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Sir George Cayley, 1773-1857
• Showed lift is proportional to velocity squared and sin α, 1804
• Wrote a three-part paper on “Aerial Navigation,” 1809-1810
• Designed the first successful glider



A replica of Caley’s glider, 
flown by Derek Piggott, 1973  



Otto Lilienthal (1848-1896)
• Measured the lift and drag of a wing
• Made over 2000 flights in a glider, some as far as 350m
• Wrote a book “The flight of birds as the basis for the art of 

flying,” 1886.
• First person killed in an aircraft accident, 1896.



Orville and Wilbur Wright (1871-1948; 1867-1912)
• Knew of Cayley and Lilienthal’s work
• Made one of the first wind tunnels, 1901
• Invented wing warping as a method of roll control,1902



Wright Brothers’ 1902 Glider
first full 3-axis controlled flight



Orville Wright, Dec. 17, 1903
first controlled powered flight



• All of the basic equations of fluid mechanics were 
known.

• However, no acceptable theory existed for the lift 
force on a wing.

• Worst than that, the existing theories predicted that 
the lift was exactly zero.

Status of Aerodynamic Theory 
in the Early 1900s
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p F / A is the pressure=

F = force,   A = Area

Since           it follows that U1 > U2 so  p1 < p2.  Therefore, F2 > F1.
(WRONG).   One cannot assume that the stagnation point (where 
the streamlines separate) is exactly at the leading edge.  One must 
solve for the entire flow pattern over the wing, which varies 
considerably with the angle of attack.  

Bernoulli’s Theorem and the Lift on a Wing
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The usual argument:



Vorticity Circulation
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Some Key Concepts



Basic Equations and Assumptions
• Continuity equation

• Navier Stokes equation

• The assumption of incompressibility 
If ρm = constant, then 

• The vorticity equation 

Convection          Diffusion
• Reynolds Number
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Reynolds Number

Typical values (at sea level)

1.2 x 1020.3 in5 mphHousefly

3.9 x 1031 in5 mphButterfly

6.2 x 1044 in20 mphSeagull

2.5 x 1058 in40 mphModel airplane

1.6 x 1063 ft60 mphGlider

4.7 x 1065 ft100 mphLight plane

1.1 x 10820 ft  600 mphCommercial Jet

RNLU



• The inviscid assumption, 
If         , then 

(Euler’s equation)

• Kelvin’s theorem
If ρm = constant and     = 0, then 

• Velocity potentials
If Γ = 0 in the upstream flow, then                      at all points in 
the flow.  It follows then that 

• Laplace’s equation
From the continuity equation,             , one then has 

Basic Equations and Assumptions (con’t)
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Complex Potentials
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If z = x + iy, any analytic complex function
provides a solution to Laplace’s equation

Examples:

Uniform flow At an angle α Dipole Vortex
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Flow Around a Cylinder
Horizontal flow At an angle α With circulation
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The Blasius Force Equation
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The Joukowski Transformation, 1910
The Joukowski transformation

2cz ' z z= +

transforms a cylinder into a flat plate

,where z’ = x’ + iy’,



Flow Around a Flat Plate Airfoil

Since Γ0 = 0, by the Blasius theorem Fy = 0.

The dilemma: Since the upstream vorticity is zero
the circulation must be zero, so there can be no lift.

But a flat plate airfoil produces lift, so there must be 
circulation. 



The Kutta-Joukowski Condition, 1910
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The flow must be smooth and continuous at the trailing edge. 
Requires a circulation, Γ π α0 04 U asin .=



The Joukowski Family of Airfoils
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Comparison with Experimental Data



Wind Tunnel Observations

α = 5˚

α = 10˚

α = 15˚

Kutta condition
satisfied

Slight flow
separation

Complete flow
separation
(stall)



The Maximum Lift Coefficient



Origin of the Circulation
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Where is the Vorticity?
(In the boundary layer)



Finite Wing Span Effects
(continuity of    )

Note: Γ1 = Γ2 = Γ0, vortex trails cannot be avoided.

ωr



Vortex Trails



Vortex Trails



The Induced Downflow at the Wing

Note: The downflow velocity at the wing is exactly (1/2) of the 
downstream value (for a straight wing)



Induced Drag, Di

Upstream At the wing

Di = component of L in the U0 direction

angle of the downflow at the wingδ y 0U /U =



The Elliptical Wing Theorem 
Prandtl, 1918-1919

Problem: Minimize Di, while holding L constant
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The Total Drag Force
Induced Drag
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Viscous Drag



Some Elliptical Wings



Winglets



Viscous Drag Reduction
Laminar Flow Airfoils, NACA 1930s



First Use of a Laminar Flow Airfoil, P-51, 1940



Compressibility Effects
Shock Wave

Detached Shock Attached ShockMach Cone

Mach Number
(Ernst Mach, 1889)

M = U0/VS

δ δsv ~p , 1/5=



Thin Wing Theory
(Theodor von Karman, 1940s)
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Laplace’s equation modified for compressibility effects

M < 1
Elliptical differential equation

M > 1
Hyperbolic differential equation

Solution:  transform to M = 0 Solution:  wave equation
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The Flat Plate Airfoil
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Note the change in the center of pressure, from              ./4 to /2l l



The Critical Mach Number



A Shock at the Critical Mach Number



Sweepback 
(Busemann, 1935)

Sweepback increases the 
critical Mach number

First use of sweepback
Me-262, 1941 



Supercritical Airfoil
(Whitcomb, 1971)

Boeing 777 (Mc = 0.85)

Conventional Airfoil Supercritical Airfoil



A Wind Tunnel in Your Computer



Course Advertisement

• Consider taking Mechanics of Continua, 29:211

• 12:15 to 1:30 p.m., T-Th, 618 Van Allen Hall

• Topics covered include the fundamental equations of 
fluid mechanics, incompressible and compressible flows 
in 2 and 3 dimensions, wave propagation, shock waves, 
instabilities, turbulence, and boundary layer physics

• Prerequisites:  working knowledge of vector calculus, 
i.e., curl, divergence, gradient and associated identities 




