

Scrum Manager Proyectos

Apuntes de formación Rev.1.1 May-2009

Scrum Manager: Proyectos – apuntes de formación.
Autores
Juan Palacio, Claudia Ruata
Imagen de Portada
Philip A.
Edición
Enero – 2009
Más información, y última versión en: http://www.scrummanager.net
ivido información, y dicinia versión em nuepi// w w miseranimanagermen

Derechos

Título

Derechos registrados en Safe Creative. Condiciones de uso, copia y distribución en: http://www.safecreative.org/work/0904193094566

Contenido

Contenido	3
Prólogo	9
Apuntes de formación Scrum Manager Plataforma abierta para consulta y formación profesional Scrum Manager Servicios profesionales para formación y asesoría Scrum Manager	<i>11</i> 11 11
Concepto clásico de gestión de proyectos	13
Introducción: Proyectos y operaciones Definición clásica de proyecto	<i>15</i> 15
Origen de la gestión de proyectos	15
Organizaciones referentes en la gestión de proyectos Modelo válido para cualquier industria	<i>16</i>
Planificación y seguimiento	16
Gestión predictiva o clásica	17
Ámbito de la gestión de proyectos	17
Resumen	17
El nuevo escenario	19
Escenario de desarrollo en los 80 The New New Product Development Game Características del nuevo escenario	<i>21</i> 21 22
Campos de scrum vs. modelo clásico de desarrollo Fases de desarrollo solapadas	<i>23</i> 23
Características del "campo de scrum" Incertidumbre Auto-organización Control sutil Difusión y transferencia del conocimiento	24 24 24 24 24
Resumen	25
Gestión de proyectos ágil	27
Introducción	29
Objetivos de la gestión ágil 1Valor 2Reducción del tiempo de salida al mercado 3Agilidad 4Flexibilidad 5 Resultados fiables	29 29 29 29 29 30
Las preferencias de la gestión ágil	30
El ciclo de desarrollo ágil 1 Concepto 2 Especulación 3 Exploración 4 Revisión 5 Cierre	30 30 31 31 31
Principales modelos de gestión ágil	31

Contenido

ASD AUP CRYSTAL DSDM SCRUM XBreed – Agile Enterprise	32 32 32 33 33 34
Resumen	34
Gestión de proyectos: ¿formal o ágil?	35
¿Ágil, clásica, predictiva?	37
Premisas de la gestión de proyectos predictiva	37
Características de la gestión de proyectos predictiva	37
Hay otras premisas	37
¿Cuándo y por qué emplear uno u otro estilo de gestión? Características del proyecto Prioridad de negocio Estabilidad de los requisitos Rigidez del producto Coste de prototipado Criticidad del sistema Tamaño del sistema Condiciones de la organización Nivel profesional Cultura organizativa Entorno de desarrollo	38 38 39 39 39 40 40 40 41 41
Resumen	41
Introducción al modelo Scrum para desarrollo de Software	43
El origen	45
Introducción al modelo	45
Control de la evolución del proyecto Revisión de las Iteraciones Desarrollo incremental Desarrollo evolutivo Auto-organización Colaboración Visión general del proceso	46 46 46 46 46 46
Las reuniones	47
Los elementos	47
Los roles	47
Valores	48
Resumen	48
Roles y responsabilidades de proyecto	51
Introducción	53
Responsabilidades generales Scrum Management De management De procesos De producción	<i>53</i> 53 53 53

Resumen	70
Resultados Formato de la reunión	69 69
Entradas	69
Pre-condiciones	69
Objetivos	69
Revisión del sprint Descripción	<i>69</i> 69
Formato de la reunión	68
Resultados	68
Entradas	68
Descripción	68
Seguimiento del sprint	68
Un ejemplo de pizarra	67
Pizarra de trabajo	67
Formato de la reunión Funciones del rol de Scrum Manager ¹	66 66
Resultados	65
Entradas	65
Pre-condiciones	65
Planificación del sprint Descripción general	65
	65
Introducción	65
Scrum: Las reuniones	63
Resumen	62
El Incremento	62
Ejemplos	62
Formato y soporte	61
Pila del Sprint Condiciones	<i>61</i> 61
Formato de la pila del producto	61
Pila del producto: los requisitos del cliente	60
Requisitos y visión del producto	60
Los requisitos en el desarrollo ágil	59
Introducción	59
Los elementos de Scrum	57
De producción	55
De procesos	55
De management	55
Resumen	55
Scrum Manager – Team Leader	55
El equipo	54
El propietario del producto Para ejercer este rol es necesario:	54 54
	54
Responsabilidades y roles "del proyecto"	53

Introducción	73
¿Por qué medir?	73
Flexibilidad y sentido común	73
Criterios para el diseño y aplicación de métricas	73
Cuantas menos, mejor	73
¿El indicador es apropiado para el fin que se debe conseguir?	74
Medición de la eficiencia en la empresa	74
Medición del avance del proyecto	74
Medición de la eficiencia de los trabajos de programación	74
¿Lo que vamos a medir es un indicador válido de lo que queremos conocer?	75
Resumen	75
Medición: Las Unidades	77
Velocidad, trabajo y tiempo	79
Tiempo	79
Trabajo	79
Trabajo ya realizado	79
Trabajo pendiente de realizar	79
Unidades de trabajo	80
Velocidad	81
Resumen	81
Medición: Usos y herramientas	83
Gráfico de producto:	85
Ejemplo:	85
Gráfico de avance: monitorización del sprint	86
Estimación de póker	87
Variante: sucesión de Fibonacci	88
Funcionamiento	88
Resumen	89
Índice	91
Índica	ດວ

Prólogo

Apuntes de formación Scrum Manager

Este es el libro de texto para formación del área de "Proyecto" del marco de gestión "Scrum Manager®".

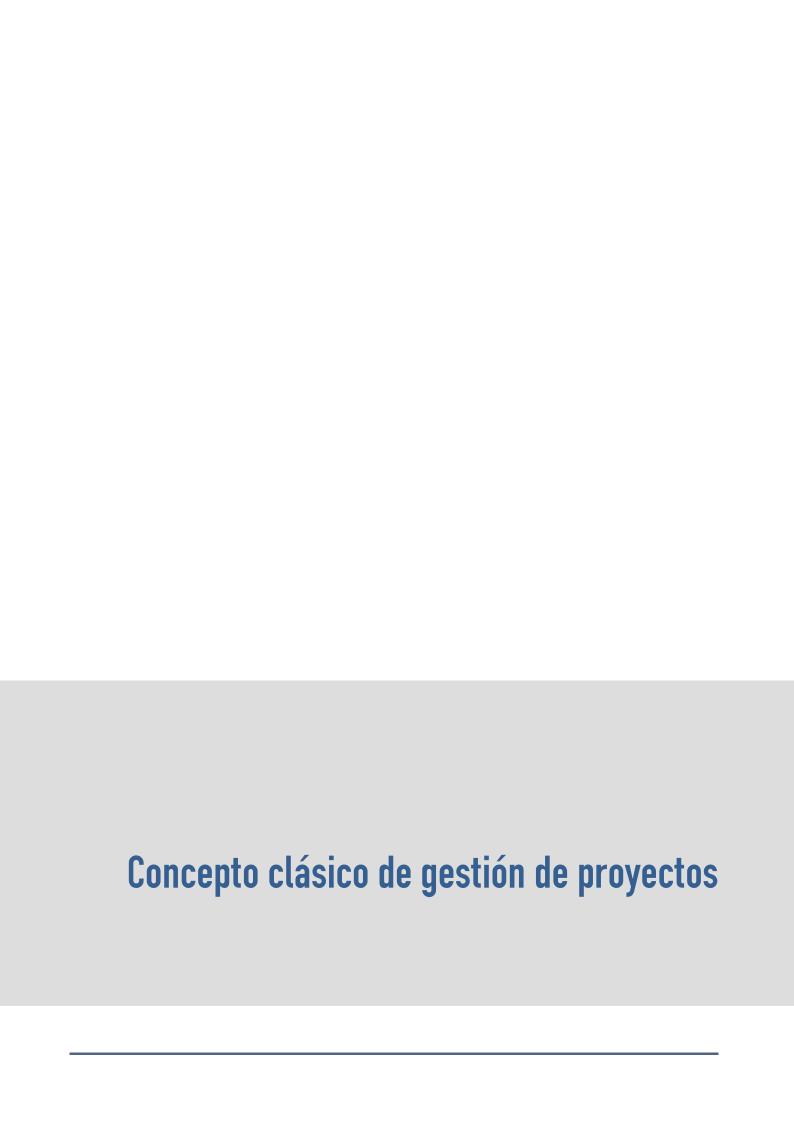
Es un recurso educativo abierto (OER) y forma parte de la plataforma Scrum Manager Open Knowledge: http://scrummanager.net/ok/

Se puede emplear de forma gratuita para consulta y auto-formación a título personal.

Plataforma abierta para consulta y formación profesional Scrum Manager

Scrum Manager Open Knowledge es una plataforma de acceso libre para consulta y formación, está disponible en http://scrummanager.net/ok/ donde encontrarás la última versión de este manual, además de otros materiales, foros, talleres, etc.

Un punto abierto en la Red para consultar y compartir conocimiento, y mantenerte profesionalmente actualizado.


Servicios profesionales para formación y asesoría Scrum Manager

Puedes localizar profesionales y empresas certificadas para servicios profesionales de formación y asesoría en la implantación y mejora de Scrum Management, en el directorio de consultores Scrum Manager:

http://scrummanager.net/ o solicitar información en la dirección formacion@scrummanager.net

Información para formar parte de la red de consultores certificados Scrum Manager en la dirección formacion@scrummanager.net.

Introducción: Proyectos y operaciones

El desarrollo de productos, la prestación de servicios, o incluso la organización de la propia empresa son trabajos que pueden tomar la forma de proyectos o de operaciones.

Ambos compantes tres características:

- Los realizan personas.
- Se emplean recursos limitados.
- Se llevan a cabo siguiendo una estrategia de

Aunque comparten estas tres características, la diferencia clave entre operaciones y proyectos es que:

Las operaciones se ejecutan de forma repetitiva para obtener resultados de similares características Los proyectos producen resultados únicos

Se considera proyecto a la ejecución de un trabajo que además de requerir personas, recursos y ejecución controlada:

Es un desarrollo único

La teoría clásica de gestión de proyectos, añade a la característica anterior otra, que desde la perspectiva de gestión predictiva tiene sentido, pero no tanto, como se verá, desde la perspectiva de gestión de proyectos ágil.

Se desarrolla en un marco temporal preestablecido.

Definición clásica de proyecto

Conjunto único de actividades necesarias para producir un resultado definido en un rango de fechas determinado y con una asignación específica de recursos

Las construcciones de ingeniería civil, como puentes o edificios, son ejemplos clásicos de obras realizadas como proyectos, y en general lo es el desarrollo de cualquier sistema singular.

Un proyecto tiene objetivos y características

Algunos necesitan el trabajo de una sola persona, y otros el de cientos de ellas; pueden durar unos días o varios años.

Algunos ejemplos de proyectos:

- Diseño de un nuevo ordenador portátil.
- Construcción de un edificio.
- Desarrollo de un sistema de software.
- Implantación de una nueva línea de producto en una empresa.
- Diseño de una campaña de marketing.

Origen de la gestión de proyectos

Los proyectos han existido siempre.

Cualquier trabajo para desarrollar algo único es un proyecto, pero la gestión de proyectos es una disciplina relativamente reciente que comenzó a forjarse en los años sesenta.

La necesidad de su profesionalización surgió en el ámbito militar.

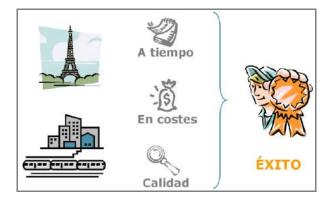
En los 50, el desarrollo de complejos sistemas militares, requería coordinar el trabajo conjunto de equipos y disciplinas diferentes, en la construcción de sistemas únicos.

Bernard Schriever, arquitecto del desarrollo de misiles balísticos Polaris, es considerado el padre de la gestión de proyectos, por la introducción del concepto de "concurrencia", para integrar todos los elementos del plan del proyecto en un solo programa y presupuesto.

El objetivo de la concurrencia era ejecutar las diferentes actividades de forma simultánea, y no secuencialmente, y al aplicarla en los proyectos Thor, Atlas y Minuteman se redujeron considerablemente los tiempos de ejecución.

La industria del automóvil siguió los pasos de la militar, aplicando técnicas de gestión de proyectos para la coordinación del trabajo entre áreas y equipos diferentes.

Comenzaron a surgir técnicas específicas, histogramas, cronogramas, los conceptos de ciclo de vida del proyecto o descomposición en tareas (WBS Work Breakdown Structure).


En 1960, Meter Norden, del laboratorio de investigación de IBM, en su seminario de Ingeniería de Presupuesto y Control presentado ante American Management Association, indicó:

- Es posible relacionar los nuevos proyectos con otros pasados terminados para estimar sus costes
- Se producen regularidades en todos los proyectos
- absolutamente necesario descomponer los proyectos en partes de menor dimensión para realizar planificaciones.

Organizaciones referentes en la gestión de proyectos

La construcción de sistemas complejos que requerían el trabajo sincronizado de varias disciplinas hizo evidente en los 60 la necesidad de nuevos métodos de organización para evitar problemas recurrentes:

- Desbordamiento de agendas.
- Desbordamiento de costes.
- Calidad o utilidad del resultado obtenido.

Para dar respuesta a esta necesidad, desde los años 60 han surgido organizaciones que contribuyen al desarrollo del cuerpo de conocimiento de una gestión de proyectos, para ofrecer garantías de previsibilidad y calidad de los resultados.

Este conocimiento se ha configurando como el currículo de una nueva profesión: La gestión de proyectos predictiva.

Las organizaciones más relevantes en esta línea son:

- International Project Management Association (IPMA), fundada en 1965
- Project Management Institute (PMI) constituído en 1965
- Más tarde surgió Prince2, que comenzó a trabajar en 1989.

IPMA y PMI surgieron como organizaciones profesionales para desarrollar metodologías y procesos para la gestión de proyectos.

Prince2 ha tenido la evolución inversa. Comenzó siendo una metodología, alrededor de la que se ha terminado creando una organización.

Modelo válido cualquier para industria

También en este sentido la evolución ha sido diferente para Prince2:

PMI e IPMA tuvieron desde el principio como finalidad el desarrollo de un conocimiento de gestión válido para cualquier proyecto.

Sin embargo, Prince2 comenzó siendo un modelo de referencia para proyectos específicos de Tecnologías de la Información, desarrollado por la Computer and Telecommunications Agency (CCTA) del Gobierno Británico; y a partir de una revisión llevada a cabo en 1996 se decidió ampliar su ámbito de validez, para cualquier tipo de proyecto.

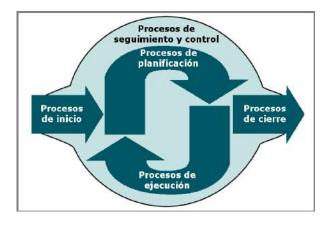
Planificación y seguimiento

La gestión de proyectos desarrollada en las últimas décadas del siglo pasado se basa en la planificación del trabajo, y en el posterior seguimiento y control de la ejecución.

La planificación se realiza sobre un análisis detallado del trabajo que se quiere realizar y su descomposición en tareas.

Parte por tanto de un proyecto de obra, o de unos requisitos detallados de lo que se quiere hacer.

Sobre esa información se desarrolla un plan adecuado a los recursos y tiempos disponibles; y durante la construcción se sigue de cerca la ejecución para detectar posibles desviaciones y tomar medidas para mantener el plan, o determinar qué cambios va a experimentar.


Se trata por tanto de una gestión "predictiva", que vaticina a través del plan inicial cuáles van a ser la secuencia de operaciones de todo el proyecto, su coste y tiempos.

Su principal objetivo es conseguir que el producto final se obtenga según lo "previsto"; y basa el éxito del proyecto en los tres puntos apuntados: agendas, costes y calidad.

Gestión predictiva o clásica

La gestión de proyectos predictiva o clásica es una disciplina formal de gestión, basada en la planificación, ejecución y seguimiento a través de procesos sistemáticos y repetibles.

- Establece como criterios de éxito: obtener el producto definido, en el tiempo previsto y con el coste estimado.
- Asume que el proyecto se desarrolla en un entorno estable y predecible.
- El objetivo de su esfuerzo es mantener el cronograma, el presupuesto y los recursos.
- Divide el desarrollo en fases a las que considera "ciclo de vida", con una secuencia concepto, requisitos. tipo: planificación, desarrollo, cierre.

Grupos de procesos de la gestión de proyectos **PMBOK 2004**

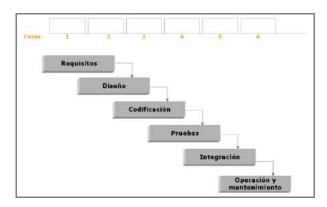
Ámbito de la gestión de proyectos

La solvencia demostrada por la gestión de proyectos en la industria militar, y en la automovilística para solucionar los problemas habituales de calidad, tiempos y costes, coincide en el tiempo con la presión que todas las industrias experimentan en mayor o menor medida para reducir la agenda de salida al mercado y los costes de producción. Como resultado, en todos los sectores: farmacéutico, químico, servicios, tecnologías de la información, etc. se adoptan técnicas de gestión de proyectos, dándoles de facto validez para todos los ámbitos.

Resumen

- Definición clásica de proyecto: construcción de un resultado único, en unas fechas previstas y con unos recursos previstos de antemano.
- La profesionalización de la gestión de proyectos surgió en los 50 para dar respuesta a las necesidades de la industria militar, y en los años posteriores el resto de industrias han adoptado sus principios.
- Las organizaciones más conocidas por la investigación, y creación de comunidades profesionales para la gestión de proyectos son: PMI (Project Management Institute), Internacional Project Management Association (IPMA) y Prince2.
- Características de la gestión de proyectos desarrollada en la segunda mitad del siglo pasado:

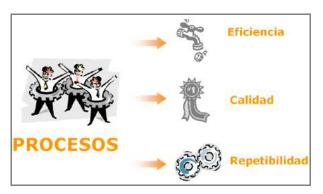
- la aplicación Gestión basada en sistemática de procesos repetibles y escalables.
- Los criterios de éxito de un proyecto son: calidad, costes y fechas.
- Carácter predictivo: ejecución según el plan inicial previsto.
- Desarrollo sobre un entorno estable.
- El objetivo de la gestión es: desarrollar un plan, y mantener el cronograma y los recursos planificados.
- Ciclo de vida compuesto por fases secuenciales.



