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The dynamics of granular flow in an hourglass
Christian T. Veje, P. Dimon

Abstract We present experimental investigations of flow
in an hourglass with a slowly narrowing elongated stem.
The primary concern is the interaction between grains
and air. For large grains the flow is steady. For smaller
grains we find a relaxation oscillation (ticking) due to the
counterflow of air, as previously reported by Wu et al.
[Phys. Rev. Lett. 71, 1363 (1993)]. In addition, we find
that the air/grain interface in the stem is either stationary
or propagating depending on the average grain diameter.
In particular, a propagating interface results in power-law
relaxation, as opposed to exponential relaxation for a sta-
tionary interface. We present a simple model to explain
this effect. We also investigate the long-time properties of
the relaxation flow and find, contrary to expectations, that
the relaxation time scale is remarkably constant. Finally,
we subject the system to transverse vibrations of maxi-
mum acceleration !. Contrary to results for non-ticking
flows, the average flow rate increases with !. Also, the
relaxation period becomes shorter, probably due to the
larger effective permeability induced by the vibrations.

Keywords Granular flows, hourglass experiment,
jamming

1
Introduction
Although hourglasses have been used to measure time
intervals since the middle ages [1], the physics of grain
flow is still a complicated and poorly understood process
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[2–5]. Traditionally, an hourglass consists of two glass am-
poules, partly filled with grains, connected by a small hole
in the stem. Typically, ballotini (small glass beads), sand,
marble powder, and even crushed egg shells have been
used as the granular material [1]. Recently, the hourglass
has become a source of interest to the physics communi-
ty as a convenient simple system to investigate granular
flows [1,6–10].

The flow of granular materials has been found to ex-
hibit a wide range of different phenomena. In particular,
density waves and shock waves are common in dry granu-
lar flows. Density patterns due to rupture zones as grains
flow through hoppers have been observed using X-ray
imaging [11–13]. Using similar geometries and techniques,
Baxter et al. found density waves propagating both with
and against the flow direction, depending on the opening
angle of the hopper [14]. For two-dimensional funnel flow
through very narrow outlets (3–10 grain diameters), shock
waves have been found due to arching at the outlet
[15–17]. Moreover, due to the monodispersity of the grains,
shock waves were created at particular locations where the
width of the funnel would perfectly accommodate a trian-
gular packing of balls [17]. Apparently, the density waves
were initiated by the intermittent jamming of balls sim-
ilar to the arching at the outlet. Recently, Clément has
pointed out that the propagation direction of the density
waves in two-dimensional vertical pipes depends on the
coefficient of restitution of the balls [18].

For hourglasses in which one or both chambers are
closed (except for the outlet), air must flow from the low-
er chamber to the upper during grain flow. This means
that the system becomes a two-phase flow with a coupling
between the grain and air flow. Theoretically, this problem
remains a large challenge, but by regarding the air flow as
a Darcy flow, simple models for the flow behavior are pos-
sible [7]. For flow through pipes there is a tendency for the
grains to form plugs which propagate as a result of mass
transfer balanced by the air flow [19–22]. The propaga-
tion of the plugs was found to depend sensitively upon the
allowed air flow [21]. In the same geometry, Nakahara and
Isoda found similar results using either water or silicone
oil as the interstitial fluid [23].

In this article, the flow of grains through a slowly
narrowing elongated stem is examined using a specially
designed hourglass. The emphasis of the experiment is on
the air/grain interaction. Using different techniques, the
mass flow, air pressure, and density fluctuations are mea-
sured to form an overall picture of the dynamics of the
flow.
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Fig. 1. Left: Schematic drawing of an hourglass. Right: Sche-
matic representation of the pressure difference "P = P0 − P
between the upper chamber and the laboratory pressure as a
function of time. The active and inactive times are indicated
by Ta and Ti respectively

2
Flow in hourglasses
A schematic drawing of an hourglass is shown in Fig. 1
(left). For closed hourglasses, fluctuations in the grain den-
sity in the stem have been found to be quite reminiscent
of the plugs observed in pipes [9]. This results in a non-
steady flow as first studied by Schick and Verveen [6] using
a light transmission technique. They claimed that the den-
sity fluctuations had a 1/f noise power spectrum, but it
has been argued that this can be explained as a crossover
region between characteristic time scales [10].

In 1993 Wu et al. reported on the ticking phenomenon
of hourglasses [7]. They used an hourglass with a large
opening half-angle β = 45◦ which makes the stem rela-
tively short. For a minimum outlet width D and grain
diameter d, they found that for small grains (D/d > 12)
the flow exhibited a distinct periodic ticking. They argued
that the ticking was due to the counterflow of air created
by the outflowing grains. They identified an active phase
with grain flow and an inactive phase with no grain flow.
Fig. 1 (right) shows the qualitative time evolution of the
pressure difference "P = P0 − P between the pressure
in the upper chamber P and the laboratory pressure P0.
In the active phase, characterized by the active time Ta,
the grain flow is sufficiently fast that air cannot flow back
through the grains quickly enough to maintain equilibri-
um in the upper chamber, resulting in an under-pressure.
Eventually, the pressure difference reaches a value "Pmax

large enough to stabilize an air/grain interface in the stem
and the flow stops. Now the inactive phase begins and air
flows back through the now stationary grain packing for
an inactive time Ti. Once the pressure difference reaches
a certain minimum value "Pmin, it can no longer support
the interface and the grains start to flow again.

