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An Introduction to Machine Learning
Solveig Badillo1,*,† , Balazs Banfai1 , Fabian Birzele1 , Iakov I. Davydov1 , Lucy Hutchinson1 , 
Tony Kam-Thong1 , Juliane Siebourg-Polster1 , Bernhard Steiert1  and Jitao David Zhang1

In the last few years, machine learning (ML) and artificial intelligence have seen a new wave of publicity fueled by 
the huge and ever-increasing amount of data and computational power as well as the discovery of improved learning 
algorithms. However, the idea of a computer learning some abstract concept from data and applying them to yet 
unseen situations is not new and has been around at least since the 1950s. Many of these basic principles are 
very familiar to the pharmacometrics and clinical pharmacology community. In this paper, we want to introduce the 
foundational ideas of ML to this community such that readers obtain the essential tools they need to understand 
publications on the topic. Although we will not go into the very details and theoretical background, we aim to point 
readers to relevant literature and put applications of ML in molecular biology as well as the fields of pharmacometrics 
and clinical pharmacology into perspective.

The advent of data availability and growth of computational 
power, combined with the arrival of novel learning methods, 
has led to a number of breakthroughs in many scientific areas. 
This includes biological and clinical research, where applica-
tions range from molecular biology1 to image data analysis2 
and clinical practice.3 However, the idea of a computer learning 
some abstract concepts—like humans do constantly—has been 
around at least since the 1950s when the first neural networks4 
were developed. Even before that, other methods like Bayesian 
statistics and Markov chains were used with a similar idea in 
mind. Many of these methods are known to the pharmacomet-
rics and clinical pharmacology community by different naming 
conventions. On the left, we indicate the machine learning ter-
minology and, on the right, the usual statistics naming (based 
on Tibshirani https://statw​eb.stanf​ord.edu/~tibs/stat3​15a/
gloss​ary.pdf):

•	 network, graphs ⇔ model
•	 weights ⇔ parameters
•	 learning ⇔ fitting
•	 generalization ⇔ test set performance
•	 supervised learning ⇔ regression or classification
•	 unsupervised learning ⇔ density estimation, clustering
•	 features ⇔ covariates or explanatory variables

The main difference to more traditional approaches lies very 
much in the two distinct cultures of statistical modeling. This has 
been eluded to nearly 2 decades ago by Breiman.5 Here, we extend 
his definition by incorporating physiological models in one of the 
cultures. In particular, culture 1 involves specifying a model to 
describe the observed data, and culture 2 aims to solve the prob-
lem by taking an algorithmic modeling approach, thus inherently 
leading to models with a higher number of free parameters and 
complex interactions. This complexity can pose challenges to the 

interpretation of the model (so called “black box” problem). The 
approaches typically used in pharmacometric applications fall into 
culture 1, where an underlying model is assumed based on phar-
macological principles and understanding of drug properties. Such 
models are usually physiologically interpretable. Most machine 
learning (ML) approaches fall into culture 2, where no explicit 
model is specified, and a computer is responsible for identifying 
associations in the observed data. These models tend to be difficult 
to interpret physiologically, however, significant progress was made 
over the years in the interpretability of ML models.6,7 Today, many 
aspects of a black box model can be interpreted using proper tools.8

In this paper, we aim to support readers to develop the intuition 
needed to understand how computers can learn or help humans to 
identify patterns in data. The foundational ideas of ML are high-
lighted, but we do not describe the details and theoretical back-
ground of available ML methods. We point the interested readers 
to other articles or books, such as “The Elements of Statistical 
Learning”9 (referred as ESL), and we refer to examples of their ap-
plication in molecular biology, drug discovery, drug development, 
and clinical pharmacology.

We first introduce the concepts of data points, features, feature 
spaces, and similarity measures and then dive deeper into the two 
main domains of machine learning, namely unsupervised and su-
pervised learning, touching key aspects and examples. In the case 
of unsupervised learning, computers are tasked to identify yet un-
known patterns in data without pre-existing knowledge like groups 
or classes, whereas in the case of supervised learning, computers are 
tasked to learn how to predict the class or the value of yet unob-
served data points based on a concept (often also called a “model”) 
that has been derived from a training dataset. Figure 1 shows a tax-
onomy of the different methods described in this paper and can be 
used as a reference, albeit nonexhaustive, on what scenario is suit-
able to apply which ML tool. Please note that all the unsupervised 
methods are also applicable in the case when labels are available.
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DATA AND FEATURES
In ML, we deal with data and datasets. A dataset is composed of 
multiple data points (sometimes also called samples), where each 
data point represents an entity we want to analyze. Therefore, 
a data point can represent anything like a patient or a sample 
taken from a cancer tissue. Many of the issues related to data are 

universal and affect not only ML approaches but any quantitative 
discipline, including pharmacometrics.

To compile the dataset, one has measured and collected a 
number of features (i.e., data that describe properties of the data 
points). Those features can be categorical (predefined values of 
no particular order like male and female), ordinal (predefined 

Figure 1  Taxonomy and overview of main machine learning (ML) algorithms. (a) Taxonomy of the different methods presented. (b) Overview of 
ML methods. The spectrum of available methods ranges from simpler and more interpretable to more advanced algorithms with potentially 
higher performance at the expense of less interpretability. Position of methods on the figure is qualitative and in practice depends on the 
number of free parameters, model complexity, data type, and the exact definition of interpretability used.8PCA, principal component analysis; 
SVM, support vector machine; tSNE, t-distributed stochastic neighbor embedding; UMAP, uniform manifold approximation and projection.
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values that have an intrinsic order to them like a disease stage), 
or numerical (e.g., real values). For a patient in a clinical setting, 
these could be (combinations of ) the patient’s demographics, 
disease history, results of blood tests, or more complex and high 
dimensional measures, like gene expression profiles in a particu-
lar tissue or all single nucleotide polymorphisms that represent 
the patient’s unique genome.

Each feature represents one dimension of the feature space and 
the concrete value of a feature for a particular data point places 
the point in a defined place in this dimension of the space. Taken 
together, all the values of all features of a data point is called a 
feature vector. The more features we have collected for the data-
set, the higher the dimensionality of the resulting feature vector 
and the feature space. Obviously, as the dimensionality increases, 
visualization of all dimensions of the feature space becomes in-
tractable and we have to rely on the computer to identify the 
relevant patterns or have to apply dimensionality reduction 
methods, as explained later in the section “Dimensionality 
Reduction.”

