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Chapter 1

Linear Partial Differential
Equations

Problem 1. Show that the fundamental solution of the drift diffusion
equation

ou_Pu o
ot Ox2 ox
is given by
1 (x—x0+2t)2>
u(x,t) =exp | —
(z,1) p( 7o n
Solution 1.

Problem 2. (i) Show that

. B amf
iy =21 (1)
(ii) Show that
DI(f-g9) = (=1)"Di (g f)- (2)
(iii) Show that
D(f-f)=0, for m odd (3)

Solution 2.
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Problem 3. (i) Show that
D' DY (exp(kix — wit) - exp(kar — wat)) =
(k1 = ko)™ (—w1 4+ w2)" exp((k1 + k2)z — (w1 + w2)t) (1)
This property is very useful in the calculation of soliton solutions.
(ii) Let P(Dy, D;) be a polynomial in D; and D,. Show that
P(D,, Dy)(exp(k1z — wit) - exp(kax — wat)) =

P(ky — ko, —wi 4+ w2)
P(ky 4 k2, —w1 — wy)

P(D,, Dt)(exp((k1 + k2)x — (w1 +w2)t) - 1) (2)

Solution 3.

Problem 4. Consider a free particle in two dimensions confined by the
boundary
G = {(0,y) : layl = 1}.

Solve the eigenvalue problem

Atp 4 E*p =0
where o E
2 2m
k* = 2
with
g = 0.
Solution 4.

Problem 5. Consider an electron of mass m confined to the x — y plane
and a constant magnetic flux density B parallel to the z-axis, i.e.

0
B=|0
B

The Hamilton operator for this two-dimensional electron is given by

“_(f’JF@A)Q_L . 2, 4 2
H = om = 2m((px +eAs)” + (Py +eAy)”)

where A is the vector potential with

B=VxA
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and 5 5
be = —ihe, Py = —ihe.
b e Py ’ Jy
(i) Show that B can be obtained from
0
A=|2zB
0
or
—yB
A= 0
0

(i) Use the second choice for A to find the Hamilton operator H.
(iii) Show that .
[H,p.] =0.

(iv) Let k = p,/h. Make the ansatz for the wave function
b(x,y) = e (y)
and show that the eigenvalue equation H 1 = E reduces to

(3 s+ 50— 0?) 0l0) = Botw

 2m dy? 2
where
eB hk
We (= —, = —
m do eB

(v) Show that the eigenvalues are given by

1
En<n+2>hwc, n=20,1,2....

Solution 5. (i) Since

DA, )0y — A, )0z
V x A= | 04,/0z — A0z
0A, )0z — DA,y

we obtain the desired result.
(ii) Inserting A, = —yB, A, = 0, A, = 0 into the Hamilton operator we
find

) L L. 2

H = o—py + 5 (b: — eyB)".
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(iii) Since coordinate x does not appear in the Hamilton operator H and
[0, Pl = [Py, Pa] = 0

it follows that [H, p,] = 0.
(iv) From (iii) we have

. 0 N
Inserting the ansatz ¥(x,y) = e**¥¢(y) into the first equation we find
U@, y) = e o(y).

(v) We have
V= %((ﬁz —eyB)® +py)e™o(y)
_ %eikw((ﬁk — eyB)? + p2)é(y)
_ %eikw(e232(y — hk/eB)? + p2)(y)
9 A2
(S )

Now the right-hand side must be equal to Ev(z,y) = Ee**¢(y). Thus
since

o2
~2 2
by=-N5a

the second order ordinary differential equation follows

2 2 2
(g s+ = o)) ) = Bl

(vi) The eigenvalue problem of (v) is essentially the harmonic oscillator
except the term is (y — yo)? instead of y2. This means that the centre of
oscillation is at y = yg instead of 0. This has no influence on the eigenvalues
which are the same as for the harmonic oscillator,namely

1
E, = <n+2>hwc, n=0,1,2,....

Problem 6. Consider the Schrédinger equation

oy (1
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Find the coupled system of partial differential equations for

p =¥, vi=g (7) .

Solution 6. First we calculate

op _
ot

O () = Wy 20

Inserting the Schrédinger equation and

_ind (—A+V( )) b

ot 2m
yields
@
ot Qth
We set 1) = e 5 where R and S are real-valued. Next we separate

real and imaginary part after inserting this ansatz into the Schrodinger
equation. Then we set v = VS.

1 *
A(p™) + mlﬁAib .

Problem 7. Consider the conservation law

de(z,t) n 0j(x,t)
ot Ox

=0
where
Oc(z,t)

or
The diffusion coefficient D(x) depends as follows on z

jla,t) = =D(z)

D(x) = Do(1+gx)  g>0.

Thus dD(x)/dx = Dyg. Inserting the current j into the convervation law
we obtain a drift diffusion equation

Oc(zx, t)

Oc(z, t) 0?c(z,1)
ot '

ox + Do(1 + g2) 02

The initial condition for this partial differential equation is

= Dqg

c(x,t =0) = Mpd(x)
where § denotes the delta function. The boundary conditions are

j(x = mo,t) = j(z = +00,t) = 0.



6 Problems and Solutions

Solve the one-dimensional drift-diffusion partial differential equation for
these initial and boundary conditions using a product ansatz c(x,t) =
T()X (z).

Solution 7. (Martin) Inserting the product ansatz into the one-dimensional
drift diffusion equation yields
1 dT(t) 1 dX(z) 1 d?X(x)

W at P9%G) ar TP x e

Setting the left-hand and right-hand side to the constant —Dgg?y /4, where
X is the the speration constant (x > 0) we obtain for T'(¢) the solution

T(#) = C(x) exp (—><D4°92t)

where the C(x) has to be calculated by the normalization. For X (x) we
find a second order linear differential equation

d’X dX  xg?
1 —_— — 4+ =X =0.
( +g$)dx2 +gd:v+ 4

Introducing the new variable u = 1 + gz and Y (u) = v~ X (u) we obtain

Here Jo(y/xu) is the Bessel function of the first kind of order n = 0. We

have
= (=1)F 7\ nt2k
W= e (@)
k=0
Thus X
= (~1 x\ 2k
JO(x):];)(klk)' (E)

It follows that

X(IT(0) = COl 50 e - Do 0).

Now we integrate over all values of the separation constant xy > 0

(1) = / " NCO0 T (VAT F g2))exp (Jd)zfgt) '
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The normalization constant C(x) is determined as follows. Inserting ¢t = 0
(initial condition) we obtain

c(x,t=0)= /OOO dxC(x)Jo(v/x(1 + gx)).

Multiplying with [ dzJo(v/x'(1 + gz)) and using the orthogonality of the
Bessel functions we obtain

C00) = {Mog o(VX).

It follows that

(o) = 222 [ DV AT T g2)) exp(-xDogt/4),

The x integration can be performed and we obtain
My 2 2+ gx
t) = I | ————+/1 _
ez, t) Dogt o (Dogzt \/ngp> exp ( Dog2t>

where Ij is a modified Bessel function of order 0. I, is defined by

. ' e 1 o\ vH2k
I(x):=4"J,(ix) = ]; WEG kT 1) (5) .

For g — 0 we obtain

c(z,t) =

Mo o ( JS2 )
—— €X — .
VarDot P\ T 4Dyt

Problem 8. Consider the time-dependent Schrodinger equation

0 1
i = (~38+Ve0) v )
where
0? 0? 0?
A=zt o T a2
Let

Ql
S]‘e

g

e
Il
=
[ V)
|
<
<
<
Il
9
N
‘ <4
<
N———
Il
9
L= l— el
gle

Q|
8
w
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Show that the time-dependent Schrodinger equation can be written as the
system of partial differential equations (Madelung equations)

O v v = (G K By
g—: F(v-V)v=-V <V(x) - A;;fﬁ )> . (3)
Solution 8. To find (2) we start from (1) and
—ma;f - (-2}# + V(x)> " ()
Now from p = y* we obtain
% _ w Waw*

ot

Inserting the time-dependent Schrédinger equations (1) and (4) we obtain

8,0_ 1 1 « 1 1 %
5= (_2mA+V(X)> Y +¢j (—A+V(X)> (G

2m
1 1 N1
= (—mA(l/”ﬁ ) 5 (—w (Ch )
1 o oY*
" ih 2m (Ap)y” +223381‘]

Equation (3) can be derived by writing ¢ in to so-called Madelung form
P(x,t) = exp(R(x,t) +iS(x,1))

where R and S are real-valued functions. Substituting this expression into
the Schrodinger equation, dividing by ), separating real and imaginary
part, and taking the gradient of the equation in S, where v = V.S. The
Madelung equations are not defined on the nodal set since we divide by .

Problem 9. Consider the time-dependent Schrédinger equation

LovGet) R
ih e —2—V2¢(x, t) + V(x,t)(x,t).

Consider the ansatz

’l/)(X, t) = ¢(X, t) exp(imS(x, t)/h)



Linear Partial Differential Equations 9

where the functions ¢ and S are real. Find the partial differential equations
are ¢ and S.

Solution 9. Since
I _
ot
and
*y _
ox2

J
we obtain the coupled system of partial differential equations

9 2 2 _
5% TV (67V8) =0
9 1

—(h?/2m)V3¢
¢

This is the Madelung representation of the Schrodinger equation. The term

+vv).

(h?/2m)V2¢
¢

of the right-hand side of the last equation is known as the Bohm potential
in the theory of hidden variables.

Problem 10. Consider the Schrédinger equation HU = E¥ of a particle
on the torus. A torus surface can be parametrized by the azimuthal angle
¢ and its polar angle 6

x(¢,0) = (R + acos()) cos(¢)
y(¢,0) = (R + acos(h)) sin(¢)
z(¢,0) = asin(0)
where R and a are the outer and inner radius of the torus, respectively such
that the ratio a/R lies between zero and one.
(i) Find H.
(ii) Apply the separation ansatz

(0, ¢) = exp(ime)(0)

where m is an integer.

Solution 10. (i) We find

1 ( 1 8?2 sin(¢) 0 1 02 )

et 92
2

a2 902  a(R+ acos(0)) 90 * (R + acos(0))? 8¢?
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(ii) Let @ = a/R. We obtain the ordinary differential equation

Y asin(d) 4y m2a?
do? 1+ acos(f) dfd  (1+ acos(6))?

(o) + B =0
where 0 € [0,27], a € (0,1), and 3 is a real number with 3 = 2Ea>.

Problem 11. The linear one-dimensional diffusion equation is given by

ou 9%u

a: W, tZO, —o<r<oo
T

where u(x,t) denotes the concentration at time ¢ and position z € R. D
is the diffusion constant which is assumed to be independent of x and ¢.
Given the initial condition ¢(z,0) = f(z), x € R the solution of the one-
dimensional diffusion equation is given by

u(x, t) = /_00 G(z,t|2’,0) f(a")dz'

where ( )2
1 -2
Gz, tla', 1) = —————ex <)
(et ) = b= P\ )

Here G(x, t|z’,t") is called the fundamental solution of the diffusion equation
obtained for the initial data 6(x — 2’) at ¢ = ¢/, where § denotes the Dirac
delta function.

(i) Let u(z,0) = f(z) = exp(—2%/(20)). Find u(z,t).

(ii) Let u(z,0) = f(z) = exp(—|z|/o). Find u(z,t).

Solution 11.

Problem 12. Let f: R? — R3 be a differentiable function. Consider the
first order vector partial differential equation

V xf=kf
where k is a positive constant.

(i) Find V x (V x f).
(ii) Show that Vf = 0.

Solution 12.
Problem 13. Consider Mazwell’s equation

L o8 VXE:—a—B, divE =0, divB =0

B- -2¢
VX 2ot ot
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(i) Assume that Fy = E35 = 0 and By = B3z = 0. Simplify Maxwell’s
equations.
(ii) Now assume that F; and Bs only depends on x3 and ¢ with

Eq(z3,t) = f(t)sin(kszs), Ba(x3,t) = g(t) cos(ksxs)

where k3 is the third component of the wave vector k. Find the system of
ordinary differential equations for f(¢) and g(t) and solve it and thus find
the dispersion relation. Note that

8E3/6I2 — 8E2/8I3
VXxE= 8E1/8x3—8E3/8x1
8E2/8x1 — 8E1/8x2

Solution 13. (i) Maxwell’s equation written down in components take
the form

0B, 0E, . 0FE;3
ot 8%3 81'2

0By 0FEs3 0OFE;
_ -0
375 8£E1 + (9173
3B3 8E1 8E2 _
ot Oy om "
1
108, 0By 0By
c2 Ot Oxa  Oxs
1
78E2 3 0B . 0Bs3 _0
62 ot axg 81'1
1
1 0E; 3 0By n 0B _0
c2 Ot O0x1  Oxo

and
OF E. E
1 OFs 33:0, 331_’_832_1_333:0.
8x1 (91'2 Bxg 8£U1 8%2 8x3
With the simplification Fs = E3 = 0 and B; = B3 = 0 we arrive at
OF 0By  O0E; 0By OFEq 5 0By
— =0, —+—=0, —=0, — — =0
0rs 0t Bms O am ot Om
and OF B
1 2
— =0 — =0.
856’1 ’ 8.’172

(ii) With the assumption that E; and B, only depend on z3 and ¢ the
equations reduce to two equations
332 8E1 8E1 QaBQ

T TR P
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Inserting the ansatz for F; and Bs yields the system of differential equations
for f and g

These are the equations for the harmonic oscillator. Starting from the
ansatz for the solution

f(t) = Asin(wt) + B cos(wt)

where w is the frequency, yields

A B
g(t) = 02—;:3 cos(wt) — % sin(wt)
and the dispersion relation is

w? = k3.

Problem 14. Let k be a constant. Show that the vector partial differen-
tial equation
V xu=ku

has the general solution
1
u(x, z2,23) =V X (cv) + %V x V(cv)
where c is a constant vector and v satisfies the partial differential equation

V2 + k?v = 0.

Solution 14.

Problem 15. Consider the partial differential equation of first order

0 0 0
(89:1+8x2+0a:3>f_0'

Show that f is of the form

f(ﬂfl — X2,T2 — T3,T3 — xl)-

Solution 15. We set Y12 = 1 — T2, Y23 = T2 — I3, Yz1 = T3 — I1. Then
applying the chain rule we have

Of _ Of Oya  Of Oysn _ Of  Of
dx1  Oyiz Oz Oysz1 Oxr1  Oyia Oys1
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Analogously we have

of 9

af o

of _90_ 0
—5-2

9_9 _
8$2 - 0 87 61‘3 0

Thus f(z — z,x — z,z — x) satisfies the partial differential equation.

Problem 16. Consider the operators

0 0 0
D — Dy = — —.
=t o 0= g g,
Find the commutator
[Da, Di] f (2, 1)
Solution 16. We obtain
ou
D,,Di|f =—D.,f.
[Da, DS = 52D, f

Thus
[Dwa Dt] = ume

Problem 17. Let C be a constant column vector in R™ and x be a
column vector in R™. Show that

Cex'C = yex'C

where V denotes the gradient.

Solution 17. Since .
XTC = Z l‘jCj
=1

and

9 1
— xTc =,

al‘j X J
we find the identity.

Problem 18. Consider the partial differential equation (Laplace equa-
tion)
?u  0%*u
Ox? + Oy

with the boundary conditions

=0 on [0,1] x[0,1]

u(z,0) =1, wu(z,1)=2, u(0,y)=1, wu(l,y)=2.
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Apply the central difference scheme

(32U) Uik = 2t U <5Qu) o Wik—1 = 2Ujk + Uik
oz ) (Az)? ’ 92 ) ik (Ay)?

and then solve the linear equation. Consider the cases Az = Ay = 1/3 and

Az =Ay=1/4.

Solution 18. Case Az = Ay = 1/3: We have the 16 grid points (j, k)
with 7,k = 0,1,2,3 and four interior grid points (1,1), (2,1), (1,2), (2,2).
For j = k =1 we have

ug,1 + U1 +uro+ure —4u; =0.
For j =1, k = 2 we have

Up,2 + U222 + U1 +ur,g —4ur 2 =0.
For j =2, k =1 we have

Uyl +us1 +uzo +uz3z —4uz = 0.
For j =2, k = 2 we have

U2 +us 2 +u21 +ug3z —4ug o =0.
From the boundary conditions we find that

up1 =1, wuo=1, weo=1 wu3=2

uz1 =2, uzo=1, uz2=2, wuz3z=2.

Thus we find the linear equation in matrix form Au=b

—4 1 1 0 U1,1 -2
1 —4 0 1 ui,2 o -3
1 0 —4 1 U211 o -3
0 1 1 —4 U2, 2 —4

The matrix A is invertible with
7/2 1 1 1/2
41 _i 1 7/2 1/2 1
12 1 1/2 7/2 1
12 1 1 7/2

and thus we obtain the solution

U1,1 5/4
U1,2 _ 3/2
u= u2,1 o 3/2

u2,2 7/4
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Case Az = Ay = 1/4. We have 25 grid points and 9 interior grid points.
The equations for these nine grid points are as follows

ug,1 +ug1 +uro+ure —4u;; =0
Ug2 +uUz2 +ur1 +urz —4u2=0
U3 + U2z +uUro +Fura —4u 3=0
U1 +us; +uso+uze —4us ;=0
U2 +uze +ug 1 +ugz —4uze =0
U3+ U3z + U2 +uUza —4us 3 =0
U1 + Ua,1 +uso +us2 —4us; =0
uz2 +ug2 +uzy +usz —4uz2=0

U3 +ug 3 +uz +uz s — 4uzz=0.
From the boundary conditions we find the 12 values
up1 =1, uio=1, up2 =1, upz =1, u14=2, ugg=1,

Ug g =2, ug1 =2, uzg=1, ugp =2, ug3z =2, uzy =2.

Inserting the boundary values the linear equation in matrix form Au = b
is given by

-4 1 0 1 0 0 0 0 o0 U1 -2
1 -4 1 0 1 o 0 0 O U1,2 -1
0 1 -4 0 O 1 0o 0 0 u1,3 -3
1 0 0 —4 1 0 1 0 0 U2, 1 -1
0 1 0 1 —-4 1 0 1 0 ugs | =1 0
0 0 1 0 1 —4 0 0 1 U2,3 —2
6o o o0 1 o0 0 -4 1 O U3, 1 -3
0O 0 0 O 1 0 1 -4 1 u3,2 -2
o 0 o0 0 O 1 0 1 -4 us3,3 —4

The matrix is invertible and thus the solution is u = A~ !b.

Problem 19. Consider the partial differential equation

8?2 02 )
<8x2+8y2>’¢+k‘ w—O.

(i) Apply the transformation

2 - y2a U(x’y) =2y, 1#(33,@/) = ¢(u($a y),v(a:,y)).

w(@,y) ==

(ii) Then introduce polar coordinates u = r cos ¢, v = rsin @.
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Solution 19. (i) Note that
u? + 02 = (22 + )2, x2+y2=\/m.
Applying the chain rule we have

oy 0Pou 9 dv a¢

gr  Ouds  Ovdr ou 81)
and ~ ~
0%y 0w 2 0% 0y 2 0%
027~ 2ou T guz T¥gug, T B
Analogously we have
O _0pou  9bov _ 0, 90
y " ou By + ov Oy yau 2 v
and _ _
8y 31/1 2 0% >’y 2 0%
Rk ) S A k. 4225
o~ Zou T g T a0 T G2
Consequently we find the partial differential equation
2 2
4/ 42 + v2 (M 4 M) + k2¢

Introducing polar coordinates we have

o 1 0%y
8r< 8r>+r€)¢2 +7_0'

One can now try a separation ansatz

which yields
r df 1 d%g k2
+—=-5+tr
fr) d?" Yar) T g(9) do
Thus we find the two ordinary differential equations
df d*f k2
—=C
f (dr JrTclr?) tr 4
1 d?qg
gdg?

where C' is a constant.
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Problem 20. Starting from Maxwell’s equations in vacuum show that

k x E =wB.

Solution 20.

Problem 21. Show that the linear partial differential equation
Pu_ i _
002 o2
admits the solution wu(t,6) = sin(@)sin(t). Does this solution satisfies the
t,0 0

i
boundary condition u(t,8 = 7) = 0 and the initial condition u(t = 0,60) =
0?

Solution 21.

Problem 22. Consider the Hamilton operator

X R 1 92k
H=-23 — o4 ol —a—d)’+ (55— @ — d)?
=M 3q]2-+2(((b @ —d)* + (g3 — q2 — d)?)

where d is the distance between two adjacent atoms. Apply the linear
transformation

(a1, a2,93) = (a2 —qn) — d

n(q1:92:93) = (g3 — q2) — d

1
X(q1,q2,93) = M(mlfh + maqa + mags)

where M := my+mso+mg3 and show that the Hamilton operator decouples.

Solution 22. The Hamilton operator H takes the form H = Hoy + ﬁh,
where

. 1 0

Hen = =03 = —iho—

cM 2]\/IIDM» Pm g axX
: R 92 B 0* R 9%k
H-=--—"-__ - 7 4+ (€2 4 p?
AT R T T T TR

where p1 = (mima)/(my +mz), pe = (mams)/(ma+ms). Thus the centre
of mass motion is decoupled.

