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Basic Circuit Elements - Prof J R Lucas 
An electrical circuit is an interconnection of electrical circuit elements.  These circuit 
elements can be categorized into two types, namely active elements and passive elements. 

Some Definitions/explanations of electrical terms 

Charge  (unit: coulomb, C;  letter symbol: q  or  Q ) 

The electric charge is the most basic quantity in electrical engineering, and arises from the 
atomic particles of which matter is made. 

Potential Difference  (unit: volt,  V; letter symbol: v  or  V ) 

The potential difference, also known as voltage, is the work done (or energy required) to 
move a unit positive charge from one point to another (across a circuit element). 

Thus the change in work done dw when a charge dq moves through a potential difference of v 

dw = v.dq  

Current  (unit: ampere, A; letter symbol: i  or  I ) 

The electric current is the rate of charge flow in a circuit. 

 ∫== dtiq
dt
dqi .,  

Energy  (unit: joule,  J; letter symbol: w  or  W ) 

The Energy is the capacity to do work. 

Thus in electrical quantities  this may be expressed as  

 ∫ dw = ∫ v.dq  = ∫ v.i.dt 

Power  (unit: watt, W; letter symbol:  p  or  P ) 

The electric power is the rate of change of energy. 

 iv
dt
dwp .==  

Common usage of letter symbols 

It is common practice to use the simple letters (such as v, i, p, w) to represent quantities which 
are varying with time, and capital letters (such as V, I, P, W) to represent quantities which are 
constants.  But this need not always be done and is a useful practice rather than a rule.  With 
representation of elements, obviously this practice does not exist as they are not time 
variables.  

The letter p is also commonly used to represent the differential operator 
dt
d . 

The letter  j  is normally used for the imaginary operator √-1 as  i  is almost invariably used to 
denote current.  



Basic Circuit Elements – Professor J R Lucas 2  November 2007 

Passive Circuit Elements 

The most basic of the passive circuit elements are the resistance, inductance and capacitance. 
Passive elements do not generate (convert from non-electrical energy) any electricity.  They 
may either consume energy (i.e. convert from electrical form to a non-electrical form such as 
heat or light), or store energy (in electrostatic and electromagnetic fields). 

Resistance (unit: ohm, Ω; letter symbol:  R , r ) 

 

 

 

 

The common circuit symbols for the Resistor are shown in figure 1.  Figure 1(a) is the 
common symbol used for the general resistor, especially when hand-written.  Figure 1(b) is 
the most general symbol for the resistor, especially when in printed form.  Figure 1(c) is the 
symbol used for a non-inductive resistor, when it is necessary to clearly indicate that it has 
been specially made to have no or negligible inductance. A resistor made in coil form, must 
obviously have at least a small amount of inductance. 

The basic equation governing the resistor is Ohm’s Law (see also page 5). 

 v(t) = R . i(t) 

This may also be written as 

 i(t) = G . v(t),  G = 
R
1  

where  G  is the conductance (unit: siemen, S ) 

 p(t) = v(t) . i(t) = R . i2(t) = G . v 2(t) 

 w(t) = ∫ v(t) . i(t) . dt = ∫ R . i2(t) . dt = ∫ G . v 2(t) . dt 

It is to be noted that p(t) is always positive indicating that power is always consumed and 
energy always increases with time. 

Inductance (unit: henry, H; letter symbol:  L , l ) 

 

 

 

 

The common circuit symbols for the Inductor are shown in figure 2.  Figure 2(a) shows a coil 
which is the simplest symbol (and most common when hand-written) for the inductor.  A 
simpler representation of this is shown in figure 2(b) and is used to simplify the drawing of 
circuits.  The symbol shown in figure 2(c) is sometimes used in printed form, especially on 
transformer nameplates, but is not a recommended form as it could lead to confusion with the 
common resistor. 