Clinical pharmacologists are usually familiar with longitudi-
nal data, such as pharmacokinetic (PK) and pharmacodynamic 
(PD) profiles, where the time-dependency plays a central role. 
In fact, models used in pharmacometrics are based on equations 
that can be justified based on physiology and pharmacology, 
which yield insights into the time-evolution of the system. This 
is similar to, for example, physical problems, such as weather 
forecasts, where air flow and temperature lead to a certain tem-
poral behavior of the system. In ML, including time as a distin-
guished continuous variable into respective algorithms, remains 
challenging and is an area of active research. As of now, several 
options exist to include time-dependent data in ML datasets: 
Either directly where each time point represents a feature, or via 
transformations, such as Fourier transform or B-splines, result-
ing in coefficients of basic functions that can be considered as 
features. Alternatively, Recurrent Neural Networks (RNNs) can 
be used to handle longitudinal data, as outlined in the section 
“Recurrent Neural Network.” However, all these approaches 
have the limitation of—directly or indirectly—discretizing the 
time-dimension.

Most ML algorithms are designed to handle high-dimensional 
datasets. Hence, derived features from the existing data are often 
included, such as log-transformed data, products, and ratios of 
features, or more advanced combinations. Such data transforma-
tion is an important preprocessing step that can have a profound 
effect on the model performance. Therefore, it is always a good 
idea to use available domain knowledge and expertise to come up 
with relevant features, a process sometimes referred to as feature 
engineering.

Data quality plays a crucial role in ML. Carefully chosen ML 
methods and visual inspection defend against extreme values or 
outliers. Missing data, however, can be challenging. Not all the 
methods support data missingness, and again data transformation 
could be required as a preprocessing step in such cases. There are 
various ways to impute missing data, the performance of which 
depends on the dataset and the method used.10 The most triv-
ial approach to the imputation is to replace a missing value with 

the feature mean across all the samples where it is defined. This, 
however, sometimes can cause overfitting11 (also see the section 
“Performance Measures and the Issue of Overfitting”).

It is also essential to scrutinize any bias in the data (e.g., selec-
tion bias). Preferably, samples for the ML should be an unbiased 
random subset of the population. In practice, this is rarely the 
case, and there are some biases in the data. These biases can af-
fect the ability of the model to generalize beyond the training 
dataset (and even the test dataset if both share a similar bias). 
An example of such a generalization problem is a model that 
is supposed to learn how to distinguish a wolf from a husky by 
animal characteristics, but eventually turns out to simply iden-
tify patches of snow on the photograph.6 There are various 
approaches to mitigate bias (e.g., one could down-weight or 
completely exclude biased samples or features).12 In particu-
lar, propensity scores are useful when estimating the effect of a 
therapeutic intervention.13 Inspection of the feature importance 
provides valuable information about the magnitude and the ef-
fect of the bias,6,7 which is recommend to be used for checking 
the trustworthiness of ML models.

Many clinical classification datasets are unbalanced, meaning that 
one or more classes are underrepresented. This could pose difficulties 
for many ML algorithms, including artificial neural networks and 
gradient boosting methods. One way to mitigate this problem is un-
dersampling/oversampling the majority/minority class, respectively, 
or tweaking the misclassification cost in the objective function.14

Finally, for many applications, it is important to define a simi-
larity or distance measure between two data points in the feature 
space. The simplest distance measure would be the Euclidean 
distance:

between the numerical feature vectors of two data points A and 
B, for features i=1… n, but depending on the type of data we are 
dealing with there can be many other and sometimes much more 
complex distance or similarity measures, such as cosine similarity15 
or similarity scores of two biological sequences.16

Main takeaways
•	 Transforming input data and feature engineering may improve 

the model.
•	 Missing data requires imputation.
•	 Biases in the data should be scrutinized.
•	 Unbalanced datasets require amendment of the model.
•	 Meaningful measures of similarity between the samples should 

be defined.

UNSUPERVISED LEARNING
In exploratory data analysis, we often do not know the true 
“labels,” or we might want to examine the naturally emerging 
patterns in the data. For this purpose, we can use unsupervised 
learning methods, like clustering, frequent pattern detection, 
and dimensionality reduction. Here, we will focus particularly 

(1)d(A,B)=

√√√√
n∑

i=1

(ai−bi)
2
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on clustering and dimensionality reduction as they have many 
applications in molecular biology and clinical practice.

Clustering
The goal of applying clustering methods is to identify relevant sub-
groups in a given dataset without having a predefined hypothesis 
on the properties subgroups might have. For example, in a cohort 
of patients with a particular disease, we might want to identify 
subtypes that represent distinct biological mechanisms driving 
the disease based on molecular measures taken.17

A cluster is a subset of the data which are “similar” to each other, 
whereas points belonging to different clusters are more “different.” 
There are multiple approaches to clustering that use different un-
derlying algorithms to group data points by their “similarity.” All of 
them have advantages and disadvantages and needed to be selected 
carefully depending on the application and properties of the data.

One simple approach to clustering is k-means clustering.18 Here, 
the number of clusters to be identified is predefined by a user-se-
lected parameter k. Each cluster is represented by a cluster center, 
which is an artificial data point that represents the mean (or me-
dian) value of all points assigned to this cluster. In the beginning, k 
cluster centers, known as “seeds,” are randomly placed in the feature 
space. The algorithm then iterates through two steps. In step one 
(“assignment”), data points are assigned to the cluster represented 
by the closest center. In step two (“center shift”), the position of 
each cluster center is updated based on the composition of the clus-
ters after step one. After a number of iterations, this will usually 
converge to a local optimum where cluster assignments do not or 
only marginally change. The result of such a process is visualized in 
Figure 2b. Although the procedure is intuitive, its major drawback 
is that usually the clustering is strongly influenced by the value of k, 
and more often than not the true number of clusters in the data is 
unknown a priori. Because there is rarely a clear cut right or wrong 
answer in clustering, further cluster investigation is required to 

identify meaningful clusters, which can be challenging particularly 
in the light of a high-dimensional feature space.

Another group of methods for clustering is density-based cluster-
ing.19 In density-based methods, a cluster represents a part of the fea-
ture space where data points are dense. Data points belonging to the 
regions of the feature space with low density are considered to be noise. 
One of the well-known density-based clustering algorithms is Density-
Based Spatial Clustering of Applications with Noise.20 Density-based 
clustering does not require a predefined value setting the number of 
clusters and provides a reproducible result. Further, it is able to also 
identify complex cluster shapes, like the one shown in Figure 2c.