Problem 23. Consider the Hamilton operator for three particles

- 1 02 0? 02
H <al‘%+3{)§§+a$§> —695(1‘1 —562)5(1‘2—1‘3)

2m
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and the eigenvalue problem flu(xl,wg,mg) = Fu(zy1,22,23). Apply the

transformation
2 (1
y1(z1, w2, 23) = 3 5(931 +x2) —x3

1
y2($1,$279€3) = ﬁ(fm - $2)

1
ys3(x1, T9,x3) = g(iﬂl + z2 + x3)
u(y1(z1, x2, 3), y2 (w1, 2, 23), y3(21, T2, 3)) = u(w1, T2, 3)

where y3 is the centre-of mass position of the three particles and y1, y2 give
their relative positions up to constant factors. Find the Hamilton operator
for the new coordinates.

Solution 23. First we note that

3(9017302,%3) \[
—— = = V3.
3(93, Z/1792)

The Hamilton operator takes the form

_ 1 92 1 [ 92 0?
B = moy ~ om <8y1 i 3yz> 2o

Consequently the variable can be y3 can be separated out.

Problem 24. Consider the four dimensional Laplace equation

v 0%u  Pu  O%u

S )
8x%+8x§+6)x§+8xi

Transform the equation into polar coordinates (r, 8, ¢, x)

x1(r,0,¢,x) =rsin(6/2)sin((¢ — x)/2)

(r, ) sin(
x2(r,0,¢,x) =rsin(8/2) cos((¢ — x)/2)
z3(r, 0, ¢, x) = rcos(0/2) sin((¢ + x)/2)
x4(r, 0, ¢, x) =1cos(0/2) cos((¢ + x)/2)
)= (x), &(

u(r(x), 0(x), p(x), x(x))

u(x

where x = (21,22, 23, 24).
Solution 24. In polar coordinates we find

U
v$u+r—2vgu=0
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where

o 1 0 30

=7
o3 0r Or

0 0 1 0? o? 0?
2 I .
VQ.—Slne—aasmH—ae e 0(3¢2+ 2cos€a¢ax).

Problem 25. A nonrelativistic particle is described by the Schrédinger
equation

2
p oy
(2m + V(x, t)) Y(x,t) =ih 5t
where p := —iAV. Write the wave function v in polar form

P(x,t) = R(x,t) exp(iS(x,t)/h)

where R, S are real functions and R(x,t) > 0. Give an interpretation of
p=R2

Solution 25. The wave equation is equivalent to a set of two real differ-
ential equations

gf+v( 75)20
where 2 vR
= om R

The equation for the time evolution of p is a conservation equation that
provides the consistency of the interpretation of p as the probabilty density.

Problem 26. The time-dependent Schrodinger equation for the one-
dimensional free particle case can be written in either position or momen-
tum space as

h% 02(x,t) h&/}(m,t)

C2m 012 - ot
2
. 3(;5(:1: t)

Consider the momentum space approach with the solution

d(p,t) = ¢o(p) exp(—ip°t/2mh)
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where ¢(p,0) = ¢o(p the initial momentum distribution. We define

) is
& 1= ih(0/0p). Find (&)(t).

Solution 26. We have

-/ T ) (maqﬁ(n t)) dp

/ o4 (p)& dpﬂi/ pléo(p, t)|2dp

— 00

(P)o

Problem 27. Consider the partial differential equation

2

oxot

(In(det(I, + tDf(x))) = O

where Df(x) (f : R® — R") is the Jacobian matrix. Find the solution of
the initial value problem.

Solution 27. The general solution is
det (I, + tDf(x)) = g(x)h(t)

where g : R" — R, h : R — R. At t = 0 since det(,) = 1 we have
g(x) = h=1(0). Thus

det(I,, + tDf(x)) = h((f))

~

Thus
agdet( +tDf(x)) = 0.

Problem 28. The partial differential equation

(6u>2< 0%u >2+(8u>2< 0%u >2+<8u>2< 0%u >2
o0x1 019013 0xo 0x10x3 Oxs 0x10x2
L (auau Pu 0% +%ﬂ u 0% +@57u u  0%u )
8.’171 6332 8.’[]18.’173 63?28.%’3 61‘1 8:53 8331(%2 81'28373 65(12 6373 8,%165(}2 63?1(9,@3
ou Ou Ou u

81‘1 6.272 81‘3 6.’131637281‘3
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has some link to the Bateman equation. Find the Lie symmetries. There are
Lie-Backlund symmetries? Is there a Legendre transformation to linearize
this partial differential equation?

Solution 28.

Problem 29. Consider the two-dimensional heat equation

or _or ot

ot 0x2 * Oy?
Show that

T(ot) = e (SO - Lo (2RO

/it 4t

satisfies this partial differential equation.

Solution 29.

Problem 30. Let € > 0. Consider the Fokker-Planck equation

with « > 0 for all z.
(i) Find steady state solutions, i.e. find solutions of the ordinary differential
equation
Ou 0
=+ = =0.
e + Ox (zu)
(ii) Find time dependent solution of the inital value problem with

1
V2o

with g9 > 0 the variance and po the mean. With o = 0 we have the delta
function at 0.

U(t = 071') = NO'O (I — ,[l,o) = 67(17“0)2/(200)

Solution 30. (i) We have
de \dz ¢ )

du  zu

Integration yields

dr ' e



22 Problems and Solutions

where (' is a constant of integration. Consequently

di(ueaﬁ/@e)) _ C16$2/(26)~
X

Integrating once more yields

u(x) _ <Cl/ 652/(2e)d8+c2> e—zz/(2e)
0

where C5 is another constant of integration. The condition v > 0 implies
C1 = 0 and the condition
oo
/ u(z)de =1

implies
w(z) = =/ (26),
2me
Thus this time-independent solution is the normal distribution with mean
0 and variance e.
(ii) We obtain
u(ta 33) = No(t) (33 - U(t))

with
wu(t) = poe ", o(t) = e+ (0g — €)e 2.
Problem 31. Consider the Schrodinger equation
N g2
— Z 922 + 202 O(z; — x) | u(x) = Bu(x)
Jj= J Jj<k

describing a one-dimensional Bose gas with the §-fnction repulsive interac-
tion. Show that for V = 2 the eigenvalue problem can be solved with a
exponential ansatz.

Solution 31. For N = 2 we have the unnormalized wave function

U(Il,lﬂz) — 62k§1931+’bk‘212 + elelzelk‘leJer‘lCEQ

for 1 < x2 where the phase shift 65 is given by
_ C — ’L(kl — kQ)
c+ Z(k‘l — k‘g) ’

The wave function for ;1 > x5 is obtained by using the symmetry relation
u(xy, x2) = u(xa,1). For k1 = ko we have u(x1,z2) = 0.

67,912 —
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Problem 32. (i) Show that the power series
oo
P(t,\) = Z P A" cos(v/nt)
n=0

satisfies the linear partial differential equation (diffusion type equation)

O2P(t,\) . D
o = AP

with boundary conditions

aP(0,\)

P(0,A) = an)\n = p(N), o 0, P(t,0)=p(0).
n=0

(ii) Perform a Laplace transformation
P(z,)\) ::/ e F P(t, \)dt
0

and show that P(z, \) obeys the differential equation

22P(z,\) — z2p(\) = —Aa%ﬁ(z, A)

with boundary condition

and

A
ﬁ(z,)\):/o exp(—22 ln()\/x))@dx.

Solution 32.

Problem 33. Consider the Schrodinger equation (eigenvalue equation)
for an identical three-body harmonic oscillator

n & ¢ <
—o Y AU Y (r— 1)’ = BV
2M j=1 2 k>j=1

where M denotes the mass and A, is the Laplace operator with respect
to the position vector r;. In the center-of-mass frame the position vector
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r; is replaced by the Jacobi coordinate vectors R, x, y

1
R= 73(1‘1 +I‘2+I‘3) =0
1 V3
X = 76(21‘1 — Iy — 1‘3) = ﬁrl
1
y= fZ(rz —r3)

\II(R(rj)7 X(rj)> Y(rj)) = \I/(rh ra, 1‘3).
Show that the eigenvalue equation takes the form

h? 3c
_W(Ax +Ay)¥ + E(XQ +y?)¥ = EV

under this transformation.
Solution 33.

Problem 34. Show that

1 T —x9)?
u(zx,t) = i exp (—( 4Dt0) >

satisfies the one-dimensional diffusion equation

ou 0%u
ot~ Pon

with the initial condition

u(z,0) = §(z — x9).

Solution 34.

Problem 35. Consider the integral equation

Oc(x,t)
ot

= —xc(a:,t) + 2/ C(yat)dy

Let s > 0. Show that
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with ¢(z,0) = e " satisfies the integral equation. Show that taking the
derivative with respect to x we obtain the linear partial differential equation

Solution 35.

Problem 36. Consider the one-dimensional diffusion equation

o’ 0%’
i D R v (z,t =0) = u(x)

Show that

1 r 2
u'(z,t) = —/ u(z + 2V Dts)e % ds, x>0
VE

is a solution.

Solution 36.



Chapter 2

Nonlinear Partial
Differential Equations

Problem 1.
tions
ou  Ov ov
E + 87/ + u% -
ou
dy

Consider the system of quasi-linear partial differential equa-

ou
’Uaix—o

ov

o

Show that this system arise as compatibility conditions [L, M] = 0 of
an overdetermined system of linear equations LV = 0, MV = 0, where
U(x,y,t, A\ is a function, A\ is a spectral parameter, and the Laz pair is

given by
0 0 0

ot o A@’

Solution 1.

(L, MU = L(MT) — M(LV)

Using the product rule we have

0 0 0 0 0 0

_OQudv  Ou
~ ot oz ' 0r oz

26

8u87\11_/\@87\11 Ov 0V
Jy Or

31}87\11

\ Ov O¥
U _
Ox Ox

dy Ox Oz Oz
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ou ou ou Ov ov ov\ Ov
_<8t_v6x_ oy Toy TVor ax)ax
ou Oou Ov ov ov Ou ow
(&_Uax+8y+u8m_)\<8x+8y>>8x'

Thus from [L, M]¥ = 0 the system of partial differential equations follows.

Problem 2. Find the traveling wave solution
u(z,t) = flx — ct) ¢ = constant (1)

of the one-dimensional sine-Gordon equation

9y O%u .
@ — ﬁ = Sln(u). (2)
Solution 2. Let
s(z,t) :=x —ct. (3)

Then we find the ordinary differential equation for the function f

d2
(1 —cQ)d—SJ; = sin(f). (4)
Solutions to (4) can be written as elliptic integrals

f dz s
/ V2(E — cos z) B V1 -2 5)

where E is an arbitrary constant of integration. From (5) it follows that
s) = cos ! <20d2 (S> - 1) 6
s e 0
where cd is an elliptic function of modulus v =2/(E + 1).

Problem 3. Show that the nonlinear nondispersive part of the Korteweg-
de Vries equation

ou ou
Zz — = 1
8t+(a+ﬂu)8x 0 (1)
possesses shock wave solutions that are intrinsically implicit
u(z,t) = f(z — (o + Pu(x,1))t) (2)

with the initial value problem u(z,t = 0) = f(x), where «, 8 € R.
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Solution 3. Since

Ju ou\ ,,

Ju ou\
7 (1)

where f’ is the derivative of f with respect to the argument we obtain

P o\ 0
( ~ Bt )(;Z—(—a—ﬂu—ﬂtaq:)az. (4)

From (4) it follows that

ou ou

ot (—a —Bu) o (6)

which is (1).

Problem 4. Consider the Korteweg-de Vries-Burgers equation

AL S (1)
bt Ty TR T T

where a1, as and az are non-zero constants. It contains dispersive, dissipa-
tive and nonlinear terms.
(i) Find a solution of the form

by
(1 + exp(bg(x + b3t + b4)))2

u(x,t) = (2)

where by, bs, b3 and by are constants determined by a1, as, as and ay4.
(ii) Study the case t — oo and t — —oo.

Solution 4. (i) This is a typical problem for computer algebra. Inserting
the ansatz (2) into (1) yields the conditions

by = —(a1by + agby + azby) (3)
and
(2a1b1+3azba+9a3b3) exp((a1byba+azbi+azb3)t)+(a1bi+3azby—3azb3) = 0.
The quantity b4 is arbitrary. Thus W

2a1b1 = 73a2b2 — 9a3b§, a1b1 = *3@21)2 + 3(1363. (5)
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Solving (5) with respect to by and by yields

1242 as
by = ——2, by = —. 6
! 25(11&3 2 5@3 ( )
Inserting (6) into (3) gives
by = 002 1)
® 7 25 a4

Thus the solution is

1203 as 6a3 -
t)=— 1 t4b .
U t) =~ e < +exp <5a3 (SH 25as Ot ®)

(ii) Two asymptotic values exist which are for

20,

t — = 9
— —0Q, ur a ( a’)
and for
t—>OO, UIIZO. (9())
Problem 5. The Fisher equation is given by
ou  0*u
§:W+au(lfu) (1)

where the positive constant a is a measure of intensity of selection. (i)
Consider the substitution

v(z,7(t)) = éu(x,tL T(t) = 5t. (2)
(i) Show that (1) takes the form

ov 0%

E = @ + CL”U(I — 6”0) (3)

(ii) Consider the following ansatz

oa,t) == 3 vy, )¢ P (a, ) (1)

=0

is single-valued about the solution movable singular manifold ¢ = 0. This
means p is a positive integer, recursion relationships for v; are self-consistent,
and the ansatz (4) has enough free functions in the sense of the Cauchy-
Kowalevskia theorem.

(iii) Try to truncate the expansion (4) with v; = 0 for j > 2.
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Solution 5. (i) Using the chain rule we find that substituting (2) into (1)
provides (3).
(ii) By substituting (4) into (3), we have p = 2 and

. 20, j ’
5 (611]_2 L —3)11]-_1%) _ 0% +2(j_3)811]_1 %+(j—3) 0%¢

or or Ox2 or Oz V152
9 2 J
+(] — 3)(] — 2)1}j (ax> +avj_o — GQZUj—kUk (6)
k=0

for all j > 0, where v; = 0 for j < 0. For j = 0, we have

vo = % (‘2‘3‘;’)2. (1)

Thus using (7), (6) turns into

(J—6)(j+ v, <8¢>2 =5 <8vj2 + (- 3)’1)1'—1%) v

oz or or 0x?
j—1
N T 9%¢ X
—2(5—3) % B (j— 3)vj,1@ +avj_o + 6a;vj,kvk (8)
for j > 2. The resonance points are j = —1 and j = 6. The point —1

corresponds to the arbitrary singular manifold function ¢, while the point
6 corresponds to the free function vg. For j = 1, we obtain from (6) that

vl—l(‘%—%). (9)

“a\or 022

We find all functions of v; using (8).
(ili) Using (6), we let v; = 0, for j > 3. Then

Z%-l-%—f-vz (10)

v

Hence (8) gives

I O O S N N T R S R A
“2—12%(‘4(%) +3<¢z>_¢1+2 9 _12<¢1>>

(11)
(rb:ﬂit - (7257' . 1 ¢mr - ¢T 1 1 ¢xm7 5 ¢TT 1 ¢I:EII
s () (R e ) @
and )
s0v2 0 (1= Gu) (13)

ar 02
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where we set ¢, = d¢/0x. Equation (13) is the same as (3). Thus (10) is
an auto-Béacklund transformation for the Fisher equation. We have from
(7), (9) and (10) that

1/0 02

where ¢ satisfies (12), (13) with (11).

Remark. The technique described above is called the Painlevé test in liter-
ature.

Problem 6. Consider Fisher’s equation

ou_ o
ot Ox2

u(z,y,t) = (1 + exp <(CE — y/ﬂ\}g (5/\/6)t>>

is a traveling wave solution of this equation. Is the the solution an element
of Ly(IR?) for a fixed t?

+u(l —w).

Show that

Solution 6.

Problem 7. Consider the nonlinear partial differential equation

00\" ¢ | (00" ¢ 0000 o _
() 0 (5 -

dy

ox

92 (1)

(i) Show that this equation has an implicit solution for ¢ of the form
z = X(¢,y,t) = f(¢, 1)y + h(¢,1) (2)

where f and h are arbitrary differentiable functions of ¢ and .
(ii) Show that (1) may also be solved by means of a Legendre transfor-
mation.

Solution 7.
Problem 8. The sine-Gordon equation is the equation of motion for a

theory of a single, dimensionless scalar field u, in one space and one time
dimension, whose dynamics is determined by the Lagrangian density

Cl ey ™ s (V)
C—Z(Ut cuz)—l—/\cos U L. (1)
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Here c is a limiting velocity while m, A\, and p are real parameters. u; and
u, are the partial derivatives of ¢ with respect to ¢t and x, respectively. In
the terminology of quantum field theory, m is the mass associated with the
normal modes of the linearized theory, while A/m? is a dimensionless, cou-
pling constant that measures the strength of the interaction between these
normal modes. In classical theory m is proportional to the characteristic
frequency of these normal modes.

(i) Let

t

a:—>£, t— —, uw — muvA (2)
m m

and set ¢ = 1. Show that then the Lagrangian density becomes

m4

‘C:ﬁ

((} —u2) +2cosu) — 1 (3)

with the corresponding Hamiltonian density being given by

m2

Hzﬁ(u?—l—ui—Qcosu)—i—,u. (4)

(ii) By choosing

m2

#:T (5)

show that the minimum energy of the theory is made zero and (4) can be
written as

4
u? +u? +2(1 — cosu)). (6)

m
H‘ﬁ(

Solution 8.

Problem 9. Find the solution to the nonlinear partial differential equa-

tion
ou\?\ 9%u Ou Ou 0%*u ou\?\ 9%u
1 — _— _— _— _— _—
< (8t> ) Ox? +23x Ot Ozt <1 + <6x> ) ot? 0
which satisfies the initial conditions (Cauchy problem)

ou
E(t =0) = b(z). (2)

Equation (1) can describe processes which develop in time, since it is of the
hyperbolic type if 1 + (Ou/dz)? — (du/0t)? > 0. Show that the hyperbolic
condition for (1) implies for the initial conditions that

1+ a?(x) — b*(z) > 0. (3)
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Solution 9. We simplify (1) by introducing the new variables «, 3
v=x(e,f), t=tef),  z=ulz(a,f)te,f))=z0). (4)
Thus we seek a solution of (1) in parametric form
r =r(o,f) ()

where r(a, 8) = (t(a, 8), (e, B), z(e, B)) is a vector with components ¢, x,
and z. If we denote the scalar product of the vectors ry and ro by rirs,

rirs := t1ty — L1292 — 2129 (6)

then (1) can be written in the following form

I‘iDﬁg — 2rarﬁDa5 + I‘%Daa =0 (7)
where
Or Or d%r ®)
ry = —, rg = —, T g =
da LY P 900
and
tik Tik Zik
D = |ta Ta 2o |- (9)
ts T 2

Next we construct the hyperbolic solution of (7) which satisfies the initial
conditions. The hyperbolic nature of (7) implies that

(rarp)® — 1515 > 0. (10)
Equation (7) has the following equations for the characteristics
(ra)? =0,  (rp)*=0. (11)

These characteristic equations together with (7) are a system of three equa-
tions for the three functions t(«, ), z(«, ), and z(«, §). It follows from
(7), (8) and (9) that

Do =0. (12)

Equation (12) describes a linear dependence between rows of the determi-
nant D, g i.e.,
rop = Ao, B)ro + B(a, B)rs. (13)

Taking the scalar product r, gr, and take into account that (9) and (11)
are valid for all «, 3 we have

9

1
T gla =TrogB = §8ﬁri =0. (14)
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With r,rg # 0 we conclude from (14) that A = B = 0. Thus we obtain

r :07 I'ﬂ:O, I‘ayﬁ:O

or written in components
o\ (om\P 02\
O o oo )
oy (on\'(0:\P
ap a5 )

ot Pr %z
0adB 7 0adB T 0adf
Thus the general solution of (15) (or (16)) is

r(a, 8) = r1(a) + r2(6).

0.

Problem 10. Consider the Korteweg-de Vries equation
ou ou  Ou

= ut + = =0.

ot Y or + ox3
From (1) we can derive the iteration scheme

. 1 (Uj(gj) + ugﬂ?m)
Wit =  __ J 5=0,1,2,...
6 u&“
where o)
L) . v
“ Ox

(i) Let

u® (z,t) = In(z — ct).

Show that (4) converges within two steps to an exact solution
¢ -2
u(z,t) = ~8 + 2(z — ct)

of the Korteweg-de Vries equation (1).
(ii) Show that
uO(z,t) = (z — ct)?
also converges to the solution (5).
(iii) Let
u(® (z,t) = cos(a(z — ct)) 7.

(15)

(16)
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Show that within two steps of the iteration we arrive at

u(z,t) = §a2 — g + 2a? tan?(a(z — ct)). (8)

(iv) Show that by demanding that u — 0 for |z| — oo, provides a = i+/c/2
and (5) becomes the well known soliton solution

u(z,t) = fgsechZ <\f(z - ct)> . (9)

Solution 10. Blender J. Phys. A : Math. Gen. 24 1991 L509

Problem 11. Solve the initial value problem of the partial differential
equation
du

2 (2
or oy )
with u(0,y) = 32 applying a Taylor series expansion.
Solution 11.
Problem 12. The Zakharov-Kuznetsov equation for ion acoustic waves

and solitons propagating along a very strong external and uniform magnetic
field is, for a two-component plasma

Ju ou 0
0? 02 02

Here u is the normalized deviation of the ion density from the average.
Exact solitonlike solutions exist in one, two and three space dimensions.
They depend on the independent variables through the combination

x — ct, pi=((x—ect)?+y)V2 ri=(z—a)?+>+22)Y2, (3)

respectively, where

Auf(cf%)u:() (4)

and
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for the three cases. (i) Show that for the one-dimensional case we obtain

the soliton solution

u(x,t) = 3esech®(c/?(x — et — x0)/2).