We now reproduce the argument of Wu et al. [7] for the
behavior of the inactive phase since we will need to modify
it later. Consider an hourglass with an upper chamber of
volume V0, partly filled with grains (see also Fig. 1). The
chamber is closed so air can only leave or enter through the
outlet of radius R = D/2. The bottom chamber is open to
the atmosphere. Suppose a small mass of grains "M falls
from the upper chamber in a relatively short time. Then
the air volume Va in the upper chamber expands leading
to a small decrease in the air density "n. It is assumed

that the air is an ideal gas so that "P = "nkBT where
kB is the Boltzmann constant and T is the temperature,
and that the process is isothermal, hence, T is constant.

At the end of the active phase the flow stops when
the pressure difference is large enough to stabilize the
air/grain interface in the stem. Now the inactive phase
begins. Air leaks through the porous packing of grains
and the pressure slowly increases in the upper chamber.
From the ideal gas law, we have
d"P

dt
= kBT

d"n

dt
. (1)

Assuming that the air flow in the stem is incompressible,
which is valid for the length and time scales involved here,
the change in density "n is related to the air volume flow
rate q by
d"n

dt
=

n0q

Va
(2)

where n0 is the air density at laboratory pressure. Com-
bining Eqs. (1) and (2), we have

d"P

dt
=

P0

Va
q (3)

where P0 = n0kBT is the laboratory pressure. The air flow
rate q is given by the Darcy equation

q = πR2v̄air = −κπR2

ηL
"P (4)

where v̄air is the average air velocity outside the grain
packing, κ is the permeability, and L is a characteris-
tic length over which the pressure difference "P occurs.
Using Eqs. (3) and (4), we find

d"P

dt
= −πP0κR2

ηVaL
"P . (5)

We write the solution as

"P (t) = "Pmaxe−t/τ (6)

where

τ =
ηVaL

πP0κR2 (7)

is the characteristic decay time, and "Pmax is the pressure
needed to stabilize the air/grain interface from a moving
packing. These are the results found by Wu et al. [7].

To estimate the minimum pressure difference "Pmin

needed to sustain a stable interface, we calculate the forc-
es acting on a single grain sitting at the air/grain interface.
First, of course, there is gravity

Fg = −mg (8)

where m is the mass of a grain, and g is the gravitational
acceleration. If we assume that the pressure gradient in
the stem is approximately linear, then the gradient across
a single grain results in a buoyancy force

Fb =
πd3

6L
"P . (9)

Finally, there is the viscous drag on a grain from the air
flow. We will assume that this is given by the Stokes law
Fd = 3πηdv̄air, but since this is not a free grain, it should
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be regarded as a rough approximation. It is, however, an
interface grain so using v̄air from Eq. (4) makes sense since
we are outside the bulk grain packing (note that κ is in fact
defined through Eq. (4)). Thus, we write the dragforce as

Fd =
3πκd

L
"P . (10)

Force balance requires that Fg + Fb + Fd = 0, from which
we find the minimum pressure difference

"Pmin =
mgL

πd(3κ+ d2/6)
. (11)

It should be noted that for the actual values used here,
the relative size of the terms in the denominator is
3κ/(d2/6) ∼ 10−2 so Fd is, in fact, not that important
at least during relaxation.

For similar types of hourglasses, Pennec et al. found
that the slight curvature of the stem would actually cre-
ate a small air bubble and a grain plug during the flow
[9]. They also found that the plug oscillated, briefly caus-
ing the pressure in the upper chamber to oscillate during
the active phase. Hence, the notion of a stationary inter-
face is a special case only found for large opening angle
geometries or small enough grain sizes. However, the effect
of the geometry of the stem has largely been unexplored.
Thus, a much more common scenario is the formation of
plugs and bubbles, including oscillating and propagating
interfaces, in the stem of an hourglass. These phenome-
na may be the origins of the instabilities observed in pipe
flows, although in a very short-lived state. Pipe flow may
therefore be considered as an extreme case of ticking with
a non-stationary air/grain interface. The region between
pipe flow (long stem) and stationary ticking (short stem)
is the concern of this paper.

3
The experimental setup
A variety of grains have been used in this work, and
are listed in Table 1. The ratio D/d determines the flow
behavior discussed in section 2. We have primarily used
grains of smooth glass beads (A7–A30). The A10 grains
will be used as the reference grain type. The glass beads
are produced in weakly polydisperse mixtures. The poly-
dispersity is a skewed distribution with an average grain
diameter d, with about 80% of the grains in the larger half
of the size range. The R1 grains are crushed glass but still
very compact and with sharp edges. An often cited type of

Table 1. The grain types that were used in the experi-
ments. The diameter of the narrowest point of the outlet is
D = 0.3 cm. The average grain diameter d is estimated from
the size distribution

Type Material Range (µm) d (µm) D/d

A7 Smooth glass 70–110 ∼100 30
A10 Smooth glass 100–200 ∼180 18
A15 Smooth glass 150–250 ∼230 13
A30 Smooth glass 300–400 ∼380 8
R1 Crushed glass 200–500 ∼400 8
Boom Rough sand ∼200–500 ∼250 12

Fig. 2. Schematic of the experimental setup including the mea-
suring devices described in the text

sand is the Booming Dunes sand (Boom). They are quite
rough like the R1 grains but we have no nominal values
for the size distribution.

