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Abstract. This paper is an introduction to the study of inventory theory.
The paper illustrates deterministic and stochastic models. We present the
derivation of each model, and we illustrate each model through the use of
examples. We also learn about quantity discounts, and use the aforementioned
models to understand a real world situation involving firecrackers. Finally,
some of the economic practices of Zappone Manufacturing are analyzed. It
is shown how deterministic, stochastic and other simple models are not much
help to this company. Also included in this paper is a derivation of Leibniz’s
Rule, which helps in deriving the stochastic model. This paper assumes the
reader to have a basic understanding of mathematical statistics.

1. Introduction

Keeping an inventory (stock of goods) for future sale or use is common in busi-
ness. In order to meet demand on time, companies must keep on hand a stock
of goods that is awaiting sale. The purpose of inventory theory is to determine
rules that management can use to minimize the costs associated with maintaining
inventory and meeting customer demand. Inventory is studied in order to help
companies save large amounts of money. Inventory models answer the questions:
(1) When should an order be placed for a product? (2) How large should each
order be? The answers to these questions is collectively called an inventory pol-
icy. Companies save money by formulating mathematical models describing the
inventory system and then proceeding to derive an optimal inventory policy. This
paper is an introduction to the study of inventory theory. We consider two models:
deterministic continuous review models and stochastic models. First we learn that
each model has a couple of variations to it. In addition, we learn how to derive
the models, and use the models in examples. Next, we discuss quantity discounts
and how these discounts affect the model. Then, we use the models to tackle a
conceivable real world situation. Finally, we look at a company and see if we can
use any of our newfound knowledge to help this company with its inventory policy.
Also included in this paper is a derivation and example of Leibniz’s Rule, which
helps in the derivation of one of our models, and in section ten, there is a table of
frequently used notation. Our information is from Frederick S. Hillier and Gerald J.
Lieberman’s textbook, Introduction to Operations Research [1]. This paper assumes
the reader to have a basic understanding of elementary statistics. Some frequent
terms used in this paper are: probability distribution, expected value, cumulative
distribution function, and a uniform distribution. A good review for this is Richard
J. Larsen and Morris L. Marx’s An Introduction to Mathematical Statistics and Its

Applications [2].
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2. Basic Terms that Describe Inventory Models

We begin by discussing in detail some important concepts used to describe in-
ventory models. There are six components that determine profitability. These
are:

(1) The costs of ordering or manufacturing the product
(2) Holding costs. This includes the cost of storage space, insurance, protection,

taxes, etc.
(3) Shortage costs. This cost includes delayed revenue, storage space, record

keeping, etc.
(4) Revenues. These costs may or may not be included in the model. If the

loss of revenue is neglected in the model, it must be included in shortage
cost when the sale is lost.

(5) Salvage costs. The cost associated with selling an item at a discounted
price.

(6) Discount rates. This deals with the time value of money. A firm could be
spending its money on other things, such as investments.

Inventory models are classified as either deterministic or stochastic. Determin-
istic models are models where the demand for a time period is known, whereas in
stochastic models the demand is a random variable having a known probability dis-
tribution. These models can also be classified by the way the inventory is reviewed,
either continuously or periodic. In a continuous model, an order is placed as soon
as the stock level falls below the prescribed reorder point. In a periodic review, the
inventory level is checked at discrete intervals and ordering decisions are made only
at these times even if inventory dips below the reorder point between review times
[1].

3. Continuous Review Model with Uniform Demand

The first model we look at is a continuous review model with uniform demand.
Units are assumed to be withdrawn continuously at a known constant rate, a. We
use this model to determine when to replenish inventory and by how much so as to
minimize the cost. There are two forms to this model. In the first model, shortages
are not allowed and in the second, shortages are allowed.

3.1. Shortages are Not Allowed. Let us use the following notation:

a = demand for a product

Q = units of a batch of inventory

Q

a
= cycle length or time between production runs

K = the setup cost for producing or ordering one batch

c = the unit cost for producing or purchasing each unit

h = the holding cost per unit per unit of time held in inventory

Q∗ = the quantity that minimizes the total cost per unit time

t∗ = the time it takes to withdraw this optimal value of Q∗.

