending/axial forces relationship in sections subjected to combined bending or 
compression, which determines the position of the neutral fibre and thus the 
geometry and extension of the compressed areas of the sheet; 

f)	 the direction of the bending moment axis in cases of biaxial bending, which 
determines the orientation of the neutral fibre and thus the geometry and extension 
of the compressed areas of the sheet. 

The different compressed sheets in a cross-section, for example the flanges or 
webs, may be assigned to different classes, depending on the slenderness and 
extension of their compressed areas. 

The highest class is usually assigned to a cross-section, i.e. the least favourable 
one, from among those relating to each of the section‟s compressed parts. 
Alternatively, the classification of a cross-section may distinguish between the 
assignation of its web class and that of its compressed flanges, for the purposes set 
out explicitly in certain Sections of this Code. 

For slender sections of class 4, the reduction in their resistance capacity in 
ultimate limit states, as a result of local buckling, may be estimated using ideal effective 
sections in accordance with subsection 20.7. 

20.3. Criteria for assigning classes to unstiffened sections 

For cross-sections that do not have longitudinal stiffeners, the different parts, 
whether wholly or partially compressed, may be classified on the basis of the 
slenderness limit ratios contained in Tables 20.3.a to 20.3.c. 

In general, any compressed part that does not satisfy the limits for class 3 set out 
in those Tables must be assigned class 4. 

The plastic distribution of stresses shall initially be used to classify cross­
sections, except on the threshold between classes 3 and 4, which shall be established 
on the basis of the elastic analysis (or the elastic-plastic analysis with plastification in 
the tensioned area, as discussed below). 
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Table 20.3.a. Maximum slenderness for internal compression parts (flanges 
and webs) 

Bending 
axis 

Bending 
axis 

Class 
Part subject to 

bending 

Part subject to 

compression 
Part subject to bending and compression 

Stress 

distribution in 

parts 

(compression+) 

1 c/t≤72İ c/t≤33İ 

where Χ>0.5: c/t≤ 

where Χ≤0.5: c/t≤ 

2 c/t≤83İ c/t≤38İ 

where Χ>0.5: c/t≤ 

where Χ≤0.5: c/t≤ 

Stress 

distribution in 

parts 

(compression+) 

3 c/t≤124İ c/t≤42İ 
where ψ>-1: c/t≤ 

where ψ≤-1 : c/t≤62 ε(1- ψ) 

y235/fε 
)(N/mmf 2

y 235 275 355 420 460 

İ 1.00 0.92 0.81 0.75 0.71 

*)	 ψ ≤ -1 applies where the deformation in the compressed fibre is less than the deformation in 
the tensioned fibre, which may be partially plastified. In such case, ψ is the algebraic ratio 
between the plastic deformation in the tensioned fibre (> fy/E) and the elastic deformation in 
the compressed fibre (< fy/E). 
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Table 20.3.b 

Maximum slenderness for compression parts in outstand flanges 

Rolled sections 
Welded sections 

Class 
Part subject to 

compression 

Part subject to bending-compression 

Tip in compression Tip in tension 

Stress 

distribution in 

parts 

(compression+) 

1 c/t≤9İ c/t≤ c/t 

2 c/t≤10İ c/t≤ c/t 

Stress 

distribution in 

parts 

(compression+) 

3 c/t≤14İ c/t≤21ε 

y235/fε 
)(N/mmf 2

y 235 275 355 420 460 

ε 1.00 0.92 0.81 0.75 0.71 

The value of the local buckling factor kı may be obtained from Tables 20.7.a and 

20.7.b. 
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Table 20.3.c. Maximum slenderness for compression parts in special cases 

Angles 

See also “outstand flanges” 

(Table 20.3.b) 

This does not apply to angles in 

continuous contact with other 

components 

Class Section in compression 

Stress distribution 

in parts 

(compression+) 

3 : 

Tubular sections 

Section in bending and/or compression 

1 250εd/t 

2 270εd/t 

3 290εd/t 

y235/fε 

)(N/mmf 2
y 235 275 355 420 460 

 1.00 0.92 0.81 0.75 0.71 


2 1.00 0.85 0.66 0.56 0.51 

The following situations may also be considered: 

a)	 compression parts shall be assigned to class 1 if their local buckling may 
effectively be prevented through connectors or other fixing components to a 
concrete slab or other stiff system. 

In such cases, the maximum distance between connector axes in the direction of 
compression shall not exceed: 

22 tf, , if the slab is in continuous contact with the part; 

15 tf 

y235/f

y235/f , if it is not. 

Furthermore, the maximum distance from the extreme of the part to the nearest 
connector line shall be less than: 

9 tf , where tf is the thickness of the compressed part; y235/f

b) With the exception of bridges or components of particular relevance, cross­
sections with class 1 or 2 flanges and class 3 webs may be classified as effective 
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class 2 cross-section, replacing the compressed area of the web with two sub­
parts of dimension: 

, where tw is the thickness of the web. 

Both sub-parts shall be located adjacent to the compressed flange and the plastic 
neutral fibre of the new ideal effective cross-section (see Figure 20.3.a); 

1 compression 
2 traction 
3 neutral plastic fibre 
4 not considered 

Figure 20.3.a. Class 3 web equivalent to a class 2 web where the flanges are of class 1 
or 2 

c)	 For cross-sections of class 3 or 4 that are asymmetrical in relation to the neutral 
bending fibre, and where plastification first occurs in the tensioned area of the 
cross-section, it may be permitted, in order to assign both the web class (see 
Table 20.3.a) and the ultimate resistance moment of the section, the plastic 
analysis of the tensioned fibres of the section (see Figure 20.3.b). 

The maximum tensile deformation shall be limited to 6 İy, where İy is the yield 

strength of the steel. Continuous elements must also satisfy the ductility 
requirements set out in subsection 20.5; 

COMPRESSION 

e.g. 
compressed 

flange 

neutral axis of the 
transformed section 

TRACTION Transformed section Deformation Diagram of stress in the 
diagram web and drawn flange 

Class 3 Class 4 

Figure 20.3.b. Elastic-plastic response to tension in class 3 or 4 webs 
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d) Except in the case of ultimate limit state checking on components that are 
susceptible to instability problems, which are discussed in Section 35, cross­
sections of class 4 may be regarded as sections of class 3 where they are 
required for design stresses that are lower than the effective design yield strength 
of the steel, and the slenderness of the wholly or partially compressed parts is 
lower than the limit values given in Tables 20.3.a to 20.3.c, but adopting a 
corrected value of ε‟ such that: 

ε
ζ

/γf
εε'

Edc,

M0y
 , where: 

fy	 yield strength of the steel, in N/mm2; 

ıc,Ed,	 maximum design compression stress acting on the part to be 

classified, obtained on the basis of a first-order global analysis or, 
where relevant, a second-order global analysis, for the design 
hypothesis being considered; 

e)	 tubular sections of class 4, the analysis of which must be approached using 
laminate theory, do not fall within the scope of this Code. 

