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Being to treat of the Doctrine oBounds| hold it convenient to premise something in the
general concerning this Theory; which may serve at once ¢age your attention, and excuse
my pains, when | shall have recommended them, as bestow'dudrject not altogether useless
and unfruitful.

Narcissus Marsh, 1683/Rhil. Trans. Roy. Soc. LondL56.472-486.
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Chapter 1

What is sound?

Acoustics is a branch of physics and, as such, anythinglét yelu about the world has to make sense. If
it tells you something you don'’t believe then either it's wgoor you are. To start, it's worth looking at
the things you already know about acoustics from your dé##y These are fundamental facts which also
happen to be correct.

The first example we can consider is that of a lecturer droaingt a class. Everyone in the class hears
the lecturer say the same thing at the same pitch: we doné bae part of the class hearing the lecturer
speak with a squeaky voice while another part hears her speatteep bass. Furthermore, everyone hears
the lecturer speak at the same speed with the words in the@atee This tells us that

| sound travels undistorted

S0, no matter where we are, as long as we can hear the speakeeawthe same words at the same pitch
and at the same rate.

Ponder now the forces of nature: the next time you are canghthunderstorm note the relationship
between thunder and lightning. You will notice, if you havet mlready done so, that there is a delay
between seeing the flash of the lightning and hearing thediun

sound travels with some time delay

so that we do not hear sound from a source immediately but toawait for it to travel over the space
between it and us.

Finally, bored by the lecture and soaked by the storm, yowgodoncert. For my purposes, | assume
that you are a fan of a singer armed with a guitar. If you ligtethe singer and the guitar, you will be able
to distinguish the singer’s voice from the sound of the guita

sound from different sources travels independ#ntly

or in other words, the sound coming from the singer does rfateince the sound from the guitar—you
simply hear both of them added together.

1.1 Sound in time and space

We need some way to describe sound. The first obvious wayrk giysically about sound is as a signal
measured at some position, our ears or a microphone, sag.rtfeasure pressure, this signal can be written
p(t). It changes over time and, if we want, we can record it. On therchand, at any given time, two
people can measure sound at two different positions. Weladsib say that sound is a function of position
and writep(x). Clearly, sound depends on both time and position, so threcithing to do is writey(x, t).

If we wanted to, we could leave the matter there. On the otaedhwe know that there has to be some
connection between the pressure measured at one pointapce$sure measured at another: sound cannot
vary independently in time and in space. What is this corioe@tFrom the statements at the start of the

1



2 CHAPTER 1. WHAT IS SOUND?

Figure 1.1: Sound pressupet a fixed time

chapter, we know that the sound heard at one point is the sauthe aound heard at another, although they
might not be heard at the same time.

Figure 1.1 shows a snapshot of a wave radiating from some,goimd by plotting pressurg(x) at
some fixed time. If we pick two pointsx; andx, and look at the sound at those two poipts) andq(t),
say, we know that the two sounds are different. On the othadt tleey must be connected: one point cannot
be hearing Mozart while the other hears a pneumatic dril|.wBoknow that the two sounds are the same
with the possible exception of some time difference:

p(t) = q(t + At),

whereAt is a time difference. If we assume that sound ‘travels’ atesgpeed (we will prove this is true
later on), we could say tha@¢ = R/c whereR is some distance. Then we can write:

p(t) = q(t + R/c),

so that the time difference between the two signals is reéladesome distance over which sound has to
travel. In the next section we will show that this kind of dada arises from the standard equations of fluid
dynamics.

1.2 The wave equation

From a physical or mathematical point of view, acousticsteamiewed as the study of solutions of the wave
equation for a fluid. The linear wave equation, which we wéllide presently, is the equation governing the
propagation of small (linear) disturbances in a compréssitedium. The wave equation can be applied
to many different systems with different governing equadiohere we apply it to fluids governed by the
Navier—Stokes equations.

The equations of continuity and momentum for an inviscicflaie:

dp
2 + V.(pv) =0, (1.1a)
v + Vp+pvVv =0. (1.1b)

P o



1.2. THE WAVE EQUATION 3

These equations tell us, first, that matter is conservedsewbnd, that Newton’s laws apply to a fluid as
well as to solid particles. The first thing we do in deriving awe equation is introduce the assumption
that the fluctuations in the fluid dynamical quantities aralénThis means that we write quantities as the
sum of a mean part and a small fluctuation. These fluctuatirtg pee so small that their products can be
neglected. Decomposing the quantities:

p=po+p(t)
v =v(t),
p=po+1(t),

where0 indicates a mean value and a prime symbol a fluctuation.
Applying this assumption to the equations of continuity amoimentum and neglecting second order
terms (products of small quantities), we find the linearigeiter equations:

90

_8[7)5 +poV.v =0, (1.2a)
ov’ ,

,OOE + Vp' =0. (12b)

To make life easier, we can eliminate the veloaityto give us a single equation:

o (9p ov'
— [ = Vv | -V — +Vp
6t(0t+p0 M PGy TP
(92/)/
T o
This is almost the wave equation except that it contains pathsure and density and we would like to deal
with only one quantity at a time. To eliminate the density,iveed a relationship between it and pressure.

This depends on the thermodynamical properties of the #hsithe will see below. Since we have linearized
everything else, we can linearize the pressure—densitigakhip as well:

— V3 =0. (1.3)

1 0%p

0
p=p0+a—p (P—Po)+§a—p2 (p—po)®+...,
pP=po pP=po
/ dp 2 7
P=P-Po~ o~ (p—po) = ¢/,
P=po

2o

ap P=po

The constant is written? because it is always positive (why?). Substituting thistiehship into equa-
tion 1.3, we find a wave equation for the acoustic pressure:

1 0%

2

This is the most fundamental equation in acoustics. It dessrthe properties of a sound field in space
and time and how those properties evolve. It is quite unliieibhcompressible flow equations to which
you may be accustomed because it describes very weak pesagbih happen over large distances. The
most fundamental obvious property of the wave equatioreaitlis linear. This means that the sum of two
solutions of the wave equation is also itself a solution alutis why we can tell a singer from an instrument.
When we come to solve the wave equation, we will find thiatthe speed of sound, the speed at which
a small disturbance propagates through a fluid. It dependlseothermodynamical properties of the fluid
and is calculated on the assumption that sound propagatimtidbatic For an adiabatic process in a gas:

p=kp",
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where~ is the ratio of the specific heats. Then

2= ol
ap P=po
= ykpr~t =12
p
p = pRT

so that

=]

The speed of sound in air at STP is 34%. The validity of the adiabatic assumption depends on the
frequency of the sound. For low-frequency sound, there appreciable heat generation by conduction in
the fluid and the assumption is a good one. For air, ‘low fragyemeans ‘less than@Hz'.

Note that ifc — oo, the wave equation becom®&2p = 0, the equation of incompressible flow. Saying
¢ — oo is the same as saying that density is independent of pressiréhat the flow is incompressible.
Sincec is the speed at which disturbances propagate in a fluid, shégjuivalent to the statement that
disturbances propagate instantaneously in an incomptedgkiw.

1.3 Single frequency waves

If we write p = P exp|[—jwt] wherew is the radian frequency, the wave equation becomesigimholtz
equation:

V2P + k*P = 0. (1.5)

Note that has disappeared, reducing the order of the equation by dreavdvenumbek = w/c.
When we are dealing with waves of constant frequency, thagdeld is a sinusoidal pattern which
propagates in space.