A schematic drawing of the hourglass experiment is
shown in Fig. 2. It consists of a glass cylinder reservoir
(A) of length 35 cm and inner diameter 6 cm leading into
a 15 cm long slowly narrowing stem. The smallest inner
diameter D = 0.3 cm of the stem was at the outlet. The
hourglass was supported by a frame (B) and placed on a
heavy iron plate. The counterflow of air could be turned on
and off by inserting a cork in the top of the reservoir (C).

The volume of the reservoir was V0 ∼ 1000 cm3 so with
average mass flow rates varying from 0.1 to 3 g/s, typi-
cal runs lasted 10–100 minutes. For the smallest grains,
changes in the humidity were found to seriously affect the
flow. Thus, the humidity was monitored with a Dickson
TH550 hygrometer and recorded for future reference. Mea-
surements were only made when the humidity was between
30–50%.

The hourglass was mounted so that it could rotate
freely about an axis (D). A Brüel & Kjær Mini-Shaker
Type 4810 (E) was mounted on a wood plate attached
to the frame. A brass rod was connected from the vi-
brator to the stem of the hourglass. The rod was fab-
ricated in one piece so that there were as few joints as
possible. The vibrator was driven by a power amplifier
designed to operate as low as 1 Hz. The amplifier boosted
a sine source from an HP3562A Dynamical Signal Ana-
lyzer (DSA). A Brüel & Kjær Cubic Delta-Tron Acceler-
ometer Type 4503 was mounted on the rod, opposite the
vibrator (F). The accelerometer has a calibrated output
of 8.90 mV/g (g = 9.82 m/s2) for easy measure of the
dimensionless maximum acceleration ! = Aω2/g, where
A is the amplitude and ω is the angular frequency of the
vibration. The output from the accelerometer was mea-
sured by the DSA for a direct measure of the amplitude
of vibration.

Several measuring devices were used. These are
described below in more detail and include a scale for mea-
suring the total mass flow (G), a capacitive flow detector
(H), and a pressure gauge inserted in the reservoir (I). The
video equipment to be described later is not shown.
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Fig. 3. Schematic top view of the capacitance measuring
device

The total mass flow M(t) was measured with a Sarto-
rius PT1500 scale (range 0–1500 g, precision 0.1 g) placed
under the outlet. The scale was connected to a PC through
an RS-232 interface (5 Hz sampling rate). The relaxation
time constant for the scale is ∼1 s so the real-time resolu-
tion of the measurements is actually longer than the 0.2 s
sampling time.

To obtain better time resolution of the flow rate fluc-
tuations, a capacitive device was used in conjunction with
a capacitance bridge. A schematic top view is shown in
Fig. 3. The capacitor was aligned just below the outlet so
the grain flow passed through its center. The black cir-
cle indicates the position of the stem outlet. The plates
were separated by 1 cm and had dimensions of 1 cm by
4 cm. The capacitance with only air between the plates
is ∼0.5 pF. (The large dimensions of the capacitor plates
were needed to make room for the horizontal vibration
of the stem.) When sand passes through the capacitor,
its capacitance C changes by an amount "C roughly pro-
portional to the quantity of sand between the plates. For
example, using the known polarization for a sphere in a
constant electric field, with a diameter much smaller than
the distance between the capacitor plates, it is found that

"C

C
=

[

1 −
(

3
K + 2

)2
]

Vg

Vc
(12)

where Vc and Vg are the volume of the capacitor and a
single grain, respectively, and K is the dielectric constant
of the grain material. For glass, K ∼ 5, so for a grain
diameter d = 0.018 cm, Eq. (12) yields "C ∼ 6 · 10−7 pF
for a single grain between the plates.

The capacitor was shielded by a metal cage to avoid
external noise. It was connected to a General Radio
1615-A Capacitance Bridge which can be balanced to
within ∼10−5 pF. With this resolution, we can detect
∼100 grains. The bridge was driven by a Stanford Re-
search SR810 lock-in amplifier at 60 kHz with an ampli-
tude of 5 V. The bridge was always nulled with no grains
present. To ensure that the lock-in did not overload during
flow, grains were first poured through the hourglass with-
out inserting the cork which gives the maximum possible
flow and hence the maximum capacitance change "C. The
output from the lock-in amplifier was recorded at 50 Hz
by an ADC card in the PC. The time constant on the
lock-in amplifier was set to 30 ms (24 dB rolloff) to serve
as a Nyquist filter.

The pressure in the reservoir was measured with
an Omega PX170 differential pressure transducer (range
0–0.38 Bar) inserted in a hole in the cork. The nominal

response time of the transducer is ∼1 ms which was more
than adequate. The transducer was powered with a 9 V
battery. Its output was amplified with a Stanford SR560
low-noise preamplifier and Nyquist filtered at 30 Hz with
the amplifier’s low-pass filter. The signal-to-noise ratio
was ∼103. Amplifying the signal by 100–1000 made it pos-
sible to easily distinguish pressure differences as small as
0.1 mBar. However, the internal bridge in the transducer
has as low an accuracy as 0.5 mBar in the nulling, leading
to a systematic error in the value of the pressure differ-
ence. The output from the amplifier was also read by the
ADC card, simultaneously with the capacitance measure-
ments. This made it possible to completely synchronize
the capacitance and the reservoir pressure.

For visualization purposes, and in order to quantita-
tively track the air/grain interface in the stem, a video
measuring system developed for another experiment was
also used. It is summarized here but discussed in detail
elsewhere [17].