20.4.	 Criteria for assigning classes to sections with longitudinal 
stiffeners 

Compressed parts that have longitudinal stiffeners shall be classified as class 4. 

Alternatively, the section may be classified in accordance with subsection 20.3 
without taking into account the presence of such stiffeners. 

20.5.	 Cross-sections requirements for plastic global analysis 

Using a plastic global analysis means that adequate rotation capacity must be 
ensured at the plastic hinge location. 

In general, rotation requirements may differ depending on the location of the 
plastic hinge and the load hypothesis being considered. 

The rotation requirements for the plastic design of a structure may be assumed if 
the conditions set out below are met for all members where plastic hinges form, or are 
likely to form, under the different design hypotheses that are to be considered. 

In a uniform member, the following two requirements are satisfied: 

–		 cross-sections at the plastic hinge location shall be of class 1; 

–		 in hinges located on supports or under the action of local transverse forces 
that exceeds 10 % of the plastic shear resistance of the cross-section, 
transverse web stiffeners shall be provided within a distance from the hinge 
location not exceeding half of the height of the cross-section. 

Where the cross-section of the member vary along their length, the following 
additional criteria should be satisfied: 

TITLE 2	 page 23 



     

           
         

  

        
          

         
          

         
      

     
        

   

        
       

      
        
  

   

       
       

      

   

       
       

       
          

           
    

      

     

 

   

       

   

–		 the web thickness should not be effective for a distance each way along the 
member from the plastic hinge location of at least double the clear depth of the 
web; 

–		 the compression flange should be class 1 for a distance each way along the 
member from the plastic hinge location of not less than double the clear depth 
of the web at the hinge section, and wherever the bending moment in the 
section is greater than 80 % of the hinge's plastic resistance moment; 

–		 elsewhere in the member, the compression flange should be class 1 or 2, and 
the web should be class 1, 2 or 3. 

The geometry and connections of steel members must also ensure resistance to 
lateral buckling. They shall also ensure lateral restraint on compression flanges in the 
plastic hinge sections. 

If the plastic hinge is located in a jointed section, the joint must have adequate 
ductility to ensure the required hinge rotation or, alternatively, be designed with 
sufficient resistance to ensure that the plastic hinge develops in the member outside 
the joint. The resistance and ductility requirements for joints are discussed in Section 
57. 

20.6. Cross-section requirements for elastic global analysis 

An elastic global analysis usually always applies, irrespective of the class of the 
cross-sections in the members of the structure, without any other restrictions than the 
subsequent resistance checks, according to their class. 

20.7. Properties of the effective section in slender cross-sections 

In general, the properties of the effective section in cross-sections of class 4 
(slender) are obtained by defining certain effective widths in the compressed areas of 
the parts, in accordance with the criteria set out in Table 20.7.a for internal 
compression web parts and in Table 20.7.b for flange parts with a free edge. 

The reduction factor ρ of the compression part width may be estimated according 
to the following expressions: 

0.1
λ

ψ)0.055(3λ
ρ

2

p

p



 , for internal compression part; 

0.1
λ

0.188λ
ρ

2

p

p



 , for parts with a free edge, 

where: 

ζcr

y

cr

y
p

k28.4ε

/tb

ε

ε

ζ

f
λ  , and: 

ψ ratio between deformations at the extremities of the parts, in accordance 

with Tables 20.7.a and 20.7.b; 
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ıcr ideal critical stress for local buckling: 

, with 

2

222

22

E

b

t
190000

b)υ12(1

Etπ
ζ


















 , in N/mm2 

ν Poisson‟s ratio of the steel; 

t part thickness; 

İcr ideal critical deformation for panel local buckling: 

2

ζcr
b

t
0.9kε 










kı part local buckling factor, obtained from Tables 20.7.a and 20.7.b; 

b part width, obtained in accordance with the figures in Tables 20.3.a, 

20.3.b and 20.3.c. 

In slender sections with stiffened webs or flanges (Figure 20.7.a), the stiffened 
part may be treated as a set of sub- part of width b, delimited by the longitudinal 
stiffeners, thus obtaining the effective width of each sub- part in accordance with the 
criteria set out above, and depending on the ratio between the deformations on its 
edges. 

compressed 
flange 

neutral axis of 
the gross 
section 

neutral axis of the 
effective-flange 
section neutral axis of the 

effective section 

tensioned flange 

GROSS SECTION EFFECTIVE-FLANGE EFFECTIVE 
SECTION SECTION 

Figure 20.7.a. Effective section in stiffened slender sections 
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Table 20.7.a. Reduction factor ρ (internal parts) 

INTERNAL PARTS FOR FLANGES AND WEBS 

STRAINS EFFECTIVE WIDTH br 

1 > 0 (compression) 

0ψ

0.6bb

0.4bb

ρbb

rr2

rr1

r









1

2

ε

ε
ψ  1 0ψ1  0 1ψ0  1 5ψ1 

k

1α  4.0 
ψ1.05

8.2


7.81 

23.9 
2ψ)5.98(1

1α 

k = local buckling factor 
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        
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07.021.0
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Table 20.7.b. Reduction factor ρ (parts with a free edge) 

INTERNAL PARTS FOR FLANGES AND WEBS 

STRAINS EFFECTIVE WIDTH br 

1 > 0 (compression) 

F
R

E
E

 E
D

G
E

F
R

E
E

 E
D

G
E

 

1

2




  1 1 01  0 10  1

k 0.43 1.70 23.8 

1 ≤ 0 (TENSION) 

F
R

E
E

 E
D

G
E

 

cr ρbb 

for 

k = local buckling factor 
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The effective widths for compression flanges may usually be obtained from the 
geometry of the gross cross-section. However, in order to obtain the effective widths of 
the webs, the deformation plane ψ must be used. This is obtained from the effective 

area of the compression flange parts. It is not usually necessary to repeat the process, 
and the gross dimensions of the web may be used to calculate ψ (see Figure 20.7.b). 

compressed flange 

neutral axis of the 
neutral axis of the gross section 

effective-flange 
section 

neutral axis of the 
effective section 

tensioned flange 

GROSS SECTION EFFECTIVE- EFFECTIVE 
FLANGE SECTION 
SECTION 

Figure 20.7.b. Definition of the effective section 

The neutral fibre of the effective section will usually experience a displacement of 
eN value in relation to the neutral fibre of the gross section (see Figures 20.7.c and d). 
Such displacement must be taken into account in order to obtain the static parameters 
(Ief and Wef) of the effective section. 