With a fixed demand rate, shortages can be avoided by replenishing inventory
each time the inventory level drops to zero, and this will also minimize the holding
cost. Figure 1 illustrates the resulting pattern of inventory levels over time when
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Figure 1. Diagram of inventory level as a function of time when
no shortages are permitted ([1], pg.762).

we start at 0 by producing or ordering a batch of Q units in order to increase the
initial inventory level from 0 to Q The total cost per cycle is equal to the total
production cost per cycle plus the cost of holding the current inventory ([1], pg.
762).

The total production cost per cycle, PC, is given by the following equation:

PC = K + cQ.

The average inventory level during a cycle is (Q + 0)/2 = Q/2 units per unit
time, and the corresponding cost is hQ/2 per unit time.. Because the cycle length
is Q/a, the holding cost per cycle is given by the following:

hQ

2

Q

a
=

hQ2

2a
.

Therefore, the total production cost per cycle is:

K + cq +
hQ2

2a
.

However, we want the total cost per unit time, so we divide the total production
cost per cycle by Q

a
to arrive at our total cost per unit time equation:

aK

Q
+ ac +

hQ

2
.

The value of Q∗ that minimizes the total cost is found by taking the derivative
of the total cost and setting it equal to zero, and solving for Q. After some algebra,
we arrive at the following two equations which describe our model ([1], pg.763):

(1) Q∗ =

√

2aK

h
,

(2) t∗ =
Q∗

a
=

√

2K

ah
.
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Figure 2. Diagram of inventory level as a function of time when
shortages are permitted ([1], pg.763).

3.2. Shortages are Allowed. Sometimes it is worthwhile to permit small short-
ages to occur because the cycle length can then be increased with a resulting saving
in setup cost. However, this benefit may be offset by the shortage cost. vento-
ryventoryventoryventoryventoryTherefore, let us see the equations if shortages are
allowed. First, we need to see some new notation:

p = shortage cost per unit short per unit of time short

S = inventory level just after a batch of Q units is added

Q − S = shortage in inventory just before a batch of Q units is added

S∗ = the optimal level of shortages

The resulting pattern of inventory levels over time is shown in Figure 2 when
one starts at time 0 with an inventory level of S.

The production cost per cycle, PC, is the same as in the continuous review
model without shortages. During each cycle, the inventory level is positive for a
time S/a. The average inventory level during this time is (S +0)/2 = S/2 units per
unit time, and the corresponding cost is hS/2 per unit time. Therefore,the holding
cost per cycle is now given by:

hS

2

S

a
=

hS2

2a
.

Also, shortages occur for a time (Q − S)/a. The average amount of shortages
during this time is (0 + Q − S)/2 = (Q − S)/2 units per unit time, and the corre-
sponding cost is p(Q − S)/2 per unit time. Therefore, the shortage cost per cycle
is:

p(Q − S)

2

Q − S

a
=

p(Q − S)2

2a
.

Again, we want the total cost per unit time. In order to determine this, we add
up all of our costs and then divide by the cycle length (Q/a) to arrive at:

aK

Q
+ ac +

hS2

2Q
+

p(Q − S)2

2Q
.

In this model, there are two decision variables (S and Q), so the optimal values
(S∗ and Q∗) are found by setting the partial derivatives δT/δS and δT/δQ equal
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to zero. We solve for Q∗ and S∗ which leads to our models. Our three equations
for this model are ([1], pg. 765):

(3) S∗ =

√

2aK

h

√

p

p + h
,

(4) Q∗ =

√

2aK

h

√

p + h

p
,

(5) t∗ =
Q∗

a
=

√

2K

ah

√

p + h

p
.

3.3. Example. Suppose that the demand for a product is 30 units per month and
the items are withdrawn at a constant rate. The setup cost each time a production
run is undertaken to replenish inventory is $15. The production cost is $1 per item,
and the inventory holding cost is $0.30 per item per month ([1], pg 798, problem
17.3.1)

(1) Assuming shortages are not allowed, determine how often to make a pro-
duction run and what size it should be.
Answer: We know that a = 30, h = 0.30, K = 15. Now, we use Equation
1 to get:

Q∗ =

√

2(30)(15)

0.30
= 54.77

Use Equation 2 to receive:

t∗ =
Q∗

a
=

54.77

30
= 1.83

(2) If shortages are allowed but cost $3 per item per month, determine how
often to make a production run and what size it should be.
Answer: Now, p = 3. We use Equation 4 to find Q∗:

Q∗ =

√

2(30)(15)

0.30

√

3 + 0.30

3
= 57.4433

Finally, we use Equation 5 to find out how often we should place the order:

t∗ =
Q∗

a
=

57.4433

30
= 1.914

4. Quantity Discounts

In the previous models, we assumed that the unit cost of an item is the same
regardless of how many units were ordered. However, there could be cost breaks
for ordering larger quantities.
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Figure 3. This is the graph of Tj versus Q. We need to examine
the regions of the curves with solid lines ([1], pg. 766).

4.1. Example. Here is an example from Hillier and Lieberman ([1], pg. 766):
Suppose the unit cost for every speaker is c1 = $11 if less than 10, 000 speakers

are produced, c2 = $10 if production is between 10, 000 and 80, 000 speakers, and
c3 = $9.50 if more than 80, 000 speakers are produced. Demand for the speakers
is 8, 000 per month and the speakers are withdrawn at a known constant rate.
The setup cost each time a production run is undertaken to replenish inventory is
$12, 000 and the inventory holding cost is $0.30 per item per month. What is the
optimal policy?

From Section 1, we are given from the derivation of the first model, that if the
unit cost is cj and j = 1, 2, 3, then the total cost per unit time, Tj , is:

(6) Tj =
aK

Q
+ acj +

hQ

2
.

The value of Q that minimizes Tj is found using Equation 1 from Section 3
(assuming shortages are not permitted). For K = 12, 000, h = 0.30 and a = 8, 000,
we find that Q∗ = 25, 298:

√

(2)(8, 000)(12, 000)

0.30
= 25, 298.

A plot of Tj versus Q is shown in Figure 3. The only regions that we need to
examine are the regions of the curve shown by the solid lines. This is because the
regions with the solid lines show the domain of that particular Tj curve. Looking
at Figure 3, we see that 25, 298 is only in the domain of the curve T2. Another way
to see that 25, 298 is the optimal policy, we can evaluate the minimum cost for each
Tj . The minimum feasible value of T3 is $89, 200 (which can be seen in Figure 1
or computed using Equation 6 where Q = 80, 000). The minimum feasible value of
T1 is $99, 100 (which is found using Equation 6 where Q = 10, 000). Finally, the
minimum value of T2 evaluated at 25, 298 is $87, 589. Because T2 < T3 < T1, it is
better to produce in quantities of 25, 298 ([1], pg. 766).
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5. Stochastic Single Period Model with No Set-Up Cost

We will first discuss the basic model, and then show two derivations of it. In one
derivation, we will use calculus and in the other, we will not. Finally, we will look
at a few examples of how to use our model.

5.1. The Model. There are two risks involved when choosing a value of y, the
amount of inventory to order or produce. There is the risk of being short and thus
incurring shortage costs, and there is a risk of having too much inventory and thus
incurring wasted costs of ordering and holding excess inventory.

In order to minimize these costs, we minimize the expected value of the sum
of the shortage cost and the holding cost. Because demand is a discrete random
variable with a probability distribution function, (PD(d)), the cost incurred is also
a random variable. Let PD(d) = P{D = d}.

We will now gather some background information about statistics. The expected
value of some X , where X is a discrete random variable with probability function,
pX(k), is denoted E(X) and is given by ([2], pg. 192):

E(X) =
∑

all k

k · pX(k).

Similarly, if Y is a continuous random variable with probability function, fY (Y ),

E(Y ) =

∫ ∞

−∞

y · fY (y)dy.

By the Law of the Unconscious Statistician we can say that:

E(h(x)) =

∫ ∞

−∞

h(x)f(x)dx.

Now, we return to analyzing our costs. The amount sold is given by:

min(D, y) =

{

D if D < y,
y if D ≥ y.

where D is the demand and y is the amount stocked. Now, let C(d, y) be equal to
the cost when demand, D is equal to d. Notice that:

C(d, y) =

{

cy + p(d − y) if d > y,
cy + h(y − d) if d ≤ y.

The expected cost is then given by C(y),

C(y) = E[C(D, y)] = cy +

∞
∑

d=y

p(d − y)PD(d) +

y−1
∑

d=0

h(y − d)PD(d).