(6)

(ii) Show that the flat soliton (6) is unstable with respect to nonaligned

perturbations.

Solution 12.

Problem 13. Show that the nonlinear Schrodinger equation,

0 0?
ia—?+8—;;+2a|w|2w20, o==l

has one-zone solutions

w(z,t) =/ f(0(x, 1)) exp(ip(x, 1), ¢ =1v+h(0),
O(x,t) = ka — wt, V= kKkr — Ot
where f(6) and h(f) are elliptic functions.

Solution 13.

Problem 14. Consider the partial differential equation
ou\” n ou\’
— — | =
Ox dy

u(z,y) = %(m +a)® + i(y +b)2

Show that

is a solution.

Solution 14.

Problem 15. We consider the diffusion equation with nonlinear quadratic

recombination

du 9 0%u 0?u 0?u

ot

(1)

where D,, D, and D, are constants. This equation is relevant for the
evolution of plasmas or of charge carries in solids, of generating functions.

Find the condition on ¢y, ¢y such that

C1

U(ﬂ%y’ th) =

5a22/D, + y2/D, + 22/D. + co(t i) "
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24 z?/D, +y*/D, + 2%/D,
a (22/Dy +y?/Dy + 22 /D, + ca(t — to))?

(2)
satisfies (1).
Solution 15.

Problem 16. The Burgers equation determines the motion of a pressure-
less fluid subjected to dissipation

ou ou  %*u

hatied =2 1
ot " "or ~ oa? W)
(i) Show that any solution v of the diffusion equation
v 0%
- 2
ot 0z 2)
yields a solution of the Burgers equation via the Hopf-Cole transformation
2 Ov
=———. 3
“ v Oz 3)

(ii) Solving (1) with respect to u we can introduce the iteration formula

. 1 : j
LU — W(ugﬁax) —u9y, i =0,1,2,... (4)

Uz

where u; = Ou/0t etc.. Show that for u(®) = v™ we find the sequence

10v
D —(p—-1222
u® = (1) 0 )
2 0v
(2) = —— — i
u P fixed point (6)

Remark. Thus the Hopf-Cole transformation is an attractor (fixed point)
of the iteration (4).

Problem 17. Consider the nonlinear diffusion equation

ou 0 ou

(i) Show that this equation admits a solution of the form

1 T 2 x
(1—() )fort>0, —| <1
u(w,t)y =4 " o o 2)
0 fort > 0, L >1
€1
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where
x1 = (6t)/° (3)

Remark. The solution exhibits a wave-like behaviour although it is not a
wave of constant shape. The leading edge of this wave, that is where u = 0,
is at « = 21 and the speed of propagation is proportional to t~2/3.

Solution 17.

Problem 18. Show that the nonlinear partial differential equation (Fisher’s

equation) ,
0 0 o
(axzat)“““ (M

admits the travelling wave solution

w(w,t) = % (1 ~ tanh (2\1/6 (m - \%m)))z. @)

Solution 18.

Problem 19. Show that the coupled system of partial differential equa-
tions

Z@E 82£ _ 0%n B ?n  0?

- - = 2
ot Vo =" E o~ D) (1)

admits the solution

E(z,t) = Fo(x — st) exp (’;x +i </\2 - 32) t) (2a)

4
2X2
) =— 2b
n(@?) cosh? \(z — st — xg) (20)
where
B A/2(1 — 5)?
Eo(w —st) = cosh(A(x — st — xg)) (2¢)

The soliton solution represents a moving one-dimensional plasma density
well which Langmuir oscillations are locked.

Solution 19.

Problem 20. The Navier-Stokes equation is given by

1
a—u =—u-Vu+vViu—-=-Vp
ot 1)
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where u denotes the solenoidal

- 8u1 8U2 6U3 -
V-u=divu = o +3y 82_0

flow velocity field, v and p are the constant kinematic viscosity and fluid
density. Here p is the fluid pressure. We have

P
uy Gk + up aql +ug G

u-Vu:= ul%“;—ku 6“2 + us ‘9“2
ulaug +u aug +u 8u3

Find the time evolution of

aug auz

oy 0z

P e — aul _ (9’!1.3
vi=curlu=Vxu=| Ft -2
8u2 Bul

ox Jy

Solution 20. Using that divu = 0 we obtain

ov
=v-Vu—u-Vv+rViv
ot
where 6
U1
+ v3 az
v-Vu:= vl%‘fj +v26“2 + vz Q2

v1%+1} 6u3 +’U Bug
and analogously for u- Vv. Note that
{v,u}:=v-Vu—u-Vv

maps an ordered pair of solenoidal vector fields into a solenoidal vector
field.

Problem 21. Show that

ou ou
i e 1
ot T =0 (1)
can be linearized into
%=z (2
ot

with
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Solution 21. Applying the chain rule yields

on_oudr  ouol _duou  on @
ot oz ot Otot ox ot Ot

and -
0u_0udr  0ud _0udu _ .
or 0z dx Otdx Oxdxr
Solving (4) and (5) with respect to du/0t and du/Ox, respectively, and
inserting into (1) we obtain (2), where we used (3).

Problem 22. Consider the partial differential equation

ou _ 0%
ot " oz

Show that (1) linearizes under the transformation

x(x,t)z/; @ds, Hat) =t a(@(z,t), iz, 1) = u(w, b).
(2)

It is assumed that v and all its spatial derivatives vanish at —oo.

Solution 22. From (2) it follows that

55—1 or 1 ou Qudxr A OJudt Ou

Y T w ot omor T otai ot ®)
and
or v 1 Ou(s,t) . T Q%u(s,t) ,  Ou
&/muQ(s,t) ot dsji/,oo 0s? dsji% )
and -
on_ouox  ouoi _ou o)
dr 9z dx Otoxr Ox
Therefore o 5
U U
oz~ "oz ©)
Analogously
0u_dude  0udl _ou .
ot oz ot otot ot
and hence

onon on on_ou
0z dxr Ox Ot ot
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From (5) we obtain

9 (or) _ (o)t o o
or \ oz ) \ox Yoz
It follows that
Puor Faor\ _ (o)’ o o
0r2 9z 0Tt oz ) \ox Ox?’

Since 0t/0x = 0 and 9z/0x = 1/u we obtain

0*u ou\? 0%u

Inserting (1c), (5), (7) and (12) into (2) gives the linear diffusion equation

ou  0%u
— = . 12
ot 0z (12)
Problem 23. Show that the equation
ou 0%
222 1
ot " 9a2 )
is transformed under the Cole-Hopf transformation
_ 1 _
W) fe ) = Dot Hef)=t, #Hef=z Q)
into Burgers equation
ou 5 0
9u _ 9 (g2, 00 3
o~ 9 ( + a:z) ®)
Solution 23.
Problem 24. Show that the the equation
ou 5 0%u 50
D it - 1
ot~ Vo2 T s W)

is linearized by the transformation

Z(x,t) = /I u(s,t) " ds, t(z,t) =t, w(Z(z,t),t(z,t)) = u(x, t).

— 0o
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Solution 24.

Problem 25. Show that the equation

50U

du Pu 3 (u\® 3 %u du
Oz

3
o "o T 2\ox) T2%e T "

can be derived from the linear equation

9 _ 9%
ot O3

and the transformation
1 xT
o(x,t) = exp (2/ u(s,t)ds> .

Solution 25.

Problem 26. Using the transformation

j(x,t):/x ds Hat)=t, @z, b),i(z,t) = u(z, 1)

oo u(s,t)’

the equation
ou 5 0%u
— 32

ot 02
can be recast into the differential equation

du_ou_g1ou(lou\* o)
ot 0z w20z \ 2 \ 0% Yoz | TV

(ii) Show that using the Cole-Hopf transformation

1 ov(z,i)
v(z,t) O

a(z,t) =

(4)

(3) can further be reduced to the modified Korteweg-de Vries equation in

v. Hint. We have
_ = 1
[ _/ 6u(s,t)d

ot J_u2(s,t) Ot

8:u3x2 2

T 3 2
_/ u(&t)ﬁu(s,t)d *u 1

3
oo Js

Solution 26.

(

ou
ox
(5)
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Problem 27. Show that the transformation

ou

5y Tt =ulxt),  Ht) =t (1)

ﬂ(i'va =

transforms the nonlinear heat equation

Ou 9%u
o (U)@ (2)
into 95 9 95
ou 2 9 - U
o " oz (A(“””) 833) 3)

Solution 27.

Problem 28. Consider the nonlinear partial differential equation

Au — f(u)(Vu)? + a(x,t)Vu + b(x, t)% =0 (1)
where V is the gradient operator in the variables z1,...,2,, A := VV,

f(u) and b(x,t) are given functions, and a(x,t) is a given n-dimensional
vector. Show that the transformation

/:mt) <eXP <— /u: f(z)dz:)) ds —v(x,t) = 0. @

reduces (1) to the linear partial differential equation
ov
Av + a(x,t)Vu + b(x, t)a =0. (3)

Hint. From (2) we find

ov u(xt) ou
¢ = %P (— /uo f(z)dz) s (4a)
ov u(xt) ou

H2 u(x,t) 92 u(x,t) 9 2
8—;% = exp (— /uo f(z)dz) QTS?_QXP (— /uo f(z)dz) flw) (6;1> .

(4¢)

Solution 28.
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Problem 29. Consider the two-dimensional sine-Gordon equation

@+@_@_in()
a2 " ayr oz oY

It may be regarded as describing solitary waves in a two-dimensional Joseph-
son junction. The Lamb substitution is given by

u(x,y,t) = dtan™" (M (z,y,1)). (1)
Find the equation for M.
Solution 29. Since

4w (1l — w?)
wt +2w2 +1

1l
—

[\
~

sin(4 arctan w)

we obtain
02M  O*M  9°M OMN\?  [oM\® [oM\?
2 J— J— —_— —_— J— —_—
1) (G + e e ) 2M<<6m)+(ay> (%)

Problem 30. We consider the nonlinear d’Alembert equation

Ou = F(u) (1)
where u = u(x), x = (29, Z1,...,Tn),
02 02 02
‘:l = 871‘(2) — 8733% ———— %% (2)

and F(u) is an arbitrary differentiable function.
(i) Consider the transformation

u(x) = (w(x)) 3)

where w(x) and ®(w) are new unknown functions. Show that (1) takes the
form )
do d-®

ow > ow\? ow \ 2
Mmoo __ _ e e — —_
w = () (22) (7)) - o)

(ii) Show that (4) is equivalent to the following equation

dd P d*® 2® 4o P,
n n n _
Tw (Dw — )\n> —|——w2 (wﬂw —A)+A <w2 + o n) —F(®)=0 (6)

where
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where P, (w) is an arbitrary polynomial of degree n in w, and A = —1,0, 1.
Moreover P, = dP, /dw.
(iii) Assume that ® satisfies

d*®  do P,
SR . )
A(dwg +den> (@) (7)
Show that (6) takes the form
do P d*®
- _\_" il Mo —
T (Dw )\Pn> +t o (wuwh — X) = 0. (8)

(iv) Show that a solution of the system

b,
Ow = AF’ wywh = A ©))

is also a solution of (8), and in this way we obtain a solution of (1) provided
O satisfies (7).

Solution 30.

Problem 31. Consider the nonlinear wave equation in one space dimen-
sion
?u  O%u
otz 922
(i) Show that (1) can be derived from the Lagrangian density

—u+u®=0. (1)

1
L(ur, g, u) = 5 (uf = ug) — g(u) (2)
with g(u) the potential function
(u* — 2u* +1). (3)

(ii) Definition. A conservation law associated to (1) is an expression of
the form

T (u(x,t))  OX(u(z,t))
ot + ox
where T is the conserved density and X the conserved flux. T and X are
functionals of u and its derivatives.
(ii) Show that the quantities

1 o\’ ou\” 1, 2 Ou Ou
= — o _— — — > = -
Ti=3 ((81,‘) +<8$> )*4(“ D720 =gy O

=0 (4)
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are conserved densities of (1), provided that u? —1, du/dt, and du/dx tend
to zero sufficiently fast as |z| — +o0.

Hint. The corresponding fluxes are

Ou Ou 1 ou\” o\’ 1, 9
Xl——%a, X2—§ <<<9t> + (%) >_4(U -7 (6)

Ty and T5 correspond to the energy and momentum densities, respectively.

The Fuler-Lagrange equation is given by

0 (oL 0 (oL oL

3 () 3¢ () 50 = "
where £ is the Lagrange density (2).
Solution 31. (i) Inserting (2) into (7) we find (1).

(ii) Inserting 77 and X; into (4) yields

Ou  *udu Ou Ju

2 2
oud“u  Ou 0%u (w2 — 1)t Fudu ou

ot o2 T oz 0wt

ou (Pu  Pu 4
gt \oe g T ) =0

where we used (1).

Problem 32. Consider the nonlinear partial differential equation

%—%—wu?’:o. (1)
(i) Show that (1) admits the solution
ug (x — vt) = tanh((y/V2)(z — vt — x)) = —ug(z — vt) (2)
where
v =10 3)

and 7o is a constant. These solutions are of kink (K) and antikink (K)
type traveling at constant velocity v. These solutions do not tend to zero at
infinity, but they do connect two minimum states of the potential 4 (u?—1)2.
(ii) The energy and momentum densities 77 and 75 for the kink and antikink
are obtained by substituting (2) into (5) of problem 1. Show that

T (2.1) = 2 cosh (/v 2)(w — vt 20) @)
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2
To(x,t) = % cosh™((v/v2)(x — vt — x0)). (5)
(iii) Show that by integrating over x we find the energy and the momentum
+0o0 4 +o0 4
g v
E = Tdr=--L,  P.= Todr = - L. 6
/_oo 32 /_w 32 0

(iv) Show that the densities 77 and T3 are localized in space, in contrast
with ux and ug.
(v) We associate the mass

M? = E* - P? (7)
to (1) and the energy center
+oo
/ zTidx
X =" (8)

/ TldSU
—o0

Show that the kink and antikink solutions of (6) take the values

8

M2:§, X, = vt + 0. (9)

Solution 32.

Problem 33. We say that a partial differential equation described by
the field u(x,y) is hodograph invariant if it does not change its form by the
hodograph transformations

j(xvy) :u(x,y), g(xvy) =Y, ﬂ(f(m,y),ﬂ(m,y)) =Z. (1)

Show that the Monge-Ampere equation for the surface u(x,y) with a con-
stant total curvature K

0?%u 0%u 2u \> ou\> ou\’
oo (omay) = (1 “(5:) + () 2
is hodograph invariant.

Solution 33. We have to show that

Pudu [ 0%a\’ ou\> [ou\’
35 o5t ~ (35) —K<”<ax> () @
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Applying the chain rule we have
du _dudzr  Odudy _

9 " 9300 T ojor (4a)
Thus 92 9
u Ou
90w 1. (4b)
Here we used
0r  Ou or @ @ B @ B
Ox  Ox’ oy Oy’ 6m707 8y71' 5)
Analogously
ou O0udxr oudy
oy " oway Togay " (o)
Thus 95 &
u Ou
90w 1. (70)
For the second order deriatives we find
0*u  ou
o7 = or =" (8e)
and 22
U
a7 - (5)

It follows that
du Ou Ou Ou Ou

dr  dx  dr dr Oz

Problem 34. Show that the nonlinear equation of the Born-Infeld type
for a scalar field u is obtained by varying the Lagrangian

Lty uz,up) = 1= (L +uy +ul = uf) /2 (1)

and has the following form
1_|_ @24'_ %24_ @2_ %2 @4_@_’_@_@
Ox Ay 0z ot ox?  0oyr 022 Ot?

(B (et o\t (on\?eh ot o
Ox ) 0x2 oy ) 0oy? 0z ) 022 ot ) ot2 0z0y 00y
Oudu 0*u _Oudu 0*u _Oudu 0*u _Oudu 0*u _Oudu 0*u
B R L AN S ) R ) -
Ox 0r 0xdz Oy 0z Oydz Ot Ox Otdx Ot Qy Aty Ot 0z OOz
(2)
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Solution 34. The Euler-Lagrange equation is given by

0oL 0 0L 00L 00L 0L

9200, " dyou, " 9:0u. 90w, ou ®)

Problem 35. The sine-Gordon equation is the equation of motion for a
theory of a single, dimensionless scalar field u, in one space and one time
dimension, whose dynamics is determined by the Lagrangian density

1 4 A
L(ug, Uy, u) = i(uf — cPul) + mTCOS <\n{u> — i (1)

Here c is a limiting velocity while m, A, and p are real parameters. u; and
u, are the partial derivatives of u with respect to ¢t and x, respectively. In
the terminology of quantum field theory, m is the mass associated with the
normal modes of the linearized theory, while A/m? is a dimensionless, cou-
pling constant that measures the strength of the interaction between these
normal modes. In classical theory m is proportional to the characteristic
frequency of these normal modes. Let

z— L t— — u— (2)

m’ m’ v
and set ¢ = 1. (i) Show that then the Lagrangian density becomes

4

Ll ugyu) = 5 (u] = u2) +2cosw) — p 3)
with the corresponding Hamiltonian density being given by
mi
H:K(ueruichosu)Jru. (4)
(ii) Show that by choosing
5= m*/\ (5)
the minimum energy of the theory is made zero and (4) can be written as
mi
H= ﬁ(uf+ui+2(17cosu)). (6)

Solution 35.

Problem 36. Show that the following theorem holds. The conservation
law 9

0
E(T(au/ax, Ou/ot,u)) + %(F(au/éx, du/ot,u)) =0 (1)
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is transformed to the reciprocally associated conservation law

%(T’(@u/ax', Ou/ot' u)} + %(F'(au/ax’ﬁu/at',u)} =0 (2
by the reciprocal transformation
dx'(z,t) = T'dx — Fdt, t'(z,t) =t, (3)
1
/ ’ / o
T (Ou/0x", 0u/ot' u) = T(0uj0x, 0u0t, ) (4a)
y , , _ —F(0u/0x,0u/0t, u)
F'(Ou/0z',0/0t' ,u) = T(9) 0z 0/t 0) (4b)
(ii) Show that
0 10 0 Fo o .
ox T’z ot T'ox' ot
Solution 36. (i) From (3) and (4) we find
dr" =T'ds' — F'dt' =T'Tdx — (T'F + F')dt = dx (5)
if and only if
T'(Ou/0x', 0u)Ot' ,u)T (Ou/dz, Ou/Ot,u) = 1 (6)

and
T'(Ou/0x', 0u)Ot' ,u) F(Ou/Ou, Ou/dt,u) + F' (Ou/0x',0u/Ot’ ,u) = 0. (7)
The result follows.

Problem 37. Consider the coupled two-dimensional nonlinear Schrodinger
equation
Ou 0%u 0%u

Urn 92 + 78—:1/2 —dutuu — 2wy =0 (la)

0%w 0%w 02
— — 0—(u*u) =0 1b
05+ 5 + 005 () (1)
where 3, , § are arbitrary constants. Consider the following transformation
_ T _ Y _ 1
x(m,y,t)z ?? y($7yat): ;7 t(.’L‘,y,t) :_;a (2@)

ent) = joxp (g + 2 ) aalen ). 50, Kot @)

45t 4yt
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w(e,,1) = (e, 6,5, y,0), 1, ,1). (2)

Show that w and w satisfy the same equation with the subscripts z, y, ¢
replaced by Z, ¥, t.

Solution 37.

Problem 38. Find a solution of the partial differential equation
2
Ou 1— Ou. _ Ou (1—u)
alEl 81'2 am2

u(xy, x2) = f(s) = f(x1 +cx2), s=x1+cr

with the ansatz

where ¢ is a nonzero constant.

Solution 38. We have
Ou _df ou _ df

dr1  ds’ 0o = Us

Thus 5
daf o (df
- 1 — —_ _— = U.
ds( c+ecf C<d8>> 0
Integrating
B —
Vi—c+ef
provides

1
1fc+cf:1(x1+cx2+b)2

where b is a constant of integration. Hence

1 1
w(zy,z2) = flx+ 1+ cxa) = 1 (z1 +cx2+b)2+1—z.

C

Problem 39. An simplified analog of the Boltzmann equation is con-
structed as follows. It is one-dimensional and the velocities of the molecules
are allowed to take two discrete values, +c, only. Thus the distribution
function in the Boltzmann equation, f(x,v,t), is replaced by two functions
uy(z,t) and u_(z,t) denoting the density of particles with velocity +c or
—c, repsectively, at point x and time ¢. The gas is not confined, but x varies
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over all points of the real line (—oo,00). It is further assumed that there
are only two types of interaction, viz., two + particles go over into two —
particles, and vice versa, the probalitity for both processes to occur within
one unit of time being the same number o. Then the Boltzmann equation,
which in absence of external forces reads

af(x,v,t)

S v fxovt) = [ dviddivevilo(v-vil 617 - ££:] (1)

where f’ is the final distribution, i.e., the distribution after a collision.
Under the assumption described above (1) translates into a system of two
equations

Ju ou Ou_ ou_

a—: + ca—; =o(u? —ul), 5 e cui —u?) (2
where ¢ and o are positive constants. This model is called the Carleman
model. The Carleman model is rather unphysical. However with its aid one
can prove almost all those results which one would like to obtain for the
Boltzmann equation itself — as, for instance, the existence of solutions for a
wide class of initial conditions or a rigorous treatment of the hydrodynamic
limit. (i) Show that as for the Boltzmann equation, the H theorem holds
for the Caleman model: The quantity

- / (s (2, ) I s (2, 8) + u_(2,8) Inu_ (2, £))da 3)

never decreases in time. (ii) Show that there exists the following generaliza-
tions of the H theorem. Let f be concave function, defined on the half-line
(0, 00) which is once continuously differentiable. Let

Syi= [[(tus) + fuo))is (1)

3 OW llat

Thus, not only does entropy never decrease, but the same is true for all
quasientropies.
(iii) Show that as a consequence, all Renyi entropies

Soi=(1—a)? ln/(ui(x,t) +ul(x,t))dx (6)

never decrease. In information-theretical language, this means that all sen-
sible measures of the lack of information are nondecreasing. In other words,
information is lost, or chaos is approached, in the strongest possible way.
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Solution 39.