1.4 Quantifying sound

Before going any further, you will need to know how to deseribsound or sound field. We characterize
noise by its pitch (frequency) and its ‘volume’ (amplitude)To describe the amplitude of a sound we
usually use the root mean square (rms) pressure:

_\1/2
Prms = (pQ)

where the bar denotes ‘time average’. This is a useful medsutrsuffers from the problem that acoustic
pressures of interest vary over a huge range. The threslibldnoan hearing is gbms = 20uPa while
the threshold of pain and the onset of hearing damage arg@ats 200mPa, a range of seven orders of
magnitude. To keep the numbers manageable, we use a log@rgbale. On this scale, the ‘difference’ in
sound pressure leveetween two pressures andps is:

7
P}

AspL = 10log;,

When we want to talk about only one signal, we use a standéeterece pressure. Then the sound pressure
level is

p2
SPL=101log;) — (1.6)

Dres



1.5. SOLUTIONS OF THE WAVE EQUATION IN ONE DIMENSION: PLANE WES 5

LevelldB Example

140 3mfrom ajet engine

130 Threshold of pain

120 Rock concert

110 Accelerating motorcycle at 5m
80 Vacumn cleaner
60 Two people talking
10 3m from human breathing

Table 1.1: Some sample approximate noise levels

The reference level is the nominal threshold of human hg&@nPa. The ‘units’ of SPL are decibeldB.

Table 1.1 shows levels for some typical noises. A good rulioemb is that if you have to raise your
voice to speak, the noise level is greater thad@l80and if you have to shout, the noise level is greater than
85dB and you risk hearing damage.

1.5 Solutions of the wave equation in one dimension: Plane wes

To illustrate some aspects of the solution of the wave egoatie look first at waves in one dimension.
This corresponds to sound propagating in a pipe, for exanifple takex as the coordinate along the pipe,
the wave properties are independeng @ndz and the wave equation becomes:

10% 0%
Zoz a2 (2.7)

You can show quite easily that solutions of the fopm= f(z + ct) satisfy equation 1.7. This means
that disturbances propagate as fixed shapes which shifg #hen-axis at speed. Figure 1.2 is a simple
example, showing both solutionst ct.

[
xT

Figure 1.2: Wave propagation: right propagating wave with ct and left propagating wave with= —ct.

A pulse starts at a point = 0 at timet = 0 so thatz + ¢t = 0. At a later time, the wave will have
moved left to a point = —ct, still satisfyingx + ¢t = 0 and right to a point = ct, satisfyingz — ¢t = 0.

In both cases, the value pfwill be the same as at time= 0. As we might expect, the wave travels to the
left or right at speed, which is whyc is called the speed of sound.

When waves propagate like this, they are capiethe wavedecause their properties are constant over
planes of constant. Waves can be modelled as planar when they propagate atéowedncy in pipes or
ducts, such as long pipelines or engine exhaust systemte Riaves also occur in other situations and are
very useful in analyzing general problems. If a plane wawppagates in a general direction, we can write
it as f(t — x.n) wheren is the direction of propagation or normal to the wave.

1.6 Solutions of the wave equation in three dimensions

Naturally, one-dimensional waves are of little interestdanded personalities such as ourselves and we
must eventually face reality in all of its three dimensioBslving the wave equation in three dimensions
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is not much more difficult than doing so in one dimension. Theshtonvenient approach is to work in
spherical polar coordinate$/.2. In this coordinate system:

V2—8_2+2£+#§ ‘in()g +#8_2
T o2 Tror  rZsmeoe 7 o6 r2sin? ¢ 0>
We simplify this by considering the case of sound propaggdtirfree space in a uniform medium. Then,
by symmetryp’ is independent of andé, so that:

?p  20p
2 [ — —_—
Vir= or2  ror
1 0?
= rae ) -8)
and the wave equation now reads
1 02 0?
0—2@(7"17) - ﬁ(rp) =0, (1.9)

which is identical in form to equation 1.7. Using the solataf that equation;p = f(r & ct), we find

G
T

For reasons ofausality(things cannot happen before they have been caused), vet ttegesolutionp =

f(r+ct).

This solution contains three useful pieces of informatidhe first, as in the one-dimensional case, is
that the sound at timedepends on what happened at titne /¢, theemission timer retarded time The
second, again similarly to the one dimensional case, isttleashape of the wavg( - ) does not change.
The big difference between one and three dimensional wheegver, is that the magnitude of the pressure
perturbation (though not its shape) reduces as it propagate

. (1.10)

1.7 Acoustic velocity and intensity

When we derived the wave equation, we chose to eliminateigland density and concentrated on pres-
sure as our dependent variable. There are two main reaspdsifa this: the first is that pressure is a
scalar and so is conceptually easier to work with than vilotm practice, given that we could use a ve-
locity potential, this is not a huge advantage. The second naore important, reason is that pressure is
what we hear and what we measure. Our ears and the micropivengese to measure sound are sensitive
to pressure fluctuations, so that is what we choose as ourguaintity.

There are times, however, when we will need to use some otrartiy. The fundamental theory of
aerodynamically generated noise is actually based ontgéhsituations (which are usually converted to
pressure variations using a linear relationship). A morpdrtant relationship is that between pressure
and velocity because the acoustic velocity is often usediamiadary condition in calculations involving
solid bodies. Remember that acoustics is a branch of fluidhyes and it is a fluid-dynamical boundary
condition that must be satisfied, i.e. usually a velocity.

The linearized momentum equation (1.2b) gives us the oslshiip we need:

ov' A\

ot po’
in other words, the acoustic velocity is proportional to pnessure gradient. If we write the solution of the
wave equation in terms of a velocity potentia:= f (¢t — R/c), the pressure and radial velocity are related
via:

p:_p0%7 V_v¢7
S A Gl 720} (1.11)
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For a wave of constant frequency, the acoustic velocity aog® V' is related to the acoustic pressure
by

P
V= —'v—. (1.12)
pow
For a plane wavev — 9/0x andV = P/pgc. For largeR, the pressure—velocity relationship for a
spherical wave reduces to this form, as seen in equation 1.11
A basic characteristic of a source is the rate at which itdfiens energy. If we multiply equation 1.2a
by C2p/,

oy
ot

o=+ ngQp’% =0 (1.13)

and note thap'9p’ /9t = 1(9/0t)p"* and thae?p’ = p/,

210 2 ,8@_

— =0.

Multiplying the momentum equation 1.2b bygives

which can be rearranged:
LA ) (1.14)

Adding equations 1.13 and 1.14 gives a result for the eneagpgport in the sound field:

2
% <%povz + %%pa) + %(p/v) =0. (1.15)
In equation 1.15p0v2/2 is the kinetic energyper unit vqume,c2/p0p’2/2 is the potential energy
per unit volume ang’v is theacoustic intensity which is the rate of energy transport across unit area.
Equation 1.15is a statement of energy conservation fontste s and says that the rate of change of energy

in a region is equal to the net rate at which energy is carrigmthe region.
If insert the relationship between pressure and velodifya&on 1.11, the acoustic intensity is

_p* 9 ([A(t—R/e)
_E+5< 2pR3 >'

If we averagel over time for a periodic wave, the second term has a mean @lzero and the resulting
mean intensity is:

~i
Il
o

(1.16)

b|%
S

Example: Acoustic displacement

The threshold of human hearing is nominald) Knowing that this corresponds to a particular pressure
(2x10~°Pa), we can calculate an acoustic velocity and from this an sitodisplacement. If we assume
that we are listening to sound at 1kHz (where the human eap$s sensitive), we can calculate the velocity
amplitude corresponding to this pressure from Equatio:1.1

P 2x10°°

=D X 476 x 10~Sw/s.
e Tomxaiy  MTOx107m/s



8 CHAPTER 1. WHAT IS SOUND?

Since we also know that the amplitude of displacenérnis related to the velocity via:
V=wX,

we can work out the displacement of the eardrum when you heaurad of kHz at the threshold of human
hearing:

4.76 x 1078 1

or something like the diameter of a hydrogen atom.