Gross section Reduced section 

G centre of gravity of the gross section 
G’ centre of gravity of the reduced section 
1 neutral fibre of the gross section 
2 neutral fibre of the reduced section 
3 ineffective areas 

Figure 20.7.c. Reduced section under axial force 
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Gross section Effective section 

G centre of gravity of the gross section 
G’ centre of gravity of the effective section 
1 neutral fibre of the gross section 
2 neutral fibre of the effective section 
3 ineffective areas 

Figure 20.7.d. Effective section under bending 

When cross-sections of class 4 are stressed by an axial force acting on the 
centre of gravity of the gross section, the effect of displacement of the neutral fibre 
between the effective section and the gross section must be considered, in order to 
obtain the increase in bending forces on the neutral fibre of the effective section. In 
order to avoid iterative processes, such additional moment may be approximately 
estimated using the displacement eN of the neutral fibre of the effective section, 
assuming that it is subjected only to a centred compression (Figure 20.7.c): 

Δ M = N eN 

Apart from checks on the ultimate limit states of steel members that are liable to 
instability problems, which are discussed in subsections 35.1, 35.2 and 35.3, the 
effective widths of the compressed parts of cross-sections in class 4 may be estimated 

more precisely using a value of , calculated form the values of the maximum stress 

or deformation in the compressed part. These values are obtained using the effective 
widths of all fully or partially compressed parts in the section: 

p

M0y

Edc,
p

M0y

Edc,
predp, λ

/γε

ε
λ

/γf

ζ
λλ 

where: 
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ıc,Ed	 maximum design compression stress that loads this part, 

obtained from the static parameters of the effective section for 
the load hypothesis being considered; 

İc,Ed = ıc,Ed/E	 maximum design compression deformation, estimated in the 

same way. 

This procedure requires an iterative calculation in which both the values for ıc,Ed 

and İc,Ed and the ratio between the deformations at the extremities of the part ψ, and 

the effective widths for the various parts and sub-parts, are obtained at each stage 
from the stress and deformations laws of the total effective section calculated in the 
previous iteration. 

Section 21. Consideration of the effects of shear lag 

21.1. Bases 

The content of this Section does not apply to rolled sections or trussed sections 
with reduced-dimension flanges. 

The diffusion of the shear force from the edges of contact between webs and 
flanges, compressed or tensioned ,in linear members with open or closed sections, 
leads to non-linear distribution of the direct stresses in the flange panels of such 
sections (see subsection 21.3.5). 

It may be assumed for practical purposes, when checking sections and 
estimating the bending stiffness incorporated into the global models for the structural 
analysis, that direct stresses are distributed uniformly at a certain effective width of the 
flange, which is known as the effective width. 

The effective width depends on the member type (isostatic or continuous), the 
action type (local or distributed), the length of the member between points of zero 
bending moment, the presence of stiffeners in the flanges, the span of flanges with free 
edges, and finally the number of webs in the section and the distance between those 
webs. 

The effective width varies throughout the member‟s directrix. It may also vary 
depending on the materials‟ plastification state or possible local buckling in the 
compressed flange parts, which is different in serviceability and failure situations. 

The effects of shear lag may be neglected when: 

b0 ≤ L / n 

where: 

b0	 flange outstand (b1), for external semi-flanges, or half the width of an 
internal element (b), for internal semi-flanges (see Figure 21.3.a); 

L	 span of isostatic members or approximate length between adjacent 
points of zero bending moment in continuous members (see subsection 
21.3.1); 

n=	 20 for conventional building members; 
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50	 for bridges or one-off building members with slender sections or 
where the stress or deformation control requires great precision; 

20	 for ultimate limit state checks on sections of class 1 or 2 (see 
Section 20), in all cases. 

21.2.	 Effective width depending on analysis type 

The effects of shear lag need only be considered for the global analysis of the 
structure when their impact is significant, for example: 

–		 where there are significant reductions in the effective width of flanges; 

–		 where the Designer feels that great precision is needed for the stress or 
deformation checks; 

–		 in lattice, arched or stay bridges; 

–		 in deformation checks on assemblies of cantilevered parts with significant 
lengths between webs. 

It is not necessary to consider the effects of shear lag in the global analysis for 
structures composed of double T sections or beams, mainly in building. 

In all cases, and unless greater precision is required, a uniform effective width 
may be assumed over the length of the span for the structural analysis, using the 
effective width corresponding to the centre of span section, as defined in subsection 
21.3. 

Where the limits in subsection 21.1 are exceeded, the effects of shear lag should 
be considered using the effective widths defined in subsections 21.3 and 21.4 at 
serviceability and fatigue limit state verifications, and those defined in subsection 21.5 
for ultimate limit state verification. 

The elastic distribution of direct stresses due to the diffusion of patch loading in 
the web applied at the flange level may be estimated in accordance with subsection 
21.6. 

21.3.	 Effective widths of unstiffened flanges for serviceability and fatigue 
limit states 

The effects of shear lag on the elastic phase may be estimated using an effective 
flange width obtained by (see Figure 21.3.a): 

be = ψel b, for internal flanges; 

b1e = ψel b1, for outstand flanges, 

where ψel (≤ 1) are the reduction factors specified below. 
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Figure 21.3.a. Effective widths for open and closed sections 

The distribution of effective widths throughout a continuous beam may be 
assumed in accordance with the diagram in Figure 21.3.b. 

Figure 21.3.b. Distribution of effective widths for continuous beams 

21.3.1. Effective lengths 

In order to estimate ψel, an effective length L may be used, where L is the 

distance between points of zero bending moment. To put it simply, the approximate 
effective lengths given in Figure 21.3.1 may be used for continuous beams provided 
adjacent spans do not differ more than 50% and any cantilever span is not larger than 
half the adjacent span. 
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12L l    )(25.0L 32 ll     

270.0L l    
385.0L l     

for	 for el,2ψ el,2ψ

for	 for and el,1ψ el,1ψ el,4ψ

Figure 21.3.1. Effective lengths for continuous beams 

21.3.2. Elastic ψel factors. Uniformly-distributed loads in continuous beams 
with compensated spans 

The elastic reduction factors for effective flange width, ψel, use the following 
values, depending on the parameter β= b0/L (where b0 is defined in subsection 21.1): 

–		 in all cases:
 

ψel,i = 1 β ≤ 0.02
	

–		 in the centre of isostatic or continuous spans (positive bending):
 

ψel,1 = 1 β ≤ 0.05
	

2el,1
6.4β1

1
ψ


 0.05 < β < 0.70 

5.9β

1
ψel,1  0.70 ≤ β 

–		 in areas around the supports for continuous beams or cantilevers (negative 
bending): 

2

el,2

1.6β
2500β

1
β6.01

1
ψ











 0.02 < β < 0.70 

0.70 ≤ β 

8.6β

1
ψel,2 

TITLE 2	 page 33 



     

     

        

    

   

    
    

      

         
    

 

     
    

        

5.74β.(1.115ψel,3      

   

         

        

           

             

        
   

   

       

      
    

        
      

      
            

–		 at extreme spans of continuous beams (positive bending):
 

ψel,4 = (0.55 + 0.025 / β) ψel,1 ≤ ψel,1
 

–		 in cantilevered areas (negative bending): 

ψel,5 = ψel,2 

The expressions above are assumed to apply to uniform loadings (parabolic laws 
of bending moment). 