Sometimes a representation of the probability distribution of D is difficult to find,
as in when demand ranges over a large number of possible values. Therefore, this
discrete random variable is often approximated by a continuous random variable.
For the continuous random variable D, let ϕD(ξ) be equal to the probability density
function of D and Φ(a) be equal to the cumulative distribution function of D. This
means that

Φ(a) =

∫ a

0

ϕD(ξ)dξ.
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Using the Law of the Unconscious Statistician, the expected cost C(y) is then given
by:

C(y) = E[C(D, y)] =

∫ ∞

0

C(ξ, y)ϕDdξ.

This expected cost function can be simplified to cy + L(y) where L(y) is called the
expected shortage plus holding cost. Now, we want to find the value of y, say y0

which minimizes the expected cost function C(y). This optimal quantity to order
y0 is that value which satisfies ([1], pg. 775):

(7) Φ(y0) =
p − c

p + h
.

5.2. Derivation of the Model Using Calculus. To begin, we assume that the
initial stock level is zero. For any positive constants, c1 and c2, define g(ξ, y) as

g(ξ, y) =

{

c1(y − ξ) if y > ξ,
c2(ξ − y) if y ≤ ξ,

and let

G(y) =

∫ ∞

0

g(ξ, y)ϕD(ξ)dξ + cy.

where c > 0. By definition,

G(y) = c1

∫ y

0

(y − ξ)ϕD(ξ)dξ + c2

∫ ∞

y

(ξ − y)ϕD(ξ)dξ + cy.

Now, we take the derivative of G(y) (see Appendix) and set it equal to zero. This
gives us,

dG(y)

dy
= c1

∫ y

0

ϕD(ξ)dξ − c2

∫ ∞

y

ϕD(ξ)dξ + c = 0.

Because,
∫ ∞

0

ϕD(ξ)dξ = 1,

we can write,

c1Φ(y0) − c2[1 − Φ(y0)] + c = 0.

Now, we solve this expression for Φ(y0) which results in

Φ(y0) =
c2 − c

c2 + c1
.

To apply this result, we need to show that

C(y) = cy +

∫ ∞

y

p(ξ − y)ϕD(ξ)dξ +

∫ y

0

h(y − ξ)ϕD(ξ)dξ,

has the form of G(y). We see that c1 = h, c2 = p, and c = c, so that the optimal
quantity to order y0 is that value which satisfies

Φ(y0) =
p − c

p + h
.
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5.3. Without using Calculus. We are going to arrive at the optimal policy think-
ing rationally about costs and without using calculus.

Suppose the current order level is y0 and we are considering ordering one more
unit. We are trying to decide if this a good idea or not.

The net average change in total cost is equal to the average extra cost on the
holding side minus the average savings on the shortage side. An optimal policy is
when this net average change in total cost is equal to 0.

The average extra cost on the holding side is the probability that demand is less
than y0, (P (D < y0)), times the extra holding cost for one more unit (h) plus the
extra purchase cost (c) or:

P (D < y0)[h + c].

The average savings on the shortage side is the probability that demand is greater
than or equal to y0, (P (D ≥ y0)), times the shortage cost that we do not have to
pay anymore (p) minus the cost of buying that extra unit (c) or:

P (D ≥ y0)[p − c].

Now, we solve the following equation for Φ(y0), where Φ(y0) = P (D < y0) and
consequently, 1 − Φ(y0) = P (D ≥ y0):

0 = P (D < y0)[h + c] − P (D ≥ y0)[p − c],

or

0 = Φ(y0)[h + c] − (1 − Φ(y0))[p − c].

and we get that the optimal policy is:

Φ(y0) =
p − c

p + h
.

Therefore, we see that in this particular model, a single period model with no
setup costs, we can arrive at our optimal policy without the use of calculus.

5.4. Examples.

(1) A baking company distributes bread to grocery stores daily. The company’s
cost for the bread is $0.80 per loaf. The company sells the bread to the
stores for $1.20 per loaf sold, provided that it is disposed of as fresh bread
(sold on the day it is baked). Bread not sold is returned to the company.
The company has a store outlet that sells bread that is 1 day or more old
for $0.60 per loaf. No significant storage cost is incurred for this bread.
The cost of the loss of customer goodwill due to a shortage is estimated to
be $0.80 per loaf. The daily demand has a uniform distribution between
1, 000 and 2, 000 loaves. Find the optimal daily number of loaves that the
manufacturer should produce ([1], pg.801, problem 17.4.3).