Escenario de desarrollo en **los 80**

En los 80, el ciclo de vida de los proyectos era el denominado en cascada: el proyecto se divide en fases, y éstas se ejecutan de forma secuencial: definición del producto, diseño, construcción de elementos, integración, pruebas...

Dos características de la construcción de nuevos productos en esta década son:


- Ciclo de vida secuencial.
- División y especialización del trabajo.

Cada fase la realiza un departamento, personas o equipos diferentes, profesionalmente especializados en los conocimientos necesarios.

La gestión de proyectos desarrolla modelos de estructuras organizativas de tipo matricial, con diferentes variaciones, para facilitar la comunicación y coordinación entre equipos diferentes.

En las mismas fechas, a la par de la consolidación del conocimiento de gestión de proyectos, se estaban desarrollando las teorías de producción basada en procesos, promovidas por Michel Hammer, como mejor medio para garantizar la calidad, eficiencia y repetitividad.

División del trabajo, especialización y producción basada en procesos, fueron premisas que, como axiomáticas, asumió la gestión de proyectos, y por esta razón, los puntos clave de la gestión predictiva o clásica son:

- Estimar cuál va a ser el trabajo necesario, y a continuación gestionar la ejecución para que se cumplan la estimación inicial.
- El trabajo se desarrolla en fases.
- División del trabaio en equipos de especialistas.
- Desarrollo basado en procesos.

The New New **Product Development Game**

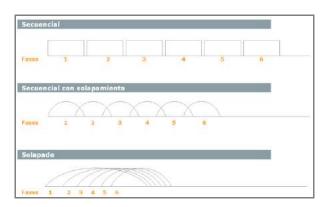
Es el título del artículo publicado en 1986 por Hirotaka Takeuchi e Ikujijo Nonaka; que a su vez daba continuación a otro anterior de los mismos autores junto con Kenichi Imai: "Managing the New Product Development Process: How Japanese Companies Learn and Unlearn".

La publicación de "The New New Product Development Game" ha marcado el punto de inicio de una nueva forma de gestionar proyectos en entornos rápidos e inestables.

Cuando la teoría de gestión de proyectos estaba alcanzando una cierta madurez, los autores observaron que algunas empresas, en mercados muy competitivos, relacionados con productos de vanguardia tecnológica, trabajaban ignorando esa teoría.

"Muchas compañías han descubierto que para mantenerse en el actual mercado competitivo necesitan algo más que los conceptos básicos de calidad elevada, costes reducidos y diferenciación. Además de esto, también es necesario velocidad v flexibilidad."

"En 1981 las encuestas realizadas a 700 empresas americanas revelan que el 30% de sus beneficios se debe a nuevos productos".


Hasta entonces, el desarrollo de nuevos productos se realizaba como una carrera de relevos, en la que un grupo de especialistas funcionales pasaban el relevo al siguiente.

El proyecto avanzaba secuencialmente de fase en fase: creación del concepto, pruebas de viabilidad, diseño del producto, diseño del proceso, desarrollo de prototipo y producción final.

Es un modelo de trabajo segmentado por especialización de funciones.

La gente de marketing explora y estudia las necesidades de los clientes, para crear el concepto del producto. Los ingenieros de investigación y desarrollo elaboran un diseño adecuado, los ingenieros de producción llevan a cabo la solución técnica...

La figura siguiente representa el ciclo de vida al construir un producto con un patrón de gestión secuencial, y cuál es la diferencia con la nueva forma, observada por Nonaka y Takeuchi en empresas que ignoraban los principios de la gestión clásica de proyectos.

Los desarrollos secuenciales puros suelen ser más teóricos que prácticos, y en realidad quienes los adoptan, generalmente producen ciclos "secuenciales con solapamiento", donde una fase no suele necesitar para empezar que esté completamente terminada la anterior.

Nonaka y Takeuchi observaron que empresas americanas y japonesas tecnológicas, de primera línea, que aventajaban a sus competidores en innovación y rapidez, compartían pautas de trabajo comunes, ajenas al clásico patrón secuencial.

Analizaron la forma de trabajo de: Fuji-Xerox, Canon, Honda, Nec, Epson, Brother, 3M, Xerox y Hewlett-Packard y en concreto la forma en la que abordaban el desarrollo de 6 productos:

- La fotocopiadora Fuji-Xerox FX-3500. (1978)
- La copiadora personal Canon PC-10 (1982)
- El coche urbano de 1200cc de Honda (1981)
- El ordenador personal NEC PC 8000 (1979)

- La cámara Canon AE-1 (1976)
- Cámara Canon Auto Boy (1979).

En estas empresas el trabajo no recorría fases a través de diferentes equipos especializados.

"El producto emerge de la interacción constante de un equipo de élite, multidisciplinario que trabaja conjuntamente desde el principio hasta el final"

Nonaka y Takeuchi compararon la forma de trabajar de estos equipos únicos y multidisciplinarios, con los equipos de rugby, y el ambiente y entorno de trabajo que les proporcionaba la empresa lo llamaron "campo de scrum¹".

Características del nuevo escenario

En los 40, 50 y 60 los productos tardaban años en quedar obsoletos, y las empresas los producían con variaciones mínimas a lo largo del tiempo.

Apple ha desarrollado 6 versiones de su popular iPod, en sólo 6 años.

Hoy determinados productos permanecen en un continuo estado "beta". El entorno tecnológico es tan inestable, que las novedades se lanzan tras el menor tiempo de desarrollo posible, dejando que vayan evolucionando a través de versiones, en el propio mercado. Que sea éste quien diga de forma continua cómo deben modificarse los "requisitos".

En estas circunstancias, las diferencias de liderazgo entre unas empresas y otras no radica tanto en la eficiencia y previsibilidad con la que se gestionan el lanzamiento de nuevos productos, sino en la capacidad de agilidad y cambio durante su construcción; y el principal valor para ocupar puestos de cabeza es la innovación.

22

Scrum es un término empleado en rugby para definir una determinada formación del equipo.

Campos de scrum vs. modelo clásico de desarrollo

Estos son los principales contrastes diferencian el desarrollo tradicional del ágil:

No lo realizan equipos diferentes especializados. Es un equipo único, formado por personas muy competentes, con perfiles y conocimientos que cubren las disciplinas necesarias para llevar a cabo el trabajo.

No hay fases. En realidad las fases pasan a ser tareas que se ejecutan cuando se necesitan. No se hace primero el diseño del concepto o los requisitos, más tarde el análisis, luego el desarrollo, etc.

Lo que aplicado al software serían las fases de: requisitos del sistema, requisitos del software, análisis, diseño, construcción, pruebas e integración; y se ejecutarían de forma secuencial, pasan a tareas que se llevan a cabo en el momento que hacen falta. Normalmente a lo largo de pequeñas iteraciones durante todo el desarrollo.

No se espera a disponer de requisitos detallados para comenzar el análisis, ni a tener éste para pasar a la codificación. Muchas veces los requisitos no se pueden conocer si no avanza el desarrollo y se va viendo y "tocando" el resultado. Otras veces el mercado es tan rápido que a mitad de trabajo las tendencias o la competencia obligarán a modificar el producto.

Además, la participación de todo el equipo en el diseño aporta gran cantidad de talento innovador: un valor clave en el mercado de productos y servicios TIC.

Los equipos ágiles empiezan a trabajar sin conocer con detalle cómo será el producto final. Parten de la visión general, y sobre ella, producen regularmente incrementos de funcionalidad que incrementan el valor al producto.

Fases de desarrollo solapadas

El concepto de "fase" que implica un trabajo secuencial, se cambia ahora por el de "actividad". Requisitos, análisis, diseño, desarrollo no son fases ejecutadas en un orden determinado. Son actividades que se pueden realizar en cualquier momento, de forma simultánea; "a demanda" cuando las necesita el equipo.

En el ciclo de vida secuencial de software se habla de "modificación de requisitos".

Este término lleva implícito el concepto de que estamos "cambiando" algo que quedó cerrado en la fase de requisitos.

En el desarrollo ágil, los requisitos evolucionan, se desarrollan y enriquecen durante todo el ciclo de vida, igual que el diseño y el código.

Takeuchi y Nonaka observaron dos tipos de solapamiento: uno que denominaron "sashimi2" estableciendo analogía con el plato típico japonés porque se produce un solapamiento bastante amplio, de tal forma, que en cualquier punto del ciclo de vida, se encuentran de forma simultánea varias fases; y otro que denominaron "rugby3 que deja perdido por completo el concepto de fases, y en el que el equipo concurrentemente en todas las actividades desde el primer día.

En el solapamiento "sashimi" aún se mantiene el concepto de fase, aunque con un solapamiento muy amplio.

En el solapamiento "rugby" no son ya fases, sino definitivamente tareas.

En el desarrollo tradicional:

- Las transiciones entre fases, funcionando como fronteras. Cada equipo se siente responsable de su parte de trabajo, de lo que debe entregar a la siguiente fase, pero no del resultado final.
- Los documentos de diseño, los requisitos o prototipos pueden acabar siendo barricadas en la frontera de cada fase, que lejos favorecer la comunicación directa fomentan la fragmentación.

² Nombre que dieron al tipo de solapamiento uqe empleaba el equipo de desarrollo de la FX-3500 en Fuji-Xerox.

Con este nombre denominaron a la combinación simultánea de todas las fases desde el primer día, empleada por los equipo de Honda.

 Los retrasos de cada fase son cuellos de botella del proyecto. El solapamiento diluye el ruido y los problemas entre fases.

Características del "campo de scrum"

Las características "ambientales" en las empresas que desarrollan los nuevos productos con modelos de gestión ágil son:

- Incertidumbre consustancial al entorno y la cultura de la organización.
- Equipos auto-organizados.
- Control sutil.
- Difusión y transferencia del conocimiento.

Incertidumbre

Se trabaja en entornos de incertidumbre consustancial.

En estas empresas, la dirección apunta cuál es la meta genérica a la que se pretende arribar, o la dirección estratégica que hay que seguir. No se proporciona el plan detallado del producto.

Al mismo tiempo se dá al equipo un margen de amplia libertad.

Los ingredientes que sirven de acicate para la creatividad y el compromiso son:

- La "tensión" que crea la visión difusa y el reto que supone el grado de dificultad que encierra.
- El margen de autonomía, libertad y responsabilidad.

Auto-organización

Son equipos auto-organizados, sin roles de gestión ni pautas de asignación de tareas.

No se trata de equipos auto-dirigidos, sino autoorganizados. La gestión es la que marca la dirección, pero no la organización.

Parten de cero. Deben empezar por crear su propia organización y buscar el conocimiento que necesitan.

Son similares a una "Start-up" que comienza.

Para lograr la auto-organización los equipos deben reunir tres características:

 Autonomía. Son libres para elegir la estrategia de la solución. En este sentido la dirección de la empresa actúa como un capitalista de capital-riesgo.

- Auto-superación. El equipo va desarrollando soluciones, que evalúa, analiza y mejora.
- Auto-enriquecimiento. La multi-disciplinaridad del equipo favorece el enriquecimiento mutuo y la aportación de soluciones valiosas complementarias.

Control sutil

El equipo dispone de autonomía, pero no debe derivar en caos.

La gestión establece puntos de control suficientes para evitar que el escenario de ambigüedad, inestabilidad y tensión del "campo de scrum" evolucione hacia el descontrol.

Pero debe gestionarse sin un control rígido que impediría la creatividad y la espontaneidad.

El término "control sutil" se refiere a la creación de un ecosistema que potencia y desarrolla el "autocontrol entre iguales", como consecuencia de la responsabilidad y del gusto por el trabajo realizado.

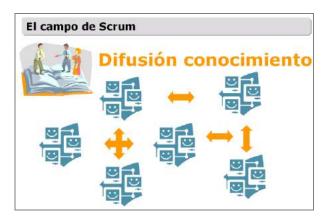
Algunas acciones para generar este ecosistema son:

- Selección de las personas adecuadas para el proyecto.
- Análisis de los cambios en la dinámica del grupo para incorporar o retirar a miembros si resulta necesario.
- Creación de un espacio de trabajo abierto.
- Animar a los ingenieros a "mezclarse" con el mundo real de las necesidades de los clientes.
- Sistemas de evaluación y reconocimiento basados en el rendimiento del equipo.
- Gestión de las diferencias de ritmo a través del proceso de desarrollo.
- Tolerancia y previsión con los errores; considerando que son un medio de aprendizaje, y que el miedo al error merma la creatividad y la espontaneidad.
- Implicar a los proveedores en el proyecto y animarles a su propia auto-organización.

Difusión y transferencia del conocimiento

Tanto a nivel de proyecto como de organización.

Los equipos son multidisciplinarios, y todos los miembros aportan y aprenden:


del resto del equipo,

- de las investigaciones para mejorar el valor y el componente innovador que espera el cliente,
- de la experiencia del desarrollo.

Las personas que participan en un proyecto, con el tiempo pasan a otros equipos y proyectos de la empresa, de manera que comparten y comunican el conocimiento a lo largo de toda la organización.

Los equipos y las empresas mantienen libre acceso a la información, herramientas y políticas de gestión del conocimiento

- Características ambientales en estos entornos llamados "campos de scrum"
 - Incertidumbre
 - Auto-organización
 - Control sutil
 - Difusión del conocimiento
 - Fases de desarrollo solapadas

Resumen

- Hasta los 80, para el desarrollo de nuevos productos se empleaban:
 - Ciclos de vida secuencial.
 - División y especialización del trabajo.
- En los 80 se desarrolla la teoría de producción basada en procesos para proporcionar eficiencia calidad y repetibilidad.
- En esos años, algunas empresas de tecnología (Caon, Fuji-Xerox, Honda, Epson, HP, etc.) logran más valor y mejores resultados en el desarrollo de nuevos productos, desafiando al desarrollo secuencial y a la división del
- Nonaka y Takeuchi son los primeros en identificar estos nuevos entornos de producción a los que denominan "campos de scrum" en el artículo The New New Product Development Game".
- Las principales diferencias con el desarrollo tradicional de producto son:
 - No trabajan departamentos especializasino dos, un único equipo multidisciplinario.
 - Solapamiento de las fases del desarrollo.
 - No se parte de unos requisitos detallados sino de la visión del resultado.
 - No se sigue un plan pre-elaborado.

Gestión de proyectos ágil Conceptos

Introducción

Muchas empresas trabajan en escenarios que se parecen ya muy poco a los que impulsaron la gestión de proyectos predictiva y necesitan estrategias diferentes para gestionar lanzamiento de sus productos: estrategias orientadas a la entrega temprana de resultados tangibles, y con la suficiente agilidad y flexibilidad para trabajar en entornos inestables y rápidos.

Ahora necesitan construir el producto al mismo tiempo que cambian y aparecen nuevos requisitos; y como las circunstancias de los mercados y de las empresas no se pueden cambiar, son las formas en las que gestionan sus proyectos las que tienen que cambiar para dar respuesta a las nuevas necesidades.

El cliente conoce la visión de su producto pero por la novedad, el valor de innovación que necesita y la velocidad a la que se va a mover el escenario tecnológico y de negocio, durante el desarrollo, no puede detallar cómo será el producto final.

¡Ah!. Pero, ¿existe el producto final?.

Quizá ya no hay "productos finales", sino productos en evolución, mejora o incremento continuo, desde la primera versión beta.

El resultado es la gestión ágil de proyectos, que no se formula sobre el concepto de anticipación (requisitos, diseño, planificación y seguimiento) sino el de adaptación (visión. exploración y adaptación)

Objetivos de la gestión ágil

La gestión ágil de proyectos tiene como objetivo dar garantías a las demandas principales de la industria actual: valor, reducción del tiempo de desarrollo, agilidad, flexibilidad y fiabilidad.

1.-Valor

La gestión ágil se necesita en los mercados rápidos.

Su objetivo es dar el mayor valor posible al producto, cuando éste se basa en:

- Innovación
- Flexibilidad

La permanencia de estas empresas depende de su capacidad de innovación continua. Del lanzamiento continuo de novedades, que compiten con los productos de otras empresas que también están en continua innovación.

Flexibilidad.

El producto no sólo es valioso por su valor en el momento de su lanzamiento, sino también por su capacidad de adaptación y evolución a través de actualizaciones y ampliaciones.

2.-Reducción del tiempo de salida al mercado

En la década de los 90, el tiempo medio de salida al mercado de los nuevos productos en EE.UU. se redujo de 35,5 a 11 meses⁴

Este tiempo es un factor competitivo clave en determinados sectores.

Las estrategias de la gestión ágil para producir resultados en menos tiempo que la gestión tradicional son:

- Solapamiento de las fases de desarrollo.
- Entrega temprana de las primeras partes del producto, que corresponden con las de mayor urgencia para el cliente, de forma que puede lanzar la primera versión en el menor tiempo posible.

3.-Agilidad

Capacidad para producir partes completas del producto en periodos breves de tiempo

4.-Flexibilidad

Capacidad para adaptar la forma y el curso del desarrollo a las características del proyecto, y a la evolución de los requisitos.

Wujec, Tom, and Sandra Muscat. Return on Imagination: Realizing the Power of Ideas, London: Financial Times Prentice Hall, 2002

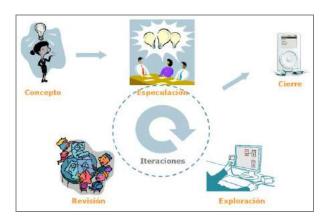
5. - Resultados fiables

El objetivo de la gestión predictiva es ejecutar el trabajo planificado (y conocido de antemano) en el plazo planificado y por el coste previsto.