21.3.3. Elastic ψel factors. Special cases 

The existence of significant concentrated or local loads may reduce the effective 
width significantly in relation to that obtained where there are only uniformly-distributed 
loads. 

In central span areas subjected to local loads (linear laws of bending moment), 
the reduction factor is expressed as follows: 

–		 if the concentrated load is applied at L/2: 

0.02 < β ≤ 0.05 

2el,3
3.2β4.0β1

1
ψ


 0.05 ≤ β 

–		 if the concentrated load is applied at x < L/2: 

ψel,3 = 0.33 (2 ψel,3 (β*x) + ψel,3 (β*L-x)) , where: 

ψel,3 (β*x) the value of ψel,3 obtained for a β*x = 0.5 b0/x; 

ψel,3 (β*L-x) the value of ψel,3 obtained for a β*L-x = 0.5 b0 / (L-x); 

–		 for cantilevers subjected to concentrated loads at their extremes, the following 
may also be used: 

ψel,5 = ψel,2 

The ψel factors in subsection 21.3.2 may be used where bending is mainly due to 

uniform loading and the members are isostatic or continuous and fulfil the geometric 
span limits in subsection 21.3.1. 

Where the effect of concentrated or local loads is sufficiently significant in relation 
to that of distributed loads and overloads, or where the conditions for using the 
effective lengths L given in Figure 21.3.1 are not met, a single global reduction factor 
may be used for the section, obtained by the following expression: 
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where: 

iel,

i

i
el

ψ

M
 Σ

M Σ
ψ 

Mi	 bending moment in the section for the isolated load „i‟, with its 
corresponding algebraic sign; 

Σ Mi	 total bending moment loading the section; 

ψel, I	 reduction factor for the effective width corresponding to the isolated load 'i', 

and obtained using the approximate expressions defined above. Effective 
length Li is the distance between points of zero bending moment for the 
load „i‟. 

21.3.4. Members under combined local and global loads 

Certain structural members are loaded by a combination of the effects of local 
bending that result from the action of the direct loads that act on them, and the effects, 
usually axial forces, of the member‟s involvement in the global response of the 
structure. 

For example, this is the case for the upper chords in lattice structures, in decks of 
stay systems, stay in lower deck arches, etc. 

The structural analysis (local and global) and section resistance checks shall 
consider the different effective widths of such members in order to reflect adequately 
the effects of local bending under direct loads and the diffusion on its plane of axial 
loads from the overall work. 

21.3.5. Approximate distribution of direct stresses in flanges 

Once ψel has been found for a section, the transverse distribution of direct 
stresses over the width of the flange may be estimated in a suitably approximate way, 
as shown in Figure 21.3.5. 

Figure 21.3.5. Approximate law of direct stresses in flanges 
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- If ψel > 0.20:
 

ımin = ımax (1.25 ψel – 0.25);
 

ıx = ımin + (ımax -ımin) (1 - y/b0)
4; 

- If ψel ≤ 0.20:
	

ıx = 0 for y ≥ 5 ψel b0; 


ıx = ımax (1-y / (5 ψel b0))
4 for y < 5 ψel b0. 

21.4. Effective widths of stiffened flanges for serviceability and fatigue 
limit states 

The presence of stiffeners in flanges on steel beams or box girders (Figure 21.4) 
increases the effects of shear lag, reducing the effective widths that are to be 
considered, which may be estimated in a similar way to unstiffened flanges: 

Figure 21.4. Effective widths on stiffened flanges. 

be = ψ'el b, for internal flanges; 

b1e = ψ'el b1, for outstand flanges. 

The reduction factors ψ'el are obtained using the expressions set out in the 
preceding subsection, but replacing the parameter β with: 

β‟ = Χ β = Χ b0/L 

where: 

tb

A
1α

0

sl

b0 = b for internal, stiffened flanges;
 

b0 = b1 for outstand, stiffened flanges;
 

Asl = area of longitudinal stiffeners situated within the flange width b0; 


t = flange thickness.
 

TITLE 2 page 36 



     

    

          
       

      

   

     
        

     

     
       

el
β
elult ψψψ        

el
β' 
elult ψ'ψ'ψ'         

        
         

        
       

    

        
         

        
         

         

      

 

     
         
      

  

    

          
        

      
        

  

  

21.5. Effective width of flanges in ultimate limit states 

The effects of shear lag on steel section resistance checks may be estimated 
conservatively using the same elastic reduction factors for the effective flange width, 
ψel, defined in subsections 21.3 and 21.4. Alternatively, more precise criteria may be 

applied as follows: 

Where the resistance checks for ultimate limit states consider plastified flanges, 
the reduction factors for effective flange width in the elastic-plastic range, ψult, apply 
more favourable values than these ψel values. 

This may be assumed for tensioned flanges and compressed flanges in cross­
sections of class 1 or 2, in accordance with Section 20. 

for unstiffened flanges; 

for tensioned flanges with longitudinal stiffeners. 

For slender cross-sections of class 4, it is necessary to consider the effects of 
shear lag and the local buckling of compressed parts together when checking ultimate 
limit state. A reduced effective area for compressed flanges, Aef, must therefore be 
used, and it is estimated using the expression: 

Aef = Ac, ef ψult where: 

Ac,ef area of the effective section of the compressed slender flange, with or 
without stiffeners, related to local buckling (see Section 20); 

ψult reduction factor for the effective width of the compressed flange, related 
to shear lag, estimated in the elastic range using the expressions for ψel 

(see subsections 21.3 and 21.4), but replacing the parameter β with: 

β‟ = Χβ = Χ b0/L, where: 

tb

A
α

0

efc,


For compressed flanges of class 3 (see Section 20), where there are practically 
no signs of local buckling or deformation outside the elastic range, the following shall 
be used for checking ultimate limit state: 

ψult = ψel 

21.6. Effective width for local loads applied in the web plane 

The application of local loads in the web plane of a section through the flange 
cover plate causes a distribution of direct stresses in the transverse direction of the 
member‟s directrix, and the elastic diffusion over that web plane obeys a non-linear law 
(see Figure 21.6) which may be calculated approximately using the following 
expression: 

where: 
)a(tb

F
ζ

stwe

Ed
Edz,



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ız,Ed design value of direct stress in the transverse direction to the directrix at 

the point of the web that is under consideration; 

FEd	 design value of the transverse force applied; 

tw	 web thickness; 

ast	 area of the gross cross-section, per unit of length, of any transverse 
stiffeners situated in the area immediately affected by the load under the 
cover plate, assuming diffusion at 45º through its thickness. The value of 
the area of a stiffener divided by the distance between stiffener axes is 
used. 