The basic equation governing the behaviour of an inductor is Faraday’s law of 
electromagnetism. 

 
dt
de φ)(−=  

R R 

Figure 1 – Circuit symbols for Resistance
(a) 

(b) (c)

i(t) 

v(t) 

L L 

Figure 2 – Circuit symbols for Inductance 
(a) 

(b) (c) 

i(t) 

v(t) 
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When there are N turns in a coil, e.m.f. will be induced in each turn, so that the voltage across 
the coil would be N times larger. Also, if the voltage is measured as a drop, the negative sign 
vanishes, so that 

 
dt
dNv φ

=  

The flux produced in the magnetic circuit, is proportional to the current flowing in the coil, so 
that we may express the rate of change of flux in terms of a rate of change of current. 

 φ ∝ i ,    
dt

idv ∝  

This is written as a basic electrical circuit equation as 

 ipL
dt

idLv ⋅==  or      ∫ ⋅=⋅= i
pL

dti
L

i 11  

Since the voltage across an inductor is proportional to the rate of change of current, a step 
current change is not possible through an inductor as this would correspond to an infinite 
voltage.  i.e. the current passing through an inductor can never change suddenly.  You might 
ask, whether this would not occur if we switched off the current in an inductor.  What would 
really happen is that the ensuing high rate of change would cause a very large voltage to 
develop across the switch, which in turn would cause a spark over across the gap of the switch 
continuing the current for some more time.  

 p(t) = v(t) . i(t)  

 w(t) =∫ v(t) . i(t) . dt  =∫ =⋅⋅ dti
td
idL  ∫ L . i.di  =  ½L. i 2 

It can be seen that w(t) is dependant only  on i and not  on time.  Thus when the current i 
increases, the energy consumed increases and when i decreases, the energy consumed 
decreases.  This actually means that there is no real consumption of energy but storage of 
energy. 

[If we compare with water tap, opening it and letting the water run into the ground would 
correspond to water consumption, where as filling a bucket with the water, and perhaps 
putting it back into the water tank, would  correspond to water storage]. 

Thus an inductor does not consume electrical energy, but only stores it in the electromagnetic 
field. 

 Stored  energy  w(t) = ½L. i 2 
 

Capacitance (unit: farad, F; letter symbol:  C , c ) 

 

 

 

 

The common circuit symbols for the Capacitor are shown in figure 3.   

When a voltage is applied across a capacitor, a positive charge is deposited on one plate and a 
negative charge on the other and the capacitor is said to store a charge.   

C C 

Figure 3 – Circuit symbols for Capacitance 
(a) (b)

i(t) 

v(t) 
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The charge stored is directly proportional to the applied voltage. 

 q  = C . v  

Since  q = ∫ i . dt  the basic equation for the capacitor may be re-written in circuit terms as 

 ∫ ⋅= dti
C

v 1  or      
td
vdCi =  

Since the current through a capacitor is proportional to the rate of change of voltage, a step 
voltage change is not possible through a capacitor as this would correspond to an infinite 
current.  i.e. the voltage across a capacitor can never change suddenly.  

 p(t) = v(t) . i(t)  

 w(t) =∫ v(t) . i(t) . dt  =∫ v . =⋅ dt
td
vdC  ∫ C . v.dv  =  ½C. v 2 

It can be seen that w(t) is dependant only  on v and not on time.  Thus when the voltage v 
increases, the energy consumed increases and when v decreases, the energy consumed 
decreases.  This actually means that there is no real consumption of energy but storage of 
energy. 

Thus a capacitor does not consume electrical energy, but only stores it in the electromagnetic 
field. 

 Stored energy  w(t) = ½C. v 2 

 
Summary 
For a resistor,    v = R i,  i = G v 

For an inductor, v = Lp i, i = 
Lp
1 v 

  Current through an inductor will never change suddenly. 

For a capacitor, v = 
Cp
1 i, i = Cp v 

  Voltage across a capacitor will never change suddenly. 

 
Impedance and Admittance 
These may all be written in the form 

  v = Z(p) i , i = Y(p) v 

where Z(p) is the impedance operator, and Y(p) is the admittance operator. 