In hierarchical clustering analysis, the goal is to build a hierarchy 
of clusters (ESL, chapter 14).9 One simple approach to hierarchical 
clustering is neighbor joining. First, all pairwise distances between 
all data points in the dataset are computed. Later, in every step of 
an iterative process, the two data points with smallest distance are 
grouped together. This results in a tree-like cluster structure, as dis-
played in Figure 2a on the left side and top of the heatmap where 
the branch lengths of the tree represent the distances of samples. To 
arrive at a discrete set of clusters like with k-means a distance thresh-
old has to be chosen at which the tree is cut horizontally. Again, 
there is no optimal way of selecting such a threshold and many 
reasonable solutions may exist. Hierarchical clustering can be used 
alone, or used in combinations with heatmaps (e.g., Figure 2a) to 
visualize selected or all features, for instance, gene expression data.

Dimensionality reduction
The number of features and, therefore, the dimensionality of the 
feature space can be very high with tens of thousands of measures 
per sample. Not only does this make data visualization challenging 
but also the analysis is challenging. In particular, analysis of high-di-
mensional datasets can be associated with a phenomenon known 
as the “curse of dimensionality,”21 which refers to data sparsity 
and counterintuitive geometrical properties in high-dimensional 

Figure 2  Overview of the results of different clustering approaches. (a) Shows the results of a two-dimensional hierarchical clustering. The two 
dendrograms visualize the similarity across samples and also across the markers measured. Such visualization is frequently used in biology 
for gene expression or other -omics technology readouts. (b) Shows the outcome of a classical clustering using k-means with a selected value 
of k = 2. Resulting clusters are usually convex and every point is assigned to one cluster, namely the one which is represented by the closest 
center point (marked by X). (c) Shows the result of a density-based clustering. Please note that the approach can identify nonconvex cluster 
forms, such as the orange cluster.
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spaces. The “curse of dimensionality” poses challenges on most 
data analysis approaches, including but not limited to ML.

To mitigate such problems dimensionality reduction methods 
might be applied. Dimensionality reduction can aid data visualization 
by transforming each high-dimensional data point into two or more di-
mensions while keeping the majority of the variability and relative dis-
tances. Furthermore, dropping uninformative features could improve 
the model performance and convergence time. Although some of 
these methods, like principal component analysis, have even been de-
veloped long before the term ML has been coined,22 others, like t-Dis-
tributed Stochastic Neighbor Embedding23 or Uniform Manifold 
Approximation and Projection,24 were developed recently and address 
complex challenges arising in data analysis. There is also a powerful 
neural network-based dimensionality reduction approach called au-
toencoder. For details on how to apply dimensionality reduction in 
biomedical data, we would like to refer the reader to a recent review.25

Examples of unsupervised ML applications
Clustering is widely used when analyzing high-dimensional 
data, such as transcriptomic, metabolomic, and proteomic ex-
periments. Typically, hierarchical clustering would be used to 
identify main factors affecting the readouts as well as for identifi-
cation of modules with high degree of coregulation. In single-cell 
sequencing, nonhierarchical clustering is used to understand 
which cell types are present in the sample. Clustering is also used 
to identify relationships among patients, tissues, diseases, or even 
disease symptoms.26–29 Drug compounds themselves may also be 
clustered based on gene expression, sensitivity, and target protein 
properties30–32 with the goal of guiding drug discovery.

Dimensionality reduction is routinely used in transcriptomic 
and other -omics experiments, usually to identify outliers and po-
tential batch effects. In single-cell sequencing, Uniform Manifold 
Approximation and Projection or t-Distributed Stochastic 
Neighbor Embedding are used both for data visualization and for 
subsequent clustering.24 Dimensionality reduction is also used to 
visualize the high-dimensional chemical space33 or as a prepro-
cessing step to improve performance of an ML model.34

Main takeaways
•	 Clustering can be used to understand structure in data by 

grouping similar observations together.
•	 k-means clustering is a simple yet powerful tool, however, the 

number of clusters must be specified in advance.
•	 Density-based methods do not require a prespecified number of 

clusters and allows identification of complex patterns in the data.
•	 Hierarchical clustering provides an overview of the relationship 

on multiple levels.
•	 Dimensionality reduction is used not only for data visualization 

but also to drop uninformative features.

SUPERVISED LEARNING
In a supervised learning problem, the computer is fed training 
data with observations and the corresponding known output val-
ues. The goal is to learn general rules (also often called a “model”) 
that map inputs to outputs, so that it will be possible to predict the 

output for new unseen data, where we have observed input values 
but not their associated output.

There are two main categories of supervised learning: (i) classi-
fication where the output values are categorical, and (ii) regression 
where the output values are numeric.

In subsequent sections, the context of model fitting in supervised 
learning and the common issue of overfitting are introduced. Then, 
we explain how the performance is evaluated for classification and 
regression tools (i.e., how to assess the quality of mapping from in-
puts to outputs by the algorithm). This aspect is essential, as the 
merit of adopting ML methods often centers around the prospect of 
obtaining higher performance with the trade-off of interpretability. 
Understanding the different performance metrics enables better eval-
uation of the merits of a proposed model, as opposed to an assumption 
that an ML solution could always outperform a traditional approach.

We then dive into some of the existing classification and regres-
sion methods, starting off at the shallow end, where interpretation 
of the models is still straightforward, and progressing toward more 
ML-centric approaches where performance triumphs, often at the 
expense of interpretability. Figure 1 summarizes the available spec-
trum of methods with respect to performance and interpretability. 
This section concludes with a nonexhaustive review of the applica-
tions of supervised learning methods in biology and, particularly, 
clinical pharmacology.

Performance measures and the issue of overfitting
The goal of a learning algorithm is to learn a concept or function 
(= a model) that describes the observed training data and is able to 
generalize on new independent data by avoiding both underfitting 
and overfitting.

The performance of a model is evaluated by methods that allow 
model assessment (i.e., estimating how well a given model performs 
in general and model selection; and the estimation of the perfor-
mance of different models to choose the most adequate model). 
Some of these methods are highlighted in the next sections.

Model fitting. The model parameters are estimated based 
on observed data in the training set. To derive the optimal 
parameter values (e.g., for coefficients and weights), a distance 
measure between model and data is defined and minimized 
numerically. Independently of the metric chosen, the goal of 
model fitting is always to estimate the parameters by minimizing 
the distance, also called loss function or cost function, with two 
requirements:

•	 The model should provide predicted values that are close to ob-
served ones on the training set, otherwise we say that it under-
fits and has a high bias.