La gestión ágil no tiene un carácter predictivo o de anticipación. No conoce de antemano el detalle del producto que va a desarrollar, y por eso su objetivo no es fiabilidad en el cumplimiento de los planes, sino en el valor del resultado.

Los procesos de la gestión tradicional son buenos cuando consiguen desarrollar de forma repetible los productos especificados en el tiempo y con los costes previstos.

Los procesos de la gestión ágil son buenos, cuando consiguen entregar de forma temprana y continua un valor innovador.


Las preferencias de la gestión ágil

La gestión ágil, a diferencia de la tradicional, muestra las preferencias resumidas en el manifiesto ágil:

- 1.- La capacidad de respuesta al cambio, sobre el seguimiento de un plan.
- 2.- Los productos que funcionan frente a especificaciones y documentaciones innecesarias.
- 3.- La colaboración con el cliente frente a la negociación contractual.
- 4.- A las personas y su interacción por encima de los procesos y las herramientas.

El ciclo de desarrollo ágil

El desarrollo ágil parte de la visión, del concepto general del producto, y sobre ella el equipo produce de forma continua incrementos en la dirección apuntada por la visión; y en el orden de prioridad que necesita el negocio del cliente.

Los ciclos breves de desarrollo, se denominan iteraciones y se realizan hasta que se decide no evolucionar más el producto.

Este esquema está formado por cinco fases:

- 1.- Concepto
- 2.- Especulación
- 3.- Exploración
- 4.- Revisión
- 5.- Cierre

1.- Concepto

En esta fase se crea la visión del producto y se determina el equipo que lo llevará a cabo.

Partir sin una visión genera esfuerzo baldío.

La visión es un factor crítico para el éxito del proyecto.

Se necesita tener el concepto de lo que se quiere, y conocer el alcance del proyecto. Es además una información que deben compartir todos los miembros del equipo

2.- Especulación

Una vez que se sabe qué hay que construir, el equipo especula y formula hipótesis basadas en la información de la visión, que per se es muy general e insuficiente para determinar las implicaciones de un desarrollo (requisitos, diseño, costes...).

En esta fase se determinan las limitaciones impuestas por el entorno de negocio: costes y agendas principalmente, y se cierra la primera aproximación de lo que se puede producir.

La gestión ágil investiga y construye a partir de la visión del producto. Durante el desarrollo confronta las partes terminadas: su valor, posibilidades, y la situación del entorno en cada momento.

La fase de especulación se repite en cada iteración, y teniendo como referencia la visión y el alcance del proyecto consiste en:

- Desarrollo y revisión de los requisitos generales.
- Mantenimiento de una lista con las funcionalidades esperadas.
- Mantenimiento de un plan de entrega: fechas en las que se necesitan las versiones, hitos e iteraciones del desarrollo. Este plan refleja ya el esfuerzo que consumirá el proyecto durante el tiempo.
- En función de las características del modelo de gestión y del proyecto puede incluir también una estrategia o planes para la gestión de riesgos.

Si las exigencias formales de la organización lo requieren, también se produce información administrativa y financiera.

3.- Exploración

Se desarrolla un incremento del producto, que incluye las funcionalidades determinadas en la fase anterior.

4. - Revisión

Equipo y usuarios revisan lo construido hasta ese momento.

Trabajan y operan con el producto contrastando su alineación con el objetivo.

5.- Cierre

Al llegar a la fecha de entrega de una versión de producto (fijada en la fase de concepto y revisada en las diferentes fases de especulación), se obtiene el producto esperado.

Posiblemente éste seguirá en el mercado, y por emplear gestión ágil, es presumible que se trata de un producto que necesita versiones y mejoras frecuentes para no quedar obsoleto. El cierre no implica el fin del proyecto.

Lo que se denomina "mantenimiento" supondrá la continuidad del proyecto en ciclos incrementales hacia la siguiente versión para ir acercándose a la visión del producto.

Principales modelos de gestión ágil

Si hubiera que determinar cuál es el origen de la gestión ágil de proyectos, a falta de mejor información, habría que situarlo en las prácticas adoptadas en los 80 por empresas como Honda, 3M, Canon, Fuji, Nec, Xerox, hp o Epson para el desarrollo de nuevos productos⁵.

La industria del software ha sido la primera en su adopción, y muchos de profesionales han documentado y propagado las formas particulares en las que han implementado

⁵ Hirotaka Takeuchi e Ikujiro Nonaka, 1986 "The New New Development Game"

los principios de la agilidad en sus equipos de trabajo.

De esta forma han aparecido en las últimas décadas los nombres:

- AD Agile Database Techniques
- AM Agile Modeling
- ASD Adaptive Software Development
- AUP Agile Unified Process
- Crystal
- FDD Feature Driven Development
- DSDM Dynamic Systems Development Method
- Lean Software Development
- Scrum
- TDD Test-Driven Design
- XBreed
- XP eXtreme Programming

Éstos son los modelos que se encuentran inscritos en la organización Agile Alliance (www.agilealliance.org) para promocionar y difundir su conocimiento.

Cada una de ellos expone formas concretas de aplicación de principios ágiles en el desarrollo de software.

Algunos determinan cómo realizar las pruebas, o la duración que emplean para desarrollar cada iteración, o el protocolo para realizar las reuniones de trabajo.

Unos métodos cubren áreas concretas de la ingeniería del software (diseño, desarrollo pruebas), como es caso de AD, AM o XP, y otros se centran en la gestión del proyecto.

Éstos últimos son:

- ASD Adaptive Software Development
- AUP Agile Unified Process
- Crystal
- DSDM Dynamic Systems Development Method
- Scrum
- XBreed

Por ejemplo, el principio de desarrollo ágil iterativo e incremental, tiene reflejo en ciclos de 30 días empleados por scrum, o de entre 1 y 4 meses empleado por los modelos Cristal.

ASD

Adaptive Software Development es el modelo de implementación de patrones ágiles para desarrollo de software, diseñado por Jim Highsmith, que materializa las fases de la gestión ágil de la siguiente forma:

ESPECULACIÓN, compuesta por 5 pasos:

- 1.- Inicio para determinar la misión del proyecto.
- 2.- Fijación del marco temporal del proyecto.
- 3.- Determinación del nº de iteraciones y la duración de cada una.
- 4.- Definición del objetivo de cada iteración.
- 5.- Asignación de funcionalidad a cada iteración.

COLABORACIÓN

Desarrollo concurrente del trabajo de construcción y gestión del producto.

APRENDIZAJE

En cada iteración se revisa:

- Calidad, con criterios de cliente.
- Calidad, con criterios técnicos.
- Funcionalidad desarrollada.
- Estado del proyecto.

Las características básicas de ASD son:

- Trabajo orientado y guiado por la misión del proyecto.
- Basado en la funcionalidad.
- Desarrollo iterativo.
- Desarrollo acotado temporalmente.
- Guiado por los riesgos.
- Trabajo tolerante al cambio.

AUP

Agile Unified Process es una versión simplificada de Rational Unified Process, desarrollada por Scott Amber.

Divide el ciclo de desarrollo en 4 fases:

INICIO: identificación del alcance y dimensión del proyecto, propuesta de la arquitectura y del presupuesto del cliente.

ELABORACIÓN: Confirmación de la idoneidad de la arquitectura.

CONSTRUCCIÓN: Desarrollo incremental del sistema, siguiendo las prioridades funcionales de los implicados.

TRANSICIÓN: Validación e implantación del sistema.

CRYSTAL

Concebido por Alistair Cockburn, este modelo no describe una metodología cerrada, sino un conjunto de ellas, junto con los criterios para seleccionar y adecuar la más apropiada al proyecto. Los parámetros para determinarla son la criticidad y el tamaño del sistema que se va a construir.

Los criterios empleados para la medición de estos parámetros son:

Criticidad (dimensión de las pérdidas que ocasionaría un malfuncionamiento del sistema)

- 1 (c): Pérdida de confort o usabilidad.
- 2 (d): Pérdidas económicas moderadas.
- 3 (e): Pérdidas económicas graves.
- 4 (I): Pérdida de vidas humanas.

Estos criterios corresponden a los niveles de integridad de un sistema definidos por el estándar IEEE 1012-1998.

Dimensión.

Crystal determina el tamaño del sistema por el nº de personas empleadas en su desarrollo. (6 - 20 -40 - 80)

Fundamentos de Crystal:

- Desarrollo iterativo e incremental.
- Duración máxima de una iteración: 4 meses. Recomienda duraciones entre 1 y 3 meses.
- Especial énfasis en la importancia de las personas sobre los procesos.
- Especial énfasis en la comunicación directa.
- Modelo abierto a la adaptación e introducción de prácticas de otros modelos ágiles (eXtreme Programming, Scrum...)

DSDM

DSDM es el acrónimo que dá nombre a un modelo de procesos para desarrollo de sistemas de software, concebido por el DSDM Consortium, que se fundó en Inglaterra en 1994, y que actualmente tiene presencia en Inglaterra, EE.UU., Benelux, Dinamarca, Francia y Suiza; y contactos para interés У futuras representaciones en Australia, India y China [...]

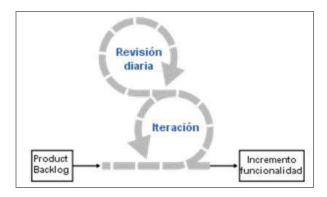

Es un modelo que estuvo representado en la firma del Manifiesto Ágil: Arie van Bennekum, firmante del manifiesto, era miembro del consorcio en Benelux, consultor y formador de DSDM.

En 2001, año del Manifiesto Ágil, DSDM publicó la versión 4.1 de su modelo, y se consideró una metodología ágil; y aunque mantuvo las siglas, cambió la denominación original (Dynamis Systems Development Method) por Framework for Business Centred Development.

Procesos del ciclo de desarrollo DSDM

El ciclo de desarrollo de DSDM está compuesto de 5 fases, precedidas de un pre-proyecto y un post-proyecto.

- 1. Pre-proyecto
- 2. Estudio de viabilidad
- 3. Estudio de negocio
- 4. Iteración de modelado funcional
- 5. Iteración de diseño y desarrollo
- 6. Implementación
- 7. Post-desarrollo


SCRUM

Jeff Sutherland en 1993 trabajaba en Easel Corporation (compañía que en los macrojuegos de compras y fusiones se integraría en VMARK, y luego en Informix y finalmente en Ascential Software Corporation). Tras conocer el trabajo de Nonaka y Takeuchi, Jeff identificó paralelismos con la industria del software, y aplicó un modelo de desarrollo ágil, iterativo e incremental para desarrollar y mantener sistemas de software.

En 1996 lo presentó junto con Ken Schwaber como proceso formal para gestión del desarrollo de software en OOPSLA 96, con el nombre que Nonaka y Takeuchi habían dado a estos equipos

de trabajo: "Scrum", por la comparación que hicieron con los equipos de Rugby

Se basa en el principio ágil de desarrollo iterativo e incremental.

Al período de trabajo para desarrollar un incremento de producto se lo denomina "sprint", y se recomienda una duración de 30 días, si bien pueden contemplarse casos de hasta 60 días (según Ken Schwaber, o 45 según Jeff Shuterland).

Establece una reunión al inicio de cada sprint para determinar el trabajo que se va a realizar, otra al final para evaluar el resultado, y revisiones diarias que realiza el equipo en su auto-gestión.

XBreed — Agile Enterprise

Propuesto por Mike Breedle, que colaboró con Ken Schwaber en la definición de Scrum, es una combinación de Scrum para la gestión del proyecto, y Extreme Programming como prácticas de desarrollo.

Esta es una combinación comúnmente empleada independientemente de su definición como Xbreed que hasta la fecha no ha tenido especial relevancia. También denominado Enterprise".

Resumen

- La gestión ágil de proyectos no es una gestión de anticipación (requisitos, diseño, planificación y seguimiento) sino de adaptación (visión, exploración y adaptación).
- La gestión ágil tiene como objetivos: valor, reducción del tiempo de desarrollo, agilidad, flexibilidad y fiabilidad.

- La gestión ágil se basa en los principios del manifiesto ágil y centra el valor:
 - Más en las personas y su interacción que en los procesos y las herramientas
 - Más en los resultados que funcionan que en la documentación exhaustiva
 - Más en la colaboración con el cliente que en la negociación contractual
 - Más en la capacidad de respuesta al cambio que en el seguimiento de un plan
- El desarrollo ágil comprende cinco fases: concepto, especulación, exploración, revisión y cierre.
- El desarrollo ágil surgió en empresas de productos tecnológicos, fue identificado por Nonaka y Takeuchi en los años 80 y a partir de los 90 diferentes profesionales del desarrollo del software incorporaron principios en sus entornos de trabajo. De esas implementaciones ágiles, las que abordan la gestión del proyecto son: ASD, AUP, Crystal, DSDM, Scrum.

⁶ Scrum es el nombre que se dá en Rugby a una determinada formación del equipo.

¿Ágil, clásica, predictiva ...?

Al surgir en los 80 una nueva forma de gestionar proyectos, se hizo necesario añadir un "apellido" al término "gestión de proyectos" para matizar si se refiere a la nueva o a la de siempre.

La nueva, al autodenominarse ágil, obligó a dar un apellido al modelo de gestión de proyectos que hasta entonces, por único, no lo había necesitado.

Las denominaciones empleadas para cada tipo son:

	Clásica
	Tradicional
Gestión de proyectos	Predictiva
	Formal
	Pesada

Ágil Adaptable Gestión de proyectos **Adaptativa**

En algunos ámbitos, hay cierta rivalidad académica o profesional entre defensores de uno y otro modelo. Preferimos por tanto no emplear el término "pesado" que puede aportar connotaciones peyorativas.

También preferimos no emplear "adaptativa" y usar en su lugar "adaptable", para evitar un anglicismo innecesario.

Premisas de la gestión de proyectos predictiva

Premisas sobre las que se desarrolló la gestión de proyectos tradicional:

- 1.- Todos los proyectos mantienen características y comportamientos regulares (Meter Norden 1960)
- 2.- El objetivo de la ejecución de un proyecto es lograr el producto previsto en el tiempo planificado sin desbordar los costes estimados.

Características de la gestión de proyectos predictiva

Estas premisas han dado dos características a la gestión de proyectos predictiva:

1.- Universalidad

Los proyectos, pese a su diversidad, comparten patrones comunes de ejecución.

Las prácticas de gestión se basan en estos patrones comunes y resultan válidas para cualquier tipo de proyecto.

2.- Carácter predictivo

La gestión clásica define con detalle cuál es el "producto previsto" y elabora un plan de desarrollo, a partir del cual calcula costes y

Durante la ejecución realiza actividades de seguimiento y vigilancia para evitar desviaciones sobre lo planificado.

Hay otras premisas

Las dos premisas que cimentan el desarrollo de la gestión de proyectos:

- Todos los provectos comparten idénticos patrones de ejecución.
- El objetivo es conseguir el producto definido en costes y fechas.

son cuestionables:

1.- No hay una forma única y válida para gestionar cualquier tipo de proyecto

Es cierto que muchas características que diferencian unos proyectos de otros son superficiales y resultan indiferentes para el modelo de gestión: pero hay otras que permiten adoptar estrategias de gestión muy diferentes en cada caso.

Características diferenciales:

- Componente innovador que se espera del resultado.
- Grado de estabilidad de los requisitos durante el desarrollo.
- Coste de prototipado.
- Maleabilidad del producto para modificar su funcionalidad una vez desarrollado.

La gestión de proyectos predictiva, al autoconsiderarse válida para cualquier proyecto no contempla que según las características del proyecto, puedan resultar más apropiados otros criterios de gestión.

- Conseguir el mayor valor innovador del producto no es uno de sus obietivos, v por tanto no aplica prácticas diferentes según el grado innovador que se desee.
- Considera los requisitos que permanecer estables durante la ejecución. Si no ocurre esto presupone que se debe a deficiencias en el proceso de la fase de requisitos; porque no contempla posibles evoluciones rápidas o inestabilidades del entorno tecnológico o de negocio.
- El objetivo es la eficiencia, el cumplimiento del plan, y no el valor del producto. Desde este punto de vista, el re-trabajo siempre es caro. No se considera la relación entre el coste del re-trabajo y el valor proporcionado.

2.- Hay proyectos en los que no se quiere "hacer el producto descrito en las fechas y con los costes estimados"

Cuando en 1978 la dirección de Honda encargó el diseño de un nuevo automóvil, sólo dió dos instrucciones al equipo de ingenieros:

"Primero: necesitamos un concepto de automóvil completamente diferente a lo que cualquier otra compañía haya hecho nunca; y segundo: debe ser un coche económico, pero no barato".

El resultado fue el Honda Civic.

Se pedía un proyecto, pero no se quería garantizar la ejecución de un plan, sino obtener el máximo valor en las líneas marcadas.

Hay proyectos en los que importa más el valor y la innovación que el cumplimiento del plan.

La gestión predictiva pide al equipo el cumplimiento del plan.

La gestión adaptable pide al equipo el mayor valor posible para una visión de

¿Cuándo y por qué emplear uno u otro estilo de gestión?

Para obtener los mayores beneficios que cada estilo de gestión puede ofrecer, éste tiene que ser compatible no sólo con las características del proyecto, sino también con las de la organización que las va a aplicar.

Características del proyecto

Las características relevantes para decidir el estilo de gestión más adecuado son:

- Principal prioridad de negocio.
- Estabilidad de los requisitos.
- Rigidez del producto.
- Coste de prototipado.
- Criticidad del sistema.
- Tamaño del sistema.

El orden expuesto se corresponde con nuestro criterio de relevancia, siendo por tanto la prioridad de negocio la principal razón de compatibilidad o

incompatibilidad, y el tamaño del sistema la menos relevante.

Por la relativa novedad de la gestión ágil, estos criterios no están aún consensuados. Así por ejemplo mientras algunos textos opinan que el tamaño o la criticidad del sistema son aspectos muy relevantes, hay opiniones autorizadas en sentido contrario:

- En la "International Conference on Complex Systems 2006", Jeff Sutherland presentó el informe "Adaptive Engineering of Large Software Projects with Distributed Outsourced Teams " que demostraba los buenos resultados obtenidos con prácticas de gestión ágiles en un desarrollo de grandes dimensiones: un millón de líneas de código Java, y un equipo de 50 personas distribuidos en dos empresas ubicadas en países distintos.
- El modelo específico de Scrum desarrollado por Ken Schwaber para Software contempla el desarrollo de sistemas críticos, incluyendo los requerimientos de conformidad también resultados entregables iteraciones iunto con las funcionalidades a las que afectan.