Problem 40. For the functions w,v : [0,00) x R — R we consider the
Cauchy problem

Ou  Ou _ , .2 v _ v 22
N T T
u(0, ) = ugp(x), v(0,z) = vo(z). (1d)

This is the Carleman model introduced above.
(i) Define
S:i=u+wv, D:=u—-vw (2)

Show that S and D satisfy the system of partial differential equations

oS 0D oD 0S8

and the conditions u > 0, v > 0 take the form
S>0 and S%-—D?>0. (4)

(ii) Find explict solutions assuming that S and D are conjugate harmonic
functions.

Solution 40. (ii) Assume that S und D conjugate harmonic functions,
ie.,

oS 0D oS 0D
ata " wma 5)
Let z :=x + it and f(z) := S +i¢D. Then
df i
To lpeva,  cer ©
since
o _ 05 D _ i oy 05 _
@78x+181‘7 2(5 D=+ 2iDS + ¢), 8m7DS' (7

Owing to 9S/90x = 0D /dt the second equation is also satsified. Let
9(z) :=af(az), a€eR (8)

then
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For the solution

2f(20)

- - c=0
= o | (10
U0+ 4 o) —id

(f(z0) + id)ed—20 — f(z) +id

of (6) we only have to study the three cases ¢ = —1,0, 1. Since the problem
is analytic we can consider

1+46

c=-1, 20207 f(zo)zﬁa 06R7 07&1 (11)

£z) = 01 107 +i20e sing

~ feiz—1  1—20etcosx + 022t

We can check that for |§] < v/2 — 1 the conditions (4) are satisfied. Thus a
particular solution of (1) is given by

(12)

_ 1sgn@sinh(t —log|0]) +sinz
2 sgnf cosh(t — log |0 — cos =

u(t, x) (12a)

1 sgnf sinh(t — log|6]) — sinx

v(t,z) =

= . 12b
2 sgnf cosh(t — log |0]) — cosx (126)

Problem 41. The Carleman model as an approximation of the Boltz-
mann equation is given by the non-linear equations

Ouy , duy

5 Togy ol —u), (1a)
Ou_ Ou_

(i) Show that if uy (z,0) > 0, then uy (x,¢) > 0 for all ¢ > 0.
(ii) Show that

% /R(u+ +u_)dz = 0. (2)

The two properties have to hold, of course, in any model that is considered
to be of some physical relevance.
(iii) Let

H= /(u+ Inuy +u_Inu_)dx (3)
R
Show that the analogue of Boltzmann’s H-function is given by

dH
<

G0 (@
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(iv) Show that

0 0
g(qulnqu+u,1nu,)+c£(u+lnu+—u,lnu,) <0. (5)
uy Inuy +u_Inu_ has to be interpreted as the negative entropy density
and c(uq Inuy —u_Inwu_) as the negative entropy fluz.

(v) We define

Spi= [[(tus) + fuo))ie (©
where f is a concave (or convex, respectively) function. In the special case
f(s) =—slns
Sy is the expression for entropy i.e., —H. Show that

ds

<0
if f is convex. Show that is

50

if f is concave.

Solution 41. Simple computation yields

_ Of(ug) Ouy N Of (u_) Qu_

0

_ Of(uy) _ Of (u-) 2 _ 2y of duy Of(u-) du_
J( Ouy Ou_ (u= —uy)—e Ou, Ox ou_ Ox )’ (™)
By integration we arrive at

(S o = [CEET

provided that uyx — 0 as x — +oo. If f is concave (or convex, respectively),
then 0f0u is decreasing (or increasing, respectively). We therefore obtain
for the physical solutions (ug > 0),

o) OMU)y 2 ) = () = P o — ) ) >
Uy u_

( 0
9)

if fis concave and < 0, if f is convex. And consequently,

a5

if f is concave
dt /
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dsSy

p7 <0,
In the Carleman model not entropy alone increases with time, but also
all functionals Sy (with f being concave) that could be designated “quasi-
entropies”.

if f is convex.

Problem 42. The Broadwell model can then be written as

0] 0]
O - s (1a)
0
oh - (11)
of-  Of-
R () (1¢)

The parameter € can qualitatively be understood as the mean free path.
This system of equations serves as a model for the Boltzmann equation.
The limit € — 0 corresponds to a vanishing mean free parth and the fluid
regime, while e — oo approaches free molecular flow. The locally conserved
spatial densities

pi=f++2fo+f-, pu = fy — f- (2)

corresponding to mass and z momentum. Show that these are governed by
the local conservation laws

Solution 42.

Problem 43. Consider the hyperbolic system of conservation laws

ou 0
% + %f(u) =0 (1)

where f : R™ — R™ is continuously differentiable. A convex function 7(u)
is called an entropy for (1) with entropy flux g(u) if

)+ () = 0 )

holds identically for any smooth vector field u(z,t) which staisfies (1).
(i) Show that (2) follows from (1) if

\~ 91 0f; _ 01

= k=1,... .
Ouj Ouy,  Ouy,’ R (3)

Jj=1
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(ii) Show that for m = 1, every convex function n(n) is an entropy for (1)
with entropy flux

g(u) = / " @) (). (4)

Solution 43.

Problem 44. Consider the so-called sine-Hilbert equation

1(2) = e o

where the integral operator H is defined by

7“;(% ’;) dy. (2)

1 o0
Hu(z,t) := ,p/
™ — 00
This is the so-called Hilbert transform. P denotes the Cauchy principal

value. Let f be a continuous function, except at the singularity ¢. Then
the Cauchy principal value is defined by

P / f(@) = lim ( / fa)de + f(x)da:) . (3)
—00 € —00 ct+e
The Cauchy principal value can be found by applying the residue theorem.

Let
u(z,t) = iln <’;((;tt))> (4)

where N
fla,t) = [ — ;) (5a)

j=1
Sz;(t) >0 ji=1,2,...,N, Tp # Ty for n#£m. (50)

Here z(t) are complex functions of ¢ and * denotes complex conjugation.
(i) Show that

H (?;) = () (6)

follows from (2), (4) and (5).
(ii) Show that (1) is transformed into the form

N dey N1 dep 1 (TIL-a) T (e a()
Zx—xj(t)cl:f+zx—x;f(t)clt%(H;\f_l(zxj(t)) e :

j=1 Jj=1
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(iii) Show that (7) is equivalent to the equation

8 * _ 1 2 *2\ _ Ooxf £2
(N = 5= 1) =S, 0
(iv) Show that by multiplying both sides of (7) by x — x,(t) and then
putting x = x,,, we obtain
don 1T Galt) = 5(0)
At 2 TT oy (o () = 25(1))

n=1,2,...,N. 9)

Solution 44.

Problem 45. Consider the Fitzhugh-Nagumo equation
ou_ ot
ot Ox?

where a is a constant. Without loss of generality we can set —1 < a < 1.
Insert the ansatz

+u(l —u)(u—a) (1)

u(z,t) = fz, hw(z(z,t)) + g(z,1) (2)

into (1) and require that w(z) satisfies an ordinary differential equation.
This is the so-called direct method and z is the so-called reduced variable.

Solution 45. Substituting (2) in (1) we obtain

9?2\ d? ,0f 0 92\ d
(f&;) d;2”+( e ) P+ (a1 -39) )

2 2
(20 + 17 =310 —a+ 5 - ) (G4 -2 (g—a)(g—w) -0,
)

Now we must require (3) to be an ordinary differential equation for w(z).
The procedure using the direct method is to impose that the different re-
lationships among the coefficients of (3) to be a second order ordinary
differential equation. However one can equally consider it acceptable to
reduce (3) to a first order ordinary differential equation. Setting in (3)

g = % (4)

and demanding

(5a)
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0z 0z 5 0z 3z 9%z

2a+1)g— — o — = b
(a+ )g(‘?x a7 " %oz + dx3  Oxot 0, (50)
&g 9g
@*EJF!J(Q*U(“*Q)*O’ (5¢)
(3) becomes
d*w 3  a+1-—3g 179 dw
v A2 =09 (9128 2y
a2 " 0z/0x ( dz +w) =0, ()

which is satisfied if w verifies the first order ordinary differential equation

d
ﬂl/Qd—f +w?=0 (7)

which could be integrated at once yielding

i21/2

w(z) = (8)

z+ 2z

By combining (2a), (4) and (8) we can write the solution as

B +21/2 9,
 z4 200

u(zx,t) +g.

Problem 46. Consider the nonlinear Dirac equations of the form

3
. 0 -
z;v“a—%w = My + F(y9)y = 0. (1)
The notation is the following
(!
R4 4 _ | ¥
P : R* — C%, Y = (2)
Y3
(o

M is a positive constant,

b = (700, 9) = Ui + P3ee — Y33 — Yt 3)

where (-,-) is the usual scalar product in C* and the v*’s are the 4 x 4
matrices of the Pauli-Dirac representation, given by

o._ (I O k. 0 Ok .
v = (0 7 ) AP = —on 0 for k=1,2,3 (4)
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where the Pauli matrices are given by

b (80 (7)) o

and F : R — R models the nonlinear interaction. (i) Consider the ansatz
(standing waves, stationary states)

W(t,x) = eu(x) (6)

where 79 = t and x = (21, %2,73). Show that u : R® — C* satisfies the
equation

ilivk(;jku—Mu—kwyou—kF(ﬁu)u:O. (7)
(ii) Let
v(r) (?)
u(x) == ' cosd . (8)
iw(r) (sin 9€i¢>
Here r = |x| and (¢, ¢) are the angular parameters. Show that w and v

satisfy the nonautonomous planar dynamical system

42 P - ) - (M - ) (%)
9 WP —u?) — (M + ). (90)

(ii) Hint. Notice that
au = ujug + ujte — UiU3 — Uylyg (10)
Inserting (8) yields
au = v —w”. (11)
Solution 46.

Problem 47. Consider a one-dimensional system to describe the electron-
beam plasma system

one 0 B

5 +%(ne(ue+V)) =0 (1a)
Ou, Ou, - e 1 Ope
ot + (e +V) or 7m65 B MeNe OT (10)
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% + (e + V)% = 4dmwen;(u. + V). (1c)
where n. is the density of the beam-electron fluids, m. the beam-electron
mass, ue the bulk fluid velocity, p = KpT.n. the particle fluid pressure, e the
charge on an electron and £ = —V¢. We study the simplest case of uniform
plasma in the absence of an external electromagnetic field, and assume
that the positive ions are taken to form a fixed, neutralizing background
of uniform density n; = Ny = const throughout the present analysis. The
electrons move with a beam drift velocity V corresponding to the ions.
Assume that electrostatic perturbation is sinusoidal

ne(x,t) = Ny (1 + 7;\(7? (sin(kz) + cos(kx))) , n(t) < %No (2a)
ue(x,t) = u(t)(cos(kz) — sin(2kz)), E(x,t) = E(t)(cos(kx) — sin(kx)).
(20)
Define
. 1 e k KT, k2
X(t):=n(t), Y(t):= iku(t), Z(t) = mepiE(t), =N

(3)

Show that when (2) and (3) are substituted into (1a)-(1c), we obtain

dX
dy
— =X +Y?-—pZ
dt g + b
dz

Solution 47.

Problem 48. Consider the partial differential equation

=0 (1)

subject to periodic boundary conditions in the interval [0, L], with initial
conditions u(x,0) = ug(z). We only consider solutions with zero spatial
average. We recall that for L < 27 all initial conditions evolve into u(z,t) =
0. We expand the solution for u in the Fourier series

o}

u(z,t) = Z an(t) exp(ikn) (2)

n=—oo
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where k,, := 2n7/L and the expansion coefficients satisfy
a_n(t) = an(t). (3)

Here @ denotes the complex conjugate of a. Since we choose solutions with
zero average we have ag = 0. (i) Show that inserting the series expansion
(2) into (1) we obtain the following system for the time evolution of the
Fourier amplitudes

day, 1 b
% (k= k2 = i0k2)an + Sk D (Amnm + Gmnim) = 0. (4)

m=0

(ii) Show that keeping only the first five modes we obtain the system

d
% + (/Jq - 7;(5/{3)0,1 + ik((llag + agas + asay + @40,5) =0 (5&)
daQ .13 . 2 _ _ _ o
o + (p2 — 8idk”)as + ik(ay + 2a1as + 2az2a4 + 2asas) =0 (50)
dag .13 . _ _
- + (ps — 27i6k”)az + 3ik(aras + @1aq + Goas) =0 (5¢)
d
% + (s — 64i6k%)aq + 2ik(a2 + 2a1a3 + 2a1a5) = 0 (5d)
da5 .13 .
- + (us — 125i0k°)as + 5ik(ajag + azaz) =0 (5e)
where -
k:= ZZ, TR g (6)

Solution 48. (i) Since

%: S )ikt (7)
z =—00
we have
ou > = o i(kgtkp)x
ug = Z Z ap(t)aq(t)ikget Pamr)®, (8)
q=—00 p=—00
Furthermore
ou > dan ik
o 2 o ©)
and -
2
%:— Z am (1) k2, etFm® (10)

m=—0o0
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oo
9%y

508 = > am(t)kd et (11)
d*u - 4 ikmw
@ = Z am(t)kme me, (12)

Applying the Kronecker delta &y, , to (7), (9), (10), (11), (12) and dp+qn
to (8) we obtain (4) where we used (3).

Problem 49. The modified Boussinesq-Oberbeck equations are given by

Ny 00 CwaA¢_a¢aA¢)

:Uix—'_UA(Aw)_ oxr 0z 0z Oz

ot 0
80 (90\° [00\*
_9op=2~ i il
Raz * (89&) * <8z> ]
(1)
where o is the Prandtl number, R the Rayleigh number, ¢ the stream

function, and 6 a function measuring the difference between the profile of
temperature and a profile linearly decreasing with height and time, namely

aaRa@z;+A0<awao au)aa>+ :

ot oz dr 0z 9z 0z

9:T7%+%F%+&. 2)

Let L be the horizontal extenion of the convection cells, I = H/L and
R. = m*(1+1%)3/I? the critical Rayleigh number for the onset of convection.
One sets r = R/R.. Suppose that the temperature 7} is fixed and that Tp
increases. We define the dimensionless parameter

To—Ti 1
o= —

T (3)

This quantity is a constant once the fluid and the experimental setting are
chosen. The dimensionless temperatures appearing in the last term of the
second of equations (1) are now expressed by

1 .
m=r Y g Be (@)
01 81

The boundary conditions are
Yv=~AYp=0 atz=0, H

=0, atz=0, H

oY
5, =0 at z=kL, keZ (5)
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Show that the equation

ﬂ:—gX—f—o’Y: g:rX—Y—XZ—i—eW 1-|-g
dt dt r

dt dt

can be derived from (1) and the boundary condition (5) via a Fourier ex-
pansion of the function 9 (z, z,t) and 0(x, z, t).

7z 7
dVV:—W—eY(l—&—r), 2 _ g4 xy (6)

Solution 49. The lack of the usual boundary condition stating that
no heat flow occurs through the walls of the convection rolls, due to the
addition of the sink term in the internal energy equation. Thus in the dou-
ble Fourier expansion of the functions v (z, z,t) and 6(z, z,t) the unknown
Fourier coefficients are

Y(m,n;t) = Rp(m,n;t) =:1(m, n;t)
O(m,n;t) = RO(m, n;t) +iSO(m, n; t) =: 01(m,n;t) + iz (m,n;t). (7)

Linear analysis of system (1) leads us towards the choice of the Lorenz like
truncation. The Jacobian matrix of the system in the variables 11, 61, 62,
evaluated at the origin, is block diagonal, with characteristic equation

I & mn) (X% + (0 + 2)X% + +((e + 1) = o(r(m,n) — 1)

+e*(m,n))A — o((r(m,n) — 1) — €’ (m,n))) =0 (8)
where we have set
2/, 272 2 ‘J(mvn)g
qg(m,n) = 7°(m*l* +n?), Rc(m,n)zm
R 2R nm
= — —— — ) — 1
rlmm) = s, dm) =0, )

The simplest nonlinear system of ordinary differential equations is now
obtained by choosing, for fixed (m,n), the four modes

1(m,m), Ba(m,n), 6G1(m,n), 62(0,2n)
so that, after a suitable rescaling of the variables and of the time, one
obtains (6), with b = 4n?/(m?1? 4+ n?).
Problem 50. Consider the complex Ginzburg-Landau equation

0 .02 .
S = (i) 5 +w = (a+ ica) ww. (1)
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(i) Show that setting a = —1 in (1), and writing
w(x,t) = R(x,t) exp(iO(z, 1)) (2)

one obtains two real equations which, after suitable linear combination and
division by ¢?, can be written as

OR 00 0> (90)’
5 R = (“ " (a (%) ) rere “Q)RQ) e

1 0 5 5.5,00 9 0 [ 500 o\ 12
el o1+ () e+ (1 . (3b
268tR +€eR 5 ( +€)8$ - e(l+(1—-B)R*)R. (3b)
Here we have introduced ¢3 := —f¢; and € := 1/¢;. (ii) Make an expansion
in € of the form
R:=Ry+ &Ry + -+, 0= 1O +60;+--) (4)
Solution 50. (i) We see that
lw|* = R?. (5)
Inserting (2) into (1) yields
= (6)
Separating out the real and imaginary part we obtain
= (7)

(ii) The expansion (4) becomes meaningful for sufficiently large values of
c1 [B=O(1)]. This first leads to the orders =2, where we have

00_1\* 9 [ 2001\
RO< Oz ) =0, ax(RO Oz >_O ®)

respectively. Excluding Rg = 0, we obtain 0©_;/0x = 0, so that ©_; only
depends on t. Setting

00,4
1) = 2 ©)
one gets for the next orders
82
0= @RO —YRo + BRG  (€%), (10a)
9 hagy 10 2 4 1
_%(Rogﬂ = gaRo — A +)(R—A=B)Ry (e). (100)
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For 8,7 > 0, (6a) allows spatially periodic solutions

Ro(a ) = [%} " ((%)1/23;,771@)) .y

Here dn(u|m) is a Jacobian elliptic function that varies between (1 —m)/2

and 1 with period 2K (m) [the parameter m is between 0 and 1, and K (m)
is the complete elliptic integral of the first kind. For m — 1 the period of
dn goes to infinity and (7) degenerates into the pulse

(27/B)"?sech("/?z) (12)

while for m — 0 one has small, harmonic oscillations.

Problem 51. Consider the cubic nonlinear one-dimensional Schrodinger
equation,
ow 0w

Ow 0w 2
ey + 92 + Qulw|* =0 (1)

where @ is a constant. (i) Show that a discretization with the periodic
boundary conditions wjyn = w; is given by

dwj Wi +wj—1 — 2w,

k
a 72 + Qs =0, k=12,... (2

where

1
(a) wit) = w; and (b) wj(g) = E(wj—&-l +wj—1).  (3)

(ii) Show that both schemes are of second-order accuracy. (iii) Show that
in case (2a) there are first integrals, the L? norm,

N—-1
L= |uf (4)
§=0
and the Hamilton function
i lwjr1 —w;? 1
H=-i), (*h ~ 2ijr*) : (5)
§=0

The Poisson brackets are the standard ones. Thus when N = 2 the system
is integrable. This system has been used as a model for a nonlinear dimer.
(iv) Show that the Hamilton function of scheme (2b) is given by (h = 1)

N-1

‘ . 4 T
H=—i) (wj(wj_1+wjy)— 0 (1 + 5Qu;wj) (6)
=0
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together with the nonstandard Poisson brackets

{vapn} = (1 + %Qqnpn)émm (7)

and
{Qma qn} = {pmypn} =0. (8)

Solution 51.

Problem 52. Consider the sine-Gordon equation in 3 + 1 dimensions

Oy = sin(x) (1)

where
0 0 0 0

D=gmtop a2 o @

and x(z,vy,2,t) is a real valued scalar field. The sinh-Gordon equation is
given by
Ox = sinh(x) (3)

Let

(10 (0 1 (0 — (1
opg :— 0 1 y g1 i — 1 0 5 09 — i 0 y g3 :— 0

be the Pauli spin matrices and

a:= 00——1—2'012—1—@'03—4—029. (5)
ox dy 0z ot

Let a denote complex conjugates. Let 0 < 6 <27, 0 < ¢ <27, —co < A <
o0 and —oo < 7 < 0o be arbitrary parameters. We set

U := exp(iflo; exp(—igpoze™"1)). (6)
Assume that a and 8 are solutions of (1) and (2), respectively. Let
u:=a—if. (7)
The Bicklund transformation B is then given by
o — i = B(¢,0,7) (8)

where B(gf), 0, 7) is the Bécklund transformation operator. The functions «

and ( are related by
1 1
Jou= sin (2u> U. (9)
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The Bécklund transformation works as follows. Let « (respectively /) be a
solution of (1) (respectively 3)) then solve (9) for 8 (respectively «). The
solution then solves (3) (respectively (1)).