1.8 Questions
1. Show thatf(z + ct) is a solution of the one-dimensional wave equation.

2. The sound from a point sourgé) is ¢(t — R/c)/4xn R. If the source is sinusoidal with frequeney
write down an expression for the sound from the source.

3. To reduce noise in aircraft, we can use loudspeakersdrikig aircraft to generate ‘anti-noise’. If
we assume the noise at head level in business class is gahbyaa point source of strengghand
frequencyw at a positionx;, what strength should a source (loudspeaker) at a positidmve to
cancel the noise?

4. If a jet engine generates a noise of SPL 140dB at 3m, howfay @do you need to move to reach a
safe position?



Chapter 2

Making sound

2.1 Pulsating sphere

The simplest three-dimensional problem we can solve isahsdund ra-
diated by a pulsating sphere. This sphere could be, for elmubble,
y a varying heat source or an approximation to a body of varysigme.
The sphere has radiusand oscillates with velocity amplitudé at fre-
<V guencyw. From the linearized momentum equation (1.2b), we can find a
¢ relationship between acceleration and pressure gradient:

ov
_ Vp = —poa- (2.1)

Writing the radial velocity of the sphere surface @s= V exp|[—jwt],
z we can see that must also have frequency so that we can write it as

Figure 2.1: A pulsating spher-" ~ P exp|—jwt] and:

ical surface VPe % = jwpoVe It (2.2)

Sincep is a solution of the wave equation, we know frgi6 that

b= flt—rfc) _ Ae’j“(t’r/c)7 2.3)

r r

where A is to be found from the boundary condition @tthe sphere surface. Writing out the pressure
gradient:

A ] .
A {JW _ 1] ) (2.4)
r c

and applying the boundary condition:

A[J’Uf_a_

p 1} e Iwlt=ale) —upa Ve vt (2.5)

c

we can fix the constam:
(ka)(ka — J)pchaefj,m (2.6)

A =
(ka)? +1 ’

wherek = w/c is thewavenumberThe solution for the pressure is then:

_ka ka—j

== (poVea)e IRlr—a)gmivt, 2.7
p== (ka)2+1(p0 ca)e e (2.7)

9



10 CHAPTER 2. MAKING SOUND

There are two approximations we can make which simplify tbismula. Whenka < 1 (i.e. when the
sphere is small or it vibrates at low frequency), (2.7) cawl#en:

ke
p A _j PoCra Ve]kre—Jwt; (28)
T

whenka > 1 (i.e. when the sphere is large or vibrating at high frequgncy

b povcaefjk(rfa)efjwt' (2.9)
T

The parameteka, a non-dimensional combi-
nation of wavelength and a characteristic dimen-
sion of the body, is an important parameter in char-
acterizing sources and is called thempactness
Whenka is small, the source is point-like and can
be treated as a simple source; when it is large, the
acoustic field becomes more complicated, as in fig-
ure 2.2.

2.2 Point sources

When we look at sound production by real systems,
we cannot usually model them with simple shapes
‘ ‘ ‘ ‘ [ such as spheres. The solution for a sphere is use-
2 4 6 8 10 ful, however, because we can use it to work out
the noise radiated by point source an idealized
Figure 2.2: Sound field around a pulsating sphersolution for the sound radiated by an infinitesimal
dottedk = 0.1; dashed: = 1; solid &k = 10. element of a real system.
We start with equation 2.8, the result for a small
oscillating sphere. We want to write this in terms
of some “source strength”. When the sphere oscillatesjnjésting momentum into the fluid. A sphere of
radiusa has surface aretrra? and if it oscillates with velocity exp[—jwt], the momentum being injected
at the surface of the sphere is:

M = podma®Ve vt (2.10)
and the rate of change of momentumis:
oM .
—— = —jpowdraVe ¥t (2.11)
ot
Noting thatw = k¢, we can compare equation 2.11 to equation 2.8 and find that:
1 oM elkr
= —— 2.12
P=""ar v ( )

so that sound is generated by fluctuations in momentum. tewhis in terms of a source strength=
pov(t), this equation can also be written:

_ 04q(t—R/c)
p= ot 4nR

which is the result for sound radiated by an infinitesimahpsburce. In a real problem, we can work out
the sound from a source as a sum of contributions from poinces. This sum becomes an integral if we
look at a smooth distribution of sources over a voluifie

9 [ aly,t—R/c)
3t v 4R

(2.13)

p(x,t) = dv. (2.14)
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We can write this in a form which will be useful to us later:
0
pixt) =5 [ Goxtiy.rar) v (2.15)
ot Jyv
whered is the Green'’s function for the problem. A Green’s functisaifundamental solution, in this case

the response due to a point source “firing” instantaneolsky.can write the Green’s function using the
Dirac delta functiord( - ):

6t —7+ R/c
G(X,t;}’ﬁ):%a (2.16)
R=|x-yl.

The delta function is a curious beast which is zero everyabg&cept at zero, where it jumps to an infinite
value. The area under the delta function, however, is orfedthe property that:

[%f@ﬁ@—ﬂmh=f@@

called the “sifting property”. In the case of equation 2.ths means that — 7 + R/cor,7 =t — R/c.
Herer, theretarded times the time when sound leaves the sourceiaisdhe time when it arrives, so that
R/c is the time delay between sound leaving a source and sourthgrat some point, which should be
no surprise by now.

2.3 Loudspeakers

Taking a step up in difficulty (and realism), we now look at Huaind
radiated by a rigid piston embedded in a wall. This is a basideh
of a loudspeaker and is related to a number of other problentisei
acoustics of sound generation by moving surfaces. Figigstiows a

A
L rigid circular piston of radiug which vibrates periodically at frequency
,,,,,,, L_______, wand velocity amplitude so that its velocity i exp[—jwt]. From
< equation 2.15:
- 9 q(y,7)
v Wh=9— // - ds,
pe ot | |s 4R

. L ) where the facto? has been included to account for the image source in
Figure 2.3: Arigid piston vibrat- the wall and the integration is performed over the surfgicéthe piston.
ing in a rigid wall. Given the velocity, the sourag = pov exp|—jwt] so that the resulting
integral for the radiated sound is:

_ e [[
p(w) = 5 //S RvdS.

To evaluate the integral, we switch to cylindrical coordésdr, 0, z):
x=rcosf, y=rsind.