Prioridad de negocio

¿Cuál es la principal prioridad para los intereses de negocio del cliente?

¿Qué tiene más importancia: el cumplimiento de agendas y fechas o el valor innovador del producto?

Este es el primer aspecto que se debe considerar. La gestión predictiva es un modelo construido y especializado en garantizar el cumplimiento de los planes.

La gestión adaptable es un modelo construido y especializado en dar el mayor valor posible al producto.

Por supuesto los dos objetivos son deseables, pero hay que elegir, porque simplemente son excluyentes. No se pueden planificar diagramas de Gantt o rutas críticas sobre una visión general.

Cuanto mayor valor se desea en uno u otro extremo (valor o predicción), más contraproducente resulta emplear el estilo de gestión inadecuado.

Estabilidad de los requisitos

¿Se puede obtener una descripción de requisitos detallada al inicio del proyecto, y ésta se mantendrá estable durante el desarrollo?

O lo que es lo mismo, ¿Se puede saber con certeza v detalle qué es lo que se quiere construir. siendo improbable que cambien los criterios o las necesidades?

Rigidez del producto

¿Cuán fácil resulta modificar el producto?

Esta es una razón importante, porque no es lo mismo modificar software, circuitos electrónicos, construcciones civiles...

Modificar la estructura de una base de datos para añadir algunas tablas no es lo mismo que modificar la estructura de un edificio para rectificar el número de plantas.

Coste de prototipado

Otra cuestión relevante para el modelo de gestión ágil es la relación: coste de prototipar / valor conseguido para el producto. Este factor suele estar relacionado con la rigidez del producto.

Ver, tocar, e interactuar con las partes ya desarrolladas (o con simulaciones o prototipos) genera ideas y posibilidades que sobre el concepto inicial y el papel no llegan a concebirse.

El prototipado y el feed-back que proporciona son extremadamente importantes, sobre todo en el desarrollo de nuevos productos, o de sistemas innovadores.

A medida que el equipo lo va "tocando" y "probando" surgen funcionalidades y posibilidades nuevas que aportan mayor valor al concepto inicial.

En este sentido, el argumento: "la forma más eficiente de desarrollar un trabajo es hacerlo bien a la primera", que se emplea con frecuencia para

defender la validez de la gestión predictiva en cualquier proyecto, resulta tendencioso. La afirmación "per se" es obviamente cierta; pero también son ciertas dos circunstancias relacionadas:

- se puede hacer "bien a la primera" cuando es posible conocer con detalle el resultado sin necesidad de hacer pruebas antes.
- Las posibilidades al hacer un trabajo no son sólo "bien" o "mal". Bien es un término amplio. Puede ser aceptable o suficientemente bien, o lo mejor posible.

Estos factores, junto con la relación entre coste de prototipado y valor que aporta deben tenerse también en cuenta para elegir el modelo de gestión más adecuado para el proyecto.

Criticidad del sistema

¿Cuál es el grado de criticidad del sistema que va a desarrollar?

Considerando por análisis de criticidad:

La evaluación estructurada de las características del producto (p. ej.: seguridad, complejidad, rendimiento) para determinar la severidad del impacto de un fallo del sistema, de su degradación o de su no cumplimiento con los requisitos o los objetivos del sistema.

O lo que es lo mismo:

Si el sistema falla, se degrada o no consigue realizar las funciones de los requisitos, ¿qué impacto tiene en la seguridad o en el rendimiento?

Un ejemplo de criterios de criticidad, ordenados de mayor a menor, puede ser:

- Causará daño a las personas.
- Causará daño al medio ambiente.

- Producirá pérdidas económicas graves.
- Producirá pérdidas económicas.
- Fallará la finalidad principal del sistema.
- Fallarán funcionalidades auxiliares del sistema.
- Se producirán fallos ergonómicos o comodidad para los usuarios.

Tamaño del sistema

Una de las principales bases del desarrollo ágil es la preferencia de la comunicación e interacción directa de los implicados en el proyecto.

Los grandes proyectos implican equipos numerosos y en ocasiones físicamente distantes, circunstancias que dificultan la comunicación directa.

No obstante hay desarrollos incipientes prácticas ágiles que implantan esquemas de agrupamiento y comunicación directa en estructuras celulares de equipos de hasta 6 personas.

Condiciones de la organización

Los elementos empleados por las organizaciones para ejecutar proyectos son: personas, procesos y tecnología.

Los resultados de la gestión ágil dependen más del valor de las personas que de los procesos de la organización.

Las personas tienen características propias:

- Sus resultados son "sensibles" al entorno. La falta de motivación y los ambientes laborales hostiles reducen significativamente el valor intelectual del trabajo.
- Cuando el trabajo depende del talento, la diferencia de valor entre los mediocres y los mejores es muy grande.

Adoptar modelos de desarrollo ágil no consiste sólo en realizar las prácticas formales: equipo único, reuniones periódicas, desarrollo evolutivo de los requisitos, etc.

Si la organización mantiene un modelo de desarrollo basado en procesos y no en personas, y no tiene alineadas con los principios ágiles: la cultura y estructura organizativa, no obtiene los resultados propios del desarrollo ágil.

40

Nivel profesional

"En el mundo del diseño informático, los mejores lo hacen entre 50 y 100 veces mejor que el promedio, y la cifra aumenta, conforme se incrementa la complejidad de la tecnología"

Pilar Jericó. "La gestión del talento"

"La diferencia entre los promedios y los mejores ya no es de 1:2, como en el pasado. Es 1:100 o incluso 1:1000"

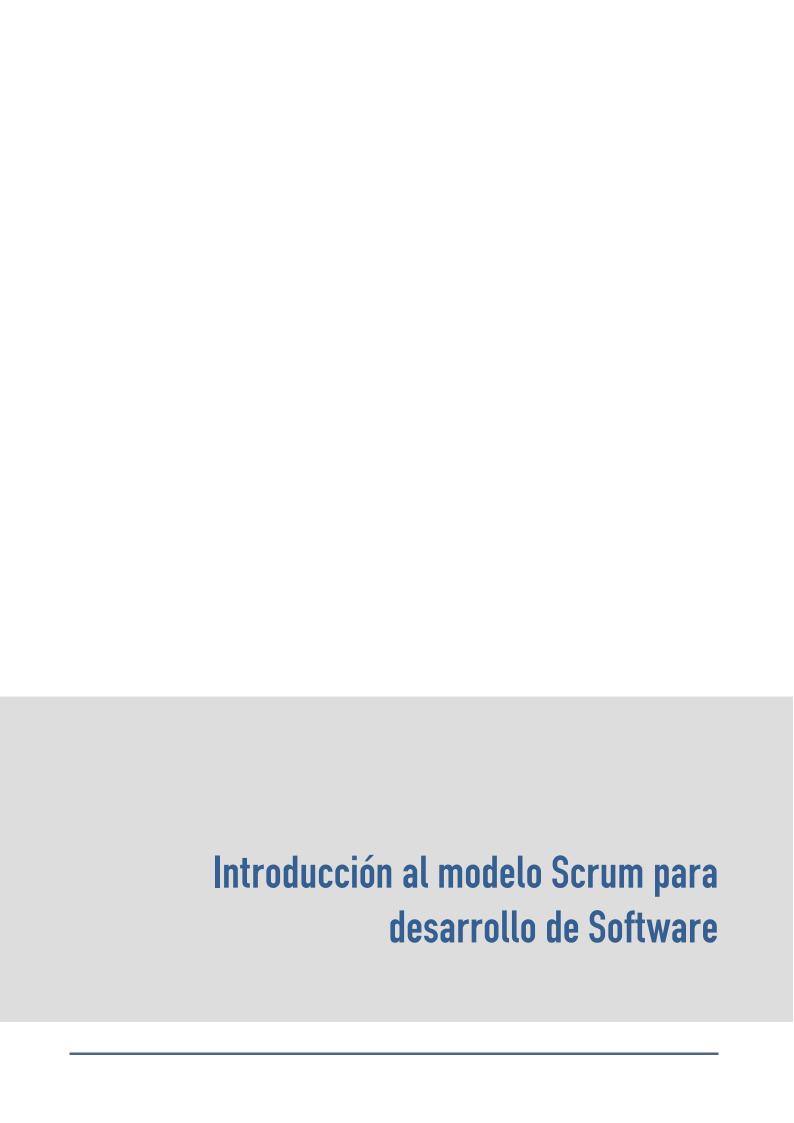
Nathan Myhrvold (Ex-director de I+D de Microsoft) Si el proyecto, más que innovación lo que requiere es la ejecución controlada de un plan detallado, posiblemente sean los procesos de la organización los garantes del resultado; y con un modelo de gestión predictiva, el factor relevante sea la capacidad de los procesos empleados, y no tanto el nivel profesional de las personas del equipo.

Si por ser el valor del producto el objetivo del proyecto, se emplea un modelo de desarrollo ágil, son las personas, y no los procesos, los encargados de proporcionarlo, y en ese caso el equipo debe estar compuesto por personas con el mayor conocimiento y experiencia posible.

Cultura organizativa

Para la ejecución sistemática y controlada de procesos no resulta especialmente relevante el tipo de cultura de la organización.

Sin embargo, para el desarrollo de trabajo basado en el talento de las personas resultan inhibidores los ambientes laborales basados en el control, excesivamente normalizados y jerarquizados.


Entorno de desarrollo

Los entornos de desarrollo basados en procesos son adecuados para modelos de gestión predictiva.

Los entornos de desarrollo basados en las personas son adecuados para modelos de gestión ágil.

Resumen

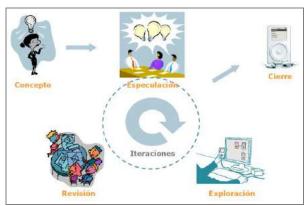
- Términos empleados para designar a los dos modelos de gestión de proyectos:
 - Predictiva, clásica, tradicional, formal.
 - Ágil, adaptable.
- La gestión de proyectos predictiva se ha desarrollado sobre las premisas
 - Todos los proyectos mantienen características comportamientos regulares.
 - El objetivo de la ejecución de un proyecto es lograr el producto previsto en el tiempo planificado, sin desbordar los costes estimados.
- Las características de la gestión de proyectos predictiva son: validez para cualquier tipo de proyecto y carácter predictivo.
- La gestión ágil surge al cuestionar la validez de las premisas de la gestión tradicional:
 - No hay una forma única y válida para gestionar cualquier tipo de proyecto.
 - Hay proyectos que tienen como objetivo valor para el producto, y no funcionalidad, fecha y costes.
- Las características relevantes del proyecto para decidir el estilo de gestión más adecuado son: prioridad del negocio, estabilidad de los requisitos, rigidez del producto, coste de prototipado, criticidad del sistema y tamaño del sistema.
- Las características relevantes de la organización para facilitar la elección del modelo gestión más adecuado son: nivel profesional, cultura organizativa y entorno de desarrollo.

El origen

Scrum es una metodología ágil de desarrollo de proyectos que toma su nombre y principios de las observaciones sobre nuevas prácticas de producción, realizadas por Hirotaka Takeuchi e Ikujijo Nonaka a mediados de los 80. (ver Gestión Predictiva y Gestión Ágil: El Nuevo Escenario)

Aunque las prácticas observadas por estos autores surgieron en empresas de productos tecnológicos, también se emplean en entornos que trabajan con requisitos inestables y que requieren rapidez y flexibilidad, situaciones frecuentes en el desarrollo de determinados sistemas de software.

Jeff Sutherland aplicó los principios observados por Nonaka y Takeuchi al desarrollo de software en 1993 en Easel Corporation (Empresa que en los macro-juegos de compras y fusiones se integraría en VMARK, luego en Informix y finalmente en Ascential Software Corporation). En 1996 lo presentó junto con Ken Schwaber como proceso formal, también para gestión del desarrollo de software en OOPSLA 96. Más tarde, en 2001 serían dos de los promulgadores del Manifiesto ágil.

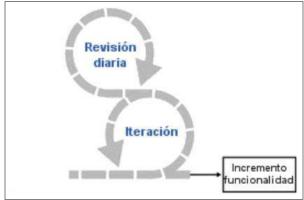

Introducción al modelo

Scrum es una metodología de desarrollo muy simple, que requiere trabajo duro, porque no se basa en el seguimiento de un plan, sino en la adaptación continua a las circunstancias de la evolución del proyecto.

Como método ágil:

- Es un modo de desarrollo adaptable, antes que predictivo.
- Orientado a las personas, más que a los procesos.
- Emplea el modelo de construcción incremental basado en iteraciones y revisiones.

(ver Gestión Predictiva y Gestión Ágil)


Estructura del desarrollo ágil

Comparte los principios estructurales desarrollo ágil: a partir del concepto o visión de la necesidad del cliente, construve el producto de forma incremental a través de iteraciones breves que comprenden fases de especulación exploración y revisión. Estas iteraciones (en Scrum llamadas sprints) se repiten de forma continua hasta que el cliente dá por cerrado el producto.

Se comienza con la visión general del producto, especificando y dando detalle a las funcionalidades o partes que tienen mayor prioridad de negocio, y que pueden llevarse a cabo en un periodo de tiempo breve (según los casos pueden tener duraciones desde una semana hasta no más de dos meses).

Cada uno de estos periodos de desarrollo es una iteración que finaliza con la entrega de una parte (incremento) operativa del producto.

Estas iteraciones son la base del desarrollo ágil, y Scrum gestiona su evolución en reuniones breves diarias donde todo el equipo revisa el trabajo realizado el día anterior y el previsto para el siguiente.

Estructura central de Scrum

Control de la evolución del proyecto

Scrum controla de forma empírica y adaptable la evolución del proyecto, a través de las siguientes prácticas de la gestión ágil:

Revisión de las Iteraciones

Al finalizar cada iteración (sprint) se lleva a cabo una revisión con todas las personas implicadas en el proyecto. Es por tanto la duración del sprint, el periodo máximo que se tarda en reconducir una desviación en el proyecto o en las circunstancias del producto.

Desarrollo incremental

Las personas implicadas no trabajan con diseños o abstracciones.

El desarrollo incremental implica que al final de cada iteración se dispone de una parte de producto operativa, que se puede inspeccionar y evaluar.

Desarrollo evolutivo

Los modelos de gestión ágil se emplean para trabajar en entornos de incertidumbre e inestabilidad de requisitos.

Intentar predecir en las fases iniciales cómo será el resultado final, y sobre dicha predicción desarrollar el diseño y la arquitectura del producto no es realista, porque las circunstancias obligarán a remodelarlo muchas veces.

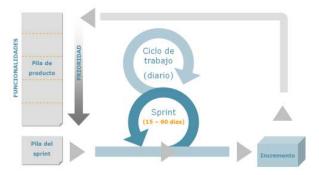
¿Para qué predecir los estados finales de la arquitectura o del diseño si van a estar cambiando? Scrum considera a la inestabilidad como una premisa, y se adoptan técnicas de trabajo para permitir la evolución sin degradar la calidad de la arquitectura que también evoluciona durante el desarrollo.

Durante el desarrollo se genera el diseño y la arquitectura final de forma evolutiva. Scrum no los considera como productos que deban realizarse en la primera "fase" del proyecto.

(El desarrollo ágil no es un desarrollo en fases)

Auto-organización

En la ejecución de un proyecto son muchos los factores impredecibles en todas las áreas y niveles. La gestión predictiva confía la responsabilidad de su resolución al gestor de proyectos. En Scrum los equipos son auto-organizados (no auto-dirigidos), con margen de decisión suficiente para tomar las decisiones que consideren oportunas.


Colaboración

Las prácticas y el entorno de trabajo ágiles facilitan la colaboración del equipo. Ésta es necesaria, porque para que funcione la autoorganización como un control eficaz cada miembro del equipo debe colaborar de forma abierta con los demás, según sus capacidades y no según su rol o su puesto.

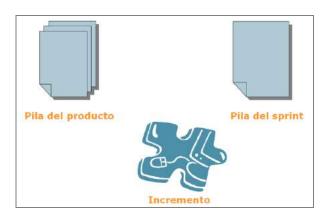
Visión general del proceso

Scrum denomina "sprint" a cada iteración de desarrollo y según las características del proyecto y las circunstancias del sprint puede determinarse una duración desde una hasta dos meses, aunque no suele ser recomendable hacerlos de más de un mes.

El sprint es el núcleo central que proporciona la base de desarrollo iterativo e incremental.

Los elementos que conforman el desarrollo Scrum son:

Las reuniones


- Planificación del sprint: Jornada de trabajo previa al inicio de cada sprint en la que se determina cuál va a ser el trabajo y los objetivos que se deben conseguir en la iteración.
- Seguimiento del sprint: Breve revisión diaria, en la que cada miembro describe tres cuestiones:
 - 1.- El trabajo que realizó el día anterior.
 - 2.- El que tiene previsto realizar.
 - 3.- Cosas que puede necesitar o impedimentos que deben suprimirse para realizar el trabajo.

Cada persona actualiza en la pila del sprint el tiempo pendiente de sus tareas, y con esta información se actualiza también el gráfico con el que el equipo monitoriza el avance del sprint (burn-down)

Revisión del sprint: Análisis y revisión del incremento generado.

Los elementos

- Pila del producto: (product backlog) lista de requisitos de usuario que a partir de la visión inicial del producto crece y evoluciona durante el desarrollo.
- Pila del sprint: (sprint backlog) lista de los trabajos que debe realizar el equipo durante el sprint para generar el incremento previsto.
- Incremento: Resultado de cada sprint

Los roles

Todas las personas que intervienen, o tienen relación directa o indirecta con el provecto, se clasifican en dos grupos: comprometidos e implicados.

En círculos de Scrum es frecuente llamar a los primeros (sin ninguna connotación peyorativa) "cerdos" y a los segundos "gallinas".