•	 The model should generalize beyond the training set. A model 
that overfits predicts well on the training set but poorly on an 
independent test set, often because it is too complex for the 
data. In this case, we also talk about high variance.

In the following, we will call objective function any function that 
is optimized to estimate the model parameters.

TUTORIAL
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In the regression case, Figure 3 illustrates the issue of underfitting 
and overfitting in the context of regression. Underfitting can occur 
when the model is too simple or when the features extracted from the 
data are not informative enough (Figure 3, left panel). Overfitting 
often occurs when the model is too complex or there are too many 
features over a small set of training examples (Figure 3, right panel).

This underfitting/overfitting issue is also often referred to as the 
bias/variance trade-off, which comes from the expression of the ex-
pected prediction error, including both bias and variance terms. The 
bias is an indication of the average error of the model for different 
training sets: It is the discrepancy between average of predicted val-
ues and the true mean we are trying to predict. The variance reflects 
the sensitivity of the model to the training set: For a given point, it 
corresponds to the spread of predicted values around their mean.

To minimize the predicted error, there is a trade-off between 
minimizing bias and variance: Increasing model complexity de-
creases bias but increases variance. To build less complex models, 
different techniques exist summarized under the term regulariza-
tion. The principle consists in modifying the objective function by 
adding penalization terms that will influence parameter estimation. 
L1 and L2 regularization are the most common ones (ESL, sections 
3.4.1 and 3.4.2).9

Different categories of loss functions. Different objective 
functions can be chosen to measure the distance between 
observed data and values predicted by the model. Some of the 
distance metrics used in practice can be associated to a likelihood. 
The likelihood indicates how probable it is to observe our data 
according to the selected model. The most common use of a 
likelihood is to find the parameters that make the model fit 
optimally to the data (i.e., the maximum likelihood parameter 
estimates). Usually, the negative logarithm of the likelihood is 
minimized and considered as objective function because it has 
favorable numerical properties. Similarly, in ML metrics, such as 

mean squared error, logistic objective, or cross-entropy, are used 
to find optimal parameters or assess the fitness of the model.

In practice, analytical calculation of maximum likelihood or 
minimal loss may not be feasible, and it is often necessary to use a 
numerical optimization algorithm to solve for the best parameter 
values. Gradient descent is such an algorithm, where we first define 
an objective function for which we want to minimize and then 
iteratively update the values of the parameters in the direction with 
the steepest decrease (first-order derivative) of the objective func-
tion until a convergence to a minimum distance is deemed reached. 
In the scenario of a nonconvex objective function, the success of 
finding a global minimum, as opposed to landing in some local 
minima, will depend on the choice of the initial set of parameter 
values, the learning rate (i.e., step size of each iteration) and the cri-
terion for convergence. The reader can refer to ref. 35 for details on 
convex and nonconvex optimization processes. Stochastic gradient 
descent is an additional trick that can further speed up the optimi-
zation by randomly sampling a training dataset and summing the 
distances across this subset of training data points for approximat-
ing the objective function.

General principle of model selection and assessment. The problem 
of overfitting shows that the model performance on the training 
set is not a good indicator of its performance on a new dataset. We 
will detail below the principles of model performance evaluation 
in a supervised learning setting.

The general principle of model selection is as follows: When there 
are enough data, we separate them into three subsets—training,  
validation, and test sets. The training set is used to build different 
models, whereas the validation set is subsequently used to choose 
the algorithm and select the hyperparameters, if needed. Then, the 
model with the best performance on the validation set is selected. 
Finally, the test set enables to assess the generalization error, also 
called test error, which is the prediction error over a test dataset 

Figure 3  Illustration of the underfitting/overfitting issue on a simple regression case. Data points are shown as blue dots and model fits 
as red lines. Underfitting occurs with a linear model (left panel), a good fit with a polynomial of degree 4 (center panel), and overfitting with 
polynomial of degree 20 (right panel). Root mean squared error is chosen as objective function for evaluating the training error and the 
generalization error, assessed by using 10-fold cross-validation.
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that was not used during the training.9 It is important to note here 
that the generalization error could be higher than expected when 
the original dataset is biased (see the section “Data and features”). 
Validating the model against a fully independent test dataset is 
the gold-standard method of assessing the generalizability of the 
model.

When the dataset is too small to extract a decent validation 
set, it is, for example, possible to use cross-validation techniques 
to select model hyperparameters. After putting aside a subset of 
the data for testing, k-fold validation consists of dividing the 
training set into k subsets, k−1 subsets being used for train-
ing and the last one to assess the performance. This process is 
repeated k times, each k subset being used once for validation, 
and the performance scores from each subset are then averaged 
for each set of hyperparameters to test. The k-fold cross-valida-
tion procedure is summarized in Figure 4. To choose between 
different learning algorithms36 nested cross-validation can be 
used.

Indicators of model complexity vs. goodness of fit. In 
pharmacometrics, model selection is usually based on quantitative 
measures that summarize how well the model fits the data, 
often with penalties for overfitting. The most commonly used 
are the Akaike information criterion and Bayesian information 
criterion. They penalize the number of model parameters and 
reward goodness of fit, measured through likelihood. The Akaike 
information criterion is formalized as:

with the number of parameters M and the maximum likelihood ̂.

In contrast, the Bayesian information criterion:

takes into account the number of data points n.
These model selection approaches are rarely used in ML, partly 

due to the complexity of datasets and the associated violation of 
distributional assumptions. Instead, approaches like cross-valida-
tion are more commonly used (Clustering).

Performance measures for model assessment. For regression 
models, we typically use the mean squared error, or other types 
of average objective functions, to compare model performance 
on training and test set. For two-class classification problems, 
common performances measures are often derived from the 
“confusion matrix” shown in Figure 5 and briefly described below.

•	 Precision, corresponding to the ratio of correctly predicted pos-
itive values to the total number of predicted positive values.

•	 Recall, also called true positive rate (TPR) corresponding to the 
ratio of correctly predicted positive values to the total number 
of positive values in the dataset.

•	 False Positive Rate (FPR), corresponds to the proportion of 
negative values predicted incorrectly.

•	 Accuracy, corresponding to the number of correctly predicted 
values divided by the total number of predicted values.