We assume that the observer igat 0 and the integral to be evaluated is:

2 a jkR
.WpPoU €
= — ——r1dr; df
p(w) sy /0 o R 71.dry dby,

R = (7“2 + 7‘% — 2rry cos Oy + 22)1/2,

where(r, 61) indicates a point on the piston surface.
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This integral cannot be evaluated exactly for a generalrgbsposition but we can restrict it to the case
where the observer is on the axis of the piston. Then0 andR = (r? + 22)/2:

27 a jkR
.WpPov €
= — ——rydry dfq,
p J o /0 /0 R r1dryp dvy
oJkR

= —jwpov ——rydry,
Jwpo , R 14dr

and making the transformation — R,

Rg
p= —jwpov/ JFEAR.
Ro

Here, Ry = z is the distance from the observer to the centre of the pistonR = (a? + 22)'/2 is the
distance to the rim of the piston. The solution is then:

p = —pocv(el*fta — k7). (2.17)

If we examine the acoustic field defined by equation 2.17 asetifon of
frequency, we can see that it changes quite rapidheuas increased. Fig-
ure 2.4 shows the absolute value of the non-dimensionasprels/ pocv|
for different values ofka. For comparison, the curve/Ry, = 1/z is
also shown. The results fdra = 0.1 andka = 1 are similar with a
smoothl/R, decay but théta = 10 curve is quite different, having a
sharp drop before it begins to followld R, curve. This is a result of in-
terference between sound from different parts of the pistéhen a body
is large compared to the wavelength of the sound it geneliatesference
between different parts of the body gives rise to a comg@itabund pat-
tern, especially in the region near the body. When the bodyniall on
a wavelength scale (or, equivalently, vibrates at low fesry), the phase
difference between different parts of the source is not ghda give rise
to much interference and the body radiates like a point ®uFbe ‘size’
of the body at a given frequency is calledétsmpactnesand is character-
ized by the parametdia wherea is a characteristic dimension, or by the
e ratio of characteristic dimension to wavelength\. A compact source,
b: ka = 1.0 one withka < 1, radiates like a point source, while non-compact bodies
: must be treated in more detail, as we saw in the case of a siphiel.

Example: Noise from aircraft engines

The formula for sound radiated from an oscillating piston akso be used
as an approximation for low frequency noise from flanged gipk we
slightly abuse the formula, we can use it to make a guess aidtise from
: ' the end of a duct, such as an aircraft engine intake (or araptidwer or
C: ka=10.0 all sorts of other things). The internal processes in anrengiuch as the
Figure 2.4: Acoustic field (ab- rotation of the fan, generate an oscillating velocity atititake. We can
solute value ofp) along the Pretend that this is a piston spanning the face of the intakiecalculate
axis of a vibrating piston. Thethe radiated noise using the formula derived above.

dashed line shows thg - fit.
2.4 Combustion noise

Another important application of one-dimensional acasst in combustion instability in engines. In order
to model such a problem, we need to look atttiermodynamicef the system in order to model the effects
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of heat release. When we derived the wave equatigi ip, we assumed that the system was adiabatic—
no heat was added or removed. Obviously, if we want to look@ibalem involving heat addition, this
assumption is wrong so we have to include some extra inféomat

From thermodynamics, we know that:

Dp 1 Dp 0p| Ds
“P_ 20 9P 22 2.1
Dt 2Dt  0Os|, Dt’ (2.18)
which is what we derived i§1.2 but we now include a term which dependssahe entropyof the fluid.
When, as we assumed previously, the flow is isentropic, tbenskterm disappears. When we include heat
release in the problem, however, we cannot ignore the entrapations.

When we ignore viscosity and heat conduction, the heat iqpet unit volume is given by

Ds
t) = pT —.
a(x,t) = pT 4,
For a perfect gas,
o
Js

wherec, is the specific heat at constant pressureatfte ratio of the specific heats. We can substitute this
relation into equation 2.18:

p_ pT(y-1)

= —— = 3 R
p Cp C

Dp 1 |Dp
D=3 [ﬁ - (- 1)(1] : (2.19)

If we assume that perturbations are small and that there me®@n heat addition (otherwise the speed of
sound and other thermodynamic properties would changegawdinearize this equation:

D 1 [op
-z |-, (2:20)
0

wherecy is the mean speed of sound. If we now return to equation 1.3,
anl
ot?

we can insert this new relationship betweérandy’ to find:

- v2p/ = 07

182p/ 2/_'7_1@

@ o Ta& o

(2.21)

and we end up with a linear wave equation with a source terrmenght hand side which is related to the
heat input per unit volume. If we reduce this to the one-disimmal case,
10% 0% _y—10q
2otz 9z2 & o’

(2.22)

we can look at some simple problems related to combustion.
If we think of combustion happening in a tube of lendifopen at both ends, the pressure inside the
tube has to be of the form

p(z,t) = P(t)sin "Lﬂ

and the wave equation becomes

P nPr

ntx y—10q
S+ P
2 2 sin

m— = -———

L ¢ ot
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If we now assume that the unsteady heat release is relatee tmsteady pressure, we can see how it affects
the acoustics.
The first simple assumption is that the heat release is ptiopaf to pressure,

—acgp’
v—1

)

which leads to the equation for pressure amplitude,

which is the equation for a damped oscillator (think of thergpmass-dashpot system you saw in me-
chanics). Ifa is positive, the response decays with time. If, howeveg is negative, the response grows
over time: the combustion is unstable. The case whdgepositive corresponds to heat addition 1 &t
of phase with the pressure; negativaneans that the heat addition is in phase with the pressuiis.iSTh
Rayleigh’s criterion heat must be added in phase with pressure if energy is tabsférred into the acous-
tic waves. Remember that the heat release is proportiotlhaétpressure, so if the pressure is unstable, so
is the heat release and your engine blows up.

This is a very simple example which ignores the mechanisneaf Addition—the combustion of fuel—
but it illustrates how the combustion depends on the raiatigp between the acoustics and the heat gener-
ated in the system.

2.5 Questions

1. Write down the solution to the following integrals:
7 0(x)da; [ 2*6(x — 3) da; [T cosad(z + ) dw.
2. Acircular piston of radius is started impulsively from rest. An observer at positjoy:) hears the
sound generated by the impulsive motion. Calculate:
a) the time of arrival of the start of the pulse.
b) the time of arrival of the end of the pulse.

¢) the duration of the signal heard by the observer.
What is the maximum pulse length generated? What is the mimipulse length?

3. At low frequencies, the noise radiated from the intakero@@craft engine can be approximated as
that due to a piston set in the intake. On this approximagstimate the SPL 20 from an engine
with intake diameter i, subject to a velocity fluctuation of frequencyl®9and amplitude 0.02 /s.

4. Inthe far field,R > a, R > ka, we can estimate the sound radiated off-axis by a pistongikie
following approximations:

11
R~ Ry’
R =~ Ry — rysin¢cosb;

wherep = tan—!r/z andR, = [r? + 22]/2. Given that theBessel functionf zero order is:

2m
Jo(z) = — / eI eost 4o,
21 0 ’
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and that:

/xJo(x) dz = zJ;(x),

whereJ; (z) is the Bessel function of first order, derive an approximateila for the far field noise
radiated by a piston.






Chapter 3

Modifying sound

3.1 Reflection by a hard wall

The simplest realistic problem of interest involving théeef of a boundary on a sound field is that of the
interaction of the field from a point source with a plane whdjure 3.1. The problem is, given a source at
a pointx, near a rigid plane, to calculate the resulting overall sbiigid. If the wall were not present, we
know that the sound field at a frequencyvould have the form:

e—jw(t—R/c)

AtR

pie ¥ =
wherep; is theincidentsound field.