(i) Show for any U such that

U=v""! (10)

all solutions of (9) must be of the form (i.e. plane travelling wave with
speed v less than one)

u(z,y, z,t) = f(n), n:=kx+ly+mz—wt (11)
where k,l,m,w are real constants and

w2

2 2 2 2 _ —
k+l +m° —w —]., ’U—m.

(ii) Thus show that we have a Bécklund transformation between the ordi-

nary differential equations

d? d?
o =sina, d—g =sinh 3
n

defined by

Solution 52.

Problem 53. The equation which describes small amplitude waves in a
dispersive medium with a slight deviation from one-dimensionality is

2 2
8<6u ou 8u> 8”:0. (1)

Oy?
The + refers to the two-dimensional Korteweg-de Vries equation. The —

refers to the two-dimensional Kadomtsev-Petviashvili equation. Let (for-
mulation of the inverse scattering transform)

0
U(.’E,y,t) E Q%K(x,x,y,t) (2)
where

K(x,zy,t) + F(x, 2;y,t) +/ K(z,s;9,t)F(s,2;y,t)ds =0 (3)
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and F satsifies the system of linear partial differential equations

OF OF OF_ OF 0F | OF

95 T o T =0 Gz oz oy 0 )

where o = 1 for the two-dimensional Korteweg de Vries equation and o =i
for the Kadomtsev Petviashvili equation. Find solutions of the form

F(z,2y,t) = a(z;y,t)8(2; 9, 1) (5)

and
K(z,2y,t) = L(z;y,t)B(2; 9, 1). (6)

Solution 53. Inserting (5) and (6) into (3) yields

a(x;y,t)
(1+ [ alsiy: t)B(s:y. t)ds) (™)

From (2) we then have the solution of (1).

L(x;y,t) = —

2 00
we =2 m (14 [T anosenon) @
provided functions a and 3 can be found. From (4) we obtain
da  Oa o3 933
atoas =" wtas 0 ©)
da O« o3 9%
Jay + Ox2 ’ aﬁy 022 (10)
Then a and 8 admit the solution
afx,y,t) = exp(—lz — (1*/o)y + 13t 4+ 6) (11)
and similarly
Ba,y,t) = exp(—Lz + (L? /o)y + L*t + A) (12)

where §, A are arbitrary shifts and [, L are constants. This form gives the
oblique solitary wave solution of the two-dimensional Korteweg de Vries
equation,

u(x,y,t) = 2a*sech®(a(z + 2my — (a* + 3m>)t)) (13)

where ! 1
azi(l—&—L), m=§(l—L). (14)
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For the Kadomtsev-Petviashvili equation we have o = i, and so if we regard
I, L as complex constants a real solution is just (13) with m — —im and
l=1L.

Problem 54. Show that Hirota’s operators D2?(f-g) and DI*(f-g) given
in (1) and (2) can be written as

no(_1)(n—3) ¥ n—j
Dr(f g =3 TS0 g 3)

gl n —j)! Ozi dxn—i’

3=0
m n (71)(m+n7jfi)m! n! aiJrjf anerfifjg
DD} f-qg) = — . -,
2 Dif - 9) jz:(:) ; Jglim —4)! i(n —i)! Otidxd Otn—igzm—J
(4)

Solution 54. We prove (3) by mathematical induction. The formula (4)
can be proven in a similar way. We first try to show that

G, a\" , " (=)= Dnl 97 f(x) 0" T g(a!
<8x8x’> (f(z)'g(x))z(j!(fz—j)! ax(j) ax,;‘ffj). )

=0

o (ED)IDO f () 9 g(a)
=2 I

(5) obviously holds. If we assume (5) to be true for n — 1, then
b 9 n—1 ) n—1 (—1)(”7173.)(77, _ 1)! ajf(x) anfl—jg(x/)
(83: - 8x’> (f(z)-g(2")) = JZ:(:) =1 ) P E
(7)

Using (7), we have

(2-2) v@aen=(g2-2) (2-2)" v o)
(2 2)5 e o gt

Ooxr Ox' = jln—1-4) Oxi  Oxm—1-J
_ ni:l (=)D (=) (@I () 9" T g(al) O f(x) 0" g(a)
= Je—1=))! Qi+t Qam=1=i Oxi  9a/ni
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_ nil (=1)(=1=9) (n — 1)1 @IH1 f () 9" 1T g(a)

j=0 ]'(n -1 _])' Oxi+l Ox/'n—1-J
- n—1 (=)= (n — 1)1 97 f () O™ I g(a')
=0 j'(n —-1- j)' oxJ ox/n—1i

- DI = D)1 f(x) 97T g(a')
N Z j=Dln—7! 0xi Odxm—J

*Z( D (n — 1)1 f(a) 0" Ig(a)

= jln—1—=j)! Oxi  Oxm—i

_ n—1 ((1)(nj)(n —1)! N (71)n—j)(n _ 1)1) ajf(x) (()‘mfjg(x/)
=\ J—=Din—j) jl(n —1—75)! dxi  dx'n—i
8"f(.%‘) . ang(x/)

+ ED + (=)™ f(x) T

B n—1 (— )(n Dp! ajf( ) 8”_jg(x’)

B ; n— " 0axF  dx'm—i
" f(x) n d"g(z')

t—gm T (D@0

i DO nt 91 f(a) 0" Tg(x')
- Oad  Parm—i

Thus, (7) is true for all n =1,2,... . Setting 2’ = = we have

Di(f g = 3 DT 0 5(2) 0" ga)

= jin—=4)! Oxi  Qzn—i

Problem 55. Consider the Korteweg-de Vries equation

ou ou Ou
o7 T Ous+ o =0, (1)

(i) Consider the dependent variable transformation

0?1n f(x,t)

u(z,t) =2 9z (2)

Show that f satisfies the differential equation

o%f  ofof ;o Of0f 2f\°
axafaxaﬁfaxf“axaxs”(aﬂ) -

f
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(ii) Show that this equation in f can be written in bilinear form

(DaDy + D3)(f - ) = 0.

Solution 55.

Problem 56. The Sawada-Kotera equation is given by

5’74_45 5 0u Ou 0%u Bu  Ou
ot Ox Ox 0x? Ox3  0xb
Show that using the dependent variable transformation
0% In f(x,t)

and integrating once with respect to x we arrive at

(DyDy + DS)(f - f) = 0.

Solution 56.

Problem 57. The Kadomtsev-Petviashvili equation is given by

0 (0u g, 0u, Py g0y,
Ox \ Ot oz 83 oy

Show that using the transformation

0% 1n f(x,t)
Ox?

the Kadomtsev-Petviashvili equation takes the form

u(z,t) =2

(DyDy + Dy +3D2)(f - f) = 0.

Solution 57.

Problem 58. Consider the system of partial differential equations

ou_, ou o

ot oz oz

@_574_ @_ﬁ_aiw
or Oz

5‘w 8u ow

- — +ou—
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where «, 3,7, ¢, § are constants. Show that the system admits the converved
densities

1 3
Hy; =uv+ w+ OH_ﬁ—c u—, y#S
) 3

Solution 58. The conserved density Hj is obvious since the first partial
differential equation can be written as

%—g 1c)zuz—l—v
ot ox \2 ’

Problem 59. The polytropic gas dynamics in 1 + 1 dimensions is of the
form

Ou_ Ou . rOp
E_u8m+c Ox
%~ 2 (pu

ot  Ox

where z is the space coordinate, ¢ is the (minus physical) time coordinate,
u is the velocity, p the density and I' = v — 2. Here « is the polytropic
exponent. The constant C' can be removed by a rescaling of p. Express this
system of partial differential equations applying the Riemann invariants

—— D2 4). r+#-1.

r2(z,t) = u(z,t) £ T

Solution 59. We obtain (check second equation rz)
87“1 3 1 87"1
o ((r+2 _(r+=2 -t
5= ((r3)n-(3)n) &
87“2 1 3 87“2
2 _((r+:z r+2 a2
ot ( ( +2)7“2+< +2>r2> O

Problem 60. The Korteweg-de Vries equation is given by

ot Yor T oz T
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For a steady-state pulse solution we make the ansatz

u(z,t) = —gsechQ <\f(m - ct)>

where

L
cosh(y)’

Find the condition on b and ¢ such that this ansatz is a solution of the
Korteweg-de Vries equation.

sech(y) :=

Solution 60. We find b = c.

Problem 61. Consider the Korteweg-de Vries equation and its solution
given in the previous problem. Show that

/O:O\/dew.

Hint. We have

1 S
/sech(s)ds = / cosh(3) ds = 2arctan(e®).

Solution 61.

Problem 62. Consider the Korteweg-de Vries equation

% — Gu@ + @ =0.
ot dx = Ox3
Show that
4 cosh(2z — 8t) + cosh(4x — 64t) + 3
(3 cosh(x — 28t) + cosh(3z — 36t))2
is a solution of the Korteweg-de Vries equation. This is a so-called two
soliton solution.

u(z,t) = —12

Solution 62.

Problem 63. Consider the one-dimensional Euler equations
ou ou 1 @ B

dp ap ou
0 0 0
£+7pl+u£:0

ot ox ox
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where u(x,t) is the velocity field, p(x,t) is the density field and p(z,t) is
the pressure field. Here t is the time, x is the space coordinate and = is the
ratio of specific heats. Find the linearized equation around u, p, p.

Solution 63. We set

U(l’,t) :ﬁ+6ul(x7t)a p(.fb,t) :ﬁ+6p/($,t), p(x,t) :ﬁ+6p/(f£,t).

Inserting this ansatz into the one-dimensional Euler equations and neglect-
ing higher order terms of O(€?) yields the linearized system

o _ou 10p
ot " “or TFor
ap'  _0p"  _ou
ot ox paix N
op’ _ou  _op
ot "~ Por T or T

The linearized Euler equations are often used to model sound propagation.

0

0.

Problem 64. Consider the classical it Heisenberg ferromagnetic equation

os S 0?8
ot ox?
where S = (51,92, 93)7, S7+S3+52 = 1 and x denotes the vector product
The natural boundary conditions are S(z,t) — (0,0, 1) as |z| — oo.
(i) Find partial differential equation under the stereographic projection
2v —1+u?+0?
2, s= Y
Q Q
where Q = 1 + u2 + v2.
(ii) Perform a Painlevé test.
(iii) The Heisenberg ferromagnetic equation in the form given for u, v is
gauge equivalent to the one-dimensional Schrodinger equation

ou 0% 5 9
E‘F@—FQ(U +v)v=0
o u 9 9

Both systems of differential equations arise as consistency conditions of a
system of linear partial differential equations

vy, P

ox vy
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where ¢ = (11,%2)T and U and V are 2 x 2 matrices. The consistency

condition is given by
ou oV
o s TG0

Two systems of nonlinear partial differential equations that are integrable
if there is an invertible 2 x 2 matrix g which depends on x and ¢ such that

o

99
ox ’ '

Vi=gVog ' + 59

Uy =gUsg™ " +
Are the resonances of two gauge equivalent systems the same?

Solution 64. (i) We obtain
o 0%u ou\’ v\’ Ou dv
Qo T2 2 ((ax) - (ax> U o )
ou 0?%v ou\? v\’ Ou Qv
Qo Qg2 2 ((ax) - (agc) ER P
(ii) Inserting the ansatz

u:qﬁ”Zujgbj, v:gmevjqﬁj
§=0 §=0

into the system of partial differential equations we obtain n = m = —1. The
resonances are 1 = —1 (twice) and ro = 0 (twice). Resonances are those
values of j at which it is possible to introduce arbitrary functions into the
expansions. For each nontrivial resonance there appears a compatibility
condition that must be satisfied if the solution is to have single-valued
expansions. At ro = 0 we find that ug and vy can be chosen arbitrarily.
(iii) The dominat behaviour is the same, i.e. n = m = —1. However,
the resonances of the one-dimensional nonlinear Schrodinger equation are
7’12—1, ’/’220, 7"3237 T4:4.

Problem 65. The system of partial differential equations of the system
of chiral field equations can be written as

du OJu
Eﬁ‘%—uX(JV)—O
ov  0v

where u = (u1,uz,u3)?, v = (v1,v2,v3), u? = v2 = 1, J = diag(j1, jo, j3)
is a 3 x 3 diagonal matrix and x denotes the vector product. Consider the
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linear mapping M : R?® — so(3)

0 us —U2
Mu)=| —us 0 U
u —Uu 0

where so(3) is the simple Lie algebra of the 3 x 3 skew-symmetric matrices.
Rewrite the system of partial differential equations using M (u).

Solution 65. First we note that

Thus
OM(u) OM(u) B
5 + p + [M(u),M(Jv)]=0
OM(v) OM(v) B
5% " ow + [M(v,M(Ju)]=0

with u? =v2 = 1.
Problem 66. The Landau-Lifshitz equation

0 o2

a—?:uxa—;qLux(Kv)
where u = (u1,ug,u3)’, u? = 1, K = diag(ky, ks, k3) is a 3 x 3 diagonal
matrix and X denotes the vector product. Consider the linear mapping
M :R3 — s0(3)

0 us —U2
Mu)=|[—-us 0 U1
u —Uu 0

where so(3) is the simple Lie algebra of the 3 x 3 skew-symmetric matrices.
Rewrite the system using M (u).

Solution 66. First we note that

Thus we find

OM (u)
at

with u? = 1 and M (u),, = 0*M/0z>.

+ [M(a, M(u)e] + [M(u), M(Ku)] =0
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Problem 67. Consider the nonlinear partial differential equation

ou_ o

ot o

Let 5
u(x,t) = —t

(1) b

Find the partial differential equation for ¢.

Solution 67. We obtain
P 0%

toez  Yige =

Problem 68. (i) Show that the Burgers equation

ou  0%u ou

= 4 u—
ot 0x? ox
admits the Lax reprsentation

0w\, oy 0 oy
<ax+2>¢’wv oo o

where © is a smooth function of z and t.
(ii) Show that

also provides the Burgers equation, where

2
0 o 0 PR

=502 T o pe 7

Solution 68.

Problem 69. Consider the Burgers equation

o _ttu o0
ot Oz ox’

Consider the operator (so-called recursion operator)

1 0u u
R=D+-—D"'4—
+28x +2
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where 5 "
D := 0 D™ f(x) ::/ f(s)ds.
(i) Show that applying the recursion operator R to the right-hand side of
the Burgers equation results in the partial differential equation
ou  Pu 3 Pu 3 ,0%u

o 0 2% TV o

(ii) Show that this partial differential equation can also be derived from the
linear partial differential equation

9 _&¢
ot Oz

and the transformation

Note that

Solution 69.

Problem 70. Find the solution of the system of partial differential equa-
tions

%—I—]”:O, %+fg=0
%—ngzo, %—&-92:0.
Solution 70. We obtain
flat) = —— glat) = ——

t+ciz+co’ t+cix+cy

Problem 71. Consider the Kortweg-de Vries equation

Show that
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is a solution of the Kortweg-de Vries equation, where

CjC

A1) = det (@k N exp(— (o + )t — (; + nm))

nj T+ Nk gok=1,...,N

This is the so-called N-soliton solution.

Solution 71.

Problem 72. Consider the partial differential equation

@+&+ % 270
ot 0z2 o)

Let v(z,t) = exp(u(z,t)). Find the partial differential equation for v.

Solution 72. We obtain

o o
ot 0z2

Problem 73. Consider the one-dimensional nonlinear Schrodinger equa-
tion

Oy 10%) 2,
Za-i-iw‘i'hﬂ ¥ =0.
Show that
Y(x,t) = 2usech(s) exp(ig(s,t))
with

si=2w(z —C(t), é(s,t) = %s +5(1)

C(t) =2ut +Co, 6(t) = 4(u® + vt + do.

is a solution (so-called one-soliton solution) of the nonlinear Schrérdinger
equation.

Solution 73.

Problem 74. Consider the system of nonlinear partial differential equa-
tions

O*u 02
v gu —u+u(u®+0v?) =0,

0%v Q%
2 022 (1

972 92 2)v+v(u +v°) =0.
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(i) Show that
u(z,t) = +tanh(s/V2), v(z,t)=0

is a solution, where s := y(z — ct).

(ii) Show that

u(x,t) = £tanh(y/k/2s),  v(z,t) = (1 — K)/?sech(y/k/25)

is a solution, where s := y(x — ct).
(iii) Show that

w(x,t) = +tanh(y/x/2s), v(z,t) = —(1 — k) 2sech(y/k/25)

is a solution, where s := y(z — ct).

Solution 74.

Problem 75. Consider the one-dimensional nonlinear Schrédinger equa-
tion

2
i%+%+2|u\2u:0, —00 < & < 00
Show that
u(x,t) = 2nexp(ig(x,t))sech(y(z,t))
where

p(x,t) = —2(x +2(8% — nP)t) + do,  Y(x,t) = 2n(x + 4EL) + 1o

is a solution of the one-dimensional nonlinear Schrédinger equation.
Solution 75.

Problem 76. The Landau-Lifshitz equation describing nonlinear spin
waves in a ferromagnet is given by

oS %S
— =Sx —+8S S
5 X 92 +SxJ

where
S =(51,%,8)", Si+S3+5;=1
and J = diag(Jy, J2, J3) is a constant 3 x 3 diagonal matrix. Show that

ow ow
T L T M
8331 W 8372 w
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with z1 = z, xo = —it and
3
L= Z ZaSa0a
a=1
3 oY 3
M=i Z ,zaawS',ga—ve“B7 + 2212923 Z za_ls’aaa
a,B,v7=1 v a=1

provide a Lax pair. Here o1, 02, o3 are the Pauli spin matrices and the spec-
tral parameters (z1, 29, z3) constitue an algebraic coordinate of an elliptic
curve defined by

1
22 —zézZ(Ja—Jﬁ), o, =1,2,3.

Solution 76.

Problem 77. Consider the nonlinear partial differential equation

ou_ o, o

ot Ox2 +2u8x'

Consider the generalized Hopf-Cole transformation

v(t, z) = w(t)u(t, x) exp (/08 dsu(s, t))
with
v(t, ) .
w(t) + [, dsv(s,t)

Find the differential equations for v and w.

u(t,x) =

Solution 77. We obtain
o 0% dw  0v(0,1)

o o2 dt | o

Problem 78. Consider the one-dimensional nonlinear Schrodinger equa-
tion 5 2
u u
— 4+ — +2c[ul?=0
ot "oz T2

where € R and ¢ = +1. Show that it admits the solution

u(z,t) = \‘/4% exp (it (i (%)2 + QCAQ@ + f)) .
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Solution 78.

Problem 79. Let « be a positive constant. The Kadomtsev Petviashvilli
equation is given by

0 (0ou ou Ou 9%u
— +6u—+ s
Oy?

ot or | 0x3 =0

Ox

Consider the one-soliton solution
u(z,y,t) = 2kZsech® (kya + koy — wt)

where sech(z) = 1/ cosh(z) = 2/(e® + e~*). Find the dispersion relation
w(kl, /412)

Solution 79. Inserting the one-soliton solution into the Kadomtsev Petvi-
ashvilli equation yields

Thus the dispersion relation is (check)

]412
w(lﬁ, k‘g) = 4]43% + C(f.
1

Problem 80. Find the partial differential equation given by the condition

U Ou/0z _
det (au/az2 82u/821822> =0

Find a solution of the partial differential equation.
Solution 80. We find

=0
This is the Monge-Ampére equation. A solution is

Problem 81. A one-dimensional Schrédinger equation with cubic non-
linearity is given by

0 B2 )
Zﬁaif=—%af;§—gp¢, p =YY

where g > 0.
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(1) Show that the partial differential equation admits the (soliton) solution

h v ,  m2v? 17271;
/gm cosh(y(z — vt))’ 7T TR v )

The soliton moves with group velocity v. The phase velocity u must be
u<v/2.

(ii) Show that the partial differential equation is Galileo-invariant. This
means that any solution of partial differential equation can be mapped into
another solution via the Galileo boost

Ys(x,t) = Lexp (z%(z - ut))

i 1
x—x—Vt, P(x,t) — exp <;_LmV <x 2Vt>> Y(t,x — V).
Show that the soliton can be brought to rest.

Solution 81. (ii) Applying the Galileo boost with V' = —v provides

hy? h vy
Lt LGOI [
¥s(t,2) P (Z 2m t) \/gm cosh(yz)

It solves the partial differential equation and is the soliton at rest.

Problem 82. The KP-equations are given by

3 2
a<3u+68u Pu ) _ga22

ox \ Ot Ox3 Oy?
with « =4 and a = —1. Show that this equation is an integrability condi-
tion on
_ 1/} ¢

_ oy 33¢ ¢ “oou(@y) _

Solution 82.

Problem 83. Show that the nonlinear partial differential equation

Ou_ P, (o ?
ot a2 "\ oz
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is transformated under the transformation u — u/v/1 + 42 into the nonlin-
ear diffusion equation

Ju 0? _
E = @(tanh 1U).

Solution 83.