Impedances and Admittances may be either linear or non-linear.  This is defined based on 
whether the values of R, L and C (slope of characteristic) are constants or not. 

 

  

 

 

 
Figure 4(a) Linear System Figure 4(b) Non-Linear System 
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Ohm’s Law 
This law was first described by Professor Georg Simon Ohm (1791-1867) in a pamphlet “Die galvanische 
Kette mathematisch bearbeitet” (translation The Galvanic Circuit investigated mathematically) in 1827. 

In any conducting medium, the current density J
r

 is related to the electric field E
r

 by the conductivity σ
of the medium (which can be a tensor in anisotropic materials)  as 

EJ
rr

σ=   (vector form of Ohm’s Law) 
Note:  This form of the equation is only valid in the reference frame of the conducting material. If the 

material is moving at velocity v relative to a magnetic field B, ).( BvEJ ×+= σ  
The total current I flowing across a surface S, perpendicular to it, is given by 

I = ∫
S

dSJ . = J . S    for a conducting rod of uniform cross-section 

In an electric field E, the difference of potential between the ends of a conductor is given as 

V = ∫ dlE. =  E . l for a uniform field 

Thus   
l
V

S
I .σ= ,   so that   I

S
lVV

l
SI .

.
and..

σ
σ

==  

where the constants 
l
S.σ = G = conductance,  

S
l
.σ

= R = resistance, and  ρ
σ

=
1  = conductivity 

Thus  V = R . I  giving the now familiar form of Ohm’s Law. 

Kirchoff’s Laws 
Gustav Robert Kirchoff (1824-1887) was the first to publish a systematic formulation of the principles 
governing the behaviour of electric circuits, based on already available experience.  His work embodied 
two laws, namely a current law and a voltage law. 

In a circuit supplied from a battery, external to the battery only an electrostatic field exists.  The field ξ
may be derived from the gradient of a scalar potential φ. 
 i.e. ξ = – φ∇  

The line integral of the field through the battery from the negative terminal to the positive terminal, or the 
voltage rise, is equal to the emf of the battery. 
Thus the potential change over a closed loop becomes zero, giving us Kirchoff’s voltage law 
 emf = Σ voltage drop external to circuit 
or Σ v = 0  where v is the voltage change across any circuit element. 
The net flow of current into a volume V is accompanied by an increase of charge within the same volume 
V. 

 ∫∫ ∂
∂

=−
VS

dV
t

dSJ ρ.    

Applying Gauss’s theorem 

 ∫∫ ∂
∂

=⋅∇−
VV

dV
t

dVJ ρ  or  0∫ =







∂
∂

+⋅∇
V

dV
t

J ρ
 

Since it is true for all V, it follows that 

 0=







∂
∂

+⋅∇
t

J ρ
 

For steady currents, 0=
∂
∂

t
ρ

 so that  ∇ . J = 0 

Which results in the Kirchoff’s current law 
 Σ i = 0      where i is the current of any circuit element connected to the node. 
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Active Circuit Elements 

An Active Circuit Element is a component in a circuit which is capable of producing or 
generating energy. [Producing energy actually means converting non-electrical form of 
energy to an electrical form].  Active circuit elements are thus sources of energy (or simply 
sources) and can be categorised into voltage sources and the current sources.  Voltage sources 
are those that keep their terminal voltage very nearly the same as their internal voltages (V ≈ 
E), while current sources keep their terminal currents very nearly the same as their internal 
currents (I ≈ IS).  Thus voltage sources would have series impedances which are relatively 
small, while current sources would have shunt admittances which are relatively small.  Ideal 
voltage sources would have zero internal impedance while ideal current sources would have 
zero internal admittance. 

Sources can also be categorised as being independent sources, where the generated voltage (or 
current) does not depend on any other circuit voltage or current; and dependent sources, 
where the generated voltage (or current) depends on another circuit voltage or current. While 
the circle is used as the circuit symbol for independent sources, the diamond is used as the 
circuit symbol for dependent sources. 