El origen de estos nombres es esta metáfora que ilustra de forma gráfica la diferencia entre "compromiso" e "implicación" con el proyecto:

Una gallina y un cerdo paseaban por la carretera. La gallina preguntó al cerdo: "¿Quieres abrir un restaurante conmigo?".

El cerdo consideró la propuesta y respondió: "Sí, me gustaría. ¿Y cómo lo llamaríamos?".

La gallina respondió: "Jamón con huevos".

El cerdo se detuvo, hizo una pausa y contestó: "Pensándolo mejor, creo que no voy a abrir un restaurante contigo. Yo estaría realmente comprometido, mientras que tu estarías sólo implicada".

COMPROMETIDOS (cerdos)	IMPLICADOS (gallinas)
Propietario del pro- ducto Equipo	Otros interesados (Dirección general Dirección comercial Marketing Usuarios, etc)

- Propietario del producto: es la persona responsable de lograr el mayor valor de producto para los clientes, usuarios y resto de implicados.
- Equipo de desarrollo: grupo o grupos de trabajo que desarrollan el producto.
- Scrum Manager: Responsable del funcionamiento de la metodología Scrum en la organización.

Algunas implementaciones de modelo Scrum, consideran el rol de gestor de Scrum como "comprometido" y necesario (ScrumMaster)

Con el criterio de Scrum Management, es recomendable que las responsabilidades que cubre este rol, estén identificadas en una única persona cuando se comienzan a aplicar prácticas de Scrum en una organización. En organizaciones ágiles maduras puede tener menos sentido.

En cualquier caso, las responsabilidades de Scrum Manager no son del proyecto, sino del grupo de procesos y métodos de la organización, por lo que no debe considerarse ni cerdo ni gallina.

Valores

Scrum es una "carrocería" que dá forma a los principios ágiles. Es una ayuda para organizar a las personas y el flujo de trabajo; como lo pueden ser otras propuestas de formas de trabajo ágil: Crystal, DSDM, etc.

La carrocería sin motor, sin los valores que dan sentido al desarrollo ágil, no funciona:

- Delegación de atribuciones (empowerment) al equipo para que pueda auto-organizarse y tomar las decisiones sobre el desarrollo.
- Respeto entre las personas. Los miembros del equipo deben confiar entre ellos y respetar sus conocimientos y capacidades.
- Responsabilidad auto-disciplina У disciplina impuesta).
- Trabajo centrado en el desarrollo de lo comprometido

Información, transparencia y visibilidad del desarrollo del proyecto

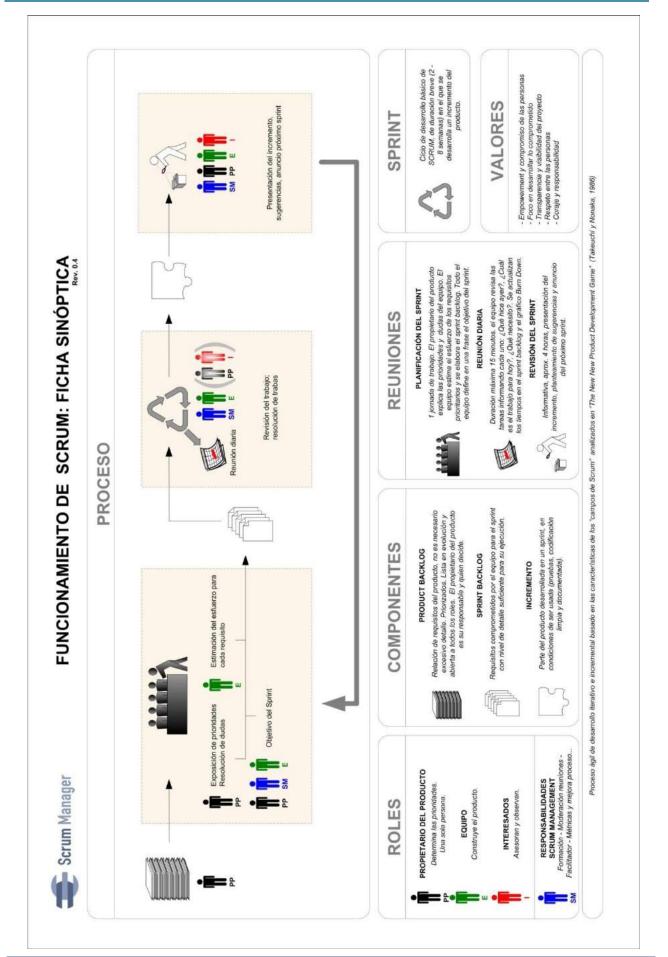
Resumen

Scrum es un modelo ágil de desarrollo, que toma forma de las prácticas de trabajo, que a partir de los 80 comienzan a adoptar algunas empresas tecnológicas, y que Nonaka y Takeuchi acuñaron como "Campos de Scrum".

El modelo Scrum, aplicado al desarrollo de software, emplea el principio ágil: "desarrollo iterativo e incremental", denominando sprint a cada iteración de desarrollo.

Las prácticas empleadas por Scrum para mantener un control ágil en el proyecto son:

- Revisión de las iteraciones
- Desarrollo incremental
- Desarrollo evolutivo
- Auto-organización del equipo
- Colaboración


Los artefactos del modelo son:

- Elementos:
 - Pila del producto o product backlog
 - Pila del sprint o sprint backlog
 - Incremento
- Roles:
 - Propietario del producto
 - Equipo
 - Scrum Manager
 - Otros interesados
- Reuniones:
 - Planificación del sprint
 - Seguimiento del sprint
 - Revisión del sprint

Los valores que hacen posible a las prácticas de Scrum crear "campos de Scrum" son:

- Autonomía (empowerment) del equipo
- Respeto en el equipo
- Responsabilidad y auto-disciplina
- Foco en la tarea
- Información transparencia y visibilidad

Introducción

El grado de éxito de Scrum Management en una empresa no depende sólo de los roles y las responsabilidades directamente relacionadas con el desarrollo de los proyectos (cliente y equipo). Las organizaciones son realidades sistémicas, inter-relacionadas, y aunque este libro cubre sólo el área de gestión de los proyectos, veremos los roles implicados directamente en la ejecución del proyecto o solución técnica, y el área directiva o de management de la organización.

El conjunto de responsabilidades que se deben cubrir de forma coordinada y alineada con la visión de la organización, se clasifican en las tres categorías siguientes:

Responsabilidades generales Scrum Management

De management

- Equilibrio sistémico de la organización
- Coherencia del modelo
- Medios y formación

De procesos

- Configuración de Scrum
- Mejora continua
- Garantía de funcionamiento de Scrum en cada proyecto

De producción

- **Producto**
- Auto-organización
- Tecnología ágil

Responsabilidades y roles "del proyecto"

MANAGEMENT

- · Equilibrio sistémico de la organización
- · Coherencia del modelo
- · Medios y formación

PROCESOS

- · Configuración de Scrum
- · Mejora continua
- · Garantía de funcionamiento en cada proyecto

PRODUCCIÓN

- Producto
- Auto-organización
- Tecnología ágil

Éstas son las directamente implicadas en el desarrollo del producto. Las asumen los roles "comprometidos" (cerdos): el propietario del producto y el equipo.

Las del propietario del producto, relativas a la definición desde la visión, la priorización del trabajo y la financiación del proyecto.

Las del equipo, relativas a la auto-organización y uso de prácticas tecnológicas ágiles.

También pertenece al grupo de responsabilidades del proyecto: la garantía de ejecución y funcionamiento correcto de las prácticas Scrum en cada provecto.

Lo más común en las fases de implantación, cuando los equipos no están familiarizados con el modelo, es la asignación de esta responsabilidad en una persona experta en Scrum, ajena al equipo: el gestor de Scrum, o Scrum Manager.

Producto

Auto-organización Tecnología ágil

Garantía de funcionamiento en el proyecto

El propietario del producto

El propietario del producto o "product owner" es la persona que toma las decisiones del cliente.

Es una única persona.

ejercer Para este rol necesario:

- Conocer perfectamente el entorno de negocio del cliente, las necesidades y el objetivo que se persigue con el sistema que se está construyendo.
- Tener atribuciones suficientes para tomar las decisiones necesarias durante el proyecto.
- Conocer Scrum para realizar con solvencia las tareas que le corresponden:
 - Desarrollo y administración de la pila del producto.
 - Presentación y participación en la reunión de planificación de cada sprint.
- Recibir y analizar de forma continua retroinformación del negocio (evolución del mercado, competencia, alternativas...) y del proyecto (sugerencias del equipo, alternativas técnicas, pruebas y evaluación de cada incremento...).
- Es recomendable conocer y haber trabajado previamente con el mismo equipo.

Es quien decide en última instancia cómo será el resultado final, y el orden en el que se van construyendo los sucesivos incrementos: qué se pone y qué se quita de la pila del producto, y cuál es la prioridad de las funcionalidades.

Es responsable de la financiación del proyecto, y las decisiones sobre fechas y funcionalidades de las diferentes versiones del producto, y el retorno de la inversión del proyecto.

En los desarrollos internos para la propia empresa, suele asumir este rol el product manager o el responsable de marketing. En desarrollos para clientes externos: el responsable del proceso de adquisición del cliente.

El equipo

Se recomienda un tamaño de equipo entre 4 y 8 personas.

Más allá de 8 resulta más difícil mantener la agilidad en la comunicación directa, y se manifiestan con más intensidad las rigideces habituales de la dinámica de grupos (que comienzan a aparecer a partir de 6 personas).

No se trata de un grupo de trabajo formado por un arquitecto, diseñador o analista, programadores, pruebas...

Es un equipo multidisciplinario, en el que todos trabajan de forma conjunta para realizar cada

Las principales responsabilidades, más allá de la auto-organización y uso de tecnologías ágiles, son las que se derivan de la diferencia entre "grupo de trabajo" y "equipo".

Un grupo de trabajo es un conjunto de personas que realizan un trabajo, con una asignación específica de tareas, responsabilidades y siguiendo un proceso o pautas de ejecución.

Los operarios de una cadena, forman un grupo de trabajo: aunque tienen un jefe común, y trabajan en la misma organización, cada uno responde por su trabajo.

El equipo tiene espíritu de colaboración, y un propósito común: conseguir el mayor valor posible para la visión del cliente.

Un equipo Scrum responde en su conjunto. Trabajan de forma cohesionada y autoorganizada.

No hay un gestor que delimita, asigna y coordina las tareas. Son los propios componentes del equipo los que lo realizan.

En el equipo:

- Todos conocen y comprenden la visión del propietario del producto.
- Aportan y colaboran con el propietario del producto en el desarrollo de la pila del producto.

- Comparten de forma conjunta el objetivo de cada sprint y la responsabilidad del logro.
- Todos los miembros participan en las decisiones.
- Se respetan las opiniones y aportaciones
- Todos conocen el modelo de trabajo con Scrum.

Hay un responsable o líder del equipo que asume las responsabilidades de garantía de funcionamiento del campo de Scrum en el proyecto.

En las fases de implementación de Scrum, con equipos sin demasiada experiencia en desarrollo ágil con Scrum, y en organizaciones con demasiada rotación de personas de los equipos entre proyectos, es recomendable la figura de un gestor de Scrum o Scrum Manager para asumir estas responsabilidades.

Scrum Manager — Team Leader

Es el responsable del funcionamiento de Scrum en el proyecto, cubriendo los aspectos siguientes que la organización necesite según el conocimiento, experiencia con el modelo... o aquellos que no cubra con otras personas con la formación e idoneidad adecuada.

- Asesoría y formación al Propietario del pro-
- Asesoría y formación al equipo.
- Revisión y validación de la pila del producto.
- Moderación de las reuniones.
- Resolución de impedimentos que en el sprint pueden entorpecer la ejecución de las tareas.
- Gestión de la "dinámica de grupo" en el equipo
- Respeto de la organización y los implicados, con las pautas de tiempos y formas de Scrum
- Configuración, diseño y mejora continua de las prácticas de Scrum en la organización.

Resumen

Las responsabilidades del funcionamiento de Scrum Management en la organización clasifican en tres niveles y son las siguientes:

De management

- Equilibrio sistémico de la organización
- Coherencia del modelo
- Medios y formación

De procesos

- Configuración de Scrum
- Meiora continua
- Garantía de funcionamiento de Scrum en cada proyecto

De producción

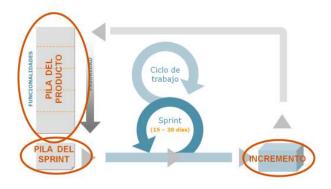
- Producto
- Auto-organización
- Tecnología ágil

El rol de propietario del producto tiene las responsabilidades de producto.

El equipo:

- Auto organización
- El uso de tecnología y técnicas ágiles en el desarrollo del sistema
- Garantía de funcionamiento de Scrum en el proyecto, cuando no hay un Scrum Manager

El resto de las responsabilidades no son propias del proyecto, y por tanto propias del equipo; sino de la organización.



Introducción

Los elementos centrales del modelo de trabajo Scrum son:

- Pila del producto (Product Backlog): Lista de funcionalidades que necesita el
- Pila del sprint (Sprint Backlog): Lista de tareas que se realizan en un sprint
- Incremento: Parte del sistema desarrollada en un sprint

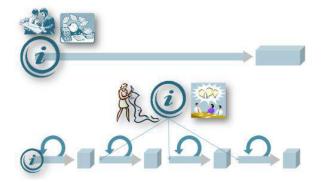
Este tema describe estos tres elementos. Los dos primeros forman los requisitos del sistema, y el tercero es valor que se le entrega al cliente al final de cada sprint.

Cada incremento es una parte del producto completamente terminada y operativa.

No se deben considerar como incrementos: prototipos, módulos o subrutinas pendientes de pruebas o de integración.

Los requisitos en el desarrollo ágil

La ingeniería del software clásica diferencia dos áreas de requisitos


- Requisitos del sistema
- Requisitos del software

Los requisitos del sistema forman parte del proceso de adquisición (ISO 12207), y por tanto es responsabilidad del cliente la definición del problema y de las funcionalidades que debe aportar la solución.

No importa si se trata de gestión tradicional o ágil. La descripción del sistema es responsabilidad del cliente, aunque se aborda de forma diferente en cada caso.

- En los proyectos predictivos, los requisitos del sistema suelen especificarse en documentos formales: mientras que en los proyectos ágiles toman la forma de pila del producto o lista de historias de usuario.
- Los requisitos del sistema formales se especifican de forma completa y cerrada al inicio del proyecto; sin embargo una pila del producto es un documento vivo, que evoluciona durante el desarrollo.
- Los requisitos del sistema los desarrolla una persona o equipo especializado en ingeniería de requisitos a través del proceso de obtención (elicitación) con el cliente. En Scrum la visión del cliente es conocida por todo el equipo (el cliente forma parte del equipo) y la pila del producto se realiza y evoluciona de forma continua con los aportes de todo el equipo.

Pero la responsabilidad es del cliente; del "propietario del producto" en el caso de Scrum, que debe decidir qué se incluye en la pila del producto, y el orden de prioridad.

Requisitos y visión del producto

Scrum, aplicado al software, emplea dos formatos para registrar los requisitos:

- Pila del producto (Product Backlog)
- Pila del sprint (Sprint Backlog)

La pila del producto se sitúa en el área de necesidades de negocio desde el punto de vista del cliente. Es el área que en la ingeniería del software tradicional, cubren los requisitos del sistema o ConOps (Concept of Operations).

La pila del sprint cubre la especificación de los requisitos de software necesarios para dar respuesta a las funcionalidades esperadas por el cliente.

Estas listas no tienen por qué cumplir con un determinado "formato scrum-estándar". Pueden, y deben, adoptar la forma más adecuada al sistema equipo-proyecto.

Algunos equipos ágiles emplean pilas de requisitos, otros historias de usuario, tarjetas kanban, etc...

Lo relevante no es tanto la forma, sino que:

Requisitos del Sistema (pila del producto):

- Las funcionalidades que incluye dan forma a una visión del producto definida y conocida por todo el equipo.
- funcionalidades están individualmente definidas, priorizadas y pre-
- Están realizados y gestionados por el cliente (propietario del producto)

Requisitos del software (pila del sprint):

- Incluyen todas las tareas necesarias para construir el incremento de un sprint.
- El equipo ha estimado el esfuerzo de cada tarea.
- El equipo ha asignado cada tarea a un miembro.
- Las duraciones estimadas de las tareas no son ni inferiores, ni superiores a los límites definidos en el equipo.

Pila del producto: los requisitos del cliente

La pila del producto es el inventario de funcionalidades, mejoras, tecnología y corrección de errores que deben incorporarse al producto a través de las sucesivas iteraciones de desarrollo.

Representa todo aquello que esperan los clientes. usuarios, y en general los interesados. Todo lo que suponga un trabajo que debe realizar el equipo tiene que estar reflejado en esta pila.

Estos son algunos ejemplos de posibles entradas de un backlog:

- Permitir a los usuarios la consulta de las obras publicadas por un determinado
- Reducir el tiempo de instalación del
- Mejorar la escalabilidad del sistema.
- Permitir la consulta de una obra a través de un API web.

A diferencia de un documento de requisitos del sistema, la pila del producto nunca se dá por completada; está en continuo crecimiento y evolución.

Habitualmente se comienza a elaborar con el resultado de una reunión de "fertilización cruzada" o brainstorming; o un proceso de "Exploración" (eXtreme Programming) donde colabora todo el equipo a partir de la visión del propietario del producto.

El formato de la visión no es relevante. Según los casos, puede ser una presentación informal del responsable del producto, un informe de requisitos del departamento de marketing, etc. Sí que es importante sin embargo disponer de una visión real, comprendida y compartida por todo el equipo.

La pila evolucionará de forma continua mientras el producto esté en el mercado, para darle valor de forma continua, y mantenerlo útil y competitivo.

Para dar comienzo al desarrollo se necesita una visión de los objetivos de negocio que se quieren conseguir con el proyecto, comprendida y conocida por todo el equipo, y elementos suficientes en la pila para llevar a cabo el primer sprint.

Formato de la pila del producto

El desarrollo ágil prefiere la comunicación directa, a la comunicación con documentos.