The effective width, be, is obtained using the following expression: 

2

e
ee

ns

z
1sb 













 where: 

w

st

t

a 0.878
10.636n 

se = ss + 2 tf where: 


tf flange thickness;
 

ss length of the area where the local load is applied to the flange cover plate;
 

se length of the diffusion area of the local load in the contact section flange­
web, assuming load diffusion of 45º in the flange cover plate; 

z	 transverse distance between the section studied and the contact section 
flange-web, next to the load application area (see Figure 21.6). 

transverse stiffeners 

approximate distribution 

actual distribution 
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Figure 21.6. Diffusion of local loads on the web plane 

Section 22. Consideration of imperfections 

22.1. Bases 

The second-order analysis of structures the response of which is sensitive to 
deformation of their initial geometry must take sufficient account of the effects of 
residual stresses on the steel's non-linear response, as well as inevitable geometric 
imperfections such as lack of verticality, straightness, flatness or fit and eccentricity of 
joints, and other execution and assembly tolerances. 

These effects may usually be incorporated into the structural analyses by using 
certain equivalent geometric imperfections. 

The effects of imperfections must be considered in the following cases: 

a)	 the effect of imperfections on the global analysis of the structure; 

b)	 the effect of imperfections on the analysis of lateral bracing systems for bending or 
compressed members; 

c)	 the effect of imperfections on the local analysis for individual members. 

Imperfections must be included in the structural analyses for ultimate limit state 
checks wherever they have a significant effect. It is not usually necessary to consider 
them for checking serviceability limit state. 

22.2. Application method 

The effects of equivalent geometric imperfections, which are defined in 
subsection 22.3, must be included in the global analysis of translational structures that 
are susceptible to lateral instability phenomenon (Sections 23 and 24). The forces 
resulting from the analysis must be considered in subsequent resistance checks on the 
structure's various members. 

In the case of braced structures (see subsection 23.3), the equivalent geometric 
imperfections defined in subsection 22.3 are also used to check the resistance of 
stabilisation systems for lateral bracing (cores, diaphragm walls, lattices, etc.), in 
accordance with subsection 23.4. 

The effects of the imperfections set out in subsection 22.4 shall also be 
incorporated into the structural analysis for any lateral bracing systems for bending or 
compressed members. The forces resulting from the analysis shall be taken into 
account when designing such bracing systems. 

In the case of resistance checking for individual members that are sensitive to 
instability, using the methods or formulae in subsections 35.1, 35.2 and 35.3 of this 
Code, the effects of equivalent geometric imperfections in individual members are 
already implicitly included in such checks. 

According to subsection 22.5, in the case of unconventional individual members 
the resistance checking for which is not explicitly covered by the methods set out in 
Section 35, and in the case of global instability of structures mentioned in subsection 
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22.3.2, the local geometric imperfections of the individual members set out in 
subsections 22.3.2 and 22.3.5 must be incorporated into the second-order analysis of 
such members or structures, respectively. 

If so desired, equivalent geometric imperfections may be replaced by equivalent 
forces transversal to the directrix of the compressed members, in accordance with 
subsections 22.3.3 and 22.4.1. 

22.3. Imperfections in the global analysis of the structure 

Equivalent geometric imperfections must be included in the global analysis of all 
structures for which second-order effects cannot be discounted. Section 23 set out the 
conditions of non-translational for structures that allow such effects not to be 
considered. 

The geometry of the design model is the result of incorporating equivalent 
geometric imperfections into the ideal, theoretical geometry in such a way as to 
produce the most unfavourable effects. 

The imperfections to be considered may therefore be obtained from the modes of 
global buckling of the structure in the plane of buckling considered. 

It is usually necessary to examine the possibility of structural buckling on and 
outside its plane, but not at the same time (Figure 22.3). 

In some structures with low global torsional stiffness, it will also be necessary to 
consider the possibility of generalised torsional anti-symmetric buckling, by applying 
imperfections at opposite direction at the two opposite faces of the structure (Figure 
22.3). 

Figure 22.3. Possible forms of structural instability, due to translational or torsional 
effects 

The effect of imperfections on the global analysis of translational structures is the 
sum of a global verticality defect in the structure and some initial curvatures in all its 
compressed members, as a second-degree parabola. 

If so desired, geometric imperfections may be replaced by a self-balancing 
system of equivalent transverse forces, in accordance with subsection 22.3.3. 
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In general, any instability under symmetrical and asymmetrical buckling modes 
must always be analysed, as well as instability in each combination of actions in which 
the lowest load amplification factor that produces elastic instability in the system is 
obtained. 

22.3.1. Equivalent global sway imperfections 

An initial verticality defect shall be considered, such as (see Figure 22.3.1):
 

 = kh • km • 0 where: 


0 basic value of lateral imperfection: 0 = 1/200;
 

kh reduction factor for height „h‟ (in metres) of the structure:
	

h

2
kh  with 1.0k

3

2
h 

; 

km	 reduction factor for the number of alignments, „m‟, for compressed 
members (bridge piles or columns in buildings) on the buckling plane being 
considered: 











m
km

1
15.0

The expression of „m‟ only accounts for members loaded by compression with a 
design value, NEd, equal to or greater than 50 % of the mean compression per member, 
for the buckling plane and combination of actions considered. 

In principle, „m‟ need only take account of compressed members that extend 
throughout the total height „h‟ of the structure used to obtain kh. 

For building frames, sway imperfections may be disregarded for a certain 
combination of actions, where: 

HEd ≥ 0.15 VEd where: 

HEd	 design value of the result of the total horizontal actions at the base of the 
building, corresponding to the combination of actions considered; 

VEd	 design value of the result of the total vertical actions at the base of the 
building, for that combination of actions. 

The structural effects caused by equivalent global sway imperfections are less 
significant than those caused by horizontal actions that act on the structure. 
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Figure 22.3.1. Global sway imperfections 

22.3.2. Equivalent initial curvatures in compressed members 

In addition to the initial global verticality defect in the structure, and with the 
exception of the circumstances set out below, the effect on the global instability of 
translational structures of local imperfections of all compressed members must be 
considered where such members fulfil the following two conditions: 

a)	 at least one of the two nodes at the ends of the member may not be regarded as 
hinged; 

b)	 the non-dimensional slenderness of the member (see subsection 35.1.2) on the 
buckling plane that is considered, calculated as a double-hinged bar at its ends, is 
such that: 

where: 
Ed

y

N

fA
0.5λ




A	 area of the member‟s cross-section; 

NEd	 design value of the compression force in the member, for the combination 
of actions analysed. 

This condition is equivalent to the design compression axil of the member, NEd, 
being more than 25 % of its critical load according to Euler‟s formula, Ncr. 

In such cases, an equivalent initial bow may be used for the compressed 
members affected, as a second-degree parabola and maximum amplitude of member 
imperfection e0, such that: 
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Type of buckling curve 
(see subsection 35.1.2) 

Global analysis method for the structure 

Elastic global analysis Plastic global analysis 

e0 e0 

a0 L/350 L/300 

A L/300 L/250 

B L/250 L/200 

C L/200 L/150 

D L/150 L/100 

where L is the member length. 