The camera was a Pulnix TM-6701AN, 8-bit gray
scale, non-interlaced analog CCD camera. The resolution
was 640 by 480 pixels. It was placed about 50 cm from
the stem with a black background for contrast. A halogen
light source behind the camera gave the sand a bright
appearance. Dark areas have little or no sand. Consecu-
tive images were taken at 60 frames/s. The analog output
was read by a Matrix Vision PCimage SGVS frame grab-
ber card for easy storage on a PC. Fig. 4 shows a sequence
of frames during flow of A10 grains. An air/grain inter-
face can be seen propagating upwards. In frame number
180 the interface collapses. This sequence only lasts lit-
tle more than one second, whereas the entire relaxation
cycle takes about 6 s. After the collapse, an air bubble is
formed with an initial length of ∼3 cm which then grad-
ually shrinks while the air pressure equilibrates through
the grain packing.

Using films like these, only up to 3 s of data could be
recorded. To increase the measuring time, individual
frames were averaged horizontally to give a one-dimen-
sional sequence of the mean grain density at a given height

Fig. 4. Short film sequence showing the collapse of an interface
and the accompanying creation of an air bubble. The grains
are type A10. (The width of the stem becomes larger than the
width of the frames at y ∼ 9.5 cm.)
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Fig. 5. Example of an averaged space–time density map (in
reverse video) of periodically relaxing flow using A10 grains.

Bright areas therefore correspond to low grain density and vice
versa. Horizontal lines indicate motionless grains

y in the stem. Now measurements up to 7 minutes could
be taken.

An example of such a density space–time diagram is
shown in Fig. 5 in reverse video also using A10 grains.
The gray scale in the figure is a relative measure of the
light intensity at a given height. The outlet of the stem
is at y = 0 and the bright regions at the bottom reflect
low grain density. Higher up, bright areas only reflect the
current deviation from a certain mean gray-scale value.
The bright and dark features for large y are not den-
sity fluctuations but merely fluctuations in the reflected
intensity from the grain packing. The horizontal lines thus
indicates that these grains are not moving. An electronic
time stamp was used to synchronize the pressure signal
with the video sequence, and hence, with the motion of
the air/grain interface.

Before measuring, the hourglass was cleaned and the
grains were poured through a large mesh sieve to elim-
inate impurities or clumping caused by humidity. Once
a flow was initiated, after a small transient time (about
3–4 relaxations), measurements could begin. Measure-
ments were made in two different combinations. In the
first, the pressure difference "P , capacitance change "C,
and mass flow M(t) were measured simultaneously. The
first two were synchronized, while the third had a time
lag of about 2–3 s since it was measured using a different
software program. In the second, the pressure differ-
ence and video measurements were taken together, and
synchronized using the time stamp.

4
Relaxation oscillations and the air/grain interface
A common feature of all the grains found in Table 1 is
that the flow is steady without ticking if the cork is not
inserted. For the A30 grains this is also the case when the
cork has been inserted. These grains are well out of the
ticking regime described by Wu et al. [7], namely, D/d ∼ 8,
and smooth enough that the coupling between the air and
grain flow is so weak that the flow finds a stable state
where grains flow out and air flows in without causing
significant density fluctuations.

For the rest of the grains we find a variety of ticking
or relaxation phenomena as described above. In the fol-
lowing some of these will be analyzed in detail and others
merely presented to show the effects of slight changes in
grain size and shape.

4.1
Propagating interfaces (A10 grains)
A density map of the flow using these grains was shown in
Fig. 5. It can be seen that the flow has an almost periodic
ticking with a period of 5–6 s. Grains leave the stem at the
outlet (y = 0) cm for 1–2 s (the active phase) after which
an air/grain interface is created at about y = 2 cm due
to the counterflow of air. At this point grains above the
interface stop moving as indicated by the horizontal lines
in the top part of the stem (see Fig. 5). The flow is now in
the inactive phase. However, the interface, although well-
defined, is no longer stationary. Grains are continuously
falling out from the interface, causing it to propagate up
through the stem. The movement of the interface and the
mass flow are then directly related through the geometry
of the stem.

When the interface reaches a point ymax ∼7 cm, the
air flow and buoyancy forces in the grains can no longer
sustain the interface. The interface collapses and the flow
enters the active phase again. Note that during the col-
lapse, or the active phase, a bubble is formed which prop-
agates, first down and then up through the grain packing
(see also Fig. 4). During upward propagation, the vertical
extent of the bubble diminishes as air leaks through the
packing.

Fig. 6 shows the simultaneous measurements of pres-
sure and capacitance (a), and mass flow (b). The pressure
shows the expected qualitative behavior discussed in sec-
tion 2. There is a fast time scale corresponding to the
active period and a longer relaxation time in the inactive
period. During the slow relaxation, the pressure difference
decreases, but not in the exponential manner expected
from the discussion in section 2. We will return to this
point later. The capacitance shows that the flow occurs
continuously during the active period. We see that the
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Fig. 6. a The pressure difference, capacitance change and b
total mass flow versus time for A10 grains. c The power spectra

of the pressure and capacitance signals. d A parametric repre-
sentation of the pressure and capacitance signals

maximum flow rate is reached just before the maximum
pressure difference.

The power spectra S"P (f) and S"C(f) of the pres-
sure and capacitance signals, respectively, are shown in
Fig. 6(c). The peaks represent the period of the ticking.
They also have a significant width, corresponding to a
coherence time of about 20 s. Both the second and third
harmonics can also be seen in the spectra, with ampli-
tudes decaying as f−2 arising from the discontinuities in
the signal. At about 1 Hz there is a small shoulder corre-
sponding to the fast rise time of ∼1 s in the active period
which can be seen in the time signals Fig. 6(a).