Problem 84. Consider the metric tensor field
g = g1 (x1, x2)dz1@dr1+g12(21, 2)de1 @dao+g21 (21, T2)dro®@dr1 4922 (21, T2)dT2Rd T2

with gi12 = go1 and the gj are smooth functions of x1, x2. Let det(g) =
911922 — gi2921 # 0 and

) g11 922 gi12
R = W det 8911/83:1 aggg/axl 6912/8$1
g 0g11/0x2  0gaa/0x2  0gr12/0x2

Find solutions of the partial differential equation R = 0. Find solutions of
the partial differential equation R = 1.

Solution 84.

Problem 85. Consider the one-dimensional nonlinear Schrodinger equa-
tion )

ow 0w

j—— + —— + 2|w|*w = 0.

Cot + ox? +2fwffw

Consider the ansatz
w(z,t) = exp(iwt)u(x).

Find the ordinary differential equation for w.

Solution 85. We obtain

d2
d—;;fwu+2u3:0.

Problem 86. Consider the system of partial differential differential equa-
tions

] 0 O
oS 9%8 Jio ot
a:S><@+S><(JS), J = 8 ]02 0

J3

where S = (51, Sz, 53)T and S2+52+52 = 1. Express the partial differental
equation using p(z,t) and p(z,t) given by

S1 =+/1—p?cos(q), So=+/1—p2sin(q), S3=p.
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Solution 86. We obtain

9 ___1 O _
ot 1—p20x2
o _ 0%

— 2 —_—
T (1-p )8x2

Problem 87. Consider the two-dimensional sine-Gordon equation
0%u n Pu 1 0% in(u)
— + =5 — 5 == =sin(u).
ox?  0x% 2 Ot2

Let
u(xy, o, t) = 4darctan(v(xy, xa, t)).

Find the partial differential equation for v. Separate this partial differ-
ential equation into a linear part and nonlinear part. Solve these partial
differential equations to find solutions for the two-dimensional sine-Gordon
equation. Note that

sin(4a) = 4sin(a) cos(a) — 8sin®(a) cos(a)

« 1

sin(arctan(a)) = Wirwre cos(arctan(a)) = i

and therefore

4v(1 — v?
sin(4 arctan(v)) = M
Furthermore
i? arctan(v) = (O 2 + : @
Ox? S (14 02)2 \ 0y 1+ 02 Oxt’

Solution 87. We obtain

v 0% 1 0%v ov \? ov\> 1 ()2
oy (O O 1 O"wy ov R — (102
(1+07) (8z% * 0z 2 8t2> 2v ((8931) + (8562) c? (315) v(1=v7).

Thus we can separate the partial differental equation as

v v 1 0% o\’ > 1 (o)’ 9
23T 5 37 5353 =0 ) Tlan) —=2lg) =
Ox{ 0Ox5 20t 0x1 0xo c2 \ Ot
The first equation is a linear wave equation. The second equation can be
separated in two equations

RN AT A SR
o1 2 \ot) 7 Oa -
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Consequently
v 10v v

— =5, il
o1 Yoot 0o
where s; = £1 and s, = £1 and

v(xy,x2,t) = f(x1,t)e’272.

This leads to 9f/0x1 = (s1/c)0f /0t with a smooth function f(zq,t) =
f(x1 — s1ct). As final solution we obtain

v(x1, x2,t) = 4arctan(f(x1 — sict)e®>*2).

Problem 88. (i) Find a non-zero vector field in R? such that
V. curlV =0.
(ii) Find a non-zero vector field in R? such that

V x curl(V) = 0.

Solution 88.

Problem 89. Let f:R — R be a smooth function. Consider the partial
differential equation
ou  Of(u o3
ou _of(u(r) 0%
ot ox Ox3
Find solutions of the form w(z,t) = ¢(x — ct) (traveling wave solutions)
where ¢ is a smooth function. Integrate the obtained ordinary differential
equation.

=0.

Solution 89. We set s =  — c¢t. Then we obtain the ordinary differential
equation
dop d
—Cs T g(fw(s)) +

Integrating once we arrive at

d3¢
E - 0.

d?*¢
a2 =9

where C] is a constant of integration. One more integration yields

—c¢ + f(o(s)) +

2 c [
;(ff) = Cot Cuo+ 502~ Flo(s). Fo)= [ )y
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where Cs is another constant of integration.

Problem 90. Consider the partial differential equation (Thomas equa-
tion)

0%u ou bau Oudu

oot %0 ot Yowor "
where a, b are constants. Show that the equation can be linearized with the
transformation

u(z,t) = —bxr — at + In(v(z, t).

Solution 90. We obtain the linear hyperbolic equation

0%v B
dxdt

abv.

Problem 91. The Korteweg-de Vries equation is given by
ou ou  Bu

— —6u—+ - =0.
ot “or + Ox3
Setting u = Ov/dx we obtain the equation
0% 681} v ot o

920t 9z 022 | 9at

(i) Show that this equation can be dervied from the Lagrangian density

1 1
E = —g’l}r’l}t + (’UI)S + 5(/01‘1)2

where the Lagrange equation is given by

o (oL o (oc\ o (ocy o
ot \ Ovy Ox \ Ov, 0x2 \ Ovgy v
(ii) Show the Hamiltonian density is given by
oL

1
_ 9% s 3t 2
H = o1 L (vg) 2(vm) .

Solution 91.

Problem 92. Show that the Korteweg-de Vries equation

ot “ax ox3
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admits the solution

u(z,t) = —gsech2 (f(m - ct)) .

Show that

/°° do/ T D) = 7.

—00

Solution 92.

Problem 93. Consider the one-dimensional sine-Gordon equation
2 2
% - 02% + w? sin(u) = 0.
Show that
uy (z,t) = 4arctan(exp(d~* (z — vt — X) cosh(a))

u_(x,t) = 4arctan(exp(—d~ ' (z — vt — X) cosh(a))

are solutions of the one-dimensional sine-Gordon equation, where v

ctanh(a), d = ¢/w. Discuss.

Solution 93.

89

Problem 94. Let x(s,t) be the curvature and 7(s,t) be the torsion with
s and t being the arclength and time, respectively. Consider the complex

valued function

w(s,t) = k(s,t)exp(i /OS ds'T(s',t)).

Show that if the motion is described by

gr 3 0 0?
ot Os 052

where b is the binormal unit vector, then w(s,t) satisfies the nonlinear

Schrédinger equation

Solution 94.
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Problem 95. Consider the first order system of partial differential equa-
tion

Jdu Ju

— 4+ A—=0

ot + ox
where u = (ug, ug,u3)? and the 3 x 3 matrix is given by

FU1 us us
U Uy — A 0
us 0 Uy — A

where I" and A are constants. Along a characteristic curve C : x = z(s),t =
t(s) for the system of partial differential equation one has

det(A—A5) =0, A= f,/((;)

Find the Riemann invariants.

Solution 95. The Riemann invariants of the systems of partial differen-
tial equations are functions R(uq,us,u3) that are constant along the char-
acteristic. Consequently VyR = (Ry,, Ry,, Ru;) is a left eigenvector of the
matrix

VuR- (A= AI3) =0.
From det(A — AI3) = 0 the eigenvalue equation is
—\ = (u1 — AN 4 (A = (T + Du)A +Tug(ug — A) —72) =0

where 72 := u3 + u3. One finds the three eigenvalues

1 1
A=u—A, A= 5((F+1)u1—A+D1/2), A= 5((F+1)u1—A_D1/2)

where D = ((I' — 1)u; + A)? + 4r2. The system of partial differential
equations VR - (A — AI3) = 0 for the Riemann invariants is given by

OR R _ OR

Tuy — A)=— + ug—o =
( “ )aul Ttz 8uQ tus 8u3 0
OR OR
—_— —_ A —_ _—
Uo oy + (u1 /\) 9y 0
OR OR
= —A—)\)—=0.
s 8u1 + <U1 )\) 8u3 0

With polar coordinates us = r cos, us = rsinf we obtain

OR  OR

(FU17)\)87U1 TE—O
OR
(w1 — A= NS5 =0,



Nonlinear Partial Differential Equations 91
For A = u; — A a solution is R = ugz/us.

Problem 96. Consider the system of partial differential equations

ov. oV

4 72

3t+ax vw

ow oW

Z T g2

ot Ox v
0z 1 1
- _Zgz?,
ot = 27 T¥W

Let N .=V 4+ W+4Z and J := V — W. Find ON/Ot + 0J/0x and
0J/0t + oV /dx + OW/Ox.

Solution 96. Straightforward calculation provides
aiN + % — aj + al + 87W — 0
ot or ot Oz or
These are conservation laws.

Problem 97. Consider the Navier-Stokes equations

g—‘; +(v:-V)v= —%Vp—&— vAv.

(i) Show that in the limit ¥ — 0 the Navier-Stokes equation are invariant
under the scaling transformation (A > 0)

r— A, v— Ny, ot — MR

(i) Show that for finite v one finds invariance of the Navier-Stokes equation
if v — Althy,

Solution 97.

Problem 98. (i) Show that

k?/2

S—w
(cosh((kx —wt)/2))2’ =

u(z,t) =

is a solution (solitary wave solution) of the Korteweg de Vries equation

ou ou Ou

(ii) Let
32
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Show that F(z,t) = 1 + ek~

Solution 98.

Problem 99. Let L > 0. Consider the one-dimensional sine-Gordon
equation
0?u  d*u
o2 Oa?
with periodic boundary conditions u(z + L,t) = u(x,t). Assume that

+sin(u) =0

w(z,t) =7 +v(z,t), |v(z,t)] <1

and show that up to first order one finds

0?v %
o2 a2 U0
and for v(x,t) = 9(t)e**»* one obtains
d*o
) + (k2 = 1)v, =0

with k,, = 27n/L. Show that all modes with 0 < k2 < 1 are unstable.

Solution 99.

Problem 100. Study the nonlinear partial differential equation

0? 0?
<5t2+ ) = 42 jeexp(ug), Jj=1,2

where K is the Cartan matrix

Solution 100.

Problem 101. Two systems of nonlinear differential equations that are
integrable by the inverse scattering method are said to be gauge equivalent
if the corresponding flat connections U;, V;, 7 = 1,2, are defined in the
same fibre bundle and obtained from each other by a A-independent gauge
transformation, i.e. if

_ dg _ _ dg _
Uy = gUsg 1+87969 L Vi=gWy 1+a*§g ! (1)
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where g(x,t) € GL(n,R). We have

ou, oV -
W*%‘F[Ul,vl]—o. (2)
Show that o 5V
2 2
W_E"_[UQ;VQ] 0 (3)

Solution 101. First we notice that

dg~! 409 4 dg~! 409 4
=9 9.9 T (4)

1

which follows from gg~" = I, where I is the n X n identity matrix. From

(1) it follows that

oU;  09g 1 1 209 ., DP9 . dg 199

50 = 9029 U9 —glag™ 5rgT HamgT — 50T 5 (5)
ovi  dg., _, 1 209 4 99 . 99 409
1= Ve — z P )

5 = B2 T9VayT —gVeg omgT ooy 59 9.9 (6)

where we have used (3). From (4) and (5) we obtain

ot or oY

ot ox

Uy OVi _ QU Ve (8U2 am)g_l (8)

The commutator yields

_ dg _ _ dg _
(U1, Vi] = [gUag 1+a?9 ' gVag 1+§g g
=[gUz9" ", gVag | + [9U29~ " geg™ 1 + [] + [1]

= gUsVog ™' — gVolag ™t = g([U2, Va])g ™!

Adding (6) and (7) results in

Thus (3) follows.

Both equations are integrable by the inverse scattering method. Both arise
as consistency condition of a system of linear differential equations

o9 _ ¢ _

at - U(mat7>\)¢7 6(E

Vi(z,t,\)o
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where )\ is a complex parameter. The consistency conditions have the form

ou ov
E*%+[U,V]—O.
Let 9 9
Uy = glag " + 297", Vii=gVhg ™+ gt
ox ot
and ou, v
1 1 B
e E"‘[Ulavl] =0.

Problem 102. Consider the nonlinear Schrédinger equation in one space

dimension
oY 0%

—_ _ 2 —
5 + 922 +21Y*yY =0 (1)

and the Heisenberg ferromagnet equation in one space dimension

2
08 _g 08

- = _ 2 —
o X P2 S 1 (2)

where S = (S1,92,53)7. Both equations are integrable by the inverse
scattering method. Both arise as the consistency condition of a system of
linear differential equations

0P J¢
= U@ NS, 2D =Vt ) (3)
where A\ is a complex parameter. The consistency conditions have the form
ou oV
_ UV]i=0 4
o~ 55+ UV @

(i) Show that ¢1 = geo.
(ii) Show that (1) and (2) are gauge equivalent.

Solution 102.

Problem 103. The study of certain questions in the theory of SU(2)
gauge fields reduced to the construction of exact solutions of the following
nonlinear system of partial differential equations

" 32u+82u _@@_@@ Ovov Ovov
oyody 020z

oy0y 0205 " oyoy 020z
(PPN (vou owony
0ydy 020z oyody 020z)




Nonlinear Partial Differential Equations 95

Y (R YL CLUN UL (1)
oydy  0z0z oyoy  0z0z)
where u is a real function and v and ¥ are complex unknown functions of

the real variables x1,...,x4. The quantities y and z are complex variables
expressed in terms of x1, ..., x4 by the formulas

V2y = 1 + iz, V22 =15 —ixy (2)

and the bar over letters indicates the operation of complex conjugations.
(i) Show that a class of exact solutions of the system (1) can be constructed,
namely solutions for the linear system

0 0 0 0
2oy, YU (3)
oy 0z 0z 0y
where we assume that u, v, and v are functions of the variables
re=(2y9)"/? = (af +23)"/? (4)

and zg, i.e., for the stationary, axially symmetric case. (ii) Show that a
class of exact solutions of (1) can be given, where

u=u(w), v=v(w), v=0(w) (5)

where w is a solution of the Laplace equation in complex notation

Pu  0*u
=0, 6
990y | 920z (6)
and u, v and U satisfy
Pu (du\®  dv do v dv du
Y du? (dw) * dw dw 0 Y aw? dw dw 0 @

Hint. Let z = x + iy, where x,y € R. Then
o _1(0 o\ o _1(0 0 «
0z 2\ox ‘oy)’ 0z 2\ox Oy

Solution 103.

Problem 104. The spherically symmetric SU(2) Yang-Mills equations

can be written as
8<p1 8(,02

o~ or oz (1a)
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9p2  Op

6t —+ 767“ = —A1<p2 —+ A()QDl (1b)
8141 6A0
2 (220 A0 g 2 2
r ( at 87’ ) 1 ((,01 —|—gp2) (lc)

where r is the spatial radius-vector and t is the time. To find partial
solutions of these equations, two methods can be used. The first method is
the inverse scattering theory technique, where the [L, A]-pair is found, and
the second method is based on Bécklund transformations.

(ii) Show that system (1) can be reduced to the classical Liouville equation,
and its general solution can be obtained for any gauge condition.

Solution 104. Introducing the complex function

z(ryt) == p1(r, t) + ipa(r,t) (2)
we have from the first two equations of (1)

dz .0z .
5 + ZE = (AOZ — Al)z. (3)

Now we use the new variables
z(r,t) :== R(r,t) exp(i6(r, t)). (4)
Separating the imaginary and real parts we obtain from (3)

00 OlnR 00  OlnR

S o T 5)
Substitution of (5) into (1c) yields

Ay

) ) 82 82
r*L(nR) = R* — 1, L::ﬁ—i—@' (6)
Changing the variables
R(r,t) = rexp(g(r,t)) (7)
we come to the classical Liouville equation
Lg = exp(2g) (8)

which has the general solution in terms of two harmonic functions a(r,t)
and b(r,t) related by the Cauchy-Riemann conditions

exp(2g) = 4 ((gi)z + <gj>2> (1—a?—-0*)"2, (9a)
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da  Ob da ob
La=Lb=20 — == — = 90
¢ o ot ot or (%)
Equation (8) was obtained with an arbitrary function é(r,t). Thus (5) and
(9) give the general solutions of problem (1) with an arbitrary function

6(r,t) and harmonic functions a(r,t) and b(r,t), with

R=+2r ((gi)Q + ('(2;‘)2) - (a® +* —1)"". (10)

Problem 105. We consider the Georgi-Glashow model with gauge group
SU(2) broken down to U(1) by Higgs triplets. The Lagrangian of the model
is

1 rva 1 a a

L:= —ZF;L,F“ + §Du¢ DFo* — V(o) (1)
where

Fy, = 0,A7 — 0,A] + geabcAﬁAﬁ (2)
Dygba = aﬂ¢a + gcabcAfﬁbc (3)

and )

N[, m?

= —= -— . 4
vie =7 (- %) ¢

(i) Show that the equations of motion are
Dy F'"® = —geape(D"$r)de,  DypD'o = (m* = Ag*)¢a.  (5)

(ii) Show that the vacuum expectation value of the scalar field and Higgs

boson mass are

m2

(6 =F2 =" (6)

and
Mg = V2MF,

respectively. Mass of the gauge boson is M,, = gF.
(iii) Using the time-dependent t’ Hooft-Polyakov ansatz

1— K(rt) 1 H(rt)

Ag(’f‘, t) = 07 A?(r? t) = —€ainTn r2 ) ¢a(7"7 t) = g?"a

where r,, = z,, and r is the radial variable. Show that the equations of
motion (5) can be written as

2 82 82 2 2
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0? 0? AH?
2 _ 2 2,2
(iv) Show that with
g A M
T2 2M2

and introducing the variables £ := M,,r and 7 := M, t, system (8) becomes

0? 0? K(K?+H?-1)
(o~ a) <=6 e
0? 0? _ HQ2K?+ B(H? - ¢?))
(v) The total energy of the system F is given by
2
_9E _
cB) = L

2 2

7 2 2 2772
/<K3+HT+K§+1<8H—H) +2%2(K2—1)2+—KH + 0 (H2—£2)2>d£.

e e

(10)
As time-independent version of the ansatz (3) gives the 't Hooft-Polyakov
monopole solution with winding number 1. Show that for finiteness of
energy the field variables should satisfy the following conditions

2 &

H — 0, K—1 as &€—0 (11)

and
H — ¢, K—0 as &— oo. (12)

The 't Hooft-Polyakov monopole is more realistic than the Wu-Yang monopole;
it is non-singular and has finite energy.

(vi) Show that in the limit 8 — 0, known as the Prasad-Somerfeld limit,
we have the static solutions,

§

K(€) = sinh ¢’

H(¢) =&cothg — 1. (13)

Solution 105.

Problem 106. Consider the linear operators L and M defined by

Lp(z,t, M) = (z;; + U(x,t,/\)> P(z, t, )



Nonlinear Partial Differential Equations 99

My(z,t,\) = <Z(;9t + V(a,t, )\)) v(x,t, ).

Find the condition on L and M such that [L, M| = 0, where [, ] denotes the
commutator. The potentials U(z,t, A) and V(x,t, \) are typicaly chosen as
elements of some semisimple Lie algebra.

Solution 106. We obtain

.0 .0
Z%V—ZaU—F[U,V] =0.

Problem 107. Let ¢ > 0. Give solutions to the nonlinear partial differ-

emtial equations
du\' (N
8l‘1 81‘2 7

Solution 107. A solution is
u(x1,2) = a121 + asxs + as

with af + a3 =c.

Problem 108. Two systems of nonlinear differential equations that are
integrable by the inverse scattering method are said to be gauge equivalent
if the corresponding flat connections U;, V;, 7 = 1,2, are defined in the
same fibre bundle and obtained from each other by a A-independent gauge
transformation, i.e. if

_ dg _ _ dg _
1 1 1 1
= —_— — - 1
Ur=gUzg™ +5°97,  Vi=glag™ + 509 (1)
where g(z,t) € GL(n,R). We have

ou,  on B
Show that 5. BV

2 2 _
W‘g*‘[Uz,Vﬂ—O- (3)

Solution 108. First we notice that

dg~! _ _971@971 dg~! _ _971@971
Ox ox” ot ot
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-1

which follows from gg=" = I, where I is the n X n identity matrix. From

(1) it follows that

oU, _ Jg 1 109 4 d%g 1 09 _109 _4
5 = 9029 Y4 gUsg™ ' —gUsg™ 59 Tamar? 3.0 B (5)
oV 0y 1 4,09 _, 9% 1 89 718g -1
5 = 3.2 Y4 gVarg~t —gVag 3 Tamar? " a? 3.9 (6)

where we have used (3). From (4) and (5) we obtain

%_%_ %—1_ %71_ %_% —1 (8)
ot or Ja? T4 TIe  or

The commutator yields

_ 0 g _
(U, V4] = [gUag™ " + 89 LgVeg t + 6?9 g
=[gU2g7 ", gVog ] + [gU29" ", geg7 "1+ [] + L]

=gUaVag™! — gValag™" = g([U2,Va])g™"
Adding (6) and (7) results in

oU.- 1%
<2 -4 [U27V2]> gt

ot ox 0.

Thus (3) follows.

