
Math 21 - Spring 2014
Classnotes, Week 8

This week we will talk about solutions of homogeneous linear differential equations. This
material doubles as an introduction to linear algebra, which is the subject of the first part
of Math 51.

We will also use Taylor series to solve differential equations. This material is covered in a
handout, Series Solutions for linear equations, which is posted both under “Resources” and
“Course schedule”.

8.1 Solutions of homogeneous linear differential equations

We discussed first-order linear differential equations before Exam 2. We will now discuss
linear differential equations of arbitrary order.

Definition 8.1. A linear differential equation of order n is an equation of the form

Pn(x)y(n) + Pn−1(x)y(n−1) + . . .+ P1(x)y′ + P0(x)y = Q(x),

where each Pk and Q is a function of the independent variable x, and as usual y(k) denotes
the kth derivative of y with respect to x.

Remark. This is the analogue of the definition we gave in the case of a first-order linear
differential equation. In a first-order linear equation, we said that only y and y′ can appear,
and no functions of y and y′, and y and y′ cannot be multiplied together. Now that we
wish to allow the equation to be of order n, we want that only y(n), . . . , y′, y appear, and
no functions of y(n), . . . , y′, y, and no two or more of these are multiplied together. Any
differential equation for which that is true can be put in the form above.

Definition 8.2. A homogeneous linear differential equation of order n is an equation of
the form

Pn(x)y(n) + Pn−1(x)y(n−1) + . . .+ P1(x)y′ + P0(x)y = 0.

Remark. In other words, “homogeneous” just means that Q(x) = 0.

The reason we are interested in solving linear differential equations is simple: they are
both interesting (they come up in nature often) and easy enough that we have some hope
of solving them. In general, solving differential equations is extremely difficult. Even in the
case of first-order equations, there is no method to systematically solve differential equations
(in other words, there is no method that always works; we have to rely on tricks that work
in specific cases). When we move on to higher order equations, the situation becomes even
more hopeless. In the face of insurmountable difficulty, we choose to focus on the narrow
class of equations which we have some hope of solving. These are the linear differential
equations.

The reason we are interested more specifically in solving homogeneous linear differential
equations is that whenever one needs to solve a nonhomogeneous linear differential equation,
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one must first solve the associated homogeneous differential equation. The reason why this
is true is not very complicated and you can read about it online or in a differential equations
textbook. This is material covered in Math 53.

The solutions to a homogeneous linear differential equation have a bunch of really great
properties:

8.1.1 Multiplication property

If a function f is a solution to the equation

Pn(x)y(n) + Pn−1(x)y(n−1) + . . .+ P1(x)y′ + P0(x)y = 0,

then Cf for any constant C is also a solution to the equation

Pn(x)y(n) + Pn−1(x)y(n−1) + . . .+ P1(x)y′ + P0(x)y = 0.

Example: Consider the second-order differential equation

y′′ + 9y = 0.

One can check that f : R→ R given by the rule f(x) = cos(3x) is a solution to this differential
equation.

Then any multiple of f is also a solution to this differential equation. For example,
g : R → R given by the rule g(x) = 2 cos(3x) is also a solution (take a minute to check
this!). In fact, for C an arbitrary constant, the function h : R → R given by the rule
h(x) = C cos(3x) will always be a solution of the differential equation.

8.1.2 Addition property

If two functions f and g are solutions to the equation

Pn(x)y(n) + Pn−1(x)y(n−1) + . . .+ P1(x)y′ + P0(x)y = 0,

then the function f + g is also a solution to the equation

Pn(x)y(n) + Pn−1(x)y(n−1) + . . .+ P1(x)y′ + P0(x)y = 0.

Example: Consider again the second-order differential equation

y′′ + 9y = 0.

Again, f : R→ R given by the rule f(x) = cos(3x) is a solution to this differential equation.
It is also true that g : R→ R given by the rule g(x) = sin(3x) is a solution to the differential
equation.

Then we have also that h : R→ R given by the rule h(x) = cos(3x)+sin(3x) is a solution
to the differential equation (again, take a minute to check this!).
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8.1.3 Principle of superposition

Combining the two principles above, we have that if f1, f2, . . . fk are all solutions to the
differential equation

Pn(x)y(n) + Pn−1(x)y(n−1) + . . .+ P1(x)y′ + P0(x)y = 0,

then for any constants C1, C2, . . . Ck, the function C1f1 +C2f2 + . . .+Ckfk is also a solution
to the equation

Pn(x)y(n) + Pn−1(x)y(n−1) + . . .+ P1(x)y′ + P0(x)y = 0.