A parametric plot of the capacitance vs. pressure is
shown in Fig. 6(d). The long time scale during the inac-
tive phase is at the bottom of the plot. The pressure slowly
decreases with an almost constant flow rate. When the
interface collapses, the flow rate increases dramatically
while the pressure increases. When the pressure reaches
"Pmax, the interface forms, the flow rate drops dramat-
ically, and the cycle repeats. An interesting question is
if there is a correlation between values of the pressure
extrema. We have checked for this by using both a
Lomb periodogram and directly computed power
spectra and found that there were no significant cor-
relations.

4.2
Stationary interfaces (A7 grains)
We now turn to the smallest grains (type A7), which is
well in the ticking regime (D/d ∼ 30). Fig. 7 shows the

density map for this flow. We see that there is a sta-
ble stationary interface close to the outlet. The interface
breaks up in more or less regular intervals of ∼5 s, let-
ting out lumps of grains, after which it stabilizes again at
a new position. Note that the ejection of these lumps of
grains does not contribute to movement of the rest of the
grains in the stem. At certain points the interface collaps-
es and the entire column of grains flows downwards after
which the interface stabilizes at a new position close to the
outlet.

Fig. 8(a) shows the simultaneous measurements of the
pressure and capacitance. We see a dramatic increase in
"P as the interface collapses, accompanied by a burst of
outflowing grains visible in the capacitance signal. After
such a collapse, the pressure relaxes through the porous
packing in the stem. The intermittent ejection of small
lumps of grains does not contribute to movement of the
rest of the grains in the stem so the pressure continues to
relax. A small kink in the pressure signal can be observed
and is due to the decrease in the length L over which the
pressure decays. When a lump of grains falls, L becomes
slightly smaller.

This means that the balance pressure also becomes
smaller and the pressure can continue relaxing until it
reaches the new value of "Pmin. Once the pressure reaches
the minimum pressure the whole column of grains collaps-
es and the stem refills. Thus there is an extra time scale
involved concerning the intermittent ejection of small
lumps of grains. The power spectra of the pressure signal
in Fig. 8 shows a peak at about 0.075 Hz corresponding
to a period of about 13 s.
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Fig. 7. Space–time density plot for A7 grains

Fig. 8. a Signals of the pressure and capacitance versus time
for grain type A7. b The power spectra of the pressure and
capacitance signals

4.3
Edge detection and pressure decay
We now return to the A10 grains and the non-exponen-
tial pressure decay. Using an edge detection technique on
the density map (Fig. 5), we can track the air/grain inter-
face as it propagates up through the stem. The technique
simply detects the point with the largest gradient in the
density and uses that as the location of the interface. Since

Fig. 9. The position yi of the interface (points) and the simul-
taneous pressure difference (lines) versus time for A10 grains.
The gaps in yi occur during the active phase when the air/grain
interface is not well-defined

the interface is largely undefined during the active peri-
ods, the tracking technique does not return any data for
this period.

The position of the edge yi and the simultaneous pres-
sure difference is shown in Fig. 9. Clearly the decay of the
pressure is not exponential as argued for stationary ticking
in section 2 and as discussed in section 4.1. The departure
from pure exponential relaxation may be primarily attrib-
uted to the change in the length L over which the pressure
difference decays. Less importantly, the change in the stem
diameter may also cause deviations from exponential.

These effects can be incorporated into the theory in
section 2, but let us first consider the effect of the grains
in the reservoir on the pressure drop. We will use a simpli-
fied model of an hourglass regarding it as two pipes con-
nected in series as shown schematically in Fig. 10 (left).
The measured pressure difference is the sum of the pres-
sure drops in each pipe, i.e., "P = "P1 + "P2. Since we
assume that the flow is incompressible, the flow rate q is
conserved, hence, using Eq. (4), we have

R2
1κ1

L1
"P1 =

R2
2κ2

L2
"P2 . (13)
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Fig. 10. Left: Two-pipe model of the hourglass (see text).
Right: Different coordinates used for the relaxation model (see
text)

If the pipes are not filled with grains, then for circular
pipes κ1,2 = R2

1,2/8. In this case the pressure drop in the
the reservoir is given by

"P1

"P2
=

L1

L2

(

R2

R1

)4

. (14)

Thus, if L1 ∼ L2 and R1 ∼ 10R2, then "P1 # "P2. How-
ever, if the pipes are filled with grains, then the situation
changes. In this case, the permeability only depends on the
grain size which is the same in both pipes. Thus, κ1 = κ2
and Eq. (14) becomes

"P1

"P2
=

L1

L2

(

R2

R1

)2

. (15)

This ratio is not as small as it was in Eq. (14), but even in
this case, "P1/"P2 ∼ 1% so for the rest of the discussion
we take "P = "P2.

Although R is not constant, its dependence on y is so
weak that we will assume R = R0. Thus, the pressure still
obeys Eq. (5) but in the more general form

d"P

dt
= −πP0κR2

0
ηVaL(t)

"P (16)

where L(t) now depends on time. The coordinates used
in the model are indicated in Fig. 10 (right). We assume
(from Fig. 9) that the propagation of the interface is a
linear function of time

yi(t) = ymin + v0t (17)

where the interface velocity v0 and starting point ymin are
determined from the interface tracking data.