•	 Area under the ROC curve (AUC): Receiver operating charac-
teristic (ROC ) curves show the TPR (recall) and FPR depen-
dence. In binary classification, each point on the ROC curve is 
located by choosing different thresholds for classification of yi in 
positive or negative class. The top left corner of an ROC curve 

(2)AIC=2M−2 ln (̂),

(3)BIC= ln (n) ⋅M−2 ln (̂),

Figure 4  Illustration of the general principles of supervised learning in the case of a limited dataset. To assess the generalization ability of 
a supervised learning algorithm, data are separated into a training subset used for building the model and a test subset used to assess he 
generalization error.
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is the ideal case with 100% of positive values correctly classified 
(TPR = 1) and 0% of positive values incorrectly predicted at 0 
(FPR = 0). As it is ideal to maximize the TPR while minimizing 
the FPR, a larger area under the ROC curve (AUC) is better.

Some of these metrics could be generalized for multiclass 
problems, where there are more than two different labels in the 
dataset. However, the metrics mentioned above are noncon-
tinuous with respect to model parameters, hence, parameter 
optimization may be challenging when they are used as objec-
tive function. A continuous alternative and widely used metric 
previously mentioned in the section “Model fitting” is cross-en-
tropy (ESL, chapter 9),9 which not only accounts for the most 
likely prediction but also for the prediction score (prediction 
confidence).

k-Nearest neighbors 
We start our overview on existing learning methods with a method 
that skips the learning step completely and, therefore, does not lead to 
an explicit model that is being learned from the training data. As we 
will discuss later, this is also one of its biggest shortcomings. This type 
of learning is also often referred to as “instance-based learning” and, 
in our particular example, “k-nearest neighbor learning" (kNN).37

In these approaches, learning simply consists of storing all the 
existing, labeled data points (i.e., the training data) in a database. 
When a new, yet unclassified example is observed, the algorithm will 
place it in the n-dimensional feature space based on its feature values. 
For each data point in the database, we now compute the distance 
(e.g., a Euclidean distance or other, more complex ones) to this new 
data point in order to identify its k closest neighbors. In a second 
step, we examine the known labels of these kNNs in our database. 
Say we have chosen k to be nine and we observe seven of the nearest 
neighbors to be labeled as class X whereas two of them are labeled 
as class Y. In this case, we would assign our new data point to the 
class X as the majority of its neighbors are of this class. An exten-
sion of this simple approach would be to weight the importance of 
the neighbors to the classification by their distance to the new data 
point. Despite being very straightforward and simple, it proves to be 

a very effective classification method in practice. It is very efficient 
when it comes to training (i.e., storing the data in the database) and 
efficient implementations for computing the kNNs exist.

So, what are the challenges to this approach? The most obvious 
one is that because there is no “learning step,” the kNNs approach 
does not identify the features that are really relevant to predict the 
class of a new case. Therefore, even though in a 20-dimensional fea-
ture space, where only 2 might be really relevant for the classification, 
the distance will be computed taking all 20 dimensions into account. 
Thus, the k nearest data points returned by the query will be highly 
influenced by irrelevant features or noise (see also “Dimensionality 
reduction” on how to remove some of those features). As a conse-
quence, the resulting classification will be driven by noise rather than 
the real underlying pattern in the data. In this aspect, the approach 
suffers from the same challenge that also clustering approaches (see 
the section “Clustering”) are facing, which are often summarized as 
the “curse of dimensionality.”21

Naive Bayes
The second and very intuitive learning approach we would like 
to introduce is naive Bayes. It is based on computing simple sta-
tistics from a given training dataset as the learning step following 
a straightforward (but naive) application of the Bayesian formula 
for conditional probability in order to obtain a classification. 
Due to its simplicity it is also often used to obtain a baseline clas-
sification performance that other, more involved methods have 
to improve upon. It can best be explained by a simple example.

Let us assume we have training dataset with patients suffering either 
from a harmless cold or an influenza (flu) infection. We have measured 
two features for each patient, namely fever (high, low, or no) and pain 
(strong, low, or no). For each patient, we know through a laboratory 
test if the patient had an influenza infection or not. We now want to 
learn from these data and apply it to diagnose a new patient (where 
we have no laboratory test available) using the naive Bayes approach.

As a learning step, we count for each feature value how often it oc-
curs in the influenza and in the cold patient group (e.g., to obtain the 
probability for high fever under the condition of the patient having a 
flu and so on). The result of this learning step might be seen in Table 1.

Figure 5  Confusion matrix for two-class problems. The confusion matrix indicates how successful the algorithm was at predicting labels in 
a binary classification problem where labels take values 0 (called “negative”) or 1 (called “positive”) by evaluating the predicted vs. the real 
labels. Every data point in the test set belongs to one of the four categories and different measures can be derived from these numbers.
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Table 1 summarizes probability of each feature given the cat-
egory of patient and shows that in the whole patient population 
the probability for a patient having an influenza infection is 0.1, 
whereas the probability for a normal cold is 0.9.

Once we have generated these values and, therefore, completed 
the “learning step” by analyzing our dataset, naive Bayes makes a now 
naive assumption, which is that all these features are conditionally 
independent of one another. In reality, this is rarely true and there 
are more advanced Bayesian learning methods that do not make this 
assumption. However, the assumption allows for a straightforward 
application of the Bayesian theorem. For details (i.e., formulas) on 
how to derive this classifier, we would like to refer the reader to fur-
ther reading material (ESL, chapter 6).9 In brief, the probability of 
a certain label (flu or cold) for a new test item can be computed as 
the product of the single conditional feature probabilities (fever and 
pain) that are observed for the data point times the probability for 
the class (flu or cold). The class with the maximal posterior likeli-
hood is selected as the predicted class for the test item. Assuming we 
have a test person with an unknown diagnosis for influenza or cold, 
and we know that this person shows up with high fever and a high 
level of pain, we would compute the likelihood for influenza as:

In the same way we would compute the likelihood for a cold as:

For a patient that presents to the doctor with high fever and 
strong muscular pain or headache, this results in a (nonnormal-
ized) posterior probability for an influenza infection of 7.125% 
and in a probability of 2.7% for a normal cold. Therefore, the pa-
tient suffers more likely from a flu than from a cold.

In many aspects, naive Bayes, therefore, formalizes how humans 
might learn from experience.