Both equations are integrable by the inverse scattering method. Both arise
as consistency condition of a system of linear differential equations

o¢ 9¢

— = t, A — =V(x,t,\
ot Ulx,t,\)o, o (CE, A
where ) is a complex parameter. The consistency conditions have the form
ou oV
— - —+[U,V]=0.
ot ow TOVI=
Let 9 9
Uri=gUsg ™ + 5297",  Vii=glag™'+ g7
ox ot
and U, v,
1 1
— - —+[U;,V1] =0
ot Ox +1UL Vi

Problem 109. Consider the nonlinear Schrédinger equation in one space

dimension
oY 0%

2, _
a+w+2|¢| =0 (1)
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and the Heisenberg ferromagnet equation in one space dimension

2
08 _g 08

- = [ 2 frd
5t X D2 S 1 (2)

where S = (S1,92,53)7. Both equations are integrable by the inverse
scattering method. Both arise as the consistency condition of a system of
linear differential equations

0P d¢

— =U(z,t,\)P, — =V(x,t, )P 3

= U@ NS, 2= V() 3)
where ) is a complex parameter. The consistency conditions have the form

ou oV
- S+ UVI=0 (4)

(i) Show that ¢1 = goe.
(ii) Show that (1) and (2) are gauge equivalent.

Solution 109.

Problem 110. The study of certain questions in the theory of SU(2)
gauge fields reduced to the construction of exact solutions of the following
nonlinear system of partial differential equations

Pu  9%*u Oudu Oudu v Ovdv
u -+ —— - —— = —+ ===+ == =0.
oyody  020% Oyody 0z0z O0Oyody 0z0z
(P, PoN L (wou ovou)
oydy 020z oyody 020z)
9?v 9% ov Ou O Ou
2 =—==—+—=—=—=—1]=0 1
u(3y8y+3282> (agay+azaz) 7 (1)
where u is a real function and v and ¥ are complex unknown functions of
the real variables x1,...,x4. The quantities y and z are complex variables
expressed in terms of x1, ..., x4 by the formulas
\/iy ‘= 21 + 129, V22 =13 —izy (2)

and the bar over letters indicates the operation of complex conjugations.
(i) Show that a class of exact solutions of the system (1) can be constructed,
namely solutions for the linear system

ov Ou ov  Ou
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where we assume that u, v, and v are functions of the variables
ri= (29)"? = (af +25)'/ (4)

and z3, i.e., for the stationary, axially symmetric case. (ii) Show that a
class of exact solutions of (1) can be given, where

u=u(w), v=v(w), v=0(w) ()

where w is a solution of the Laplace equation in complex notation

9%u 0%u
=0 6
oyoy " 0m0z (6)
and u, v and v satisfy
d?u du\?  dv dv v _dv du
i (dw) dwaw =" a? awaw = 0

Hint. Let z = x + iy, where z,y € R. Then
o0 _1(0 0y 8 _1(d 0 .
0z 2\ox oy)’ 0z 2\ox Oy

Solution 110.

Problem 111. The spherically symmetric SU(2) Yang-Mills equations
can be written as

0 0
75’;1 - 7512 = —Aopz — A1y (la)
0 0
% % = —A1p2 + Aopr (10)
0A1 0Ap
2 (041 OAo\ _ . 2 2
(G- Gt) —1- e (10

where r is the spatial radius-vector and t is the time. To find partial
solutions of these equations, two methods can be used. The first method is
the inverse scattering theory technique, where the [L, A]-pair is found, and
the second method is based on Bécklund transformations.

(ii) Show that system (1) can be reduced to the classical Liouville equation,
and its general solution can be obtained for any gauge condition.

Solution 111. Introducing the complex function

z(r,t) == o1(r,t) + ipa(r,t) (2)
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we have from the first two equations of (1)

0z .0z .
5 + g = (Aot — Ay)z. (3)
Now we use the new variables
z(r,t) := R(r,t) exp(i6(r, t)). (4)

Separating the imaginary and real parts we obtain from (3)

_@+aln3 _ 99 OlR
ot or Y7 or ot

Substitution of (5) into (1c) yields

Ay

0?2 09?

r?L(InR) = R* — 1, Li=55+ 54 (6)
Changing the variables
R(r,t) = rexp(g(r,1)) (7)
we come to the classical Liouville equation
Lg = exp(2g) (8)

which has the general solution in terms of two harmonic functions a(r,t)
and b(r,t) related by the Cauchy-Riemann conditions

exp(2g) = 4 ((g‘;)z + <g?>2> (1—a®—-b*)"2, (9a)

da  Ob da b

Equation (8) was obtained with an arbitrary function 6(r,t). Thus (5) and
(9) give the general solutions of problem (1) with an arbitrary function
0(r,t) and harmonic functions a(r,t) and b(r,t), with

R=+2r <(gi)2 + <g?>2> - (a®> +0* —1)"". (10)

Problem 112. We consider the Georgi-Glashow model with gauge group
SU(2) broken down to U(1) by Higgs triplets. The Lagrangian of the model
is

1 a va 1 a a
L= = F B 4 S Du¢" DMt —V(9) (1)



104  Problems and Solutions

where
F, = 0,A% — 0,A% + geanc AL AS, (2)
Dugba = ud)a + geabcAz¢c (3)
and )
AN, m?
= —— e 4
vie =7 (- %) (@

(i) Show that the equations of motion are
DVFHV(L = _geabc(DM¢b)¢c7 DuDM(ba = (m2 - A¢2)¢a~ (5)

(ii) Show that the vacuum expectation value of the scalar field and Higgs

boson mass are
2

(6% = F2 =T (6)

and

My = V2\F,

respectively. Mass of the gauge boson is M,, = gF.
(iii) Using the time-dependent t’ Hooft-Polyakov ansatz

1— K(rt) L H(rt)
2 ¢a(rat):§Ta 2

AG(r,t) =0, Al (r,t) = —€qinTn

where r, = z, and r is the radial variable. Show that the equations of
motion (5) can be written as

2 82 82 2 2
0? 0? AH?
7’2<8712—(,%2)H:H<2K2—m27’2+92) (8())
(iv) Show that with
)
7 2MG

and introducing the variables £ := M,,r and 7 := M, t, system (8) becomes

2 o K(K2+H? -1
<8€2 - 872) K= &2 : (10a)
2 o _ HQ2K?+ B(H? - &%)
(052 a 572> a= &2 . 108)
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(v) The total energy of the system FE is given by

_ $°E
O(m*MMw’
7 K2+H—3+K2+1 aH—H)2+1(1(2—1)2+K2Hz+5(112—52)2 d¢
Ty £ T o\ ¢ 262 £ 4¢2 '
(10)

As time-independent version of the ansatz (3) gives the 't Hooft-Polyakov
monopole solution with winding number 1. Show that for finiteness of
energy the field variables should satisfy the following conditions

H — 0, K—1 as &£—0 (11)

and
H — ¢, K—0 as &— oo. (12)

The 't Hooft-Polyakov monopole is more realistic than the Wu-Yang monopole;
it is non-singular and has finite energy.

(vi) Show that in the limit 8 — 0, known as the Prasad-Somerfeld limit,
we have the static solutions,

§

K@= grg  HE=Ccothe—1 (13)

Solution 112.

Problem 113. Consider the linear operators L and M defined by

Lp(x,t, \) == <Z;x +U(z,t, A)) (z,t, )

M(z,t, \) = (lgt + V(m,t,)\)) (x,t, N).

Find the condition on L and M such that [L, M] = 0, where [, ] denotes the
commutator. The potentials U(z,t, A) and V(x,t, \) are typicaly chosen as
elements of some semisimple Lie algebra.

Solution 113. We obtain

.0 .0
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Problem 114. Show that the Korteweg-de Vries and nonlinear Schrodinger
equations are reductions of the self-dual Yang-Mills equations. We work on
R* with coordinates z® = (z,y, u,t) and metric tensor field

g=dr®dr—dy®@dy+du®dt —dt @ du

of signature (2,2) and a totally skew orientation tensor €aped = €[apca)- We
consider a Yang-Mills connection D, := 9, — A, where the A, where the
A, are, for the moment, elements of the Lie algebra of SL(2,C). The A,
are defined up to gauge transformations

Ay — hA.h™t — (8,h)h

where h(z,) € SL(2,C). The connection is said to be self-dual when (sum-
mation convention)

1 .
562%[Dcde] = [DayDb]~ (3)

Solution 114. This is equivalent to the following three commutator
equations

[D, + Dy, D,] =0
[D, — Dy, D, + Dy] + [Dy, D;] =0
[D, — Dy, D] =0.

These follow from the integrability condition on the following linear system
of equations

Los = (D — Dy +ADy)s =0, Lys = (Dy+ A(Ds+ Dy))s =0

where ) is an affine complex coordinate on the Riemann sphere CP' (the
”spectral parameter”) and s is a two component column vector. We put

D,:=8,—A, D,:=0d,—B

Dt I:at—C7 Dy:ay—D

Now require that the bundle and its connection possess two commuting
symmetries which project to a pair of orthogonal spacetime translations
one timelike and one null. In our coordinates these are along 9/dy and
0/0u. We now restrict ourselves to gauges in which the components of the
connection, (A4, B,C, D) are independent of u and y. We also impose the
gauge condition A+ D = 0. The gauge transformations are now restricted
to SL(2,C) valued functions of ¢ alone under which A and B transform by
conjugation, B — hBh™', etc. The equations now reduce to

0;B=0
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[0, — 24,0, — C] =0
20,A — [B,C] = 0,B.

These equations follow from the integrability conditions on the reduction
of the linear system

Los = (9, — 24+ AB)s = 0

Lis=(0; — C+ Xd,)s =0.

When (2a) holds, B depends only on the variable ¢, so the gauge freedom
may be used to reduce B to a normal form. The reductions are partially
classified by the available normal forms. When B vanishes, the equations
are trivially solveable, with the result that the connection may be put in
the form A,dz® = A(t)d(z + y). Equation (1) is then satisfied. Thus we
assume that B is everywhere non-vanishing. The matrix B then has just

two normal forms
0 0

(ﬂ)Bra<(1) _01>

We assume that the type of B is constant. In these case of type (3, as t
varies, k becomes a non-zero function of . When B is in the Lie algebra
of SU(2), SU(1,1) or SL(2,R),  is non-zero and is either real or pure
imaginary. Case () leads to the Korteweg-de Vries equation, and case (3)
leads to the nonlinear Schrodinger equation.

A detailed analysis of the further reduction of the remaining equations leads
to the following.

The self-dual Yang-Mills equations are solved with B of type a by the

ansatz
(0 1)
-4 —q
—q? —2q
( 2w _(qm - q2)z
where

dw = Qreaxx — 4qu’I‘ - 2q3: + quflr

a subscript = or t denotes differentiation with respect to that variable, and

provided that ¢ satisfies
3 2
W20 _9a (94"
ot 0x3 Ox
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With the definition u = —¢q, = tr(BC) we obtain the Korteweg-de Vries
equation

ou  Au ou

Conversely, every solution of the equations have type «, with trace(AB)
everywhere non-zero may be reduce to this form, at worst after suitable
co-ordinate and gauge transformations.

When tr(AB) is identically zero, the equations are explicitly solveable.
The self-dual Yang-Mills equations are solved, with B of type 3, by the
ansatz _
0 ¢) (uzw Y >
2A = ~ , 2:C=[ % z
<1/1 0 Yo —YY
provided v and zZ

251/% = 'l/}zx + 2'@[}2{/;7 2/47[/; = _{/}vzx - 21;2¢

and 2k = 1 or —i. Conversely, every solution of the equations for type
may be reduced to this form.
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Lie Symmetry Metho

ds

Problem 1. Show that the partial differential equation
Ju ou

dzy 0

is invariant under the transformation

fl(xl7x27f) =T, j2($17x276):€x1+x2
u(T = u(wy, T2)
(A (1, 22), Tl 22),) = T

where € is a real parameter.

Solution 1. We have

ou  Oudry Oudry Ou Oou 1 ou
Ger 0w 0wy O 0w, 0m 0w (1o <axl<
Analogously

ou  Ou 0ry = Ou 0xy  Ou

Ory 0T dzy | OFp Owy 01
Therefore

gu _ 1 %(1_%)_,_6“&
8522 B (]. - 6)2 81’2 a.’EQ ’
From (3) and (5) it follows that

ot 1 ou ou ou
= ~1- 2 (1 - eu)— —
(a:m (1—eu)+ euaxl «(1—eu) 0x4

071 (1— )2

109

5 Ou

€EUT—
8(E2

0
1—eu)+ eu—u&m

ou
(3)

(4)

(5)

) ©

).
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Inserting (2b), (3) and (6) into

ou _Ou
%~ “on, (7)
yields (1).

Problem 2. Consider the Korteweg-de Vries equation

ou ou  OPu

o TP Tam TV

Show that the scaling
o =cx, t'=ct wu(x,t)=c*u(2,t)
leaves the Korteweg-de Vries equation invariant.

Solution 2.

Problem 3. Consider the partial differential equation

®(Ou, (Vu)?,u) =0

where @ is an analytic function, v depends on xg, x1, ..., T, and
2 2 2
Ou = ﬂ,@ ..... aiu’ (Vu)2 = % _ 877”& e ﬁ .
Odxg Oxq oxy, 0xg 0x1 0xy,
Show that the equation is invariant under the Poincaré algebra
6 o 9
Oxy’ Oz’ Oz,
R T R B R
03561 16:607 0(91‘2 26580’“.7 Oal’n "6x0
0 0

— — X L k=1,2,... | £ k.
xjaxk wkaxkv Js )4y ) ]%

Solution 3.

Problem 4. Consider the nonlinear partial differential equation (Born-
Infeld equation)

ou\?\ 8%u Ou du 9%u ou\?\ 6%u
(1 - (m) ) 922 200 ot e0t (” (ax) ) az =0 W
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Show that this equation admits the following seven Lie symmetry generators

0 0 0
D % PTwm BT
0 0 0 0
A=t BT T T
0 0 0 0 0

Solution 4.

Problem 5. Consider the Harry-Dym equation

o a0 _

ot o (1)

(i) Find the Lie symmetry vector fields.
(ii) Compute the flow for one of the Lie symmetry vector fields.

Solution 5. (i) The Lie symmetry vector field is given by

0 0 0
V:nz(x,t,u)%+nt(x,t,u)a+¢(x,t,u)%. (2)

There are eight determining equations,

2
%_0 %_0 8771/’_0 a¢_

Y M Y vkl N Wl
*¢ O, op 0%
Oudxr  Ox2 =0, E‘“%_O
Py oy P oy on
3 Yz 3 T _ “ht . _
W Tt Y T e T Uy Tug, T30=0 ()

These determining equations can easily be solved explicitly. The general
solution is

Ne = k1 + ksw + ksaz®, = ko — 3kat, ¢ = (ks + ka + 2ksz)u  (4)

where k1, ..., ks are arbitrary constants. The five infinitesimal generators

then are 9 9
Gl = %7 G2 = &
ngxg—kua G4=—3t9+u2, G5:x22+2xug. (5)

or ' Ou’ ot ' ou Ox ou
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Thus (1) is invariant under translations (G; and Gs) and scaling (G3 and
G4). The flow corresponding to each of the infinitesimal generators can be
obtained via simple integration.
(ii) Let us compute the flow corresponding to G5. This requires integration
of the first order system

dz dt du

— =2 e _— = 277
de 5 de 0, de v (6)

together with the initial conditions
z(0) =z, t(0) =t, a(0) =u (7)

where € is the parameter of the transformation group. One obtains
x _ u
T = — t = t U = . 8
:I;(E) (1 _ E.’L’)’ (6) ’ ’U/(E) (1 _ E.I)Z ( )

We therefore conclude that for any solution u = f(x,t) of (1), the trans-
formed solution

e, = 1+ e02f (1 F) (9)

+ex’

will solve
ou 0%

Problem 6. Consider the Magneto-Hydro-Dynamics equations and carry
out the Lie symmetry analysis. We neglect dissipative effects, and thus
restrict the analysis to the ideal case. The equations are given by

%+(V-V)p+pV~V:0 (la)
(“Zﬂv V)v)—kV(p—&-;HQ) (H-V)H=0 (1)
8@—?+(V-V)H+HV~v—(H'V)V:0 (1)
V-H=0 (1d)

SE)eo(p)-e

with pressure p, mass density p, coefficient of viscosity s, fluid velocity v
and magnetic field H.
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Solution 6. Using the first equation, we eliminate p from the last equa-
tion, and replace it by

% +xp(V-v)+(v-V)p=0. (2)
If we split the vector equations in scalar equations for the vector compo-
nents, we have a system of m = 9 equations, with p = 4 independent
variables and ¢ = 8 dependent variables. For convenience, we denote the
components of the vector ¥ by vz, vy and v,, not to be confused with partial
derivatives of v. The variables to be eliminated are selected as follows: for
the first 7 variables and the ninth variable we pick the partial derivatives
with respect to ¢t of p, vy, vy, v, Hy, Hy, H, and p. From the eighth
equation we select OH,/Ox for elimination. We consider the case where
k # 0. We find 222 determining equations for the coefficients of the vector
field

L 0 0 0 ;0 7]
N . — Pi D_—
V= 8 +nY By +n? 7 +77 +(;b +¢>
vmi in Vs H, 8 H, 9
T e Ty, T a aH +9 8Hy+¢ o, )

The the components of the Lie symmetry vector fields are given by

’I7z =ko + kst — ksy — koz + k117
= k3 + kgt + ks.’)ﬁ — kloz + k‘uy
n° =ka + k7t + kox + k1oy + k112

T]t = kl —|— k12t
¢f = —=2(k11 — k12 — ki3)p
¢F =2k13p

@' = ks — kgvy — kov, + (k11 — k12)vg
@Y = ke + ksvy — k1ovs + (k11 — k12)vy
@Y = k7 + kovg + k1ovy + (k11 — k12)vs
¢ = kigH, — ks H, — koH.

oMy =ky3H, + ks H, — kioH,

O™ = ks H. + ko H, + kioH,.

There is a thirteen dimensional Lie algebra spanned by the generators

0 0] 0 0
Gl*a; GQ*%? 3767y7 4*&
SIS S B SN
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a0 ) ) ) )
—ao L vy v+ Hyro — H, o
Cs =05, ~Var TV, Vg, T Hegg, gy,
P P ) )
L AL A A S L
G0 =y gy T, an, T om, ~ Heam,
P ) P P )
G0 = 2 T T g0, u, e pm, ~ Mo am,
G —:vg—&- 24-22—2 2-i—vi—i-v 0 +v 0
U0 yay 0z p@p ¥ 0vg, Y ov, * v,
) ) ) ) )
— 42 (p,—— 4L
Gha =t + 205, — (ag-t g +og0)
) P ) P )
Gas =205, + 25+ g+ Hygpe 4 Hg (5)

The Magneto-Hydro-Dynamic equations are invariant under translations
(1 through G4, Galilean boosts G5 through Gz, rotations Gg through G,
and dilations G711 through G3.

Problem 7. The stimulated Raman scattering equations in a symmetric
form are given by

Ovy Ovsy Ovs

— = 1AV, —= = 1aV3V —— = 1a3vy V5. 1
81' 2%3» 633 3%1» at 172 ( )

The a; are real coupling constants that can be normalized to +£1 and we
have set v1 = 1A}, vo = Aa, v3 = X, where A;, Ay and X are the complex
pump, Stokes and material excitation wave envelopes, respectively. The
stars denote complex conjugation. Equations (1) are actually a special
degenerate case of the full three wave resonant interaction equations. Find
the similarity solutions using the similarity ansatz

s(x,t) = at™¢ similarity variable (2)
and
vy (z,t) = tf%pl(s) exp(ig1(s)), vg(x,t) = e exp(—iealnt)ps(s) exp(ida(s))
(1) = e () explid () O
where p; > 0, 0 < ¢; < 27 and € = £1.
Solution 7. We substitute (3) into (1), introduce a phase

¢ = @1+ ¢2 + ¢3 + alns (4)
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separate out the real and imaginary parts of the equations and obtain a
system of six real ordinary differential equations

dp1 1 . doy 1
—— = ——p2p3sing, P1—— = ——p2p3COS P
ds s dt s
dpg 1 . d¢2 1
s = gPspisin ?, p2—r- = —P3p1COS P
S S dt S
d d
f = —€p1p2sin g, P3% = —€p1p2 €Os P. (5)
System (5) allows two first integrals
a
I = pi + 03, Iy = p1paps cos — 50%- (6)

These two first integrals can be used to decouple the equations. In terms
of p; we have

. d _
p2 = (I — p})Y/2, p3sing = —8%(11 —p3) 2

1 a _
*E(Iz + ip%)(ll —p)TH2 (7)

The amplitude p; then satisfies a second order nonlinear ordinary differen-
tial equation

pa cos(6) =

ds? ' ds | I — P2 \'ds ) spi(I1 — p?) 4s 3
(8)

Under the transformation

p1(s) = 1T1 <W(51>1/2 9)

(8) takes the form

2w 1 1 AW\? 1dw (W —1)2 B\ ~
@2_(mv+ﬂfl><ds)_sds+52(MV+WJ+5W+
(10)

where the constants are
1 /2L 2 212
= — = — = 2el 6 =0. 11
(63 2 ( Il +CL> ) ﬂ 112 9 Y €lq, ( )

Equation (11) is one of the six irreducible Painlevé equations, namely the
one defining the Painlevé transcendent Py (s;«,f,v,d). For v = § = 0
this transcendent can be expressed in terms of elementary functions. When

d*py  d dpr\* (12 +4p3)° a® 3
s pl_i_ﬂ — P1 (Pl) (22p1)2+([16_ ) p1—6pf+$.

SW (W + 1)

W -1
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v#0,5 =0, Py(s;a,,7,0) can be expressed in terms of the third Painleé
transcendent Pryy.