La pila del producto no es un documento de requisitos, sino una herramienta de referencia para el equipo.

Si se emplea formato de lista, es recomendable que al menos incluya la siguiente información en cada línea:

- Identificador único de la funcionalidad o trabajo.
- Descripción de la funcionalidad.
- Campo o sistema de priorización.
- Estimación

Dependiendo del tipo de proyecto, funcionamiento del equipo y la organización, pueden resultar aconsejables otros campos:

- Observaciones
- Criterio de validación
- Persona asignada
- Nº de Sprint en el que se realiza
- Módulo del sistema al que pertenece

Es preferible no adoptar ningún protocolo de trabajo de forma rígida. El formato del product backlog no es cerrado.

Los resultados de Scrum Management no dependen de la rigidez en la aplicación del protocolo, sino de la institucionalización de sus principios y la implementación en un formato adecuado a las características de la empresa y del proyecto.

1	Muy alta	Plataforma tecnològica	30	AR
- 2	Muy alta	Interfaz usuario	40	LR
3	Muy alta	Un usuarlo se registra en el sistema.	40	LR
- 4	Alta	El operador define el flujo y textos de un expediente	. 60	AR
5	Alta	Etc	.999	XX

Pila del Sprint

La pila del sprint, es la lista que descompone las funcionalidades de la pila del producto en las tareas necesarias para construir un incremento: una parte completa y operativa del producto.

Cada tarea de la pila del sprint tiene asignada una persona, y la indicación del tiempo que aún falta para terminarla.

Es útil porque descompone el proyecto en unidades de tamaño adecuado para determinar el avance a diario, e identificar riesgos y problemas sin necesidad de procesos complejos de gestión. Es también una herramienta de soporte para la comunicación directa del equipo.

Condiciones

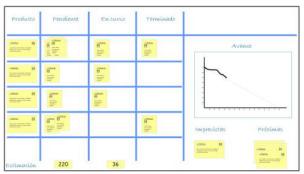
- Realizada de forma conjunta por todos los miembros del equipo.
- Cubre todas las tareas identificadas por el equipo para conseguir el objetivo del
- Sólo el equipo lo puede modificar durante el sprint.
- El tamaño de cada tarea está en un rango de 2 a 16 horas de trabajo.
- Es visible para todo el equipo. Idealmente en una pizarra o pared en el mismo espacio físico donde trabaja el equipo.

Formato y soporte

Tres son las opciones:

- Hoja de cálculo.
- Pizarra física o pared.
- Herramienta colaborativa o de gestión de proyectos.

Y sobre la que mejor se adecua a las características del proyecto, oficina y equipo, lo apropiado es diseñar el formato más cómodo para todos, teniendo en cuenta los siguientes criterios:


Incluye la información: lista de tareas, persona responsable de cada una, estado

- en el que se encuentra y tiempo de trabajo que queda para completarla.
- Sólo incluye la información estrictamente necesaria.
- El medio y modelo elegido es la opción posible que más facilita la consulta y comunicación diaria y directa del equipo.
- Sirve de soporte para registrar en cada reunión diaria del sprint, el tiempo que le queda a cada tarea.

Ejemplos

Durante el sprint, el equipo actualiza sobre la pila del sprint, a diario, los tiempos pendientes de cada tarea.

Al mismo tiempo, con estos datos traza el gráfico de avance o "burn-down", que se verá en el tema de "herramientas".

El Incremento

El incremento es la parte de producto producida en un sprint, y tiene como características: que está completamente terminada y operativa, en condiciones de ser entregada al cliente final.

No se trata por tanto de módulos o partes a falta de pruebas, o documentación o... Idealmente en el desarrollo ágil:

- Cada funcionalidad de la pila del producto se refiere a funcionalidades entregables, no a trabajos internas del tipo "diseño de la base de datos"
- Se produce un "incremento" en cada iteración.

Sin embargo suele ser una excepción habitual el primer sprint. En el que objetivos del tipo "contrastar la plataforma y el diseño" pueden ser normales, e implican trabajos de diseño o desarrollo de prototipos para probar la solvencia de la plataforma que se va a emplear, etc.

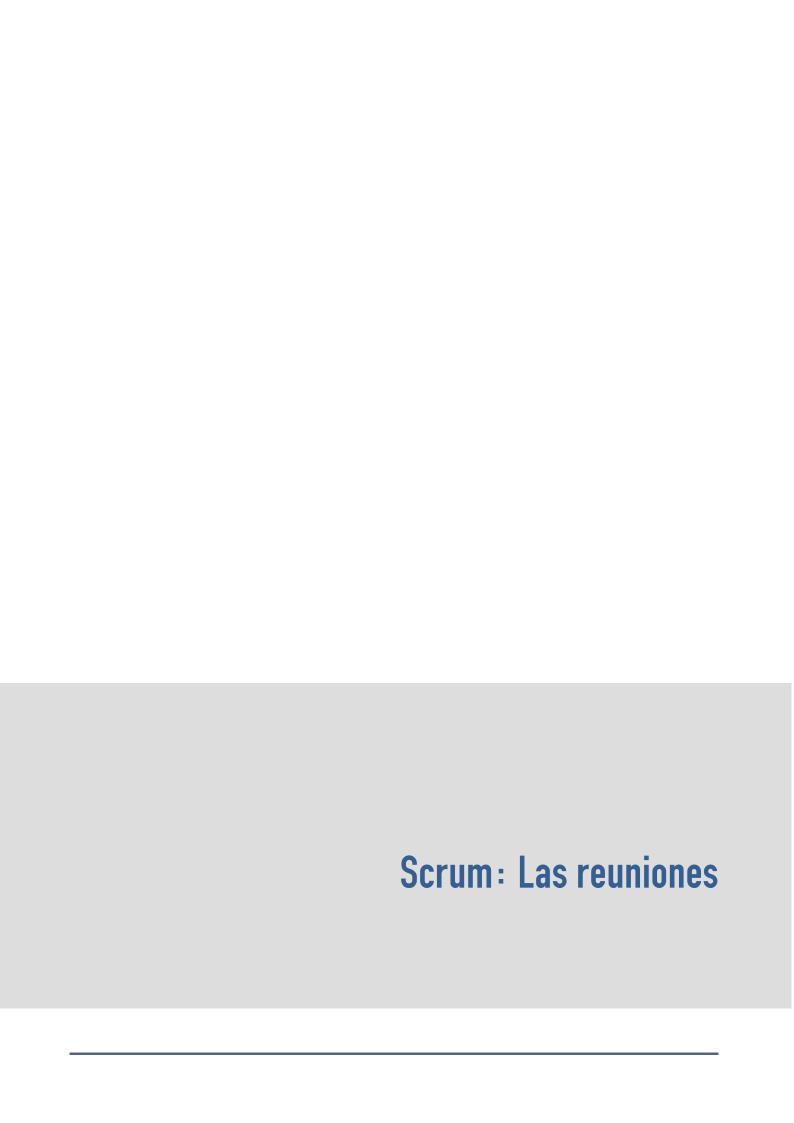
Teniendo en cuenta esta excepción habitual, Incremento es:

Parte de producto realizada en un sprint, y potencialmente entregable: TERMINADA Y **PROBADA**

Si el proyecto o el sistema requiere documentación, o procesos de validación y verificación documentados, o con niveles de independencia que implican procesos con terceros, éstos también tienen que estar realizados considerar que el producto está "terminado".

Resumen

La pila del producto es la lista de funcionalidades que desea el cliente, ordenadas según la prioridad para él.


Es un documento vivo, en constante evolución durante el desarrollo del sistema.

La pila del sprint es la lista de tareas en las que se han descompuesto las funcionalidades de la pila del producto que se van a desarrollar en un sprint.

Para cada tarea de la pila del sprint se indica la persona que la tiene asignada y el tiempo de trabajo previsto.

Durante el sprint el equipo actualiza a diario en la pila del sprint los tiempos pendientes de cada

Incremento es la parte de producto desarrollada en un sprint, y se debe encontrar completamente terminada y probada.

Introducción

Scrum realiza el seguimiento y la gestión del proyecto a través de las tres reuniones que forman parte del modelo:

- Planificación del sprint
- Seguimiento del sprint
- Revisión del sprint

Este tema describe los objetivos y protocolos recomendados para cada una.

Planificación del sprint

Descripción general

En esta reunión se toman como base las prioridades y necesidades de negocio del cliente, y se determina cuáles y cómo van a ser las funcionalidades que incorporará el producto tras el siguiente sprint.

En realidad es una reunión que consta de dos partes:

- En la primera, que puede tener una duración de una a cuatro horas, se decide qué elementos de la pila del producto se van a desarrollar.
- En la segunda se desglosan éstos para determinar las tareas necesarias, estimar el esfuerzo para cada una, y asignarlas a las personas del equipo.

La planificación del sprint no debe durar más de un día. Las características de la reunión son:

Pre-condiciones

- La organización tiene determinados los recursos disponibles para llevar a cabo el
- El propietario del producto tiene preparada la pila del producto, con su criterio de prioridad para el negocio, y un nº suficiente de elementos para desarrollar en el sprint.
- Siempre que sea posible, el propietario del producto debe haber trabajado antes con el equipo. De esta forma su estimación previa del trabajo que se puede realizar en el sprint será bastante ajustada.
- El equipo tiene un conocimiento de las tecnologías empleadas, y del negocio del producto suficiente para realizar estimaciones basadas en "iuicio de expertos", y para comprender los conceptos del negocio que expone el propietario del producto.

Entradas

- La pila del producto.
- El producto desarrollado hasta la fecha a través de los sucesivos incrementos (excepto si se trata del primer sprint)
- Circunstancias de las condiciones de negocio del cliente y del escenario tecnológico empleado.

Resultados

- Pila del sprint.
- Duración del sprint y fecha de la reunión de revisión.
- Objetivo del sprint.

Es una reunión conducida por el responsable del funcionamiento de Scrum (Scrum Manager, o un miembro del equipo en equipos ya expertos en trabajo con Scrum) a la que deben asistir el

propietario del producto y el equipo completo, y a la que también pueden asistir otros implicados en el proyecto.

La reunión comienza con la presentación del propietario de la pila de producto (product backlog), en la que expone los resultados que por orden de prioridad necesita; especialmente los que prevé, se podrán desarrollar en el siguiente sprint.

Si la pila del producto ha tenido cambios significativos desde la anterior reunión; explica las causas que los han ocasionado.

El objetivo es que todo el equipo conozca las razones y los detalles con el nivel necesario para estimar el trabajo necesario.

Formato de la reunión

Esta reunión marca el inicio de cada sprint. Una persona con la responsabilidad de procesos en la organización es el responsable de su organización y gestión.

Duración máxima: un día.

Deben asistir: el propietario del producto, el equipo y el Scrum Manager (o responsable de este rol)

Pueden asistir: es una reunión abierta a todos los que puedan aportar información útil.

Consta de dos partes separadas por una pausa de café o comida, según la duración.

Primera parte:

Duración de 1 a 4 horas.

Propietario del producto:

Presenta las funcionalidades de la pila del producto que tienen mayor prioridad y que estima se pueden realizar en el sprint.

La presentación se hace con un nivel de detalle suficiente para transmitir al equipo toda la información necesaria para construir el incremento.

El equipo

Realiza las preguntas y solicita las aclaraciones necesarias.

Propone sugerencias, modificaciones y soluciones alternativas.

Las aportaciones del equipo pueden suponer modificaciones en la pila. De hecho no es que "puedan" es que "deben" suponerlas.

Esta reunión es un punto caliente del protocolo de Scrum para favorecer la fertilización cruzada de ideas en equipo y añadir valor a la visión del producto.

En las organizaciones en fase de implantación es recomendable la figura de un "Scrum Manager" que centraliza todas las responsabilidades para garantizar el funcionamiento de Scrum en la organización.

Tras reordenar y replantear las funcionalidades de la pila del producto, el equipo define el "objetivo del sprint" o frase que sintetiza cuál es el valor que se le va a entregar al cliente.

Exceptuando sprints dedicados exclusivamente a re-factorización o a colecciones de tareas desordenadas (que deberían ser los menos), la elaboración de este lema de forma conjunta en la reunión es una garantía de que todo el equipo comprende y comparte la finalidad del trabajo; y durante el sprint sirve de criterio de referencia en las decisiones que auto-gestiona el equipo.

Segunda parte:

En la segunda parte, que puede alargarse hasta el final de la jornada:

El equipo desglosa cada funcionalidad en tareas, y estima el tiempo para cada una de ellas, determinando de esta forma las tareas de la pila del sprint.

En este desglose el equipo tiene en cuenta los elementos de diseño y arquitectura que deberá incorporar el sistema.

Los miembros del equipo se auto-asignan las diferentes tareas tomando como criterios sus conocimientos, intereses y distribución homogénea del trabajo.

Esta segunda parte debe considerarse como una "reunión del equipo", en la que deben estar todos sus miembros y ser ellos quienes descomponen, estiman y asignan el trabajo.

El papel del propietario del producto es atender a dudas y comprobar que el equipo comprende y comparte su objetivo.

El Scrum Manager¹ actúa de moderador de la reunión.

Funciones del rol de Scrum Manager¹

El Scrum Manager es responsable y garante de:

Scrum: Las Reuniones

- 1.- Se realiza esta reunión antes de cada sprint.
- 2.-Antes de la reunión el propietario del producto dispone de una pila adecuada y suficiente para realizar el sprint.
- 3.- El diálogo principal de la reunión se realiza entre el propietario del producto y el equipo. Otros asistentes pueden participar, pero su colaboración no puede implicar toma de decisiones ni limitar el diálogo principal.
- 4.- La reunión es un trabaio de colaboración activa entre los dos protagonistas: cliente y equipo, y concluyen con un acuerdo sobre el incremento de producto que van a realizar en el sprint.
- 5.- El equipo comprende la visión y necesidades de negocio del cliente.
- 6.- El equipo ha realizado una descomposición y estimación del trabajo realistas, y ha considerado las posibles tareas necesarias de análisis, investigación o apoyo.
- 7.- Al final de la reunión están objetivamente determinados:
 - Los elementos de la pila del producto que se van a ejecutar.
 - El objetivo del sprint.
 - La pila del sprint con todas las tareas estimadas v asignadas.
 - La duración del sprint y la fecha de la reunión de revisión.

El Scrum Manager modera la reunión para que no dure más de un día. Debe evitar que el equipo comience a profundizar en trabajos de análisis o arquitectura que son propios del sprint.

Pizarra de trabajo

Es recomendable, que el propietario del producto emplee una hoja de cálculo, alguna herramienta similar, o el soporte de una intranet, para guardar en formato digital la pila del producto

Pero no es aconsejable emplearla como base para trabajar sobre ella en la reunión, proyectándola sobre la pantalla de la sala.

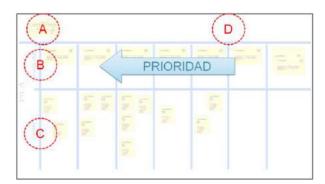
Es mucho mejor trabajar y manipular elementos físicos; y usar una pizarra y fichas removibles (adhesivas, chinchetas, magnéticas).

Un ejemplo de pizarra

La pizarra facilita la comunicación y el trabajo de la reunión.

Al final de la reunión el propietario del producto registrará en la hoja de cálculo, o en la herramienta que emplee, el estado y las modificaciones en la pila del producto.

El equipo hará lo mismo con la pila del sprint.


Según la distribución y espacio de la oficina, quizá se reutilice la pizarra o las notas para el seguimiento del sprint; o quizá no.

Algunos soportes que suelen emplearse:

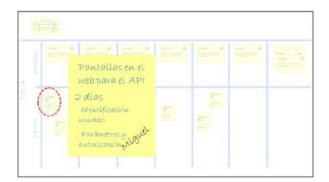
- Pizarra blanca y fichas adhesivas tipo
- Pizarra de corcho laminado y chinchetas para sujetar las fichas.
- Pizarra de acero vitrificado y soportes magnéticos para sujetar las fichas.

Se puede conseguir una solución práctica y económica empleando fichas adhesivas ("Post-it") y usando como pizarra cartón pluma blanco de 5mm. fijado con puntas directamente sobre la

El cartón pluma es un material ligero, de acabado satinado que puede adquirirse en tiendas de materiales para bellas artes y manualidades.

Con cinta adhesiva removible se marcan líneas para delimitar:

- Un área superior donde el Scrum Manager coloca al principio de la reunión la capacidad real del sprint a 3, 4 y 5 semanas (A); y al final (D), las notas con: el objetivo establecido, duración del sprint, funcionalidades de la pila del producto comprometidas, hora fijada para las reuniones diarias y fecha prevista para la reunión de revisión del sprint.
- B.- Una franja para ordenar los elementos de la pila del producto de mayor a menor prioridad.


C.- Una franja paralela para descomponer cada elemento de la pila del producto en las correspondientes tareas de la pila del sprint.

En cada ficha se refleja la información básica para las decisiones de la reunión: priorización, estimación, descomposición y asignación a los miembros del equipo.

Las siguientes imágenes muestran un ejemplo de uso:

Algunas marcas comerciales, entre ellas Post-it comercializan tarjetas adhesivas, con fondo rayado, similares a fichas que resultan especialmente apropiadas, porque no se adhieren entre ellas, pero sí a las pizarras.

Seguimiento del sprint

Descripción

Reunión diaria breve, de no más de 15 minutos, en la que cada miembro del equipo dice las tareas en las que está trabajando, si se ha encontrado o prevé encontrarse con algún impedimento, y actualiza sobre la pila del sprint las ya terminadas, o los tiempos de trabajo que les quedan.

Entradas

Pila del sprint y gráfico de avance (burn-down) actualizados con la información de la reunión anterior.

Información de las tareas realizadas por cada componente del equipo

Resultados

Pila del sprint y gráfico de avance (burn-down) actualizados.

Identificación de necesidades e impedimentos.

Formato de la reunión

Se recomienda realizarla de pie y emplear un formato de pila de tareas en una pizarra, junto con el gráfico de avance del sprint, para que todo el equipo pueda ver y anotar.

En la reunión está presente todo el equipo, y pueden asistir también otras personas relacionadas con el proyecto o la organización, pero éstas no pueden intervenir.