Decision trees, random forests, and gradient boosting
Decision trees are an essential building block for many ML al-
gorithms. They have been used for at least 50 years.38,39 The 
idea behind decision trees is very intuitive and best represented 
in a visual form (e.g., Figure 1). Depending on the problem, de-
cision tree leaf nodes have classes, probabilities, or continuous 

values in case of regression. In the early days of ML, decision 
trees have been used to solve pharmacological problems, such 
as dosing, toxicology, and diagnostics.40–42 Although usage of 
decision trees is intuitive, the question is how to construct such 
trees from the available data. A few famous approaches worth 
mentioning are CART43 and ID3.44

Currently, decision trees are almost never used in ML in their 
original form. One of the reasons being is the fact that decision 
trees are prone to overfitting. Nevertheless, decision trees became 
the building block for two widely used approaches: Random deci-
sion forests and gradient boosting frameworks.

Both random decision forests and tree-based gradient boosting 
use a set (ensemble) of trained decision trees to predict the out-
come variable. The crucial difference between tree-based gradient 
boosting and random decision forests is on how trees are created.

In case of random forests, the algorithm constructs hundreds 
or thousands of deep decision trees (“strong predictors”). Each of 
those trees is likely overfitted, however, by combining the outputs 
of multiple trees we can solve the overtraining problem. On the 
contrary, in a gradient boosting algorithm, such as XGBoost or 
CatBoost, each of the trees is a shallow decision tree (“weak predic-
tor”), and the algorithm iteratively decreases the classification error 
over time by adding more and more trees.

Today, gradient boosting methods show a great performance 
both in publications and ML competitions. Even without hyper-
parameter tuning, they usually provide excellent performance 
with a relatively low computational cost.11 On the other hand, 
random forests are usually less prone to overfitting45 and re-
quire less parameter tuning.46 This makes random decision for-
ests attractive for smaller datasets or as a baseline method for 
benchmarking.

Tree ensemble methods can be used for classification tasks, as 
well as for regression. In both cases, tree outputs are averaged, 
which can create a smooth output function.

Kernel methods: Support vector machines and regression
Kernel methods and, more specifically, support vector machine 
(SVM) for classification and support vector regression (SVR) for 
continuous output have found applications in computational biol-
ogy for their ability to be robust against noise and to work with 
high-dimensional datasets found in genetics, transcriptomics, and 
proteomics.47 Concretely in a more recent example, SVR was used 
for delineating cell compositions from bulk transcriptomics data.48

(4)
P(Fever=High|Flu) ⋅P(Pain=Strong|Flu)⋅
P(Flu)=0.95 ⋅0.75 ⋅0.1=0.07125.

(5)
P(Fever=High|Cold) ⋅P(Pain=Strong|Cold)⋅
P(Cold)=0.1 ⋅0.3 ⋅0.9=0.027.

Table 1  Illustration of naive Bayes: Example of learning step results on flu dataset, showing the probabilities of features 
values given the patient category

Features Fever Pain

Classes High Low No Strong Low No

Influenza (Flu)

P (Flu) = 0.1 P(Fever = High|Flu) 
 = 0.95

P(Fever = Low|Flu) 
 = 0.05

P(Fever = No|Flu) 
 = 0

P(Pain = Strong|Flu) 
 = 0.75

P(Pain = Low|Flu) 
 = 0.20

P(Pain = No|Flu) 
 = 0.05

Cold

P(Cold) = 0.9 P(Fever = High|Cold) 
 = 0.1

P(Fever = Low|Cold) 
 = 0.4

P(Fever = No|Cold) 
 = 0.5

P(Pain = Strong|Cold) 
 = 0.3

P(Pain = Low|Cold) 
 = 0.3

P(Pain = No|Cold) 
 = 0.4
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This section first offers a brief overview of the key concepts 
highlighting the notions of kernel transformations, an objective 
function with a lossless region, and a regularization term.49,50 The 
emphasis will be placed on providing the reasoning behind why 
this is a more versatile method in dealing with multiple inputs 
where their effects on the output are unknown and can be postu-
lated to span into nonlinear functions.

Background. Similar to all regression methods, the objective 
of SVR is to postulate a function on the input(s) that can help 
estimate for the observed output. Likewise, for SVM, the goal is 
to find the optimal decision boundary that separates the classes. 
As the name suggests, the core concept behind SVM/regression 
is the ability to objectively choose a subset of training data called 
support vectors. These support vectors define the model, which is 
usually a hyperplane in some feature space. To achieve this, several 
notions need to be introduced.

•	 An ε-insensitive loss function allows for residual less than ε, to 
be considered lossless and, thus, not part of the support vectors 
factored in to estimate the output-input function.

•	 A regularization term is added to the objective function with 
the aim of searching for a model to describe the relationship be-
tween the input and output variables such that the hyperplane 
is kept as flat as possible.

•	 Slack variables can be introduced to allow for training errors, 
termed soft margin, when the output is found outside the ε-in-
sensitive region. By introducing slack variables, tolerance for the 
residual term to be greater than ε is made.

•	 A kernel function allows us to work in a higher dimension space, 

feature space. A kernel function applied in the input space cor-
responds to a dot product in the feature space where similarity 
measures are computed. This is achieved without having to ex-
plicitly map the input data from the input space to some feature 
space by some mapping function ϕ.

With all these concepts at hand, we are now capable of fitting a 
model with some thickness, known as a tube introduced by the ε-in-
sensitive loss function, whereas the regularization term controls for 
the flatness of this hyperplane in some feature space defined by the 
kernel function. Figure 6 illustrates these basic concepts of SVM.

Kernel trick and choice. SVR can capture nonlinear target 
functions, which map the multivariate inputs to the output. More 
precisely, the kernel trick means that a kernel:

applied to a set of inputs in the input space is equivalent to comput-
ing the dot product as a similarity measure in some feature space. 
This is achieved without having to explicitly perform a pre-map-
ping of the inputs, xi, with a mapping function Φ. A kernel func-
tion calculated in the input space corresponds to a dot product in 
some feature space if and only if it is a symmetric positive definite 
function.51,52

The choice of the radial basis function kernel,

is often made as it can be expanded to a feature space of infinite 
dimensions. Although radial basis function covers a wide range 

(6)k(xi,xj):= ⟨Φ(xi),Φ(xj)⟩

(7)⟨Φ(xi),Φ(xj)⟩:= k(xi,xj)RBF= exp−γ(∥xi−xj∥)
2

Figure 6  Illustration of support vector machine (SVM) principles. (a) Illustration of a simple case where hyperplane separate two groups 
directly in inputs space. (b) Illustration of performing nonlinear classification by implicitly mapping inputs into high-dimensional feature spaces 
where data points can be separated by a hyperplane.
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of possible effects, it leads to harder interpretation of the eventual 
model. In practice, the selection of the kernel function is based on 
computational efficiency. Other popular kernels include linear and 
polynomial kernels.47

Neural networks

Background. Neural networks constitute a collection of neurons and 
edges, drawing its origins from circuit analysis. Different weights can 
be applied to each edge connecting the neurons. At each neuron, an 
activation function is applied to a weighed input signal to generate 
an output signal. A sigmoidal function is often used, consisting of 
a first order lowpass filter of a unit step function. Such sigmoidal 
function has the advantages of yielding bounded output and of 
being continuously differentiable, which is needed in the backward 
propagation step to tune the weights (parameters of the model), see 
steps defined in the section “Recurrent Neural Network.”