Answer: c = 0.80, h = −0.60 and p = 1.20 + 0.80 = 2.00
Because demand has a uniform distribution, we need to solve ϕ(z) =
∫ z

a
1

b−a
dx where a = 1000 and b = 2000 to receive the following:

ϕ(z) =

∫ z

1000

1

1000
dx =

z − 1000

1000
.

Now, we must substitute z = y0 and solve the following:

y0 − 1000

1000
=

2 − 0.8

2 − 0.6
.
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Therefore, the manufacturer should produce 1, 857 loaves of bread
(2) Suppose that the demand D for a spare airplane part has an exponential

distribution with mean 50, that is,

ϕD(ξ) =

{

1
50e−

ξ
50 for ξ ≥ 0

0 otherwise.

This airplane will be obsolete in 1 year, so all production of the spare part
is to take place at present. The production costs now are $1, 000 per item,
but they become $10, 000 per item if they must be supplied at later dates-
that is, p = 10, 000. The holding costs, charged on excess after the end of
the period are $300 per item. Determine the optimal number of spare parts
to produce ([1], pg. 800-801, problem 17.4.2).

Answer: We know that c = 1, 000, p = 10, 000 and h = 300. We solve
the following integral for a:

φ(a) =

∫ a

0

1

50
e−

ξ
50 dξ = 1 − e

−a
50 .

The optimal quantity to produce, y0 is that value which satisfies:

1 − e
−y0

50 =
10, 000− 1, 000

10, 000 + 300
= 104.

Therefore, we have found an optimal policy of producing 104 spare parts.

6. Stochastic Single Period Model with a Set-up Cost

6.1. The Model. Now, we assume there is a set up cost incurred when ordering or
producing inventory. The optimal inventory policy is the following ([1], pg. 781):

If x

{

< s order S − x to bring inventory level up to S,
≥ s do not order.

We determine the value of S from

ϕ(S) =
p − c

p + h
,

which is exactly the optimal policy from the stochastic model with no set up cost.
Also, s is the smallest value that satisfies the equation

cs + L(s) = K + cS + L(S).

Hence, this policy is referred to as an (s, S) policy.

6.2. Derivation of the Model. To begin, the shortage and holding costs are
given by L(y), where

L(y) = p

∫ ∞

y

(ξ − y)ϕD(ξ)dξ + h

∫ y

0

(y − ξ)ϕD(ξ)dξ.

Therefore, the total expected cost incurred by bringing the inventory level up to
y is given by

K + c(y − x) + L(y) if y > x,
L(x) if y = x.
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Figure 4. Graph of cy + L(y) ([1], pg.780).

If cy + L(y) is drawn as a function of y, it will appear as shown in Figure 4.
Now we will define S as the value of y that minimizes cy + L(y), and define s as
the smallest value of y for which cs+ L(s) = K + cS +L(S). From Figure 4, it can
be seen that

If x > S, then K + cy + L(y) > cx + L(x), for all y > x,

so that

K + c(y − x) + L(y) > L(x).

The left hand side of this inequality is the expected total cost of ordering y − x
to bring the inventory level up to y, and the right hand side of this inequality is the
expected total cost if no ordering occurs. Therefore, the optimal policy says that
if x > S, do not order.

From Figure 4, we note that, if s ≤ x ≤ S,then

K + cy + L(y) ≥ cx + L(x), for all y > x,

so that

K + c(y − x) + L(y) ≥ L(x).

Again, we see that it is better not to order.
Now, if x < s, we can see from Figure 4 that

min
y≥x

{K + cy + L(y)} = K + cS + L(S) < cx + L(x),

or rearranging terms we get:

min
y≥x

{K + c(y − x) + L(y)} = K + c(S − x) + L(S) < L(x),

so that it pays to order.
Therefore, we get an optimal policy of the following:

If x

{

< s order S − x to bring inventory level up to S,
≥ s do not order.

In addition, s is the smallest value which satisfies the equation

cs + L(s) = K + cS + L(S).