Hence, L(t) = L0 −yi(t) where L0 is the characteristic
length over which the pressure decays when the stem is
full (see Fig. 10). Then, using Eq. (17), Eq. (16) becomes

d"P

dt
= − πP0κR2

0
ηVa(L0 − ymin − v0t)

"P . (18)

We now define the relaxation time as (compare with
Eq. (7))

τ =
ηVa(L0 − ymin)

πP0κR2
0

(19)

and write Eq. (18) as

d"P

dt
= −1

τ

"P

(1 − t/τ0)
(20)

where τ0 = (L0 − ymin)/v0. Integration now yields

"P (t) = "Pmax(1 − t/τ0)τ0/τ (21)

where "Pmax is the initial value of the pressure at the
beginning of the inactive phase. Thus, as a consequence of
the propagation of the interface, the pressure now decays
algebraically. As v0 → 0 then τ0 → ∞ and we correctly
recover Eq. (6) for a stationary interface.

As stated earlier, the interface velocity v0 is deter-
mined from the interface tracking data. Using the form
Eq. (17), we extract a mean value 〈v0〉 = 1.00±0.06 cm/s
from a total of 48 relaxation cycles. The average value
for ymin was 〈ymin〉 = 2.2 ± 0.3 cm which is consistent
with Figs. 5 and 9. Using these values the validity of the
model can be tested by fitting the pressure data. Fig. 11
(top) shows a fit to the pressure data for a single relax-
ation. The data is fitted to Eq. (21) with "Pmax, τ0 and
τ as free parameters. Multiple fits were done to see if the
fitted parameters were robust. Only decays which lasted
longer than 4 s were included to eliminate fluctuations,
such as small decays (like the one at about 38 s in Fig. 9).
Fig. 11 (bottom) shows the values of the fitted parame-
ters for 48 relaxations as a function of the starting time.
The parameters are quite constant. The average values
are: 〈"Pmax〉 = 8.1 ± 0.2 mBar, 〈τ0〉 = 7.9 ± 0.7 s and
〈τ〉 = 24 ± 2 s.

Using the result for 〈v0〉 and 〈τ0〉 we estimate 〈L0〉 =
〈τ0〉〈v0〉 + 〈ymin〉 = 10.0 ± 1.7 cm. This is the point where
the stem has become wide enough that the permeability of
the stem and grain packing no longer plays a role, i.e., we
are now in pipe 1 in Fig. 10 (left). This value is reasonable
since the interface never reaches such a large y value.

A determination of τ from the constants which enter
in Eq. (19) is not possible since the value of κ is not known
precisely. Using the known constants, η = 1.7 · 10−4 g/cm s,
P0 = 106 dyn/cm2 and Va =500 cm3, and the fit-
ted values for 〈τ〉 and 〈L0〉, we obtain a value of κ =
(3.9 ± 0.5) · 10−7 cm2, which is in reasonable agreement
with the expected value for grains of this size [7].

As already shown, the pressure dynamics for the A7
grains are quite different from the A10 grains. As shown in
Fig. 8 and Fig. 11 (top) the pressure decay has a curvature
opposite to that of the A10 grains. Since in this case the
interface is stationary, we use Eq. (6). In Fig. 11 (top) the
pressure decay during a single relaxation is shown. Fitting
the data to Eq. (6) with "Pmax and τ as free parameters,
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Fig. 11. Top: The measured pressure decay in a single relax-
ation cycle for grain types A7 and A10. The solid lines are
fits using Eqs. (6) and (21) for A7 and A10 respectively. Bot-
tom: By repeating the procedure in the top figure, the fitted
parameters for grain type A10 are obtained for a sequence of
relaxation cycles (see text). Points are connected for clarity

we obtain τ = 66.6 ± 0.2 s. This may again be related to
the permeability κ through Eq. (7) resulting in a value
κ = (8 ± 2) · 10−8 cm2 which is again within the expected
range.

4.4
The oscillation mechanism
We now turn to the mechanism of the oscillation which in
particular concerns "Pmin and "Pmax. Recall the argu-
ments leading to Eq. (11) which expresses the minimum
pressure difference needed to sustain a stable interface.
Using the numbers found above, Eq. (11) yields the
result "Pmin ∼ 5 mBar which is very close to the
value of ∼6 mBar (seen from Fig. 6(a)) when the interface
collapses. Recall that Eq. (11) was derived using only the
mass of a single grain.

How can it be that grains can fall off the interface,
causing it to propagate, when the grain packing is fully
stabilized? Consider a grain placed in the packing dur-
ing relaxation of the pressure. The force balance is given
by Eq. (11). For grains outside the packing, however, the

pressure gradient is essentially zero since the pressure
relaxes very fast when there is no grain packing giving a
sufficient permeability. We will now consider again what
happens to a grain sitting at the interface. The pressure
gradient will relax over the grain diameter in a character-
istic time τr. This will cause the buoyancy term Eq. (9) in
the force balance to vanish. The balance equation for the
interface grain then becomes

"Pint =
mgL(t)
3πdκ

. (22)

If "P < "Pint the grain will fall. On the other hand if
"P < "Pmin the grain packing will collapse. Thus we
have a range for "P

"Pmin < "P < "Pint (23)

in which the packing is stable but the interface will prop-
agate. If "P > "Pint the interface is stationary. Of course
all these values depend on time and as "P decays, the
collapse criterion "P < "Pmin is eventually reached.