Neurons are further subdivided into an input layer, hidden lay-
er(s), and output layer, as shown in Figure 7a. The hidden layers 
perform the layer of abstraction needed to go from the input layer 
to the output layer. The number of hidden layers define whether 
the system is a shallow learning system (with one or a few hidden 
layer) or deep learning (with many hidden layers). There is an in-
herent trade-off between the number of hidden layers and time 
required to train the model. For this reason, although the core 
concept embedded in the neural network is not a novel one, it has 
found a resurgence of applications due to recent advances in com-
putational power.

The most basic type is known as feedforward neural network, as 
information is just propagated from the input layer to the hidden 
layer(s) and finally to the output layer. The current state of the sys-
tem is not defined by any past state; hence, it represents a memo-
ryless system.

In the following, illustrative examples of neural networks are 
described: recurrent neural networks, long short-term memory 
networks, and gated recurrent networks. Further notable neural 
networks that are out of scope for this article but we recommend 
further reading on are convolutional neural networks,53 encod-
er-decoder networks,54,55 and generative models.56

Recurrent neural network. Recurrent neural networks are a class 
of neural networks dedicated to time series datasets as they factor 
in the inherent sequential relationship observed in the data of 
one time point to another. It has found success in what is known 
in the field as sequential data, where the order or time sequence 
of the signal plays a role, namely in natural language processing 
and time series forecasting. More closely related to our field of 
research, it has found application in predicting outcomes from 
electronic health records, where the richness comes inherently 
from the sequence correlation structure of the data to recommend 
swift and even anticipatory actions to be taken by the medical 
staff.57 Rephrasing the question to solve a modeling conundrum 
in the pharmacometrics field is only starting to emerge at the time 
when this paper was drafted. Tang et al. present one of the rare 
attempts on how to use ML (here: RNNs) to characterize the PK 
of remifentanil and compared the results to the pharmacometrics 
gold-standard method NONMEM.58 Although nonstandard PK 
models were used for the comparison and the generalizability of the 
results can be challenged, Tang et al. make a valuable contribution 
in exemplifying where RNNs could be used in pharmacometrics.

The basic form of an RNN is shown in Figure 7b, where each 
current state (at time t) is defined by a combination of the previous 
state of the system and the current input, which is similar to the 
concept of classical dynamic systems. The weights for each edge 
can be determined as to how far back to look into, similar to a time 
constant. Contrary to feedforward neural network, an identical 
weight is shared across in the individual neuron unit block across 
all the earlier discrete time steps.

At the core of the RNN, it consists of an input sequence defined 
by x(t), an output sequence as defined by o(t), a hidden or system 
state sequence as defined by h(t), as well as a chained submodules 
of repeated units.

The steps needed to train an RNN model are as follows:

1.	 Define a network architecture and initialize the model with 
random weights and biases.

2.	 Perform a forward propagation to compute the estimated 
output.

3.	 Calculate the error at the output layer.

Figure 7  Neural networks. (a) Basics of feedforward neural networks. (b) Unfolding of recurrent neural networks. (c) Extensions of recurrent 
neural networks with gating units. Black square represents a delay of one discrete time step.
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4.	 Perform a backward propagation to update the weights using 
an optimization approach.

5.	 Repeat steps 2–4 for the number of epochs (or iterations) until 
the loss function value is deemed minimized.

Extensions from this Vanilla RNN were developed to address 
the problems of unstable gradient problem (e.g., the vanishing 
gradient problem and the more serious counterpart of instabil-
ity caused by an exploding gradient). These problems at their 
core are due to multiplications (under the influence of numer-
ical errors) introduced in the backward propagation in relation 
of the error estimates to the parameters along each layer of the 
neural network. In other words, the vanishing gradient causes 
information that needs to be captured from a time point further 
away from the current time and, thus, renders the model weak 
to capture valuable stored memory with longer time lag. In the 
less common event that at least one partial derivative violates the 
requirement for stability, translating to the state matrix of having 
at least one eigenvalue > 1, this will lead to an exploding gradi-
ent problem, a known problem in traditional dynamic system 
for discrete time. The remit used to address this fundamental 
problem will be described more in two well-known extensions 
of RNN (long short-term memory (LSTM) and gated recurrent 
network (GRU)).

There has been many different variants and development in 
RNN research, each novel method serves to address a different 
problem ultimately leading to the development of more robust 
models. For example, to circumvent the unstable gradient problem, 
gradient clipping of forcing the gradient to a threshold has been 
proposed in ref. 59,60, but by far the most widely accepted method 
is the inclusion of gating units.

Long short-term memory and gated recurrent network. LSTM 
is part of a larger family of gated RNNs that retain and forget 
information with the introduction of gating units. More 
specifically, three gating units can be included in the system, 
as shown in Figure 7c. First, a direct copying or clearing of the 
state altogether can be controlled by the forget gate. A similar 
approach is also handled by the input gate to decide whether 
to include the current input signal as part of the update of the 
state. The amount of information to retain from the previous 
state signal and from the perturbation input signal is learned 
at each time step.61 The system needs to learn long-term 
time dependencies by retaining information but it must also 
occasionally learn to clear information from its current state.62 
Consequently, solving the vanishing and exploding gradient 
problems. Finally, an output gate can be introduced, although 
less common, as a gating mechanism to decide which output 
signal gets fed back to the system.

A simpler rendition and, thus, faster training implementation can 
be found in GRU. GRUs address the same problem of unstable gra-
dients and represent a new addition to this family of RNN exten-
sions. The core difference between LSTM and GRU is that the latter 
omits the output gate and uses simpler reset and update gates.63 In 
theory, however, LSTM should perform better as it can up-weight 
or down-weigh information from longer time-distance/lag.