If a more precise analysis is desired, the expressions set out in subsection 22.3.5 
may be used alternatively. 

22.3.3. Horizontal forces equivalent to imperfections 

The effects of global sway imperfections and initial bow imperfections on 
compressed members may be replaced by systems of equivalent, self-balanced, 
horizontal forces, proportionate to the vertical loads applied in the relevant combination 
of actions. This is estimated as follows for each member (see Figure 22.3.3): 

a)	 in the case of initial verticality defects in compressed members: 

Htd =  NEd 

b)	 in the case of initial bow in compressed members, where it is necessary to consider 
them in accordance with subsection 22.3.2: 

2
0Ed

td
L

eN 8
q




L

eN 4
H 0Ed

td




where L and NEd are respectively the length and the compression force design 
value of the member. 
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Figure 22.3.3. Horizontal forces equivalent to imperfections 

22.3.4. Imperfections for the global analysis of archs 

Unless the general method described in subsection 22.3.5 is used in the global 
instability analysis for arches under buckling on or outside their plane, the geometric 
imperfections defined below may be used. 

22.3.4.1. Buckling on the arc plane 

Form of equivalent geometric 
imperfections on the arch plane 

(parabola or sine function) 

Value of e0 for sections corresponding to 
the various buckling curves 

a b c d 

1 
Triple-hinged arch 
with symmetrical 

buckling 300

s

250

s

200

s

150

s

2 

Double-hinged, fixed­
ended or triple-hinged 
arch with antimetric 

buckling 
600

1

500

1

400

1

300

1
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22.3.4.2. Buckling outside the arch plane 

Form of equivalent geometric 
imperfections outside the arch 

plane (parabola or sine 
function) 

Value of e0 for sections 
corresponding to the various 

buckling curves 

a b c d 

Triple-hinged arch 
Double-hinged arch 
Fixed-ended arch 300

l0

250

l0

200

l0

150

l0

l0 = l for l ≤ 20 m 

l0 = 120 for l ≤ 20 m 

22.3.5. Geometric imperfections relating to forms of buckling in complex 
structures 

As an alternative to the equivalent global and local geometric imperfections set 
out in subsections 22.3.1 and 22.3.2 respectively, a single system of initial geometric 
imperfections may be defined, similar to the shape of the elastic critical buckling mode 
of the structure, for the combination of actions and the buckling plane under 
consideration, and with an amplitude given by: 































"

maxcr,

Rk

2o"

maxcr,

cr

oo
EIη

N

λ

1
e

EIη

N
ee'

where: 

ηcr Shape of the elastic critical buckling mode of the structure, where 
EIη” cr,max is the bending moment at the critical cross-section due to ηcr. 

  γ

Rk

Rk
0 k 

N

M
2.0λ αe 

where: 

1.0
λ χ1

 / γλ χ1
k

2

Μ1

2

γ 





Χ	 imperfection factor for the relevant buckling curve for the critical 
cross-section, in accordance with Table 35.1.2.a; 

χ 	 reduction factor for the relevant buckling mode, in accordance with 

subsection 35.1.2; 
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 relative non-dimensional slenderness of the structure, obtained in 

accordance with the following; 

	 It is assumed that some forces are applied to the nodes of the 
structure, so all elements are loaded by design axial forces NEd, 
resulting from a first-order global analysis for the combination of 
actions considered. Bending moment at the elements may be 
disregarded. 

	 For that combination of actions, the critical elastic instability mode of 
the structure and the critical minimum amplifier coefficient αcr, are 
obtained for the above distribution of design axial forces NEd, when 
starting the elastic instability. 

	 In first-order analysis, it is also obtained the minimum amplifier 
coefficient αuk, of such distribution of design axial forces NEd, when 
the characteristic resistance NRk, is reached in the cross-section of 
the weakest element, without considering the buckling effects. 

	 the relative non-dimensional slenderness of the structure, for such 
combination of actions, is: 

cr

uk






MRk, NRk	 characteristic moment and axial resistance, respectively, of the 
critical cross-section, in accordance with subsections 34.3 and 34.4. 

The quotient 
Rk

Rk

N

M
will thus be: 

A

Wpl
for sections of class 1 or 2; 

for sections of class 3; 

for sections of class 4. 

A

W minel,

ef

minef,

A

W

22.4. Imperfections for analysis of bracing systems 

The effects of equivalent geometric imperfections must be included into the 
analysis of bracing systems which are required to provide lateral stability of bending or 
compressed members. 

An equivalent initial bow will be considered in the members that are to be 
stabilised, such that: 

e0 = km L/500 where: 

L span of the bracing system; 
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km reduction factor for the number of members to be considered, which may 
be estimated in accordance with the following: 











m

1
10.5k m where „m‟ is the number of members to be restrained by 

the bracing system under consideration. 

22.4.1. Equivalent transverse forces on the bracing 

For convenience, the effects of geometric imperfections deriving from the initial 
bow imperfections of the members that are to be restrained may be replaced by a 
system of equivalent forces of value (see Figures 22.4.1.a and 22.4.1.b): 

2

q0
ed

L

δe
8ΣNq


 , where: 

įq in plane deflection of the bracing system, estimated on the basis of a first­
order elastic design under the action of forces „q‟ and of any external action 
that places a load on the bracing system. 

It is therefore necessary to use an iterative process. 

If a second-order analysis is used, įq may be taken as equal to zero, but 

such an analysis shall include all the forces that load the stabilising system; 

NEd maximum value of axial force loading each member that is to be stabilised, 
and assumed to be uniform throughout the length L of the bracing system. 
For non-uniform forces, this hypothesis is slightly conservative. 

Initial bow Equivalent stabilising forces 

Figure 22.4.1.a. Imperfections in the bracing system 
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Figure 22.4.1.b. Equivalent forces, including external action 

Where a bracing system restrains bending or compressed members that are 
spliced and does not transmit bending moment, it must also be verified that the bracing 
system is capable of resisting a local transverse force equal to km NEd/100, transmitted 
by each compressed member in the joint section, and of transmitting it to the bracing 
points adjacent to that member (see Figure 22.4.1.c). In such a case, any external 
loads acting on the bracing systems shall also be included, but any such forces arising 
from the imperfections defined above are not to be added. 

Φ=km Φ0 Φ0=1/200 

2ΦNEd = km NEd/ 100 

1. Splice. 

2. Bracing system. 

Figure 22.4.1.c. Local forces on the bracing system for members with a continuous 
join. 
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Each member of lateral support and connections to the bracing system must also 
be capable of resisting a force equal to km ΣNed/100 of the members that are to be 

restrained. 

22.5. Imperfections in the local analysis of individual members 

The effects of local imperfections in individual compressed or bending members 
are usually considered implicitly in the formulae for verifying instability limit states in 
Section 35. 