Thus, our policy is called an (s, S) policy.
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7. Case Study: Tackling Newsboy’s Teachings

7.1. The Situation. Howie Rogers wants to win a Corvette. In order to do this, he
must establish a firecracker stand and purchase firecrackers from Leisure Limited,
a large wholesaler. Howie will then resell the firecrackers to local customers for a
higher price. He has until the Fourth of July. This is because after the holiday,
no one will want firecrackers until New Year’s Eve. He must return the leftover
firecrackers to Leisure Limited, but Leisure Limited will only refund part of the cost
of the returned firecrackers. Whoever sells the most firecrackers, wins a Corvette.
Additionally, once Howie orders firecrackers, it takes 7 days for their delivery.

The question now is, how many firecrackers should he order? If he orders too
few, he will not have time to place and receive another order before the holiday
and therefore lose sales and his chance to win the Corvette. If he orders too many
firecrackers, he will lose money since he cannot obtain a full refund for the extra
firecrackers. Howie enlists the help of his sister Talia.

Talia calls Leisure Limited and obtains the following information: Howie will
pay $3.00 per firecracker set. The fees to place an order are approximately $20.00
per order. After the Fourth of July, Leisure Limited returns only half of the cost
for each firecracker set returned. In addition, Howie will have to pay shipping
costs that average $0.50 per firecracker set. Data compiled from last year’s sales
indicate that the firecracker sets sold for an average of $5.00 per set. Also, data
indicates that stands sold between 120-420 firecracker sets. Now, Talia makes a
few assumptions. The most important one being that demand will follow a uniform
distribution. Also, she decides to use the average of $5.00 for the unit sale price.

7.2. The Question. This case study is basically a stochastic model without a
set-up cost. There is no set up cost because Howie must place an order; he has
no inventory on hand, so in order to start the business, there is no question as to
whether or not to order based on the set up cost. Now, we must answer a few
questions.

(1) How many firecracker sets should Howie purchase from Leisure Limited to
maximize his expected profit?

Answer: c = 3, p = 5, and h = −1. The value of h is determined by
taking the storage cost minus the salvage value, 0 − (1.5 − 0.5).
Because we are assuming demand follows a uniform distribution, we need
to solve ϕ(z) =

∫ z

a
1

b−a
dx where b = 420 and a = 120. Plugging these

numbers in and solving, we get

ϕ(z) =

∫ z

120

1

300
dx =

z − 120

300
.

Now, we solve

φ(y0) =
p − c

p + h
,

where we plug in our known numbers and solve for y0. This becomes:

y0 − 120

300
=

5 − 3

5 − 1
.

Thus our answer is to order 270 firecrackers.
(2) How would Howie’s order quantity change if Leisure Limited refunds 75%

of the wholesale price for returned firecracker sets? How would it change if
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Leisure Limited refunds 25% of the wholesale price for returned firecracker
sets?

Answer: Now, Leisure Limited refunds 75% of the wholesale price. This
means that Howie will receive 2.25 for every unsold firecracker set. This
changes our holding cost value (h) from −1 to −(2.25 − 0.50) = −1.75.
Everything else stays the same, so we solve the following equation for y0:

y0 − 120

300
=

5 − 3

5 − 1.75
.

Now, Howie should order 280 firecrackers.
If Leisure Limited refunds only 25% of the wholesale price, Howie will
receive only 0.75 for every unsold firecracker set. This changes the holding
cost value to −(0.75−0.50) = −0.25. Now, we solve the following equation
for y0:

y0 − 120

300
=

5 − 3

5 − 0.25
.

Therefore, Howie should order 246 firecracker sets.
(3) Howie is not happy with selling the firecracker sets for $5.00 per set. Sup-

pose Howie wants to sell the firecracker sets for $6.00 per set instead. What
factors would Talia have to take into account when recalculating the opti-
mal order quantity?

Answer: If Howie wants to sell the firecracker sets for $6.00 per set, then
the shortage cost changes from 5 to 6. Therefore, we solve the following
equation for y0:

y0 − 120

300
=

6 − 3

6 − 1
.

Now, Howie should order 300 firecracker sets.