Examples of supervised ML applications in clinical 
pharmacology
Models in clinical pharmacology have typically been established 
by translating physiological and pharmacological principles to 
systems of differential equations and using expectation-max-
imization algorithms to estimate the model parameters. This 
mechanistically motivated approach has proven useful in many 
applications and is a well-established component of drug develop-
ment programs. Potentially due to the success of these established 
approaches, only few examples of applying ML methods to clin-
ical pharmacology problems exist up to now. Ryu et al. trained a 
deep neural network on a large curated database covering 192,284 
drug-drug interactions in order to predict drug-drug and drug-
food interactions for prescriptions, dietary recommendations, and 
new molecules.64 Combining datasets from multiple studies to 
create large databases increases the potential to use ML to tackle 
broad clinical pharmacology questions.

ML has also been used to bridge drug discovery and clinical 
development. For example, Hammann et al. were able to predict 
incidence of adverse events from a molecule’s chemical structure 
using a decision tree method.65 Similarly, Lancaster and Sobie im-
plemented SVMs to predict risk of Torsades de Pointes from in 
vitro data.66

In the area of personalized safety, ML has been used by 
Daunhawer et al. to personalize safety in the context of hyper-
bilirubinemia in neonates.67 The authors used lasso and random 
forests to make predictions from clinical datasets. Furthermore, 
reinforcement learning was used by Gaweda et al. to personalize 
pharmacological anemia management.68 A similar approach was 
used to develop a “closed loop” system for glucose control by com-
bining a mathematical model, a glucose sensor, and a reinforcement 
learning model.69 Chavada et al. and Hennig et al. investigated the 
feasibility of Bayesian feedback for dose adjustment of antibiot-
ics.70,71 The area of personalized healthcare could greatly benefit 
from using ML models that recommend dose adjustments in real 
time. In a recent study, an ML-type control algorithm was inte-
grated with existing structural PK/PD models that are familiar to 
pharmacometricians and the resulting closed-loop control system 
was found to outperform a sensor-assisted pump.69

Main takeaways
•	 Supervised learning methods infer models based on labeled out-

put-input pairs of the training dataset.
•	 Performance metrics are used to assess the classification and re-

gression models to avoid overfitting of the training dataset.
•	 Many supervised learning methods exist with different trade-

off between interpretability and performance.
•	 RNN is a special form of neural network that represents a dy-

namic system in discrete time.
•	 Examples of the applications of these supervised learning meth-

ods in computational biology and particularly clinical pharma-
cology are beginning to emerge.

DISCUSSION
In this tutorial, we have introduced some fundamental methods 
of ML that are likely to be of interest to the clinical pharmacology 
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and pharmacometrics community. Our brief introduction is sup-
plemented with a range of relevant references. We have provided 
context by mentioning examples relevant to drug development. 
We conclude by summarizing how the fields of ML and clinical 
pharmacology are currently situated and by providing an outlook 
on how we expect to see further integration of the fields in the fu-
ture. Advanced statistical methods are not new to pharmacome-
tricians; in fact, such methods have been used to describe PK and 
PD phenomena for some time. For example, Bayesian methods are 
a well-established component of pharmacometric approaches.72,73 
It seems, therefore, likely that as statistical and ML approaches be-
come more established and more prominent in the pharmaceuti-
cal industry, pharmacometricians will be among those who take 
advantage of these methods. Furthermore, new opportunities to 
investigate other clinical questions, such as patient stratification 
from high-dimensional baseline characteristics, may become pos-
sible in clinical pharmacology using ML approaches.

Several of the examples where ML approaches have been applied 
to clinical pharmacology questions include the integration of “clas-
sical” modeling techniques, such as specifying a structural model 
based on mechanistic understanding, and ML approaches.69–71 
Classical pharmacometric approaches are based on pharmacological 
principles that reflect hypotheses generated from the understanding 
of physiology and drug properties. It is unlikely that these models 
will be completely replaced by ML approaches in the near future. 
However, when the datasets and problems are more complex, many 
unknown influences and relationships exist and the focus is on in-
terpolation and fast evaluation, pharmacometrics might benefit 
from applying ML-type methods. Going forward, we expect that 
fusing this understanding with ML models could lead to very effec-
tive models in the future. A recent perspective article provides more 
detail on applications of ML in clinical pharmacology.74

In the age of big data, there are many new opportunities for ML 
in clinical pharmacology. For example, data generated from wear-
able devices pose new challenges on how they can be linked to PK 
data in the future. In addition, access to real-world data could pro-
vide strong evidence for covariates, supplement control datasets, 
and bolster models that have been trained on small datasets.

In pharmacometric approaches, a predictive model is typically 
established by integrating a structural model and relevant data. 
The structural model substantially constrains the solution space 
and, therefore, relatively little data are required to fit the model. 
On the contrary, in neural networks, model structure is not pre-
specified and, thus, comparatively much more data are required 
for building a predictive model. It is also important to note that 
we are still very much at the infancy stage of understanding 
at which point the merger of larger data with these novel ML 
methods can be beneficial for performance as compared with 
more traditional methods. The following challenge75 on time se-
ries forecasting shows that combinations of classic statistical and 
ML methods produce the most accurate forecasting and, thus, 
suggest it as a way forward. One of the main drivers of success 
of the pharmacometric approaches is that the models include a 
thorough understanding of the processes of drug absorption, dis-
tribution, metabolism, and elimination. The established models 
are highly predictive and, thus, find wide use in supporting drug 

development. Due to this success, despite the arrival of ML, clas-
sical pharmacometrics approaches are not expected to decrease 
in importance and activity. In contrast, they can be enhanced 
and improved by knowledge and insight distilled by ML meth-
ods and models.

An ongoing challenge for members of the clinical pharmacology 
community who wish to use ML methods is the inherent preva-
lence of longitudinal data. So far, there are many ML methods that 
rely on baseline features to make predictions, but relatively few ex-
amples where longitudinal data are used.

Overall, we expect that there will never be a universal, one-size-
fits-all approach to which modelers from different fields converge. 
We note that there are many areas of potential synergy where mod-
eling fields overlap in the remit of drug development. The clinical 
pharmacology community will continue to base their analyses on 
pharmacological principles and will gradually build in new ML el-
ements to their workflow, strengthening their models further. In 
addition, the clinical pharmacology community will be able to en-
hance the range of questions they are able to address by using ML 
approaches.
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