The characteristic time τr essentially determines the
velocity of the interface through v0 = d/τr. The veloci-
ty v0 is known from the edge analysis. Since τr ∼ d/v̄air

we have that v0 = v̄air which we may estimate during a
pressure relaxation. Using Eq. (4) we obtain v̄air ∼ 2 cm/s
which is indeed comparable to the velocity of the interface.
This gives a relaxation time τr ∼ 9 ms.

As the interface collapses, the packing dilates resulting
in a larger permeability and thus a larger "Pmin. Now the
grains start flowing from the reservoir and "P increas-
es until it reaches the new "Pmin. Then an interface is
formed close to the outlet and grains from above settle on
the newly formed packing. This is where the air bubble
shown in Fig. 4 becomes trapped. While the air bubble
decays, the pressure difference continues to increase, only
now at a different rate. This can be seen by close inspec-
tion of the pressure signal in Fig. 9. During the active
period "P increases, quickly at first until the bubble is
formed, and then slightly slower while the bubble decays.

4.5
Results for other grain sizes and shapes
One of the most important parameters determining the
flow behavior is the properties of the grains. The size and
shape are especially important. In Fig. 12a–c we show the
density maps for grain types A15 (a), Booming sand (b)
and rough grains (c). Comparing with Figs. 5 and 7, we
see that the different grains show quite a diversity of flow
patterns.

For the larger grains, A15 and Booming sand, the sce-
nario with the propagating interface is still pronounced.
The relaxation time is faster due to the larger permeability
of the packing. For R1 grains the active periods complete-
ly dominate the flow. The flow is interrupted at regular
intervals by inactive bursts as an interface is briefly creat-
ed. This causes a short decrease in the pressure and flow
rate, but since the grains are rough and the permeability
high, the interface breaks down very fast.

Thus it may be argued that when the permeability of
the grain packing increases, that is, when the grain size
increases, the relaxation time becomes shorter. At some
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Fig. 12a–c. Space–time density plots for different grain types:
a A15, b Boom and c Rough grains (R1)

point the permeability becomes large enough that the tick-
ing completely vanishes. This happens for the type A30
grains where the flow is continuous with no relaxation
effects. This result agrees well with the discussion in sec-
tion 2 since D/d ∼ 8 and is now out of the ticking range.
For even larger grains (d ∼ 700 µm) mechanically stable
arches form in the stem and the flow stops completely.

Considering the similarity between the two grain types
R1 and Booming sand, it is quite interesting how they dif-
fer in flow behavior. Figs. 12a–c (b) and (c) show there are
fundamental differences in the relaxation process. This is
striking since not only the size range but also the shape
of the grains are very similar. An explanation is probably
to be found in differences in density and of the friction

properties between real sand and glass. In fact, there are
more similarities between the flow of the Booming sand
and the A15 grains (Fig. 12a–c (a)) although the differ-
ence in average grain size is significant.

5
Non-stationary effects
In the above analysis it was assumed that the underlying
process is stationary. However the process of emptying an
hourglass is, in fact, inherently non-stationary. The char-
acteristic relaxation time τ Eq. (7) includes the volume
of air in the upper chamber Va. Obviously Va will slowly
increase as grains flow out.
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Fig. 13. Top: Pressure signal using A10 grains for the total
time span from a full reservoir to an almost empty reservoir.
Bottom: Power spectra of the pressure signal of ∼80 s segments
of the signal for different starting times t0 (see text)

To investigate this non-stationary effect, the method
is straightforward: fill the reservoir with grains and mea-
sure until it is empty. Since the average flow rate appears
constant (see e.g. Fig. 6) one would expect the relaxation
time τ , and therefore the ticking period to increase linearly
with time following Eq. (7). However, this turned out not
to be the case. In Fig. 13 (top) the pressure signal is shown
for A10 grains. The time span is 1200 s which is nearly the
time it takes to empty a full reservoir for this grain type.
Clearly there are non-stationary signatures in the signal,
in particular, the values of "Pmax decrease with time.

As a first test of the non-stationarity, the power spec-
tra of different segments of the pressure signal are consid-
ered in Fig. 13 (bottom). Taking the power spectra of the
first and last 4096 points in the pressure signal, we obtain
spectra for both a nearly full and nearly empty reservoir.
We focus on the peaks of the spectra. If the relaxation
period had significantly changed, the peak positions would
have moved. Contrary to expectations, the peaks remain
at the same frequency (within the resolution of the
measurements).

Since V0 = Va(t)+Vg(t) where Vg(t) is the total volume
of grains in the reservoir at time t, then assuming that the
average flow rate of the grains Q is constant, we get

dVa

dt
=

1
ρm

dM

dt
=

Q

ρm
. (24)

Fig. 14. Top: Mass on the scale as function of time. The
dashed line is a linear fit. Bottom: The relaxation time τ as
function of time. The data is obtained by fitting the pres-
sure signal as described in section 4.3. The dashed line is the
expected τ(t) from Eq. (25)

so that

τ(t) =
η(L0 − ymin)
ρmP0πκ〈R〉2 Qt + τ(0) . (25)

The average flow rate Q is easily found by fitting the mass
flow signal from the scale as shown in Fig. 14 (top). A val-
ue of Q = 0.65 g/s is obtained. In Fig. 14 (bottom), the
relaxation time τ is shown for successive relaxations. The
values have been fitted from the data in Fig. 13 (top)
using the same method as in section 4.3. First we note, as
we already knew, that τ has significant fluctuations. Sec-
ond, we see that there is no linear increase as predicted.
However, there is a weak tendency for the fluctuations to
increase in time. Using the numbers from section 4.3 and
the density ρm = 2.5 g/cm3, the prediction from Eq. (25)
is also shown. It is remarkable how insensitive τ is to the
change in Va.