We will drop the factoexp[—jwt] because it is the same for all sound fields
in the problem and write:

oIkR
" AnR’
Our problem now is to find a second acoustic figJdthe ‘scattered’ field), such
that the total fieldp; = p; + ps satisfies the wave equation and the boundary
e Z conditions on the wall. By linearity§1.2, this means that; must be a valid
solution of the wave equation, since the sum of two solutisitself a solution.
Now we need to decide what boundary condition to apply. Aswistcid fluid
dynamics, the boundary condition is that the total velonitymal to the wall
must be zero. We know that the acoustic velocity is propoéito the pressure
gradient§1.7, so this boundary condition is equivalent to

z =0 om

Ox
Figure 3.1: A point o ]
source near a wall or, in terms of the incident and scattered fields,

o
5—0 ox

bi

0,

=0

Ops
ox

=0
For a source atg = (o, Y0, 20),

and atz = 0,
=~ GRR 1),
R=[z3+ (y—yo)* + (2 — 20)2]1/2~

17
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The solution of our problem is an acoustic figlgwith
dps zo FE
— = ——((JkR-1).

oxr|,_, 4m R3 ( )

A source positioned at_ = (—x, yo, z0) gives just such a field so a valid solution to the problem can be

found using anmage sourcethe reflection of our orginal source in the rigid wall. Théaldield is then

Pt =Dpi + Ps,
eijJr

PSR
eij,

Ps = 47TR_ )

Ry =[xz Fx0)*+ (y—yo)* + (2 — 20)*]"/%

One immediate result of this analysis is that the pressuneng¢éed on the wall by a source is twice that
which would be generated if the wall were not present. Thisth immediate applications: the first is
that excessive noise in confined spaces (discotheques amg] &br example) can be extremely damaging
to hearing; the second is where the ‘wall’ is the ground andvwaet to know how noise propagates across
a landscape.

You should repeat this calculation for the boundary coodifi = 0, the so-called pressure-release
surface which applies to underwater noise problems.

3.2 Reflection by a soft wall

A concept which is very useful and we will need later on is thiadcoustic impedanceThis is like the
impedance we see in mechanical systems and is defined atiohaf ecoustic pressure to acoustic velocity:

Z = v (3.1)
The acoustic impedance of a material (including gases aquilds) is a property of the material and of
frequency. We usually work in terms specific acoustic impedaneéich is simplyZ/A whereA is the
area of material.

For a hard wally = 0 and the impedance is infinite. For a substance which is pptbasffect of
flow into the pores of the material must be taken into accoWa.can model this by lumping the material
properties together into a single impedance, which meatisuh do not need to know very much else about
a material. Note that, in generd,is a function of frequency.

If we examine reflection of a plane wave from a wall with
some finite impedance, we can look at the problem of acoustic
treatment of rooms. In order to line a room to stop reflectiéois
music recording or performances, say), we want to minimeze r
flections or echos so we need to know how much sound is reflected
from a wall for a given impedance. Figure 3.2 shows the inogmi
and reflected waves. The pressure and velocity are given by:

exp jkx

,,,,,,, P = ety (elf= 4 Remike) | (3.2)
jkyy . .
V= epc (eF+® — Re™Ik=") cos ), (3.3)

where thecos 6 is needed to extract the component of velocity

Rexp —jka normal to the wall—sound propagating parallel to the wall wi

Figure 3.2: Reflection from a finite
impedance wall
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not be affected by the impedance. The boundary conditiohen t
wall is thatZ = P/V so we can write:

Z cos — pc
= 4
Z cos B + pc (3.4)

Example: How to bug an embassy

One type of ‘soft’ wall is a slab of material which
vibrates in response to acoustic pressure. Fig-
ure 3.3 shows the arrangement: a slab or sheet
of material is subject to a plane wave. We want
to know the complex amplitud® of the reflected
wave and the amplitud€ of the wave transmitted
) out the other side of the material. For a thin, non-
T exp jkx deforming slab, we can assume that the velocities
on each side of the slab are equal:

Figure 3.3: A slab of material under acoustic excita-
tion

exp jkx

Rexp —jkx

v = Vg, (3.5)
and we know from the definition of impedance that:

P, — Py = Zgw; = Zgy. (3.6)
The reflection coefficient on the incoming wave side is (froguétion 3.4):

 Zi— 7

= 7
Zi+ 7y’ S
where the local impedanc& = pc/ cosf. This means that the velocity on side 1 is:

_ P

U1 = 2 (1-R), (3.8)
2P,

=—. 3.9

271+ Zs ( )

Given that the normal velocity is equal on both sides, we carkwut the amplitude of the transmitted
wave:

2pc/ cos b

T=71Vo=—"—"——.
12 Zs1+ 2pc/ cos B

(3.10)

In 1987, Timereported that the Soviet Union might be using lasers to nreabe vibrations of the
windows of the US embassy in Moscow as a way of listening tosemations inside A modern laser
vibrometer can measure velocities to a resolution of ab@li@n /s. If a window pane is tum thick, what
is the quietest conversation we can listen to?

A simple assumption is that the glass acts ¢&imp plateand the only resistance to motion is the slab
inertia. Then, for a plate of mass per unit areanoving at a frequency

—jwV =P - P, (3.11)

andZs = —jwm. The transmitted wave then has amplitude:

2
1+ <ﬁ) cos? 9]
2pc

1The article is available online att t p: / / www. bugsweeps. cont i nf o/ hi t ech.snoopi ng. ht m

T =
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From equation 3.8, and assumifig- 0,

2P;
V=T
2pc — jwm

If we are interested in sound at arouridx(roughly in the middle of the range of human speech), given
that the density of glass is about 25@Qm?, m = 12.5kg/m? and:

v = 2 P, = L P;
© 1.2 x 340 — j2m x 3000 x 12.5" 204 —j1.178 x 105" *

and
lv| = |P;|/1.178 x 10°.
If we assume we can measure the velocity over a rangeiof/,
|P;i| = 1.178 x 10° x 10~ %Pa = 75dB.

For comparison, theoundtransmitted on the other side of the window would®E; which has mag-
nitude:

9 —1/2
TP = |1+ <@) cos? 9] P,
2pc
=1.178 x 10° x 107%/289Pa = 26.2dB.

It might be possible to measure this signal very close to timelaw, but at a distance of 1@0it would be
impossible. A sophisticated laser system, however, coadsure the window’s vibrations from a distance
of hundreds of meters. It is interesting to know that the Ruissmbassy in Washington is on high ground
looking down onto a number of important buildings, incluglthe White House.

3.3 Ducts and silencers

Figure 3.4 shows a simple example of propagation along awhose section changes suddenly. If a
wave of the formexp(jkx) propagates to the right and hits the change in section, thereeflected wave
R exp(—jkz) which propagates to the left and a transmitted wBw&p(jkx) which carries on to the right
past the change in section.
For low-frequency applications, we can
! assume that the only thing that matters is the
change in area going from one section to the
‘ next. If the initial part of the duct has area
elke | A, and the second part aref, the bound-

A | Teike A ary conditions at the change in sectiog- 0

! | 2 are continuity of pressure and conservation
of mass. The first of these conditions is
simple; the second requires that the volume
flow rate be conserved across the interface,

! so thatd,U; = AU, whereU is acoustic
z=0 velocity, which we can relate to the acoustic
pressure using equation 1.12. Setting: 0,
the boundary conditions are then:

Re k=

Figure 3.4: Change in duct section

1+R=T, (3.12a)
Aj(1—R) = A,T. (3.12b)
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Solving for R andT’, we find that:
Ay — Ay

R=——=-, 3.13a
A+ A ( )

241
T=———. 3.13b
14 ( )

Note that whends — oo, R — —1 andT — 0 so that, on this theory, an open-ended duct reflects the
whole signal back from the end and no sound escapes. As megimected, whed, = A;, R = 0 and
T = 1 so the sound travels unaffected.