Alternatively, or in cases where such formulae do not apply (for example, in 
certain non-uniform section members, or those that have variable compression levels 
throughout their length, or in the presence of transverse loads or complex connection 
conditions at the ends, etc), the resistance of compressed or bending members to 
instability, either on its plane or laterally, may be justified by a second-order analysis 
using certain local initial imperfections, as equivalent parabolic curvatures with the 
maximum amplitude defined in subsection 22.3.2 or, in order to be more precise, in 
subsection 22.3.5. 

In the second-order analysis of lateral buckling problems on bending members, a 
value of 0.5 e0 may be used for sway imperfection, where e0 is the amplitude of the 
equivalent initial imperfection for buckling on a plane perpendicular to bending plane 
(usually in relation to the section‟s axis of smaller inertia). It is not usually necessary to 
incorporate an additional torsional imperfection. 

Section 23. Lateral stability of structures 

23.1. Lateral stiffness 

The influence of second-order effects on the resistance of a structure basically 
depends on its lateral stiffness. 

The lateral stiffness of a structure is usually ensured by means of: 

a) its own stiffness for systems with rigid nodes; 

b) lateral, triangular bracing systems; 

c) lateral bracing systems using diaphragm walls or rigid cores; 

d) a combination of the aforementioned structural schemes. 

When designing semi-rigid joints (see subsection 57.4) between structural 
members, their moment-rotation diagrams (see subsection 57.2) must be taken into 
account when evaluating lateral stiffness. 

Foundations must usually be designed so that the effects of lateral displacement 
and rotation at the base are discounted. 

For asymmetrical structures in plan, the effects of interaction between torsion and 
bending must be considered when checking lateral stability. 

Lateral stability must be ensured both for the structure in service and during its 
various phases of construction. 
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23.2. Classification of non-translational and translational structures 

A structure may be classified as non-translational when its lateral stiffness allows 
disregarding the influence of second-order effects on its resistance. The global analysis 
of non-translational structures may be performed in accordance with the theory for the 
first-order analysis. 

A structure may be regarded as non-translational related to a given mode of 
lateral instability and a determined combination of actions, if it fulfils the following 
criterion: 

where an elastic global analysis is performed; 10
Ed

cr
cr

F

F


where a plastic or elastic-plastic global analysis is 15
Ed

cr
cr

F

F


performed, 

where: 

Fcr	 critical elastic instability load for the mode of global buckling considered, 
under the combination of actions to be considered; 

FEd	 design load that acts on the structure for the said combination of actions; 

Χcr	 amplification factor for which the configuration of design loads must be 

multiplied to cause elastic lateral instability, in accordance with the mode 
of global buckling under consideration. 

All load combinations for which Χcr does not satisfy this non-translational criterion 

must be analysed. 

23.2.1. Non-translational criterion for conventional building structures 

A structure may be classified as non-translational when its lateral stiffness allows 
disregarding the influence of second-order effects of the forces or on its global 
structural performance. The global analysis of non-translational structures may be 
performed in accordance with the theory for the first-order analysis. Second-order 
effects must only be considered for resistance checks on individual compressed 
members, in accordance with subsection 22.5 and Section 35. 

In simple frames with flat-cover or gently sloping lintels, as well as in flat building 
frames, with rigid nodes, the non-translational criterion in subsection 23.2 may be 
assumed to be met if, on each storey and for the combination of actions under 
consideration, the criterion is met for: 






























EdH

p

Edv

EdH
cr

h

F

F

,,

,


 where: 

FH,Ed	 design value of the horizontal force, estimated at the lower level of each 
storey, and resulting from the horizontal loads that act above that level, 
including the effects of the imperfections given in Section 22; 
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Fv,Ed	 design value of the vertical force, estimated at the lower level of each 
storey, and resulting from the vertical loads that act above that level; 

hp	 height of the storey under consideration; 

įH,Ed	 relative horizontal displacement between the upper and lower levels of 
the storey under consideration, under the action of external, horizontal 
and vertical design actions and transverse forces equivalent to the 
imperfections set out in Section 22, for the combination of actions 
considered. 

23.3. Classification of braced and unbraced structures 

A structure may be classified as braced when its lateral stiffness is ensured by 
means of a brace stabilising system that allows the influence of second-order effects 
on its structural response to be discounted. The global analysis may therefore be 
performed in accordance with the theory for the first-order analysis. 

In order for the structure to be considered braced, the stiffness of the brace 
system must be verified using the non-translational criteria set out in subsection 23.2, 
applied to the whole of the structure that is to be classified, including the brace system 
to which it is connected. 

The brace system must also satisfy the requirements set out in subsection 23.4. 

23.4. Analysis of brace systems 

The brace system must be designed to withstand: 

–		 the effects of the imperfections set out in Section 22, both for the brace system 
itself and for all the structures that it braces; 

–		 all horizontal forces that may load the structures that it braces; 

–		 all horizontal and vertical forces that act directly on the brace system. 

All these actions together might be assured to load just the brace system, without 
having a significant impact on the response of the structures that the system braces. 

Section 24.	 Methods for analysing global stability of 
structures 

24.1. Basic principles 

In all structures without sufficient lateral stiffness to be considered non­
translational or braced in accordance with the criteria set out in subsections 23.2 and 
23.3 respectively, their global lateral stability must be checked in accordance with the 
methods described in this Section, which consider the second-order effects as well as 
the equivalent geometric imperfections defined in Section 22. 

Depending on the structure type and method for the global analysis to be 
performed, the second-order effects and equivalent geometric imperfections may be 
considered according to one of the following methods: 
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a)	 through a global translational analysis that includes all such effects, i.e. the 
equivalent global sway imperfections of the translational structure as defined in 
subsection 22.3.1, and the equivalent initial bow for imperfections of the individual 
compressed members defined in subsection 22.3.2. In both cases, the equivalent 
transverse forces set out in subsection 22.3.3 may be used alternatively. For 
complex structures, it is worth using a single system of geometric imperfections 
similar to the modes of buckling, in accordance with subsection 22.3.5; 

b)	 through a global translational analysis of the structure that only considers, apart 
from the items mentioned in subsection 22.3.2, the effects of equivalent global 
sway imperfections, followed by a check on the effects of instability on individual 
compressed members. 

Subsection 22.3.2 sets out the conditions under which the global mobility analysis 
must also incorporate equivalent imperfections for linear bows in certain 
compressed members; 

c)	 in certain basic cases discussed in subsection 35.1 and Annex 5, it may be 
sufficient to verify the stability on individual compressed members in accordance 
with Section 35, using appropriate „buckling lengths‟ (see subsection 35.1 and 
Annex 5), based on the structure‟s global instability mode and using the loads 
obtained according to the first-order theory, without considering the equivalent 
geometric imperfections. 

If method a) is used, it is sufficient to verify the stability of individual compressed 
members using the structure's second-order global analysis, and no additional 
verification is needed for the resistance check on the various sections under the forces 
resulting from the design. 