Problem 8. The motion of an inviscid, incompressible-ideal fluid is
goverened by the system of equations

ou

E—i—u-Au:—Ap (1)
A-u=0 (2)
first obtained by Euler. Here u = (u,v,w) are the components of the

three-dimensional velocity field and p the pressure of the fluid at a position
x = (z,y,2).

(i) Show that the Lie symmetry group of the Euler equations in three
dimensions is generated by the vector fields

a:a%—ka’%—a"xagp, vb:b%—&—b'%— ”y%
Vc—Cf-FC'i—c”zg7 vozg
0z ow op ot
slzxg—i—yg—i—zg—i—tg, sz—tg—uﬁ—vg—wi—ng
ox Jy 0 ot ot ou v ow dp
0 0 0 0 0 0
2 ya xa—erv%fu%, ry:z%fngrw%fu%
0 0 0 0
rwzza—y—ya—i—w%—va—w, quqa—p 4)

where a, b, ¢, ¢ are arbitrary functions of ¢.

(ii) Show that these vector fields exponentiate to familiar one-parameter
symmetry groups of the Euler equations. For instance, a linear combination
of the first three fields v, + vj, + v, generates the group transformations

(x,t,up) — (x +ea,t,u+ea’,p—ex-a’ + %623 -a’)

where ¢ is the group parameter, and a := (a, b, ¢). These represent changes
to arbitrarily moving coordinate systems, and have the interesting con-
sequence that for a fluid with no free surfaces, the only essential effect
of changing to a moving coordinate frame is to add an extra component,
namely,

1
—ex-a—+ §e2a~a”

to the resulting pressure.
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(iii) Show that the group generated by wvq is that of time translations,
reflecting the time-independence of the system. (iv) Show that the next
two groups are scaling transformations

S1: (X7tu7p) — X, Et, uvp)

syt (x,t,u,p) — (X, et, e tu, e 2p).

The vector fields ry, ry, ro generate the orthogonal group SO(3) of simul-
taneous rotations of space and associated velocity field; e.g., r, is just an
infinitesimal rotation around the x axis. The final group indicates that
arbitrary functions of ¢ can be added to the pressure.

Solution 8.

Problem 9. Consider the nonlinear diffusion equation
ou 0 (1 0u
a2 (S, (1)
ot  Ox \u?dx

Within the jet bundle formalism we consider instead of (1) the submanifold

Ugq u

F(x,t,u,uz,um)zutf?JrQ—m:0 (2)

and its differential consequences

Fo(2,t,u, g, ) = Uty — — i fu—f:O,... (3)
with the contact forms
0 = du — uzdx — udt, 0, = dug — Uprdr — Uz dE, . .. (4)

The non-linear partial differential equation (1) admits the Lie point sym-
metries (infinitesimal generator)

0 0
Xv:_uw%, Tvzut%
0 0
Sy = (—ruy — 2tut)%, Vo = (zuy + u)% (5)

The subscript v denotes the vertical vector fields. The non-linear partial
differential equation (1) also admits Lie-Backlund vector fields. The first in
the hierarchy is

U= (umx  Qugug, N 12ui> 0 (6)

ud u w® ) ou’



118 Problems and Solutions

Find a similarity solution using a linear combination of the Lie symmetry
vector field T, and U.

Solution 9. For reducing (1) we consider a linear combination of the
vector fields T, and U, i.e. aT, + U(a € R). The equation

(aT, +U)|60=0 (7)
where | denotes the contraction, leads to the submanifold

Ugzr  FalUys N 12u3
2

—auy + =0 (8)

u3 U

Consequently, it follows that
. Upe 202 | Yawe _ Plalies 12231 93 1 0% (1Y 0
78 “\ 2 u3 us ut ud | Ox3 \ 2u? aa:ﬂ u)
9)
9 =

where s is a cross section s(z,t) = (z,t,u(x,t)) with js*0 = 0, js*0,

0,---. Here js is the extension of s up to infinite order. For deriving (9)
we have taken into account the identity
L 0% 9 Qudtu 12 (0u LA | (10)
ud 9x3  wtOxdx? Wb \Ox/) = Oz \ 2u?

and the identity given by (1). Since derivates of u with respect to ¢ do not
appear in (9) we are able to consider (9) as an ordinary differential equation

of second order 5 P2
1 1
—|=— ] —-a—5—=0 11
da3 <2u2> Y2y (11)

where ¢ plays the role of a parameter and occurs in the constant of integra-
tion. The integration of (11) yields

du

dx

In order to determine the constants of integration C; and Cs we must
first solve the ordinary differential equation (12), where a new constant of
integration appears which also depends on time. Then we insert the solution
into the partial differential equation (1) and determine the quantities C,
Cy and C5. Equation (12) is a special case of Abel’s equation. In order to
solve Abel’s equation we set C(t) = 2a?/9. To simplify the calculations
further we set Ca(t) = 0. Now C3(t) is the constant of integration of the
simplified Abel equation. Imposing the condition that w(z,t) must be a
solution of (1) yields the following linear differential equation for Cj

+au? = (C(t)z + Ca(t) ). (12)

=3 2205t =0 (13)



Lie Symmetry Methods 119

with the solution ,
Cg(t) — kle(Z/Q)a t

where k; is the constant of integration. Consequently, we find a similarity
solution of the diffusion equation (1)

3[81 — 4a4k1xe(2/9)a2t]1/2 107
2a2[81 — atkxe(2/9)a*t]1/2

u(z,t) =

If k; and x are positive (or both are negative), then the solution exists
only for a finite time. If k; = 0 we arrive at the time-independent solution
u(x,t) = K/x, where K is a constant.

Problem 10. Consider the nonlinear partial differential equation

Pu (0w Ou\ _
oz " “\ot " z) T

where ¢ is a constant. Show that this partial differential equation admits
the Lie symmetry vector field

vt a0
ot c@x “au‘

First solve the first order autonomous system of differential equations (ini-
tial value problem) which belongs to the vector field V, i.e.

dt’ v dx’ v du’ ,
— =t — =ct, —=u.

de de de

From this solution of the initial value problem find the transformation be-
tween the prime and unprime system. Then using differentiation and the
chain rule show that the prime and unprime system have the same form.

Solution 10. The solution of the initial value problem of the autonomous
system of first order is given by
t'(e) = e‘t, 2'(€) = x + ct(ef — 1), u'(€) = eu.
Then the transformation between the prime and unprime system is
t'(t,x) =et
2 (t,x)=x + ct(ef — 1)
' (2 (z,t),t (2,t)) = e“u(x,t) .

Since 0t' /Ot = €€, Ot' /0x = 0, 0z’ /Ot = c(e€ — 1), Oz’ /Oz = 1 we have

Ou' _ou'ox’  owor _ .Ou
ot _or ot ot ot < ot
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Thus
ou . o . _Ou
—axlc(e —1)+—e‘=e

ot/ ot
For the first space derivative we have

o _ ol oa' 0w ot _ o
or Oz’ d0x Ot 0x Oz’
Thus
o _ o
ox' Oz’
For the second space derivative we have
O*u' 0% 9’ 02 | ou' 9% 0% ot oz’ 0%u

€

922 922 0x 9r | 0x' 922 T 900t 0z 0x  C 9x2

Analogously
o3’  OPu
923~ © 93

Inserting these equations into the partial differential equation yields

3,,/ U !
676% +e (eec(eE -1+ g?/) + eiEcu’e%% =0
or 3,/ / l
0°u e . ou _.Ou
83;’3+U/<e 6(6_1)+8ﬂ)+CU/6 %20
Thus
3! o ou’ N cu,au’ _o
ox’3 ot ox')

Problem 11. Consider the nonlinear Schrodinger equation

188—1: + Aw = F(w)
with a nonlinearity F' : C — C and a complex valued w(t, z1,...,2z,). We

assume that for the given nonlinearity the energy remains bounded. We
also assume that there exists a C'-function G : Rt — R with G(0) = 0
such that F(z) = G’(]z|?)z for all z € C.

(i) Show that the nonlinear Schrédinger is translation invariant.

(ii) Show that it is phase invariant, i.e. w — e*®w.

(iii) Show that it is Galilean invariant

w(t,x) — ei"'x/Qe*il"‘Qt/‘lw(t, X — vt)
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for any velocity v.
(iv) Show that the mass defined by

is a conserved quantity.
(v) Show that the Hamilton density

1 1
H(w) = [ 3IVtxP + 56t 0 )dx
is a conserved quantity.

Solution 11. For the given problem we can work with a Hilbert space
using the inner product

(w,v) := /,, w(x)v(x) + Vw(x) - Vo(x)dx.

Problem 12. For a barotropic fluid of index  the Navier-Stokes equation
read, in one space dimension
9] 0 —-1) 0
5; + va—; o 5 )ca—z =0 continuity equation (la)
v n v . 2 dc 0%
b o— _ 2~
ot dr  (y—1) 0x 022
where v represents the fluid’s velocity and ¢ the sound speed. For the class
of solutions characterized by a vanishing presure (i.e., ¢ = 0), the above
system reduces to the Burgers equation. We assume for simplicity the
value v = 3 in what follows.
(i) Show that the wvelocity potential ® exists, and it is given by the following
pair of equations

=0 Euler’s equation (1d)

Hint. From (2) with
*e 0?0
otdx — Oxot
the Euler equation (1b) follows. Thus the condition of integrability of ®
precisely coincides with the Euler equation (1b).
(ii) Consider the similarity ansatz

x T

o) = F©F,  eat) = g(s)] ()
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where the similarity variable s is given by

s(z,t) == 7 (4)

Show that the Navier-Stokes equation yields the following system of ordi-
nary differential equations

sjﬁg—&-s(f—l);lz—i—g@f—l):o (5a)

ds? = ds ds

(iii) Show that the continuity equation (1a) admits of a first integral, ex-
pressing the law of mass conservation, namely

s’g(2f 1) =C (6)

2L+ L (Lesa-2n) ara-p =2 (sLag). o)

where C' is a constant. (iv) Show that g can be eliminated, and we obtain
a second-order ordinary differential equation for the function f.

Solution 12. (ii) From (3) we obtain

Ov  dfdsx T Ov df dszx 1
o asatr e G asawr T (7a)
gc _dgdsw  x  dc_dgdsw | 1 (7h)
ot dsdit 0  9r dsdet %
and )
O0x?2 ds?2 \dr) t dsdx2t dsdxt dsdxt
Since

@ — i @ — _lxt—i‘/?
de  t' dt 2
(5a) and (5b) follow.

Problem 13. The nonlinear partial differential equation

0%u ou 9
— = 1
637181'2 + 8331 tu 0 ( )

describes the relaxation to a Maxwell distribution. The symmetry vector
fields are given by

0

N 8371’

o Z3=—x iJru2 Z *e“ife“ug
0xy’ 5T M o, ou’ T rg ou’

Zy
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Construct a similarity ansatz from the symmetry vector field

0 0 7] 0
Z_0187x1+0287x2+03 <_$161;1+u8u> (3)

and find the corresponding ordinary differential equation. Here ¢y, ¢, c3 €
R.

Solution 13. The corresponding initial value problem of the symmetry
vector field Z is given by
da
de

dl'/ du’

/ 2 /

=1 — C3T — = C9 — = C3U . 4
L dE ’ dﬁ ( )

The solution to this system provides the transformation group

C1 €1 —C3T1 ¢
B ,

xh(X,u, €) = coe+To, xh(X,u,€) = ue™*
C3 C3

(5)
where ¢3 # 0. Now let x5 = s/c and x; = 1 with the constant ¢ # 0. The
similarity variable s follows as

(%, u, €) =

/

CoC C3T1 — C1

S = C.I‘/Q + — In ————
C3 3 —C

(6)

and the similarity ansatz is

AN €1 —C3
W (af,a%) = v(s) @
Inserting (7) into
62 l ou’
L4 —u, +u? =0 (8)

Oxi 0z 02

leads to the ordinary differential equation

d*v dv
—+(1—-c)——(1- =0.
€73 (1-c¢) . 1—-v)v=0 9)

Problem 14. Consider the Kortweg de Vries equation

Ou _ o Ou  Ou
ot Yor T oz

Insert the similarity solution

u(z,t) = —=7=
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where s the similarity variable and find the ordinary differential equation.

Solution 14. We obtain

dPw dw dw
Z 2w —s—=0.
ds3 bw ds w=s ds 0

Problem 15. Let u be the velocity field and p the pressure. Show that
the Navier-Stokes equations

aa—ltl+(u~V)u—Au+Vp:0, divu =0

admits the Lie symmetry vector fields

0 0 0 0

ot dxy’ Ors’ 0w

0 0 0 0 0 0
t t

ti - - - - -
31'1 + 5’&17 01'2 8’&2’ 81'3 8’LL3
e .9 .2 _ .2
o 8332 2 (9£E1 “ 87.L2 42 é)ul ’
9 T i—i—u 9 —u 0
281‘3 38 2 26“3 36’(1,27
0 0 4 0 Y 0
Y0, loxs | Cow dus
0 0 0 0 0 0 0 0
-+ —+x07—+T37— —UI7— —Us7— —U37— — 2

ot " om D7y D Dy dus  Cous Pop-

Find the commutators of the vector fields and thus show that we have a
basis of a Lie algebra. Show that /(2% + 23)/z3 is a similarity variable.
Do which vector fields does it belong.

Solution 15.

Problem 16. The AB system in its canonical form is given by the coupled
system of partial differential equations

9?Q

o 0S_ 10[QP
ocon

9 2 oy

Qs,
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where ¢ and 7 are semi-characteristic coordinates, @ (complex valued) and
S are the wave amplitudes satisfying the normalization condition

oQ

on

2
+5%2=1.

Show that these system of partial differential equations can be written as
a compatibility condition

827/11,2 . 521/11,2

& onog

of two linear systems of partial differential equations

%:F¢1+G¢27 871/:71:141/11+B¢2

BTz B
%‘?szl—sz, agffzcwl—Awg.

Solution 16. From the compatibility condition we obtain the set of

partial differential equation

OF 94, cG-pH=0

an  0&
oG 0B
— — — +2(BF — AG) =
on 8£+( G)=0
oH oC
— ——+2(AH - CF)=0.
an ag+( CF)=0
If we set
g-_ Lt p_toQ . _ 100
i’ - dip on’  dip On

1 1
in, G=50. 50

where p is the spectral parameter.
Problem 17. Show that the system of partial differential equations
Our _ Jup
ot 0Oy
3u2 1 83u1 8 8u1
it + —uyp—
ot 3 0y3 3 Oy
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admits the (scaling) Lie symmetry vector field

0 0 0 0
S = —215& (9 + 2'LL16 + 3U2 3u2

Solution 17.

Problem 18. Show that the partial differential equation

ou (0u\* _ o
ot \ox) 022
admits the Lie symmetry vector field

y-_ 9 _ 1,9 ,9
o 2%ar o

Solution 18.

Problem 19. Consider the Kuramoto-Sivashinsky equation

ot Yar T2 TV Y

Show that the equation is invariant under the Galilean transformation

(u,z,t) — (u+c,z —ct,t).

Solution 19.

Problem 20. Consider the nonlinear partial differential equation
@ +u @ + c@ =0
Ox3 r)

where ¢ is a constant. Show that the partial differential equation admits
the Lie symmetry vector fields

0 0] 0 0] 8
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Solution 20. Consider the vector field V4. The autonomous system of
first order differential equation corresponding to the vector field is

dt’ y dx’ y du’ ,
—_— = s —_— = C —_— = U .
de de T de

The solution of the initial value problem is

t'(e) = et'(0)
7' (e) = (e — 1)ct’(0) + 2'(0)
u'(e) = e“u’(0).

This leads to the transformation

t'(z,t) = et
o (x,t)=(ef —1)ct +x
' (2 (x,t),t (2,t)) = e“u(x, t)

Then since dt'/0x = 0, 9z’ /0x = 1 we have

ou _owox oo _ 0w
dr Oz’ Ox ot 9z~ Oz
_ou  Ou

836’_6%

ow _owor owor _ ow
at _ or ot o« ot ot
o . o, . Ou
=—e' +—(e—1)c=¢e"—

o ox’ ot

0% 9% 9’ n o ot 0%u

_— —_— — = €

ox?2 02’2 9xr  Ot'Ox' Ox Ox?
0% 9%u

= = ef——
Ox'? Ox?

€

= =e"—..
ox’3 Ox3

Inserting these expression into the partial differential equation yields

o _ oo _ %
dx3  9z3 dx OB
B o3/ Oy

G T VA T _.ou
@ awn T T Gr T @ T et e ) =0
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Thus

Lo fod o
o T \ar T ) =0

with e~ # 0.

Problem 21. Consider the stationary incompressible Prandtl boundary
layer equation

Gu_ou 0 ou

o OnondE O OnoE’

Using the classical Lie method we obtain the similarity reduction

w(n) =& y(x),  w=n+ f(9)

where f is an arbitrary differentiable function of £. Find the ordinary
differential equation for y.

Solution 21. Differentiation and applying the chain rule provides
d’y d*y dy\*
29— By—2 _(98—-1)( =2
dx3 ﬁyde (25 )(dx

which, in the special case = 2, is the Chazy equation.

Problem 22. Show that the Chazy equation
d’y d*y dy\*
29 _oy—2 _ i
dz® Y da? s (dx)
admits the vector fields

) o 0 , 0 )
9 g _,Z Y _ e
ox’ e yay’ T or (wy+6)3y

as symmetry vector fields. Show that the first two symmetry vector fields

can be used to reduce the Chazy equation to a first order equation. Find
the commutators and classify the Lie algebra.

Solution 22.

Problem 23. Show that the Laplace equation

0? 0? 02
(aﬁ*a;ﬂ*aﬁ)“o

admits the Lie symmetries
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0 0] 0 0 0
M, x a.  +a sz a. 49> Mz — 95
Y Yor xay 9. “ouw Y Z@y Y52
D——(Q—&-xax—kyay—i—za)
0 0] 0]
- _ .29 _ _ .29 _ 29
K,=-2xD—r BT K, 2yD —r ay’ K, 2¢D —r ER

where 72 := 22 + 3% + 22,
Solution 23.

Problem 24. Find the Lie symmetry vector fields for the Monge-Ampére
equations

ot 92 \ 9ot
where K = +1, K =0, K = —1.

0%u 0%u <82u)2__

Solution 24.

Problem 25. Letu = (u1,ug,u3)’, v = (v1,v2,v3)T and u?+u3+u3 = 1,
v} +v3 + v3 = 1. Let x be the vector product. The O(3) chiral field
equations are the system of partial differential equations

du Ou ov  ov
aJr%qLuvafO, Ef%JrVXRU—O

where R is a 3 x 3 diagonal matrix with non-negative entries. Show that
this system of partial differential equations admits a Lax pair (as 4 x 4
matrices) L, M, i.e. [L, M] = 0.

Solution 25.

Problem 26. Consider the Schrédinger-Newton equation (MKSA-system)

hQ
— 5 AY U = )
m

AU = 4rGm?|y|?

where m is the mass, G the gravitational constant and p the energy eigen-
values. The normalization consition is

/J (21, 22, 3)|*dardaadas = 1.
"
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Write the Schrédinger-Newton equation in dimension less form. Then find
the Lie symmetries of this system of partial differential equation.

Solution 26.

Problem 27. Show that the one-dimensional wave equation

1 0%u 03

2012~ 922
is invariant under
(D) = (e e (2)
(2 (z,t),t (2,1)) = u(z, t).

Solution 27.

Problem 28. Study the system of nonlinear partial differential equation
92 02 :
<6t2 + 852> Uu; = —42 Kjg eXp(U¢)
=1

with 7 = 1,2 and K is the Cartan matrix

Solution 28.

Problem 29. The partial differential equation

0%u B
0xdy c

u —2u

is called the Tzitzeica equation. Applying v(x,y) = et show that the
equation takes the form

U782v _Ovdv =v® -1
oxdy Oxdy '

Find the Lie symmetries of both equations.

Solution 29.
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Problem 30. Find the Lie symmetry vector fields for the one-dimensional
telegraph equation

0%u 0%u

ou 9
W"‘(O&‘Fﬂ)aﬁ‘&ﬂﬂ—c @

where ¢? = 1/(LC), « = G/C, 3= R/L and G is the conductance.

Problem 31. Find the Lie symmetry vector fields of the Thomas equation

Fu  JOu
ozot ot

ou Oou Ou
ﬁ% +’Yafxa =0.

Problem 32. The Harry Dym equation is given by

ou _ 300 _

u =
ot Ox3
Show that it admits the Lie symmetry vector fields

0 0
" VT a
o a o 9 , 0 )

Is the Lie algebra spanned by these generators semi-simple?
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Heisenberg ferromagnet equation, 94,
101

Heisenberg ferromagnetic equation,
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Higgs triplets, 97, 103

Hilbert transform, 57

Hodograph invariant, 47

Hodograph transfromation, 47

Hopf-Cole transformation, 37

Inverse scattering transform, 68

Kadomtsev Petviashvilli equation, 83

Kadomtsev-Petviashvili equation, 72

Kink, 46

KLamb substitution, 44

Korteweg-de Vries equation, 27, 34

Korteweg-de Vries-Burgers equation,
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Landau-Lifshitz equation, 77
Langmuir oscillations, 38
Laplace equation, 13, 128
Laplace transformation, 23
Lax pair, 26

Lie-Béacklund vector fields, 117
Liouville equation, 96, 103
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Residue theorem, 57
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