Independent source 

For an independent voltage source (or current source), the terminal voltage (or current) would 
depend only on the loading and the internal source quantity, but not on any other circuit 
variable. 

(Independent) Voltage Sources 
An ideal voltage source (figure 5(a)) keeps the voltage across it unchanged independent of 
load. 

 

      

 
 

v(t) = e(t)   for all  i(t)    v(t) = e(t) – Z(p).i(t)  

However, practical voltage sources (figure 5(b)) have a drop in voltage across their internal 
impedances.  The voltage drop is generally small compared to the internal emf. 

(Independent) Current Sources 
An ideal current source (figure 6(a)) keeps the current produced unchanged independent of 
load. 

 

      

 

 

 

i(t) = I(t)   for all  v(t)    i(t) = I(t) – Y(p).v(t)  

e(t) 

i(t) 

v(t) 
Figure 5(a) – Ideal voltage source

e(t) 

i(t) 

v(t) 
Figure 5(b) – Practical voltage source 

Z(p) 

I(t) 

i(t) 

v(t) 
Figure 6(a) – Ideal current source 

I(t) 

i(t) 

v(t) 
Figure 6(b) – Practical current source 

Y(p) 
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Practical current sources (figure 6(b)) have a drop in current across their internal  admittances.  
The current drop is generally small compared to the internal source current. 

Dependent Source 
A dependent voltage source (or current source) would have its terminal voltage (or current) 
depend on another circuit quantity such as a voltage or current.  Thus four possibilities exist.  
These are (figure 7) 

o Voltage dependent (controlled) voltage source 

o Current dependent (controlled) voltage source 

o Voltage dependent (controlled) current source 
o Current dependent (controlled) current source 

Example 1 

For the circuit shown in figure 8, determine the current I and Vo. 

Answer 

Applying Kirchoff’s voltage law, gives 

7.5 = 4 I + 4 Vo + 5 – Vo  

Also, from Ohm’s law 

  1.I = – Vo 

Thus by substitution, we have 

 I = 2.5 A    and   Vo = – 2.5 V  

 

Example 2 

For the circuit shown in figure 9, determine the current I and Vo. 

Answer 

Applying Kirchoff’s voltage law, gives 

 6 = 5 (I – 0.8 Vo) – 4 – Vo  

Also, from Ohm’s law 

  1.I = – Vo 

Thus by substitution, we have 

 I = 1.0 A    and   Vo = – 1 V 

 

Example 3 

For the circuit shown in figure 10, determine the current I. 

Answer 

Applying Kirchoff’s voltage law, gives 

 E = R1 I + R2 (1+α) I 

Also, from Ohm’s law 

 Ro αI = – Vo  

+   –

αVo

+   –

βIo

αIoγVo

Figure 7 – Dependent sources

 

+
–

I

7.5V

Vo 

+   – 

4Vo 

+
–5V

4Ω

1Ω 

+ –

Figure 8 – Circuit for example 1

+
–

I 

6V

Vo 

0.8Vo 

+
–

4V

5Ω 

1Ω 

+ –

Figure 9 – Circuit for example 2

+
–

I

E Vo

α I 

+

–
Ro R2 

R1 

Figure 10 – Circuit for example 3
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By solution of the equations 

 
)(1 R  R

E  I
21 α++

=  

And 
)(1 R  R

ER
  V

21

o
o α

α
++

−=  

 

Operational Amplifier (Op Amp) 

An operational amplifier is an active 
circuit element that behaves as a voltage-
controlled voltage source.  An operational 
amplifier can be used to add, subtract, 
multiply, divide, amplify, integrate and 
differentiate signals and are thus very 
versatile. 

A practical Op Amp, commercially available in Integrated circuit (IC) packages would have 
the inputs and outputs as shown in figure 11. The ‘Null’ determines the offset. 