Example: Consider again the second-order differential equation

y′′ + 9y = 0.

Since f : R → R given by the rule f(x) = cos(3x) and g : R → R given by the rule g(x) =
sin(3x) are both solutions to this differential equation, it is also true that for any constants
C1 and C2, the function h : R → R given by the rule h(x) = C1 cos(3x) + C2 sin(3x) is also
a solution to the differential equation.

We can now give many solutions to the differential equation

y′′ + 9y = 0.

A few of them are given by the rules cos(3x)− sin(3x), 2 cos(3x) + 10 sin(3x), −π cos(3x) +
1
2

sin(3x). (Pick one of these and check that this is true! This is how you should read math
from now on: every time someone says something is true, you should check it for yourself.
It’s the best way to read math and make sure that you understand what is being discussed.
We will stop telling you to check everything now, but you should always do it.)

8.1.4 General solution

The principles above tell us how to find more solutions of a homogeneous linear differential
equation once we have one or more solutions. This last principle tells you when you have all
of the solutions to a homogeneous linear differential equation.

Theorem 8.3. Given a homogeneous linear differential equation of order n, one can find n
linearly independent solutions. Furthermore, these n solutions along with the solutions
given by the principle of superposition are all of the solutions of the differential equation.

We will not go into the definition of linear independence in this class (but it is in the
optional section below). Instead, for simplicity we will say that two (or more) functions
are linearly independent if they are “different.” For example, cosx and sin x are linearly
independent. Also, ex and e−x are linearly independent.

However, cosx and 2 cosx are not linearly independent: they are not different from each
other; one is just a multiple of the other. Sometimes it can be tricky to tell if two functions
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are linearly independent or not: For example, cosx and cos(−x) look different. But in fact,
cos(−x) = cosx (remember that cosx is even), so really cos x and cos(−x) are not only
linearly dependent, but they are the same! Similarly, sinx and sin(−x) are not linearly inde-
pendent since sin(−x) = − sinx, which is a multiple of sinx. In Math 53 you will learn how
to tell if two or more functions are linearly independent using a mathematical tool called the
Wronskian.

Example: Consider once more the second-order differential equation

y′′ + 9y = 0.

This is a homogeneous linear differential equation of order 2. Therefore, if we can find two
linearly independent solutions, and use the principle of superposition, we will have all of the
solutions of the differential equation.

We already know from above that f : R → R given by the rule f(x) = cos(3x) and
g : R→ R given by the rule g(x) = sin(3x) are solutions to the differential equation. cos(3x)
and sin(3x) are linearly independent (they are “different”). In addition, they are 2 functions
and the differential equation is of order 2. Therefore, by using the principle of superposition
we now have a general solution to the differential equation which we know contains all of
the solutions of the differential equation:

y = C1 cos(3x) + C2 sin(3x), for C1 and C2 arbitrary constants.

Another Example: Consider the third-order homogeneous linear differential equation

y′′′ + y′′ − 2y = 0.

It is true that f : R → R given by the rule f(x) = ex, g : R → R given by the rule g(x) =
e−x cosx, and h : R→ R given by the rule h(x) = e−x sinx are all solutions to this differential
equation. Furthermore, f , g, and h are linearly independent. Finally, we have 3 linearly
independent solutions and the differential equation is of order 3.

Because of all this, we can say that the general solution to the differential equation is

y = C1e
x + C2e

−x cosx+ C3e
−x sinx, for C1, C2, and C3 arbitrary constants,

and this contains all solutions to the differential equation.

Remark. In this class we will not learn how to get the solutions that serve as building blocks
for the general solution. In all of the cases presented here, finding the solutions is not very
difficult; you could easily read about this online or in a differential equations textbook. This
is material covered in Math 53.

Non-example: The first-order differential equation

y′ = y
(

1− y

4

)
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is not linear. (There is a y2 when we multiply out.)
A solution to this differential equation is f : R→ R given by the rule

f(x) =
4

1 + e−x
.