8. Zappone Manufacturing [3]

Zappone Manufacturing began in 1969 producing aluminum roofing shingles. It
was not until the late 1970’s that they began manufacturing copper shingles. This
was because Joe Zappone and his wife Lynda went on a tour of Europe and Zappone
noticed, that unlike in the US, most European roofs were designed to be permanent.
Zappone decided to produce a roof that would match the quality of the roofing he
saw in Europe. That is how Zappone became the first person to make shingles out
of copper. Normally the roofs were made out of copper sheets, which were harder
to work with, making them extremely expensive. He promoted his new product
very heavily; one of the ways he did this was by putting the copper roof on the
carousal in Spokane, Washington in 1983.

Zappone does not use an inventory model. Instead he has his own policy which
we will now investigate. Zappone’s policy depends heavily on the world commodity
market prices of copper. Every day he checks the current price of copper and does
some quick math in his head to figure out what the price will be once it reaches him.
The world commodity market prices are the prices for which the mine sells copper
to the mills. Then the mills have to add transportation costs, energy costs, and
rolling costs to the commodity price and this total cost is what Zappone pays. For
example, currently the Comex (or the commodity market) price is $2.08 per pound.
However, Zappone anticipates his cost to be about $2.80. He adds on $0.455 per
pound for rolling costs, $0.145 per pound for transportation costs, and $0.25 per
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pound for energy costs. This total cost actually comes to $2.705 per pound, but
he adds on about $0.10 just to be careful because the price of copper fluctuates
a lot from day to day. Although Zappone may place an order for copper today,
expecting the price to be $2.70, the copper will not be shipped for 5 weeks, and he
will be charged the price of copper on the day it is shipped.

If the price of copper is low and steady, probably around $1.80 to $2.00 per
pound, he bases his inventory policy on three different things:

(1) Availability of the copper, that is, how long it will take for the shipment to
arrive, which is normally 5 weeks from the date of ordering.

(2) Projected Sales
(3) Current inventory, that is, when are they going to be out of their current

stock.

Zappone is required to buy copper in truckloads; each truckload being 40, 000
pounds of copper. Normally he tries to buy 12 truckloads a year.

However, if the price of copper is pretty expensive, such as it is right now,
Zappone does not want to have a lot of high price inventory. He will wait to order
more inventory until his current inventory is low enough that he could not fulfill
projected sales. When the price of copper is really high, Zappone must raise prices
in order maintain his business. However, right now he is not raising the prices
as high as he should, instead he is bearing part of the burden of the high priced
copper.

Therefore, Zappone orders heavily when the prices of copper are low, and does
not order as much when the prices of copper are high. Zappone’s holding costs
are pretty minimal. Although he owns the building where he stores the copper and
machinery, he still pays insurance taxes on everything in the building. However, the
higher insurance cost when he has more inventory is not high enough to outweigh
the benefit of buying more inventory.

In order for this type of inventory policy to be successful, Zappone and his
employees communicate often. He checks the level of his inventory and the price
of copper daily, and discusses pending sales with his sales crew. All in all, the
mathematical models in this paper cannot help Zappone’s company. Because the
price of copper fluctuates so much from day to day, it is hard to say when exactly to
order. Perhaps, with more studying and a more complex model, we could formulate
an optimal policy for Zappone. This would require more complex statistical analysis
in order to deal with the fluctuating price of copper. Another reason we would need
a more in depth model is that although Zappone orders the copper today, at today’s
prices, he will be charged the price of copper on the day it ships, roughly 5 weeks
later. Even though he does not use a model, Zappone has done well for himself. He
sells copper all over the world: Japan, South America, Europe, and all 50 states. In
addition, he is environmentally friendly because about 80% of the copper he uses
comes from recycled copper and only 20% comes from new copper being mined from
the ground. However, the price of copper, whether it is reusable or new, does not
differ, so this does not change his inventory policies. This shows that an inventory
model is helpful but not necessary for all companies.

9. Conclusion

In this paper, we began the study of inventory theory. We examined two types
models: deterministic continuous review models and stochastic models. In addition,
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we learned about quantity discounts and how these affected our models. We also
looked at a few examples of how these models are used.