The output voltage of the Op Amp is linearly proportional to the voltage difference between 
the input terminals + and – by the gain A. However, the output voltage is limited to the range 
V+ to V– of the supply voltage.  

This range is often called the linear region of the amplifier, and when the output reaches to 
these limits, the op amp is said to be saturated. 

The equivalent circuit of the Op Amp is shown in 
figure 12. It has a dependent voltage source AVd. An 
ideal Op Amp has infinite gain (A =  ∞), infinite input 
resistance (Rin =  ∞), and zero output resistance (Rout 
= 0). 

Parameter Symbol Ideal Typical 

Open-loop gain A ∞ 105 to 108 

Input Resistance Rin ∞ 106 to 1013 Ω

Output Resistance Rout 0 10 to 100 Ω 

Supply Voltage V+, V–  5 to 24 V 
 

Inverting Amplifier 

An inverting amplifier circuit is shown in figure 13. In 
an inverting amplifier the output voltage decreases 
when the input voltage increases and vice versa. 

The equivalent circuit of the inverting amplifier is as 
shown in the figure 14.  

+

–Inverting Input

Non-inverting Input
Output

V+ 

V− Null 

Figure 11 – Circuit connections of Op Amp

+

–

Figure 12 – Equivalent Circuit of Op Amp

Rin 

Rout 

+ 
– 

Vd 

A Vd 

Vout 

+

–
V+ 

V− 

R1

R2 

Vin
Vout

Figure 13 – Circuit of Inverting Amplifier
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out

doutoutd

outd

in

ddin

R
AVV

R
VV

R
VV

R
V

R
VV

i

+
=

−

−
+=

−
=

2

21  

If  Rout = 0, and  Rin =  ∞, 

Vout = – A Vd   

2

2

1 R
VAAV

R
AVAV dddin +

=
−

  

giving   
121 R

V
R

AVV
R

AV outoutoutin +
+

=−  

Thus 
21

2

)1( RRA
AR

V
V

in

out

++
−=  

If A →  ∞  as for an ideal Op Amp, 

Gain = 
1

2

R
R

V
V

in

out −=  

0→−=
A

V
V out

d  

Thus in ideal Op Amps, Vd is usually taken as a virtual earth, even when analyzing. 
 
Non-inverting Amplifier 

In the non-inverting amplifier (figure 15), the input 
voltage is applied directly to the non-inverting (+) input 
and a small part of the output voltage is applied to the 
inverting (–) input from the R1R2 potential divider. 

For an ideal Op Amp, with Rout = 0,  Rin = ∞  and  A = ∞ 

it can be shown that 

Gain = 
1

21

R
RR +

 

 
Summing Amplifier 

If another input resistor, equal to the value of the original 
input resistor R1, is added to the input of the Op Amp, a 
Summing amplifier is obtained (figure 16). 

)(
1

2
inBinAout VV

R
RV +−=  

If the two input resistors are not equal 

)(
11

2
B

inB

A

inA
out R

V
R
V

RV +−=  

+

–
V+ 

V− 

Figure 15 – Non-inverting Amplifier

R1
R2 

Vin

Vout

+

–
V+ 

V− 

Figure 16 – Summing Amplifier

R1A

R2 

VinA

Vout

R1B

VinB

+

–R1

Vin
Vout

R2 

+ 
– – A Vd  

Rin

Rout 

Vd

Figure14 – Equivalent Circuit 

i
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Differential Amplifier 

So far, only one input terminal has been considered, either inverting or non-inverting. It is 
also possible to connect input signals to both terminals at the same time. The resultant output 
voltage is proportional to the difference between the two input signals V1A and V1B when the 
resistance values are appropriately chosen. This type of Op-Amp circuit is commonly known 
as the Differential Amplifier (figure 17). 

For this configuration,  

for an ideal Op Amp,  Rin = ∞, Rout = 0,  and  A = ∞ . 