It is not true that a multiple of this function is also a solution to the differential equation!
(For example, you can check that g : R→ R given by the rule g(x) = 8

1+e−x , which is 2 times
f , is not a solution to the differential equation.)

From before, we know that the general solution of this differential equation is

y =
4

1 + Ce−x
, for C a constant.

(The differential equation is separable and we can solve it using a technique we have learned.)
When we vary C, we do not get solutions that are multiples of each other.

Even worse, this general solution does not give us all of the solutions! You can check
that the function h : R → R given by the rule h(x) = 0 (the stable equilibrium solution)
does not belong to this family of functions. (In other words, there is no choice of C in the
general solution above which will give us the solution h.)

Hopefully this non-example convinces you that homogeneous linear differential equations
are very special. The discussion of when a general solution is a complete solution (i.e. gives
all solutions to a differential equation) is beyond the scope of this class. This is material
that is covered in Math 53.

8.2 Initial value problems

When we solved a first-order differential equation, we needed a single initial value to deter-
mine the value of the single unknown constant in our general solution.

When we solve a homogeneous linear differential equation of order n, we will have n
different constants in our general solution. For this reason, we will need n initial values to
find the solution to a given initial value problem.

Example: Consider the initial value problem

y′′ + 9y = 0, y(0) = 1, y′(0) = −6.

Using the fact that the general solution to the differential equation is

y = C1 cos(3x) + C2 sin(3x), for C1 and C2 arbitrary constants,

find the solution to the initial value problem.

Answer: It is simply a matter of solving for C1 and C2.
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We first use the first initial value:

1 = y(0) = C1 cos(0) + C2 sin(0) = C1.

So C1 = 1.
To use the second initial value, we must first take a derivative of the general solution:

y′ = −3C1 sin(3x) + 3C2 cos(3x).

We can now use the second initial value:

−6 = y′(0) = −3C1 sin(0) + 3C2 cos(0) = 3C2,

and C2 = −2.
The solution to the initial value problem is therefore the function y : R→ R given by the

rule y = cos(3x)− 2 sin(3x).

8.3 Optional material (prep for Math 51)

You will not be tested on the material in this section. However, if you plan to take Math
51 you can read this to get exposed to some of the new concepts presented in Math 51.
Alternatively, if you wonder what a football team and a vector space have in common, you
should also read on.

At first glance, the beginning of Math 51 will look nothing like Math 21. There will
be no discussion of differential equations at all. Despite this, the underlying mathematical
structures that are studied in the linear algebra portion of Math 51 are the same as the
mathematical structures which we are studying this week. This is the great power of math-
ematics: by focusing only on certain aspects of the problem, one can leverage knowledge in
one area of study to knowledge in another area of study.

8.3.1 Vector spaces

The main object of study of the first part of Math 51 is what mathematicians call linear
algebra. A basic structure which is studied in linear algebra is a kind of thing called a vector
space. A vector space over the real numbers is a bunch of things (called the elements of the
vector space) which satisfy the following properties:

• Any two elements in the vector space can be added together to get a third element in
the vector space

• Addition is associative (i.e. if f , g, and h are in the vector space, then (f + g) + h =
f + (g + h))

• Addition is commutative (i.e. if f and g are in the vector space, then f + g = g + f)

• There is a special element of the vector space, usually called 0, which acts as the
identity for addition (i.e. for any f in the vector space, f + 0 = f)
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• Any element of the vector space has an additive inverse (i.e. each element f has a
special friend element which we usually call −f , such that f + (−f) = 0, where 0 is
the identity element defined above)

• Any one element in the vector space can be multiplied by a real number to get another
element in the vector space

• Multiplication by the real number 0 gives the special element 0 in the vector space (i.e.
if f is an element of the vector space, then 0 · f = 0)

• Multiplication by the real number 1 does not change the element (i.e. if f is an element
of the vector space, then 1 · f = f)

• Multiplication within real numbers is compatible with multiplying an element of the
vector space (i.e. if r and s are real numbers and f is an element of the vector space,
then (rs) · f = r · (s · f))

• Multiplication by a real number is distributive (i.e. if r is a real number and f and g
are elements of the vector space, then r · (f + g) = r · f + r · g, and also if r and s are
real numbers and f is an element of the vector space, then (r + s) · f = r · f + s · f)

An example of a vector space is the space of all solutions to a given homogeneous linear
differential equation. The elements of this vector space are the solutions to the differential
equation. If you think about it for a little bit, you will see that everything I have written
above is true for solutions of a homogeneous linear differential equation (i.e. you can add
two solutions and get a third solution, you can multiply a solution by a constant (a real
number) and get another solution, etc.).