An application of changes in duct section is the exhaust eBlch as those seen on the motorcycles
of thoroughly respectable acoustics lecturers on the esthi@ipes of noisy brats. The simplest form of
muffler, Figure 3.5 is simply a section of pipe with a greatess-sectional area than the rest of the pipe.

A muffler has two functions: to reduce the noise
radiated into the surroundings (which is why vehicles
e are obliged to have them) and to increase the engine
A 42 — power (which is why people fit new ones). The first
E— function is fulfilled by modifying the pressure field
£=0 =1L which reaches the open end of the exhaust, the sec-
ond by imposing a reflected wave which alters slightly
the exhaust characteristics of the engine cylinder.

The muffler shown in figure 3.5 is the simplest de-
vice we can imagine but it will give us an idea of the behaviolua realistic system. We need boundary
conditions atc = 0 and atr = L. The pressure and continuity conditionscat 0 are:

Figure 3.5: A simple exhaust muffler

1—|—R:TQ—|—R2, (314&)
A1(1 = R) = Ay(Ty — Ry), (3.14b)

and atr = L:
Toe*E  Roe L = TFL | Ay (Toel*t — Rpe %) = A Te*E, (3.15a)

Rearranging these equations, we can elimiffatend R, (we are not very interested in what happens inside
the mulffler) to findI", the transmitted wave. Combining equations 3.14 yields:

(Ao + A1) — (A1 — A2)R = 2A5T5,
(A2 — A1)+ (A2 + A1 )R = 2A5Rs,
and, writingm = Ay /A;:
(m+1)+ (m—1)R = 2mTs,
(m—1)4 (m+1)R = 2mRx.
Similarly equations 3.15 can be combined:
o2mTyel*l = (m 4 1)Te*L,
2mRoe L = (m — 1)Tel*L.
We can eliminate?, and7> to find the transmitted wave:

T_ coskL — jsinkL
~ coskL —j(m+m~1)/2sinkL

The most interesting thing to know from an environmentahpof view is the magnitude of the transmitted
wave:

(3.16)

_ —1
IT| = (1 L mT kL) (3.17)
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Looking at this equation, we can see that the transmitte@wawlitude is minimized for certain values of
kL, if we takem fixed. The net effect is that the muffler acts as a low pass.filter
We can also calculate the reflected wave amplitude:
1
R="22(r ), (3.18)

m—1
showing that quite a strong wave is reflected back into thénendVith the correct timing, which depends
on the length of the exhaust pipe leading up to the muffles,¢an increase the engine power slightly.

3.4 The Helmholtz resonator

One of the most important resonant systems idtbknholtz resonatgthe classic example of which is the
wine or beer bottle. It is modelled, figure 3.6, as a volumeonnected to the outside world by a neck of
length! and cross-sectional aréa We can estimate the resonant frequency of the system bydevims
the motion of a ‘plug’ of fluid in the neck of the bottle undeethction of an external force and an internal
restoring force due to the compressibility of the fluid in Hudb.
Assuming that the process is adiabatic, the density andyres
S in the bulb are related by:

d
T ‘. A p=Fkp"; d—izcg,
; £ as in§l1.2. If the plug of fluid in the neck of the bottle is displaced
v by an amount (assumed positive out of the neck), the volume of
fluid inside the bulb changes by an amowigt Using subscrip0 to

\—/ indicate mean values, the resulting change in density is:
v r__V_
.// po  V—5¢
1
1= (S/V)E
S
~1——
_ v

Figure 3.6: Helmholtz’ bottle  py the binomial theorem and the corresponding change irspres

is:

e ES,
P—Po= P0V~

The equation of motion for the plug can then be written, roptirat its massn = poSi:

2

. S
poSIE + p07£ = —paS,
wherep, is the externally applied pressure. This is the equationatfan for an oscillator with a resonant

frequency:

c2S

V-

Helmholtz resonators can be used whenever you want to rathise at some known frequency. One
of the main applications is in acoustic liners used in aft@agines, which are made up of a large number
of small Helmholtz resonators with dimensions chosen todbsoise at a specified frequency.
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Sound from a wine bottle

A wine bottle has internal volumE ~ 7.5 x 10~*m? and a neck of length~: 0.05m and cross-sectional
areaS ~ 7.854 x 10~°m?. The resonant frequency is then about48L's, or 78Hz.

3.5 Questions

1. A point source of wavenumbeéris placed near a pressure release surface, on which the &gund
condition is that the pressure be zero. Calculate the affgbie boundary on the radiated sound.

2. a) Calculate the wave reflected from the open end of a dectgipressure release surface). This
is a simple model for the behaviour of an engine exhaust organmipe.

P=0

|
|
|
|
|
I

Figure 3.7: Open ended duct

b) Calculate the resonant frequencies of a duct of ledgtbhich is open at both ends. This is a
simple model of the resonant behaviour of an engine exh@astulate the acoustic velocity at
the end of the duct. Why might this be useful?

3. The density of Perspex is about 12g@m?. Estimate the attenuation of a normal wave of frequency
100Hz, transmitted through an aircraft window of thicknessrh. Perform the same calculation for
an aluminium (density 270@;,/m?) wall of thickness zam. Which path reduces the cabin noise
most and what would be the first easy way to reduce the noigieitise aircraft? What happens to
noise at kHz?

4. A turbofan engine has a main fan with 20 blades operating0@0rpm. In order to reduce the
radiated noise, it is required to line the inlet of the engiith a material composed of cells which
act as Helmholtz resonators, figure 3.8. The maximum thiskmef the liner material is 8im. For
aerodynamic reasons, the cell opening diamétsrrequired to be 2um and the cell internal depth
his limited to 1Gnm. Estimate the cell diametdp required for the acoustic liner.

d
v
] L -+
D
h

Figure 3.8: A cell of an acoustic
liner
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Measuring sound

So far we have talked about sound without thinking about h@wvveasure it. There are two important
devices available to us for sound measurement: microphamgears. They work in a similar manner, but
with the important difference that ears are directly come@to a signal-processing system which extracts
extra information about the sound field while microphonasallg only give us a simple recording at one
point.

4.1 Microphones

The simplest device for the measurement of sound is a miorgh
p These are mechanical devices which convert the mechanjuat of
acoustic pressure fluctuations into an electrical signai high qual-
ity measurements, we usually use condenser microphonebate
capacitors with one flexible plate which is exposed to theddield.
Movement of the plate changes the capacitance of the system a
—— alters the voltage across the plates, generating an ougmal sfig-
vy ure 4.1. The disadvantage of condenser microphones isghanheed
. an external power supply, but they are still used where higiity
measurements or recordings are needed. An alternativehvigi
more robust and simpler to use is the piezoelectric devidehwih-
corporates a solid which generates an electric charge ponse to
Figure 4.1: The principle of themechanical load.
condenser microphone: the defor- In either case, the output from the system is a voltage whsich i
mation of the diaphragm change$roportional to the acoustic pressure which can then beegseci
the capacitance of the system whicHsSINg standard techniques. This can be done in real timecsff
alters the output voltage pedals) or using recorded data (ripping CDs). The main point
remember is that the Shannon sampling theorem tells us weethav
record the data at a frequency (number of samples per seabtledst twice as high as the highest frequency
in our signal. The human ear can detect frequencies up tot @&0kiiz so music is digitally recorded at
44.1kHz to give reasonable reproduction.