∞==
d

out

V
V

A , giving 0 =
∞

= out
d

V
V  but with no current 

going into the Op Amp as Rin = ∞ 

Thus if the voltage at each input terminal is V, 

21 R
VV

R
VVI out

A

inA
A

−
=

−
= , 

31 R
V

R
VVI

B

inB
B =

−
=  

This gives 
31

3

RR
R

V
B +

= VinB 

Substitution gives 
A

inA

A

out

R
V

RR
V

R
V

−







+=

212

11  

inA
A

inB
BA

A
out V

R
RV

RR
R

R
RRV

1

2

31

3

1

21 −







+







 +
=  

 

When R1A = R1B = R1 and R3 = R2, the transfer function becomes 

( )inAinBout VV
R
R

V −=
1

2  

 
Natural Behaviour of R-L-C Circuits 
 
The natural behaviour of a circuit does not depend on the external forcing functions, but on 
the system itself.  [It is like, if we take a pendulum and give it an initial swing, and then let 
go, the behaviour of the pendulum depends only on its natural frequency.  However, if we 
keep on pushing it at some other frequency, then the behaviour would also depend on the 
frequency of the forcing function].  Thus in order to determine the natural behaviour, we must 
use a forcing function which does not have its own frequency.  The two forcing functions that 
lend themselves to purpose are the step function and the impulse function. 
Unit Step Function 
The unit step H(t) (similar in appearance to a step in a 
staircase) has an amplitude zero before time zero, and 
an amplitude unity after time zero. 
 H(t)  =  0 , t < 0 

 H(t)  =  1 , t > 0 

 

H(t)

1 

t 

Figure 18 – Unit Step 

+

–
V+ 

V− 

Figure 17 – Differential Amplifier

R1A

R2 

VinA

Vout

R1B

VinB

R3

Vd 

IA

IB
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Unit Impulse Function 
The unit impulse δ(t) has an amplitude zero before time zero, and an amplitude of infinity at 
time zero, and zero again after time zero.  It also has the property that the area under the 
curve is unity. 
 δ(t)  =  0 , t < 0 
 δ(t)  =  ∞ , t = 0 
 δ(t)  =  0 , t > 0 

 also, ∫
∞

∞−

)(tδ . dt = 1 ,  which gives ∫
+

−

0

0

)(tδ . dt = 1 

The unit  impulse function also has the following properties. 

 ∫
∞

∞−

⋅ )()( ttf δ . dt = f(0),  and    ∫
∞

∞−

⋅− )()( ttf δτ . dt = f(τ) 

Series R-L circuit 
Consider the excitation of a series R-L circuit by a step 
excitation e(t) = E.H(t). 
We can write the differential equation governing the behaviour 
as 

 )(. teiR
dt
diL s=+  = E.H(t) 

This equation has a particular integral of E/R corresponding to 
steady state, and a complementary function corresponding to 
 L p i + R i = 0 
i.e. the solution to the equation is of the form 

 
R
EeAti

t
L
R

+=
−

.)(  

The constant A can be determined from the initial conditions.   

i.e. at  t = 0, i = 0 ∴  A =  
R
E)(−   ∴ i(t) = 








−

− t
L
R

e
R
E 1  

 

Consider now the excitation of the series R-L circuit by an impulse excitation e(t) = E.δ(t) 

The complementary function is the same as before, but the particular integral is now different 
and equal to 0.  The new coefficient A can be obtained from the initial conditions which are 
now different.  The response to a unit impulse is also the same as the derivative of the 
response to the unit step. 

Thus the unit impulse response is 

 i(t) =  



















−

− t
L
R

e
R
E

dt
d 1 = 

t
L
R

e
L
E −

 

Other circuits can also be similarly solved by writing the differential equations governing the 
behaviour.  Further information is available on the section on problems on circuit transients. 

Figure 19 – Unit Impulse 

δ(t) 

∞ 

t 

R 

L 

es(t) 

i(t) 

Figure 20 – Series R-L circuit 

t 

es(t)

t 
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i(t) 

Figure 21 – Step Response 