So this list of properties might seem daunting at first, but it is just a way to write down
everything we know to be true about the solutions of homogeneous linear differential equa-
tion. In other words, we abstract from some object (the space of solutions of a homogeneous
linear differential equation) its main properties, so that we can study any object that has
the same properties. As I have said above, this is the great power of mathematics, but it is
also just the great power of human beings.

For example, you might have come across football teams in your life. Maybe your high
school had a football team. This team had certain properties (they all wear the same jersey,
they run towards the end zone, etc.). If you go to visit your cousin in another city, and you
see a group of people doing things similar to what your high school’s football team does,
then you might think that what you are looking at is also a football team. You realize that
this is a different football team, but it is also, in some ways, the same as the football team
from your high school. From your knowledge of the football team of your own high school,
you already know some things about this new football team. You know there is a special
player who is the quarterback, and you know what to expect from this player. (Of course, all
players on the team are special. For that matter, all sports and all extracurricular activities
are special.) You know that all of the players will wear the same jersey, and they will all
run towards the end zone. Your power of abstracting from one football team (the one you
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know from your high school) to another football team (the one at your cousin’s high school)
allows you to get a lot of information “for free.” The concept of a football team is a useful
concept.

Similarly, the concept of a vector space is useful to mathematicians. Once we see a set
of objects that satisfy certain properties, and recognize this set as a vector space, we know
what to expect from these objects. We know what we will be able to do, and certain things
which will be true. The vector spaces you will see in Math 51 will not be vector spaces of
functions, like ours. However, by learning about those vector spaces you will also be learning
certain things about our vector spaces. In Math 53 after you know more about vector spaces
this will all be made very explicit.

8.3.2 More rigorous definitions

Definition 8.4. Suppose that f1, f2, . . . , fk are k elements of a real vector space. We say
that these elements are linearly independent if whenever r1, r2, . . . , rk are k real numbers,
the equation

r1f1 + r2f2 + . . .+ rkfk = 0

has as its only solution the solution r1 = 0, r2 = 0, ... rk = 0.

So when we say for example that cos(3x) and sin(3x) are linearly independent, we are
saying that the only way to make sure that

r1 cos(3x) + r2 sin(3x) = 0

for every value of x, is to pick r1 = 0 and r2 = 0.
In contrast, cos(3x) and 2 cos(3x) are not linearly independent. If we want to make

r1 cos(3x) + r2(2 cos(3x)) = 0,

we can choose r1 = 2 and r2 = −1, and the equation will be true for any value of x.
In the discussion above, we said that we could use the principle of superposition to make

more solutions. In the context of vector space, this has a fancy name:

Definition 8.5. If r1, r2, . . . , rk are k real numbers and f1, f2, . . . , fk are k elements of a real
vector space, then we call

r1f1 + r2f2 + . . .+ rkfk

a linear combination of the elements f1, f2, . . . , fk.

Rephrasing what we have said above, we can now say that if we have some solutions to
a homogeneous linear differential equation, then any linear combination of these solutions is
also a solution to the differential equation.

Definition 8.6. If f1, f2, . . . , fk are k elements of a real vector space, then all of elements
that can be obtained from linear combinations of these elements are called the span of these
elements.
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Definition 8.7. Suppose that within a vector space there are n elements f1, f2, . . . , fn such
that

• the n elements are linearly independent

• the whole vector space is spanned by the elements f1, f2, . . . , fn (i.e. any element in
the vector space can be written as a linear combination of the elements f1, f2, . . . , fn).

Then we say that f1, f2, . . . , fn is a basis of the vector space. Furthermore, we say that the
vector space has dimension n.

Rephrasing what we have said above, we can now say that that the set of solutions of a
homogeneous linear differential equation of order n forms a vector space of dimension n, the
order of the differential equation. And, as it turns out, this is pretty awesome.
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