If method b) is used, the stability of the individual compressed members must 
subsequently be checked, including second-order effects and local imperfections in 
such members that are not previously considered in the second-order global analysis 
of the structure (for example, buckling due to combined bending and compression or 
lateral buckling of the member). 

The methods set out in subsection 35.3 may therefore be used where applicable, 
otherwise the more general methods in subsection 22.5 may be used, assuming that 
the individual member and its buckling length (less than or equal to the distance 
between adjacent points with transverse displacement prevented) are subjected to 
bending and compression loads at the extremities of the member, these being obtained 
from the global translational analysis. In general, such individual members may also be 
analysed, with their actual lengths, using the general non-linear elastic-plastic method 
discussed in subsection 24.4, and subjected to the aforementioned loads at both ends. 

Methods a) and b) require second-order effects under the external loads and 
equivalent effects of the imperfections to be taken into account using an adequate 
structural analysis: 

–		 general, elastic-plastic, non-linear analysis method using the second-order 
theory, in accordance with subsection 24.4; 

–		 elastic methods using the second-order theory; 

–		 where applicable (see subsection 24.2), using an approximate method 
consisting of performing a first-order elastic analysis, followed by amplification 
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of the results of that analysis (bending forces, shearing forces and lateral 
displacement, for example) using adequate factors in accordance with 
subsection 24.2; 

–		 in certain specific cases relating to building structures, as discussed in 
subsection 24.3, elastic methods may be applied to frames with suitably local 
plastic hinges, giving due consideration to the reduction in the structure‟s lateral 
stiffness owing to the presence of such plastic hinges. 

If non-linear analysis methods are used, the principle of superposition shall not 
apply. Independent checks must therefore be carried out on all combinations of actions 
and associated modes of instability that may be relevant. 

24.2. Elastic analysis of translational structures 

Second-order elastic analyses under the action of external loads and equivalent 
geometric imperfections apply to all types of translational structure. 

Alternatively, it may be sufficient to perform a first-order elastic analysis within the 
scope given below and under the external actions and effects of equivalent initial 
geometric imperfections, and to amplify the bending moment, shearing forces and 
other effects caused strictly by lateral deformation by the following factor: 




















cr

1
1

1
where: Χcr ≥ 3.0 

Χcr	 amplification factor for which the configuration of design loads must be 

multiplied to achieve elastic instability, in accordance with the mode of 
global buckling under consideration, and as defined in subsection 23.2. 

This simplified method only applies to:  

a)	 building frames on a single storey; 

b)	 normal building frames with various storeys, provided that all the storeys have 
similar conditions in respect of: 

– vertical load distribution; 

– horizontal load distribution; and 

– lateral frame stiffness in relation to horizontal actions. 

The conditions relating to floor or roof lintels set out in subsection 23.2.1 shall 
also be met; 

c)	 bridges or other types of structure, or any members, where Χcr > 3.0 and it may 

be considered that the sections subjected to maximum bending in the first-order 
analysis (including the effects of imperfections) are basically the same as those 
that are amplified by the second-order effects (PΔ effects). 

In other cases, a general, second-order, elastic analysis method must be used. 
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24.3. Plastic analysis of translational structures 

In general, performing plastic analyses on translational structures is not-allowed, 
but in strictly defined cases under this paragraph, or where the general elastic-plastic 
method is applied using the second-order theory described in subsection 24.4 it may 
be allowed. 

A rigid-plastic analysis of a translational structure, which indirectly considers the 
second-order effects due to global lateral instability, is only permitted for building 
structures that meet the following conditions: 

–		 the cross-sections of members (lintels, supports) liable to develop a plastic 
hinge must satisfy the ductility requirements set out in subparagraph 20.5; 

–		 sections where plastic hinges form must be symmetrical and be suitably 
braced to withstand lateral buckling and buckling on the frame‟s perpendicular 
plane; 

–		 the amplification factor αcr (see subsection 23.2) shall be greater than or equal 
to 5.0; 

–		 even if the preceding limitations are fulfilled, the analysis is still restricted to 
the following conventional building structures: 

a)	 orthogonal frames of one or two storeys where one of the following two 
conditions is met: 

–		 plastic hinges may not develop in the supports; 

–		 plastic hinges may appear at the top or bottom of supports, but not in between, 
and they also fulfil the requirements set out in subsection 24.3.1; 

b)	 orthogonal frames with several storeys where the translational breakage 
mechanism is an incomplete mechanism where hinges are only permitted in the 
lower sections of supports at the bottom storeys. The critical sections must also 
be designed so that such possible hinges in support bases are the last ones that 
occur in the structure, and remaining all the support sections throughout the 
height of the structure in the elastic range throughout the development of 
successive hinges in lintels (see Figure 24.3). 
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plastic hinges only at the bottom of supports on the bottom storey 

Figure 24.3. Incomplete plastic mechanism for orthogonal frames with various storeys 

Second-order forces may be considered indirectly for translational structures with 
rigid/plastic hinges, where applicable, using the elastic second-order analysis models 
for translational structures described in subsections 24.1 and 24.2, provided that they 
adequately consider the plastic hinges in the stiffness conditions for the corresponding 
elastic models. 

24.3.1. Requirements for supports for the plastic analysis 

For orthogonal building frames of one or two storeys where the requirements set 
out in subsection 24.3 are verified so as to allow a simplified, plastic, rigid translational 
analysis that involves plastic hinges at the ends of all or any supports, it is necessary to 
ensure that such sections have adequate capacity to rotate under the simultaneous 
action of the compression forces that load them. 

This requirement may be considered to have been satisfied if, under the axial 
forces obtained by a first-order plastic, rigid analysis, it is verified that: 

or its equivalent: 

Ncr ≥ 11.11 NEd 

where: 

A area of the support, assuming a constant section; 

fy yield strength of the steel; 

NEd design value of the axial compression force in the support; 

Ncr critical axial force of the support according to Euler‟s formula, assuming it 
to be double-jointed; 

 non-dimensional slenderness, corresponding to the ideal critical axial force 

for buckling in the support, and using the height of the support to give a 
conservative buckling length. 
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24.4. General, non-linear analysis method using second-order theory 

The effects of non-linear performance of materials and the equilibrium of the 
structure on its deformed geometric configuration are considered simultaneously in the 
general, non-linear analysis method using second-order theory. 

Furthermore, geometric imperfections equivalent to construction and material 
(residual stress) imperfections, as set out in Section 22, must also be taken into 
account. 

The elastic-plastic effects of non-linear material shall be considered in 
accordance with subsection 19.5, for sections with and without stiffeners. 

This method ensures that the structure neither has any global or local instability 
conditions at the level of its constituent members, nor exceeds the resistance capacity 
of the various sections of those members, in respect of the various combinations of 
actions, together with the corresponding partial factors for safety and the associated 
instability modes. 
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