Cada miembro del equipo expone estas tres cuestiones:

- 1.- Tarea en la que trabajó ayer.
- 2.- Tarea o tareas en las que trabajará hoy.
- 3.- Si va a necesitar alguna cosa especial o prevé algún impedimento para realizar su trabajo.

Y actualiza sobre el sprint backlog el tiempo de trabajo que queda pendiente en las tareas que tiene asignadas, o marca como finalizadas las ya completadas.

Al final de la reunión:

- Con las estimaciones actualizadas, el equipo refresca el gráfico de avance del
- El Scrum Manager (o responsable de la gestión de procesos de la organización) comienza la gestión de necesidades e impedimentos identificados.

Revisión del sprint

Descripción

Reunión realizada al final del sprint en la que, con una duración máxima de 4 horas, el equipo presenta al propietario del producto, clientes, usuarios, gestores... el incremento construido en el sprint.

Objetivos

- El propietario del producto obtiene información objetiva del progreso del sistema. Esta reunión marca a intervalos regulares, el ritmo de construcción del sistema y la trayectoria que va tomando la visión del producto.
- Al ver y probar el incremento, el propietario del producto, y el equipo en general obtienen feedback clave para evolucionar y dar más valor a la pila del producto.
- Otros ingenieros y programadores de la empresa también pueden asistir para conocer cómo trabaja la tecnología empleada.
- Scrum Manager obtiene retroinformación sobre buenas prácticas y problemas durante el sprint, necesaria para las prácticas de ingeniería de procesos y mejora continua de la implementación Scrum Management.

Pre-condiciones

- Se ha concluido el sprint.
- Asiste todo el equipo de desarrollo, el propietario del producto, el responsable de procesos de la empresa y todas las personas implicadas en el proyecto que lo deseen.

Entradas

Incremento terminado.

Resultados

- Feedback para el propietario producto: hito de seguimiento de la construcción del sistema, e información para mejorar el valor de la visión del producto.
- Feedback para el Scrum Manager (o responsable de la gestión de procesos de la organización): buenas prácticas y problemas durante el sprint.
- Convocatoria de la reunión del siguiente sprint.

Formato de la reunión

Es una reunión informal. El objetivo es ver el incremento y trabajar en el entorno del cliente. Están prohibidas las presentaciones gráficas y "powerpoints".

El equipo no debe invertir más de una hora en preparar la reunión, y lo que se muestra es el resultado final: terminado, probado y operando en el entorno del cliente (incremento).

Según las características del proyecto puede incluir también documentación de usuario, o técnica.

Es una reunión informativa. NO TIENE UNA MISIÓN ORIENTADA A TOMAR DECISIONES, NI A CRITICAR EL INCREMENTO. Con la información generada en la preparación del siguiente sprint se expondrán y tratarán las posibles modificaciones sobre la visión del producto.

Un protocolo recomendado:

- 1.- El equipo expone el objetivo del sprint, la lista de funcionalidades que se incluían y las que se han desarrollado.
- 2.- El equipo hace una introducción general del sprint y demuestra el funcionamiento de las partes construidas.
- 3.- Se abre un turno de preguntas y sugerencias sobre lo visto. Esta parte genera información muy valiosa para que el propietario del producto, y el

equipo en general, puedan mejorar el valor de la visión del producto.

4.- El Scrum Manager, de acuerdo con las agendas del propietario del producto y el equipo cierra la fecha para la reunión de preparación del siguiente sprint.

Resumen

La gestión y evolución de un proyecto con Scrum se determina en tres reuniones:

- Planificación del sprint.
- Seguimiento del sprint.
- Revisión del sprint.

Planificación del sprint

- Duración máxima 1 día.
- Se determinan las funcionalidades que se desarrollarán en el sprint.
- Cada funcionalidad se desglosa en tareas
- Cada tarea se estima y se asigna a una persona del equipo.
- El resultado es la pila del sprint.

Seguimiento del sprint

- Breve reunión diaria en la que el equipo revisa la evolución del sprint.
- Cada uno expone la tarea en la que ha estado trabajando, en cuál va a trabajar y si necesita algo para poderla realizar.
- Cada miembro actualiza la estimación de tiempo pendiente de sus tareas.

Revisión del sprint

- Duración máxima 4 horas.
- Muestra el incremento desarrollado a todas las personas implicadas en el proyecto.

Introducción

¿Por qué medir?

La información es la materia prima de la toma de decisiones, y la que puede ser objetivamente cuantificada proporciona criterios objetivos de gestión v seguimiento.

Desde los niveles concretos de la programación, hasta los más amplios de la gestión global de la compañía, Scrum Management considera tres fondos de escala, o de zoom con los que se puede medir el trabajo

- Desarrollo y gestión de la solución técnica.
- Gestión de proyecto.
- Gestión de la organización.

En el primero se puede medir, por ejemplo, la proporción de polimorfismo del código de un programa, en el segundo, el porcentaje de trabajo realizado, y en el tercero, también por ejemplo, el nivel de satisfacción laboral.

Este libro cubre el área de gestión de proyectos, desde una perspectiva ágil; pero en esta introducción se exponen consideraciones generales, comunes a los tres.

Flexibilidad y sentido común

Medir es costoso

Antes de incorporar un procedimiento de medición, se debe cuestionar su conveniencia, y la forma en la que se aplicará.

Medir no es un fin en sí mismo

No se deben implantar procesos de medición tan sólo porque sí.

Tomar una lista más o menos "prestigiosa" de métricas e incorporarla a los procedimientos de la empresa, puede tentar por la imagen de profesionalidad que transmitirá un escenario de trabajo monitorizado con indicadores y complejas mediciones, pero no dice mucho a favor de cómo se han analizado y adaptado esas métricas a la realidad de los proyectos y la empresa.

Criterios para el diseño y aplicación de métricas

Cuantas menos, mejor

- Medir es costoso
- Medir añade burocracia
- El objetivo de "Scrum Management" es trabajar con la mejor relación valor / simplicidad.

Cuestiones para cada indicador:

¿Por qué se va a usarlo? ¿Cuál es el valor por incorporarlo? ¿Cuál por omitirlo? ¿Se pueden tomar decisiones de gestión sin esa información?

La cita "No se puede gestionar lo que no se puede medir", por la redondez de su forma, tienta a considerarla incuestionable. Se desarrollan así patrones de gestión que renuncian a la experiencia, capacidad y sentido común del gestor, incluso en las ocasiones en las que éste puede ser suficiente; y se termina reclamando métricas, produciendo gestores mecanicistas.

El sentido común puede bastar, por ejemplo, para tomar decisiones de gestión de personal en una empresa de ingeniería de 10 empleados, sin necesidad de procedimientos de medición del clima laboral; pero sin embargo éstos son necesarios en empresas con cientos de personas en sedes y departamentos diferentes.

El objetivo de la gestión Scrum es el valor, y la cuestión clave para la incorporación indicadores en la gestión de proyectos es:

¿Cómo contribuye el uso de este indicador en el valor que el proyecto va a aportar al cliente?

VALOR APORTADO

VALOR POR OMITIRLA

¿El indicador es apropiado para el fin que se debe conseguir?

Medir no es, o no debería ser, un fin en sí mismo.

¿Cuál es el fin?

¿Cumplir agendas, mejorar la eficiencia del equipo, las previsiones...?

Sea crítico. El que lo haga, o diga que lo hace la mayoría, no es una razón. Si después de analizarlo no le convence, si prefiere no incorporar esa métrica, o modificarla: usted es el gestor.

Determinar qué medir es la parte más difícil. En el mejor de los casos, las decisiones erróneas sólo supondrán un coste de gestión evitable; pero muchas veces empeorarán lo que se intentaba mejorar.

Medición de la eficiencia en la empresa

La organización XYZ, dedicada al desarrollo de software, está integrando un sistema de calidad y mejora integral para toda la empresa, que incluye métricas para conocer el grado de eficiencia en cada departamento.

Para el de RR.HH. se ha diseñado e implantado un indicador habitual para estos casos, que determina la eficiencia en los procesos de selección de personal.

Mide el coste de cada proceso de selección (anuncios, selección de currículos, entrevistas...) y lo divide por el número de puestos cubiertos.

Como no sólo es importante la eficiencia, sino también la satisfacción del cliente (interno en este caso, que será el departamento que solicita personal) esta métrica se combina con otra para determinarlo: tiempo de respuesta.

Cuánto tiempo se tarda en cubrir las vacantes.

La implantación del indicador ha dado buenos resultados: desde su puesta en marcha, el departamento de RR.HH. ha comenzado a ser más eficiente y conseguir mayor satisfacción de su cliente:

- 1.- Va reduciendo los costes que suponen la incorporación de nuevas personas a la empresa.
- 2.- Va reduciendo los tiempos de respuesta a los departamentos que solicitan nuevo personal.

Medición del avance del proyecto

La organización XYZ ha diseñado un cuadro de información para mostrar el grado de avance de cada proyecto.

Los indicadores de progreso de los proyectos, y de las tareas en las que se descomponen, se elaboran con el sistema clásico de la gestión de proyectos predictiva:

- 1.- Se realiza la estimación del tiempo de trabajo necesario para cada tarea.
- 2.- Diariamente se actualizan los tiempos de trabajo invertidos.
- 3.- La diferencia muestra el porcentaje ejecutado de las tareas, y por tanto, el de cada proyecto.

Medición de la eficiencia de los trabajos de programación

La organización XYZ ha adoptado métricas estándar de eficiencia de Ingeniería del Software: LOC/Hour: Número total de líneas de código nuevas o modificadas en cada hora.

Además para motivar la productividad, ha vinculado los resultados de esta métrica a la retribución por desempeño de los programadores. El resultado ha sido producir más líneas de código sin incrementar la plantilla.

Para evitar que se trate de un incremento "hueco" de líneas de código, o que conlleve un aumento de los errores por programar más deprisa, se ha dotado de mayor "rigor" al sistema de métrica, incorporando al poco tiempo otras métricas para complementar y mejorar el sistema de calidad:

Test Defects/KLOC, Compile Defects/KLOC y Total Defects/KLOC, para controlar que no aumenten el número de errores deslizados en el código.

También se incorporaron indicadores "appraisal time" para medir tiempo y costes del diseño y la ejecución de las revisiones de código.

Y por el temor a que el sistema de medición pueda resultar excesivamente costoso se incorporan también indicadores de coste de calidad (COQ) que miden los tiempos de revisión y los contrastan con las mejoras en los tiempos eliminados por reducción de fallos.

¿Lo que vamos a medir es un indicador válido de lo que queremos conocer?

Hay tareas de programación relativamente mecánicas, orientadas más a la integración y configuración que en al desarrollo de nuevos sistemas. Para aquellas puede resultar medianamente acertado considerar la eficiencia como volumen de trabajo realizado por unidad de tiempo.

Para las segundas sin embargo, es más apropiado pensar en la cantidad de valor integrado por unidad de desarrollo; expresadas éstas en horas, iteraciones o puntos de función.

¿Qué queremos conocer: la cantidad de líneas de programa, o el valor que entregamos al cliente? ¿Está relacionado lo uno con lo otro? ¿Se puede medir objetivamente el valor entregado al cliente?

En nuestro trabajo son muchos los parámetros que se pueden medir con criterios objetivos y cuantificables: el tiempo de tarea, los tiempos delta, y los de las interrupciones, el nº de puntos de función, la inestabilidad de los requisitos, la proporción de acoplamiento, el nº de errores por línea de código...

¿No estaremos muchas veces midiendo esto, simplemente porque es cuantificable?

¿No estaremos midiendo el nº de líneas que desarrollan las personas cuando en realidad queremos saber el valor de su trabajo?

¿No nos estará pasando lo mismo cuando pretendemos medir: la facilidad de uso, la facilidad de mantenimiento, la flexibilidad, la transportabillidad, la complejidad, etc.?

Resumen

Las métricas se pueden aplicar en el nivel de gestión de la organización, de gestión de los proyectos o de construcción de la solución técnica.

En el diseño e implantación de métricas se debe considerar:

Usar el menor número de métricas posible.

¿El indicador es apropiado para el fin que se debe conseguir?

¿Lo que vamos a medir es un indicador válido de lo que queremos conocer?

Velocidad, trabajo y tiempo

Velocidad, trabajo y tiempo son las tres magnitudes que mide la gestión de proyectos ágil, y componen la fórmula de la velocidad, definiéndola como: cantidad de trabajo realizada en por unidad de tiempo.

Velocidad = Trabajo / Tiempo

Tiempo

El desarrollo ágil emplea la técnica "timeboxing"8 para gestión de tiempo. En el caso de Scrum, la unidad de tiempo para cada incremento de producto es el Sprint.

Tiempo real y tiempo ideal

Antes de continuar, una observación: la diferencia, al hablar de tiempo, entre tiempo "real" y tiempo "ideal".

¿Cuánto dura un partido de Baloncesto?

Tiempo ideal: 40 minutos Tiempo real: > 2 horas

Tiempo real, es el efectivo de trabajo. Es equivalente a la jornada laboral.

Para un equipo de cuatro personas con jornada laboral de ocho horas el tiempo real en una semana (cinco días laborables) es:

4 * 8 * 5 = 160 horas

El tiempo real de ese equipo en un sprint de 12 días de trabajo es:

4 * 8 * 12 = 384 horas

Sin embargo el término "tiempo ideal" se refiere al tiempo de trabajo necesario, en "condiciones ideales", esto es, sin ninguna interrupción, pausa, distracción o atención a tareas ajenas a la tarea del sprint que se tiene asignada.

Es el concepto similar al que PSP9 denomina "Delta Time".

Trabajo

Medir el trabajo puede ser necesario por dos razones: para registrar el ya hecho, o para estimar anticipadamente, el que hay que realizar. En ambos casos se necesita una unidad, y un criterio objetivo de cómo se cuantifica.

Velocidad = Trabajo / Tiempo

Trabajo ya realizado

Medir el trabajo ya realizado no entraña especial dificultad.

Se puede hacer con unidades relativas al producto (p. ej. líneas de código) o a los recursos empleados (coste, tiempo de trabajo...)

Para medirlo basta contabilizar lo ya realizado, empleando las unidades con las que se opere: líneas de código, horas trabajadas (reales o teóricas)...

Medir el trabajo realizado NO es una métrica Àgil.

LA GESTIÓN ÁGIL NO DETERMINA EL GRADO DE AVANCE DEL PROYECTO POR EL TRABAJO YA REALIZADO, SINO POR EL PENDIENTE DE REALIZAR

Es posible que otros procesos de la organización necesiten registrarlo y medirlo, pero no la gestión ágil de proyectos.

Trabajo pendiente de realizar

Scrum mide el trabajo pendiente para:

Estimar el esfuerzo y la duración prevista para cada tarea.

⁸ Timeboxing, se suele traducir por "tiempo limitado" es un aspecto común de las metodologías ágiles, que marcan iteraciones para cada incremento, determinando qué tareas se van a realizar, y en qué tiempo.

⁹ Personal Software Process

Determinar el avance del proyecto, y en especial de cada sprint.

Para Scrum Management, estimar con precisión, de forma cuantitativa y objetiva el trabajo que necesitará la construcción de un requisito, es un empeño más que cuestionable.

El trabajo de un requisito no se puede cuantificar de forma absoluta, porque las funcionalidades no son realidades de solución única.

La "cantidad de trabajo" que consumirá cada funcionalidad o cada historia de usuario no se puede calcular de forma absoluta y objetiva; y en el caso de que se pudiera, la complejidad de la medición haría que la métrica resultante fuera demasiado pesada para la gestión ágil.

Y si no resulta posible estimar con precisión la cantidad de trabajo que hay en un requisito, tampoco se puede saber cuánto tiempo costará, porque además de la incertidumbre del trabajo, se suman las inherentes al "tiempo":

- No es realista hablar de la cantidad o de la calidad del trabajo que realiza una persona por día, o por hora, porque hay diferencias muy grandes de estos resultados, según las personas.
- Una misma tarea, realizada por las mismas personas consumirá diferentes tiempos reales en entornos de trabajo diferentes.

Sobre estas premisas:

- No es posible estimar con precisión, ni el trabajo de un requisito, ni el tiempo necesario para desarrollarlo.
- La complejidad de las técnicas de estimación crece exponencialmente en la medida que:
 - o Intentan incrementar la fiabilidad y precisión de los resultados.
 - o Aumenta el tamaño de la tarea estimada.

La estrategia empleada por la gestión ágil es:

- No empeñarse en estimaciones precisas.
- Estimar con la técnica "juicio de expertos"
- Descomponer las tareas de los sprints en sub-tareas más pequeñas, si las estimaciones superan los rangos de las 16-20 horas de de

Unidades de trabajo

Las unidades para medir el trabajo pueden estar relacionadas directamente con el producto, como los tradicionales puntos de función de COCOMO; o indirectamente, a través del tiempo necesario para realizarlo.

Velocidad = Trabajo / Tiempo

La gestión ágil suele llamar a las unidades que emplea para medir el trabajo "puntos", "puntos de funcionalidad" "puntos de historia"...

Así por ejemplo la unidad de medida "Story Point" de eXtreme Programming define: la cantidad de trabajo que se realiza en un día de trabajo ideal.

Cada organización, según sus circunstancias y su criterio institucionaliza su métrica de trabajo definiendo el nombre y las unidades.

Puede basarse en

- Estimación del tamaño relativo y emplear puntos
- Estimación del tiempo ideal necesario para realizar la tarea que se mide.

Lo importante es que la métrica empleada, su significado y la forma de aplicación sea consistente en todas las mediciones, en todos los

proyectos de la organización y conocida por todas las personas:

Que se trate de un procedimiento de trabajo institucionalizado.

Velocidad

Velocidad es la magnitud que viene determinada por la cantidad de trabajo realizada en un periodo de tiempo (Timebox) Los equipos que miden el trabajo con tiempo ideal, hablan de "Velocidad".

Decir, por ejemplo, que la velocidad del equipo en el sprint ha sido de 23, se refiere a que han completado tareas que medían en toral 23 story points.