25
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4.2 Ears

The human, or other animal, ear can be viewed as a type of micro
phone, although it has integrated signal processing ancchani-
cally a bit more complicated than the microphones we plug dtr
measurement systems. Figure 4.2 shows a section throuphbitian
ear. Sound coming from outside travels down the ear canathwhi
terminates at the eardrum (tympanic membrane). The eardrum
connected to the inner ear by a mechanical linkage of threedo
the hammer, anvil and stirrup. This connects to ¢behlea a lig-
uid filled organ which allows the ear to detect the amplitudd a
frequency of incoming sounds. A nerve takes the signal froen t
cochlea and transfers it to the brain where further signatgssing
allows us to extract more information about the sound we eagihg.
Figure 4.2: The human ear (from The_ cochlga is a tube but_, because it_ tapers and has medhanica
Gray’s anatomyvia Wikipedia) properties wh|ch vary along its length, dlffgrent frequgnompo—
nents of the incoming sound propagate at different rateis. mbhans
that the components generate a maximum signal at differasitipns on the cochlea, decomposing the
sound into elements which the brain can then process.

4.3 Multiple microphones

One thing we have noticed about our ears is that they tell u=revBound is coming from. In part, this
is because we can use head movement to tell us something labeube perceived sound changes with
direction but it is mainly due to how our brains combine ttgnsils from our two ears. We can do the same
thing with microphones to characterize sound fields: thesitaapplication is the detection of submarines
by an oil-covered sweaty chap listening to headphones inranesie.

Example: Dipole microphone

Very often we want to be able to measure sound from a particula
s direction, either to characterize a source or to rejectenfvm par-
ticular directions (in an aircraft microphone system, faample).
The simplest method for doing this is to use two microphooiesfd
together. We can work this out directly, or we can use theqpla
of reciprocity. This says that if we switch the source position and
the microphone position, the microphone measures the sanmels
in both cases. You can see that this is so by switckiramdy in
0 Equation 2.8 and noting that the distance does not change. piut
\ two sources together and calculate the noise at some otimy {his
f > is equivalent to the noise measured by two microphones genisi
\ R generated at the original microphone point. Because thedsfieid
x is made up of contributions from two sources, it is calledigole
system.

The form of the acoustic field for a dipole system can be ddrive
from first principles. If we start with two sources of equatiaop-
posite strength, separated by a small distandbeir positions are

Figure 4.3: Dipole coordinate sys{=+a/2,0,0). Then the total sound at some point is:

e (t—Roje) qlt—R_Jo)
_q(t=Ry/e) qt—R_Jc
P= "R, iR (4.1)

Ry =|zF a/2)2 +y? + 22]1/2.
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We want to calculate the total radiated sound for (very) swalies ofa assuming thaf = aq thedipole
momentemains constant. The easiest way to do this is to expané Taylor series:

dp
~ + — +.... 4.2
p p|a:0 la a ( )

a=0

Differentiating (4.1):

dgt—Ri/c)  OR: <(i(t—Ri/C) n (J(t—Ri/C)>

da 47R4 da 47mR4c 4T R%
ORe|  _ leo
da |,_, 2R’
R= (2% + ¢ + 22)1/?
Using these results in (4.1):
@ (dt—RJe) _dlt—R/o)
P=Ag ( IrRe ' dmm ) (4.3)

We can rewrite this by noting thgt= aq andx/R = cos 6:

_ <f(t—R/c) n f(t—R/c)) cos 6 (4.4)

c R ATR’

If we look at this as a sound generating system, it tells usttfmaximum noise comes ét= 0
and the minimum (zero) at right angles to the line throughsitngrces, because of cancellation effects. If
we apply reciprocity, however, and assume thatgberceis atx and treat the dipole as a combination
of two microphones, the output signal is one which amplif@snsl from thed = 0 direction and cancels
out noise from¥ = = /2. This allows you to use the system in noisy environments &lyeu want to
ensure that only sound from one direction is accepted inytbies1. A good example would be the headset
microphones used by pilots: you want to ensure that the sfsrandthe pilot is accepted in the system but
the background noise is rejected.

Microphone arrays

If you want to be more particular about your measurements,cam add more microphones to set up a
microphone array This is a number of microphones whose signals are combimetich a way as to
amplify the sound from a particular position or directiomeXf the main applications of such arrays is a
line of microphones towed behind a ship for submarine detecalthough they are also used in acoustic
experiments to characterize or locate noise sources.
Figure 4.4 shows the oper-
ource ation of an array. We are in-
terested in sound from a ‘fo-
cus’ point. What we need
to know is how much sound
we will pick up from a source
CFocus  at some other position. The
sound from the source will
be exp(jkRs)/4mR,. The re-
sponse of the array is approxi-
mately an integral along the line
® ® ® ® ot of microphones with each mi-
Figure 4.4: Schematic of a linear microphone array crophone’s signal rephased to
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amplify sound coming from the
‘focus’ position:

L/2 eIk Rs )
S = / e IFEs dg, (4.5)

L/2 4R s

We can approximate the integral by noting that for distanteesl/ R, is approximately constant for all

microphones and, using a Taylor series, we can write:

Zs
R, ~ RS|$:0 — R_
s

Inserting this into equation 4.5:

a:)
=0

Rs — Ry =~ (Rs — Ry)|,_, — (cos s — cosOy)x.

L &* = Fs) gin k(cos O — cos )L /2

S:

0.8 —
0.6 —

0.4 —

sinx/x

0.2 —

—0.2 —

—20 —10 0 10 20

—60 —

—20 —10 0 10 20
x

b

Figure 4.5: Array responsgn z/z: a: responseb ampli-
tude indB.

2 27R, k(cosfs — cosby)L/2

The amplitude of the response has the form
of asin x/x curve. This has a maximum when
cosfy = cosfy; this is no surprise, it simply
means that we hear the most noise when we
‘look’ straight at the source. The shape of the
curve is shown in Figure 4.5. We can see that
as we move away from the focus position, the
amplitude of the response is smaller: by look-
ing in one direction, we reject noise from other
directions. We can also see from the shape
of the curve that increasing (proportional to
frequency), the amplitude of the response be-
comes smaller. So the array gives better dis-
crimination at high frequency. We get the same
effect by increasind., the length of the array.
The performance of the array is characterized
by the parametétL (so no change there then).



Chapter 5

Moving sources

Yeeeeeeeeehaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaanaaa

Major T.J. “King” Kong (Slim Pickens) iDoctor Strangelove or: How | learned to stop
worrying and love the bomb

As you may be aware from the movies and the scream of Major Kanlge plummets to his doom
astride a bomb, the sound heard from a source changes if tlieesis moving. As Major Kong falls
Russia-wards, he accelerates (Isaac Newton says he h@si®pacceleration changes the frequency of his

shout as he falls.

Figure 5.1: A simple model for the Doppler effeat,stationary sourcey: moving source.