However, this paper only touches the surface of what inventory theory is all
about. After learning the basics, we now can ask and study more complex questions.
For example, what happens when customers place orders in advance for a future
delivery? A company could choose to allow for four different levels of response time
to customers: standard (five-day delivery), value (slower, but lower shipping cost),
premium (faster, next day delivery), and precision (delivered on a specific date).
How does this hypothetical company handle its inventory policy? If interested in
the previous question, please refer to Wei Wei and Ozalp Ozer [4].

Another problem we can consider deals with a firm that supplies goods to two
different types of customers: customers who have long-term supply contracts, and
customers who request goods occasionally. The orders of the customers who have
supply contracts are known in advance and must be fully met without delay every
period. However, the unexpected requests from occasional customers are unknown
and the company can either accept the order or reject it. How does a company deal
with their inventory policy when it mixes deterministic and stochastic demand?
If interested in this issue surrounding inventory theory, the reader is referred to
Frank, Zhang and Duenyas [5].
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10. Table of Notation

Notation Meaning

a the demand for a product
Q units of a batch of inventory
Q
a

cycle length or time between production runs
K set-up cost for producing or ordering one batch
c unit cost for producing or purchasing each unit
h holding cost per unit per unit of time held in in-

ventory
Q∗ the quantity that minimizes the total cost per unit

time
t∗ the time it takes to withdraw this optimal value

of Q∗

p shortage cost per unit short per unit of time short
S inventory level just after a batch of Q units is

added to inventory
Q − S shortage in inventory just before a batch of Q units

is added
S∗ the optimal level of shortages
y the amount of inventory to order or produce
D demand

PD(d) = P{D = d} the probability distribution of D
X a discrete random variable with probability func-

tion pX(k)
E(X) the expected value of some X

Y a continuous random variable with probability
function fY (Y )

ϕD(ξ) the probability density function of D
ϕ(a) the cumulative distribution function of D

11. Appendix: Derivation of Leibniz’s Rule

We are going to derive the formula for finding the derivative of an integral. In
essence, we will find the derivative of

F (y) =

∫ h(y)

g(y)

f(x, y)dx.

11.1. Rules to Recall. First, we need to remember a few rules from calculus.

(1) The Fundamental Theorem of Calculus states that if f is continuous on the
closed interval from a to b and differentiable on the open interval from a to
b then

d

dy

∫ y

a

p(x)dx = p(y),

d

dy

∫ b

y

p(x)dx = −p(y).
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(2) We must remember the rule for taking the derivative of an integral of a
function of more than one variable. This rule is

d

dz

∫ b

a

f(x, z)dx =

∫ b

a

δf

δz
[f(x, z)]dx.

(3) Finally, we must remember the chain rule for functions of 3 variables. Sup-
pose a, b, and c, are each differentiable functions of j. Then j(a, b, c) is a
function of y and

dj

dy
=

δj

δa

da

dy
+

δj

δb

db

dy
+

δj

δc

dc

dy
.

Using these three rules, we can now derive the formula for finding the derivative of
an integral with more than one variable.

11.2. The Derivation. Again, we want to find a formula for

F (y) =

∫ h(y)

g(y)

f(x, y)dx.

Now, let h(y) = b and g(y) = a and let

j(a, b, y) =

∫ b

a

f(x, y)dx.

Then, F (y) = j(g(y), h(y), y).

F ′(y) =
dj

dy
=

δj

δa

da

dy
+

δj

δb

db

dy
+

δj

δy

dy

dy

(

By Rule 3
)

,

δj

δa
= −f(g(y), y)

(

By Rule 1
)

,

da

dy
=

d(g(y))

dy
= g′(y),

δj

δb
= f(h(y), y)

(

By Rule 1
)

,

db

dy
=

d(h(y))

dy
= h′(y),

δj

δy
=

∫ h(y)

g(y)

δf(x, y)

δy
dx

(

By Rule 2
)

,

dy

dy
= 1.

Therefore, our final formula is

d

dy

∫ h(y)

g(y)

f(x, y)dx =

∫ h(y)

g(y)

δf(x, y)

δy
dx + f(h(y), y)h′(y) − f(g(y), y)g′(y).

11.3. Example Using Leibniz’s Rule. Let f(x, y) = x2y3, g(y) = y and h(y) =
2y, then

d

dy

∫ 2y

y

x2y3dx =

∫ 2y

y

3x2y2dx + (2y)2y3(2) − y2y3(1) = 14y5.
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