Si en el sprint siguiente consiguen una velocidad mayor, querrá decir que han logrado programar más story points en el mismo tiempo, o lo que es lo mismo que han conseguido aumentar el porcentaje de tiempo ideal en la jornada de trabajo: han reducido los tiempos de interrupciones, distracciones o dedicados a otras tareas.

Se le puede llamar velocidad o eficiencia, lo importante no son los nombres, ni merece la pena entrar en cuestiones bizantinas.

Resumen

Tiempo real: tiempo total de trabajo, equivale a la iornada laboral

Tiempo ideal: Tiempo de trabajo en "condiciones ideales", esto es: sin ninguna interrupción, pausa, distracción, o atención a tareas aienas a la que se tiene asignada en el sprint.

Para determinar el grado de avance de un proyecto, la gestión ágil no mide el trabajo ya realizado, sino el pendiente de realizar.


Tomando como premisas

- No es posible estimar con precisión, ni el trabajo de un requisito, ni el tiempo necesario para desarrollarlo.
- La complejidad de las técnicas de estimación crece exponencialmente en la medida que:
 - Intentan incrementar la fiabilidad y precisión de los resultados.
 - Aumenta el tamaño de la tarea estimada.

La estrategia empleada por la gestión ágil es:

- No profundiza en estimaciones precisas.
- Emplea la técnica de "juicio de expertos"
- Descompone las tareas de los sprints en subtareas más pequeñas, si las estimaciones superan los rangos de las 16-20 horas de de trabajo.

Velocidad y eficiencia son términos similares. Se suele preferir "velocidad" cuando las mediciones se basan en tiempo teóricos, y "eficiencia" cuando lo hacen en tiempo real.

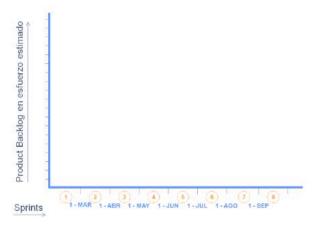
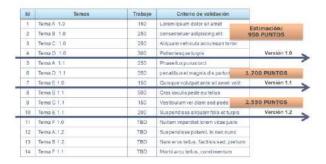


Gráfico de producto:

En inglés: gráfico "burn-up".

Este gráfico muestra en un vistazo, el plan general de desarrollo del producto, y la evolución prevista.

Es un diagrama cartesiano que representa en el eje de ordenadas el trabajo estimado para desarrollar el producto, y en el de abcisas las fechas, medidas según las duraciones previstas para los sprints.

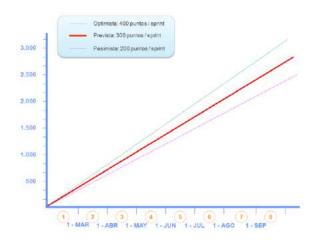


Ejemplo:

Representación del plan del producto, a partir de los temas previstos en la pila de producto (product backlog).

Convenciones empleadas por el equipo:

- Unidad para medición de trabajo: tiempo ideal
- Tiene previsto realizar sprints de duración fija mensual.
- El equipo está formado por 4 personas, y viene desarrollando una velocidad de 300 puntos por sprint (300 horas ideales de trabajo)

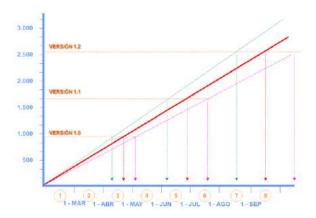

La figura anterior representa la situación actual del pila del producto (product backlog:10) el propietario del producto tiene previsto cerrar la versión 1.0 cuando disponga de los cuatro primeros temas, y su estimación inicial de trabajo para llevarlos a cabo es de 950 puntos.

La versión 1.1 incluirá 3 temas más que, según la estimación inicial, supondrán unos 750 puntos de trabajo.

Y están también trazados los temas con los que piensa cerrar la versión 1.2, que se prevén con 850 puntos más de trabajo.

Para representar el plan del producto con un "Burn-Up", se representan, con los fondos de escala apropiados:

Eje X = Fechas de los sprints previstos Eje Y = Puntos de trabajo


A continuación se traza en el gráfico la línea de velocidad prevista.

Siguiendo con el ejemplo, la línea roja de la imagen representa la velocidad de 300 puntos por sprint.

También puede resultar útil esbozar una estimación optimista y otra pesimista para tener la visión de una holgura de fechas aceptable.

Las listas de producto y de versión evolucionan de forma continua durante la vida del producto.

La línea de velocidad proyecta sobre el eje X la fecha o sprint en el que previsiblemente se completarán las versiones representadas en el eje Y.

Gráfico de avance: monitorización del sprint

También se suele emplear la denominación inglesa: gráfico "burn-down".

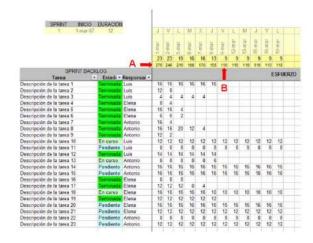
Es el gráfico que actualiza el equipo en las reuniones de seguimiento del sprint, para comprobar el ritmo de avance, y detectar desde el primer momento si es el previsto, o se puede ver comprometida la entrega prevista al final de sprint.

La estrategia ágil para el seguimiento de los proyectos se basa en:

- Medir el esfuerzo que falta, no el realizado.
- Seguimiento muy cercano (diario de ser posible).

Y en este gráfico toman forma los dos principios:

- En el eje Y se registra el trabajo que aún falta por realizar.
- Se actualiza a diario.



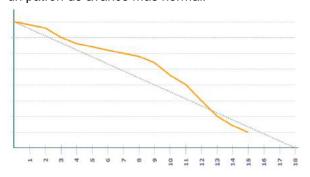
El equipo dispone en la pila del sprint, de la lista de tareas que va a realizar, y en cada uno figura el esfuerzo pendiente.

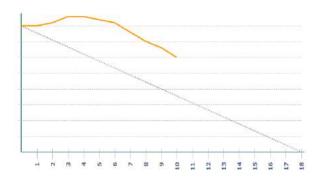
Esto es: el primer día, en la pila de tareas figura para cada tarea el esfuerzo que se ha estimado, puesto que aún no se ha trabajado en ninguna de ellas.

Día a día, cada miembro del equipo actualiza en la pila del sprint el tiempo que le queda a las tareas que va desarrollando, hasta que se terminan y van quedando en 0 los tiempos pendientes.

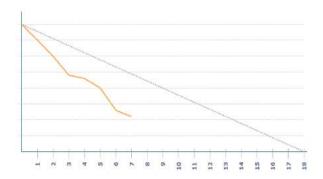
La figura siguiente muestra un ejemplo de pila en el sexto día del sprint: las tareas terminadas ya no tienen esfuerzo pendiente, y del esfuerzo total previsto para el sprint: 276 puntos (A), en el momento actual quedan 110 (B).

Con esta información de la pila del sprint se actualiza el gráfico poniendo cada día el esfuerzo pendiente total de todas las tareas que aún no se han terminado.




El avance ideal de un sprint estaría representado por la diagonal que reduce el esfuerzo pendiente de forma continua y gradual hasta terminarlo en el último día del sprint:

Las gráficas de diagonal perfecta no son lo habitual, y la siguiente imagen es un ejemplo de un patrón de avance más normal.



El siguiente sería el aspecto de la gráfica en un "sprint sub-estimado"

La estimación que realizó el equipo en la reunión de inicio del sprint es inferior al esfuerzo real que están requiriendo las tareas.

Y el siguiente sería el patrón de gráfica de un "sprint sobre-estimado".

Estimación de póker

Es una práctica ágil, útil para conducir las reuniones en las que se estima el esfuerzo y la duración de tareas.

Para evitar en estos casos las discusiones dilatadas que no terminan de dar conclusiones concretas, James Grening ideó este juego de planificación como ayuda para conducir la reunión.

El modelo inicial de Grening consta de 8 cartas, con los números representados en siguiente porque James lo ideó para figura, estimaciones de versión en eXtreme Programming, con equipos que emplean como unidad de esfuerzo: días de trabajo de cada par de programadores¹¹ y trabajan con tareas de tamaño máximo de 10 días. 12

eXtreme Programming trabaja con programación por parejas.

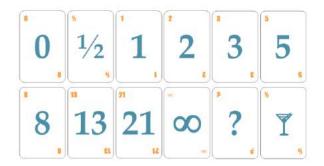
Las tareas de mayor tamaño se descomponen en subtareas hasta que éstas tienen estimaciones máximas de 10

El funcionamiento es muy simple: participante dispone de un juego de cartas, y en la estimación de cada tarea, todos vuelven boca arriba la combinación que suma el esfuerzo estimado.

Cuando se considera que éste es mayor de 10 horas (o del tamaño máximo considerado por el equipo para una tarea), se levanta la carta "co"

Cada equipo u organización puede utilizar un juego de cartas con las numeraciones adecuadas a la unidad de esfuerzo con la que trabajan, y el tamaño máximo de tarea que se va a estimar.

Lo relevante no es el número de cartas, la unidad de medida empleada, o si el tamaño máximo de tarea debe ser 5, 7 ó 10 días, sino trabajar con el modelo que el equipo considera más apropiado, respetando los principios siguientes:


- No definir tareas demasiado grandes, porque entorpece la precisión de las estimaciones y la identificación de riesgos.
- No definir tareas con duraciones inferiores a medio día ideal de trabajo.
- Utilizar al misma unidad de medida (story points, días, horas...) en todos los gráficos y pilas.

Variante: sucesión de Fibonacci

Basado en el hecho de que al aumentar el tamaño de las tareas, aumenta también el margen de error, se ha desarrollado una variante que consiste en emplear sólo números de la sucesión de Fibonacci para realizar las estimaciones, de forma que:

- El juego de cartas está compuesto por números de la sucesión de Fibonacci.
- La estimación no se realiza levantando varias cartas para componer la cifra exacta, sino poniendo boca arriba la carta con la cifra más aproximada a la estimación.

Para estimar tareas puede ser válido un juego de cartas como éste:

Si se quiere emplear la planificación de póker para estimar requisitos a nivel de producto o de versión (funcionalidades, temas...) además de usarlo al nivel de tareas de sprint, se pueden añadir cartas al juego para permitir estimaciones de mayor tamaño (34, 55, 89, 144...)

Es frecuente emplear una carta con un símbolo de duda o interrogación para indicar que, por las razones que sean, no se puede precisar una estimación.

También es posible incluir otra carta con alguna imagen alusiva, para indicar que se necesita un descanso.

Funcionamiento

- Cada participante de la reunión tiene un juego de cartas.
- Para cada tarea (historia de usuario o funcionalidad, según sea el nivel de requisitos que se va a estimar) el cliente, moderador o propietario del producto expone la descripción empleando un tiempo máximo.
- Hay establecido otro tiempo para que el cliente o propietario del producto atienda a las posibles preguntas del equipo.
- Cada participarte selecciona la carta, o cartas que representan su estimación, y las separa del resto, boca abajo.
- Cuando todos han hecho su selección, se muestran boca arriba.
- Si la estimación resulta "infinito", por sobrepasar el límite máximo establecido, la tarea debe dividirse en sub-tareas de menor tamaño.
- Si las estimaciones resultan muy dispares, el Scrum Manager, con su criterio de gestión, y basándose en las características del proyecto, equipo, reunión, nº de elementos pendientes de evaluar, puede optar por:
 - Preguntar a las personas de las estimaciones extremas: ¿Por qué crees que es necesario tanto tiempo?, y ¿por qué crees que es necesario tan poco tiempo? Tras escuchar las razones, repetir la estimación.
 - Dejar a un lado la estimación de esa tarea y retomar al final o en otro momento aquellas que hayan quedado pendientes.
 - Pedir al cliente o propietario del producto que descomponga la funcionalidad y valorar cada una de las funcionalidades resultantes.
 - Tomar la estimación menor, mayor, o la media.

Este protocolo de reunión evita los atascos de análisis circulares en ping-pong entre diversas opciones de implementación, hace participar a todos los asistentes, reduce el cuarto de hora o la media hora de tiempo de estimación de una funcionalidad, a escasos minutos, consigue alcanzar consensos sin discusiones, y además resulta divertido y dinamiza la reunión.

Resumen

El gráfico de producto o burn-up, muestra en un vistazo el plan general de desarrollo del producto.

A partir de la velocidad del equipo y las estimaciones de trabajo previstas en la pila del producto, representa las fechas o sprints en los que previsiblemente se irán terminando las diferentes versiones.

El gráfico de avance o burn-down es una herramienta ágil que monitoriza el ritmo de trabajo (normalmente de un sprint).

En el eje vertical de un diagrama cartesiano representa el trabajo pendiente a lo largo del tiempo del sprint (eje horizontal).

Las desviaciones sobre, o bajo la línea diagonal que representaría el avance ideal del sprint alertan de forma temprana de desviaciones sobre el ritmo de desarrollo previsto.

La estimación de póker es una práctica ágil para reducir las dificultades habituales en las reuniones de trabajo para planificación por juicio de expertos.

En ella los participantes emplean un juego de cartas para concretar las unidades de esfuerzo que estiman para cada tarea.

Hay dos variantes:

Natural: los participantes pueden estimar el esfuerzo con la cifra exacta que crean más adecuada.

Fibonacci: las estimaciones solo se pueden realizar empleando números de la sucesión de Fibonacci.

En cada caso, el juego de cartas empleado tiene la numeración apropiada.

Índice

Índice

A	F		
Adaptive Software Development · 32	Fases de desarrollo · 23		
Agile Alliance · 32	Fertilización cruzada · 60, 66		
Agile Enterprise · 34	Flexibilidad · 29		
Agile Unified Process · 32	rickisiidad 23		
Arie van Bennekum · 33			
ASD · 32	G		
AUP · 32	U		
7.01 32			
	Gestión de proyectos		
В	Adaptable · 37		
D	Ágil · 29		
Damand Calada and 45	Modelos · 32		
Bernard Schriever · 15	Objetivos · 29		
Burn-down · 47, 62, 68, 86	Origen · 21, 32 Características diferenciales · 38		
Burn-up · 85			
	Clásica Ámbito · 17		
С	Objetivo · 17		
C	Objetivo · 17 Otras denominaciones · 37		
	Premisas · 37		
Campo de scrum · 22	Principios · 17, 21		
Características · 24	Criterios para seleccionar un modelo · 38		
Cascada · 21	Organizaciones · 16		
Ciclo de desarrollo ágil · 30	Origen · 15		
Ciclo de vida secuencial · 21, 22	Predictiva · 16		
Problemas · 23	Gráficos		
Cierre · 31	Burn-down · 86		
Concept of Operations (ConOps) · 60	De avance (burn-down) · 47, 62, 68		
Concepto · 30	De producto (burn-up) · 85		
Concurrencia · 15 Criticidad · 40	. F		
Crystal · 33 Cultura de la organización · 41	Н		
Cultura de la Organización · 41			
	Hirotaka Takeuchi · 21		
D	Till Otaka Takedelli 21		
DCDM 22	1		
DSDM · 33	•		
	IEEE 1012-1998 · 33		
E	Ikukiro Nonaka · 21		
L	Incepción · 32		
	Incertidumbre · 24		
Equipo (rol) · 48, 54	Incremento · 47, 59		
Equipos	Definición · 62		
Auto-organización · 23, 24	Innovación		
Características · 24	Como valor · 22, 29		
Características · 54	Integridad · 33		
Control sutil · 24	ISO 12207 · 59		
Difusión del conocimiento · 24	.55 1110		
Especialización · 21			
Especialización · 22	J		
Especulación · 31	•		
Estimación de póker · 87	James Craning 07		
Fibonacci · 88 Exploración · 31 60	James Grening · 87 Jeff Sutherland · 34		
LAUIULACIUIL' 5 L. DU	Jen Jumenano : 54		

K	Re-trabajo · 38		
~	Reuniones		
Kan Calaurahan 24	Seguimiento del sprint · 86		
Ken Schwaber · 34	Revisión · 31		
M	<u> </u>		
Mantenimiento · 31	Cookinsi 22		
Meter Norden · 16	Sashimi · 23		
Métricas	scrum		
Áreas de medición Scrum Management · 73	Campo de · 22		
Estrategia de la gestión ágil · 80	Solapamiento · 23		
Tiempo ideal · 79	Scrum · 34		
Tiempo real · 79	Control ágil del proyecto · 46		
Trabajo · 79	Estructura central · 45		
Trabajo 75 Trabajo pendiente · 80	Origen · 45		
Trabajo perialente 60 Trabajo realizado · 79	Reuniones · 65		
Unidades de trabajo · 80	Planificación del sprint · 47, 65		
Velocidad · 79	Formato · 66		
Michel Hammer · 21	Revisión del sprint		
Mike Breedle · 34	Formato · 69		
Wike Dicedie 134	Seguimiento del sprint · 47		
	Formato · 68		
P	Revisión del sprint · 47		
r	Roles · 47		
	Valores · 48		
Personas	Scrum Management		
Sensibilidad al entorno · 40	Responsabilidades · 53		
Pila del producto · 47, 59	Scrum Manager		
Características · 60	Team leader · 66		
Definición · 60	Team leader (rol) · 48, 55		
Formato · 61	Solapamiento · 22		
Pila del sprint · 47, 59	Sashimi · 23		
Características · 60	scrum · 23		
Definición · 61	Tipos · 23		
Formato · 61	Sprint · 34, 45, 79		
Plan de producto · 86	Story Point · 80		
Procesos · 40			
Producción basada en · 21			
Producto	Τ		
Plan · 86			
Rigidez · 39	Team leader (rol) · 55		
Propietario del producto (rol) · 48, 54	Tiempo de salida al mercado · 29		
Prototipado	Timeboxing · 79, 81		
Coste · 39			
Proyecto			
Características · 15	V		
Definición clásica · 15	-		
Puntos de historia · 80	Velocidad · 81		
	Visión · 30		
	VISIOII · 30		
^	-		
Poquisitos	W		
Requisitos			
Ágiles · 59	WBS · 16		
Del sistema · 59 Del software · 59			
Estabilidad · 39 Inestabilidad · 29	X		
Modificación · 23	VProod 24		
Responsabilidad · 59	XBreed · 34		