It has been suggested that an extra time scale con-
cerning pressure diffusion may account for this unexpect-
ed result [24]. As argued by Pennec et al. [25], there is a
pressure diffusion constant DP in a porous medium which
gives rise to a characteristic time τP to form a pressure
gradient. For a porous medium, this characteristic time
is significantly longer than the time associated with the



162

speed of sound over the same distance. Following [25] we
use DP ∼ P0κ/η and so

τP ∼ L2
0

DP
∼ ηL2

0
P0κ

. (26)

If τP were the slower time scale, i.e., if τP > τ , then it
would dominate the relaxation process. Since it is inde-
pendent of Va (or any other time dependent parameter)
this would explain the constancy of the relaxation time.
However, the ratio

τP
τ

=
πR2

0L0

Va
(27)

is the ratio of the volume of the stem to the reservoir
which is always small. Even for a full reservoir Va ∼ V0/2
so τP /τ ∼ 10−3. Thus, this time scale cannot explain our
results which still remain a mystery.

6
External excitation of the grain flow
Some experiments have been done on horizontally vi-
brated flows in hoppers [26,27]. Among other things,
these experiments were concerned with the dependence
of the average flow rate on the maximum acceleration. In
Fig. 15 (top) we show results for the A7 type grains (see
Table 1). The flow is steady since the cork is out. The

Fig. 15. Top: Flow rate versus ! for a steady flow (no cork).
The grain type is A7 and the vibration frequency is 30 Hz.
Bottom: Flow rate versus ! for a relaxation flow. The results
are for A10 grains

average flow rate Q decreases weakly as ! increases. This
result is attributed to the dilation effect due to the vibra-
tion. As the acceleration increases, the packing dilates and
the mass flow thereby decreases.

Turning to the relaxation flow, the effects of vibra-
tions on two different grain types are considered. The first
is type A10 which had a propagating interface. The sec-
ond is type A7 which had a stationary interface. As in
chapter 4, the mass flow, pressure and capacitance were
measured.

Contrary to the results for a steady flow, vibrations
on a relaxing flow tend to increase the flow rate. This
can be seen in Fig. 15 where the flow rate dependence
on ! for different frequencies is shown. Clearly there is a
dependence on the driving frequency. Generally we may
argue that the flow rate must increase since vibrations in-
crease the permeability of the grain packing due to dilation
effects.

The pressure and capacitance signal of the A10 grains
for different values of ! are shown in Fig. 16. The vibra-
tion frequency is f = 30 Hz. The relaxation flow becomes
increasingly irregular as ! is increased. For the largest val-
ues of !, periodic relaxation has almost disappeared. One
can imagine that the propagating interface stabilizes the
grain packing above. Once vibrations perturb the system,
the interface becomes disturbed and breaks down before
the pressure reaches the non-perturbed value "Pmin. This

Fig. 16. Pressure (top) and capacitance (bottom) signals of
A10 grains. The data are all for f = 30 Hz and have been
shifted for clarity. From bottom to top: ! = 0, 1.5, 2.3, and 3.1
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premature collapse of the interface causes the flow to be-
come more unstable, increasing the average flow rate. This
increase leads to a higher average pressure difference and
thereby an increasing air flow. Thus the fixed frequen-
cy ticking becomes disturbed and the peak disappears.
This can also be seen in Fig. 17 where the power spectra
of the signals in Fig. 16 are shown. As ! increases, the
peak in the non-vibrated spectrum spreads out and flat-
tens the spectrum. A characteristic time scale is still left
as a cutoff in the spectrum. A general feature is that this
characteristic time scale moves to higher frequencies as !
is increased. This is reasonable since the relaxation time
τ (see e.g. Eq. (7)) is inversely proportional to the per-
meability κ. As ! is increased κ also increases leading to
a shorter relaxation time with a correspondingly shorter
ticking period.

7
Conclusions
In conclusion, we have found that the relaxation oscilla-
tion flow in a gradually narrowing stem of an hourglass
will manifest itself with propagating interfaces for suffi-
ciently large grain sizes. For small grains the interfaces
were found to be stationary and the pressure relaxation
was exponential. We found that the propagation of the
interfaces will result in a modification of the air pressure

Fig. 17. Power spectra of the pressure and capacitance signals
shown in Fig. 16. The data have been shifted for clarity. From
bottom to top: ! = 0, 1.5, 2.3, and 3.1

decay. The particular form of the decay is highly depen-
dent on the specific geometry of the outlet. If the geometry
is assumed to be a pipe of constant diameter the propa-
gation results in a power-law decay. We have also estab-
lished pressure conditions for stationary, propagating and
collapsing interfaces.

The long time behavior of the oscillation flow shows
signs of a non-stationary process. The non-stationarity
arises from the gradually emptying reservoir. However,
the expected long term behavior for the relaxation time
constant was not found to agree with measurements.

External vibrations applied to the system were found
to increase the characteristic time constants. This was
attributed to a larger permeability of the grain packing
induced by the vibrations. Likewise, we found that in
the case of relaxation flow the average mass flow rate
increased, unlike the steady flow case where the average
mass flow rate decreased.
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