O

©

Figure 5.1 shows what is happening. Figureashows the wavefronts radiating from a stationary
source. They propagate at the speed of sound and along arfydim the source, they are equidistant. In
figure 5.b, the source moves to the right at some veloéity The wavefronts still travel at the speed of
sound, but each is generated a point successively furtheetoght. This causes the wavefronts to bunch
up ahead of the source and stretch out behind it. This oblyidessds to a change in the frequency of the
sound at some observer position but also to a change in thitadep as more or fewer wavefronts arrive
per unit time.

To quantify the effect of motion on the sound radiated by ac®uwe use the solution of the wave
equation, equation 1.10, with a moving point source:

q(y,t) = q()é(y — yol(t)).
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30 CHAPTER 5. MOVING SOURCES

This represents a point source which irat y, at timet. Inserting this into equation 1.10:

/1/ T_t+}deVdr (5.1)

This can be solved using the normal relationship for theadielhction, but with the change of variables
T — gwhereg(t) =7 —t+ R/c:

G
/5(9(7))f(7) dr = |dg/dr| g(f):o'

Integrating over- in equation 5.1

/5(T—t+R/c)d B 1
T R "~ 4rR[L + 0R/07/d]

where
OR dyo X —yo

9r  or R
1(9}’0_
cor M

the source (vector) Mach number and

X—=Yo
R b
the relative Mach number of the source in the direction ofabserver, so that
q(7)
= ——dV.
P /L4WRH——ML

Becausg is a point source, we can integrate ovéto find:

M, = —M.

q(7)

P= R — M|

Finally, for a moving source with monopole strengtand dipole strengtk:

0 q(n) £(7)
= RN, IR - M| (®-2)

The important thing to note here is that the sound is amplifigé factorl/|1 — M, |, the Doppler
factor. For a supersonic source, it can happen that M,. = 0 and the pressurg is infinite. It is
also important to realize that a source which is steady iovte reference frame (the loading on a pro-
peller blade, for example) can still radiate noise if it isvimg, due to variations in the Doppler factor.

v We now look again at the problem of a monopole source moving in
. . . . -y -
@ straight line, figure 5.2. The position of the source:is= vt. The general
problem s left as an exercise, and here we will only look atsthund radiated
to an observer on the axis of motion. To work out the radiat@denfor an

Figure 5.2: Source in recti- . o
g observer ahead of the source, we need the following questtiti

linear motion
R=c(t—71)=x—vT,
t—ax/c
T1oM
— ot
R=1=
M, = M.
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The source-observer Mach numbdéy. is equal to the source Mach numbérfor observer positions ahead
of the source®{ > vt) and—M for observer positions behind the souree< vt). Inserting the various
quantities into equation 5.2:

_ 91 4(1)
L T

To look at the effect of motion on the frequency of the noismsider a source with = exp[—jwt].
The sound heard by an observer will be proportionalxp|—jwr]. Sincer = (¢t — z/¢)/(1 — M), the
sound at the observer will be proportional to

exp[—jw(t —xz/c)/(1 = M)]

and the perceived frequency will e/ (1— M). For points behind the sourc®,= z+ v and the perceived
frequency isv/(1 + M).

5.1 Questions

1. Repeat the example on page 30 for an observer or microghmsigon which is not on the line
of motion of the source. In writing the result in a compactnfioryou might find the definition

3% =1 — M? useful.

2. A turboprop aircraft has four-bladed propellers whictate at 500rpm. A noise measurement is
taken on the ground as the aircraft flies overhead at heighn20f the measurement microphone
is 400m ahead of the aircraft and the measured frequencydirgt harmonic of the noise is 60Hz,

how fast is the aircraft flying?






Chapter 6

Aircraft noise: propellers

The calculation of the noise generated by a general bodybitrary motion is a hard problem. The sound
radiated by a source undergoing motion as simple as purtamia qualitatively different from that of a
source moving in a straight line. This is partly because gieutation of the retarded time and the Doppler
factor is not as simple as in the linear motion case and phatause of the difficulty of calculating the
source terms, the force and volume sources of equation 5.2.

6.1 Sound from rotating sources

To keep things as simple as possible without making themalistie, we will look at the problem of the
sound radiated by a rotating point source. This is a very l&rsypstem but contains most of the behaviour
of real rotors and will spare us the agonies of dealing witbesfluous difficulties. The arrangement is
shown in figure 6.1: a point source at radiusotates at frequencf. We assume that there is no forward
motion, so this system corresponds to a stationary prapeli@ helicopter rotor in hover.

We will use cylindrical coordinate@:, 6, ) and assume that the observer
4 is positioned at a poir{t-, 0, z). Changing the angular position of the observer
will only affect the phase of the sound and not its overallpghaTo make
things easier for ourselves, we will work in terms of the ré¢al time rather
than the observer time.The position of the source at tirse

Y

a (acosQr,asinQr,0).

x Differentiating, its velocity is:

y (—af2sin Qr, aQ) cos 07, 0).

: i . The source observer distance is (remember the observendoesve):
Figure 6.1: A rotating
source R? = R2 + a® — 2ar cos Qr,
whereR, is the distance of the observer from the centre of rotation,

Ry =[r*+ 22]1/2.

We have the source-observer distance, but to calculatedpplBr factor we need to know the source—
observer Mach numbeév/,..

10R
M, = ———,
c or
OR ro_.
o —a}—%QstT,

M, = —%Mt sin Q7.
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34 CHAPTER 6. AIRCRAFT NOISE: PROPELLERS

Here M; = af)/c is the rotational Mach number of the source. The Doppleofast

1 R
1—M,| |R+rM;sind|’

wheref = Qr is the position of the source at time The first obvious thing is to check if and when the
Doppler factor becomes (nominally) infinite:

R = —rM;sin6.
This can be solved by squaring both sides and rememberihgjtif@ = 1 — cos? 6:
MZr? cos? @ — 2ar cos§ + R3 + a® — MPr? = 0.
If we now scale all lengths on the source radiyghe equation becomes:
M2r? cos? @ — 2rcosf + R3 +1— M2r? =0, (6.1)

which has two solutions:

1

4
MET

cosf = [(1— M2)(1 — M?r?) — M?22)/2, (6.2)

MET
If the source is to approach the observer at sonic velotigysblution forcos # must be real. This means
that the term inside the square root must not be negative:

(1 — M?2)(1 — M?r?) — M?22 > 0.
Solving with this term set to zero:

22 = (M?-1) <r2 — M%?) , (6.3)

which defines a curve in the-z plane dividing points where the source approaches at seficity from
points where it does not. Faf to be positive (i.e. a valid point in the plan&); > 1 andr > 1/M,.
This means that a source must be travelling supersonidaifyis to approach an observer position at
sonic velocity (hardly a surprise) and the observer pasitimust lie outside theonic radiusl /M;, which
is the radius where the source has, or would have, sonidantaelocity. Figure 6.2 shows the divid-
ing curves for different values aoff;. The region inside the curve, labelled ‘subsonic’, nevaresik
ences the source approaching at sonic velocity, while thtsm the outer region, labelled ‘sonic’, do.

A We have managed to get this far without ever calculating thisen
heard at some observation point. If we now calculate the tifiemwe
/ need to work out the noise:
Subsonic
My =2 R=[1+7%+ 2% - 2rcosf)'/?,
/
. S l—MT:1+Mt%sin9,
/,’ My =15 Ot =60+ MR,
// /// 1 1
/ =
e o ATR|1 — M 4m|R + rM;sin 6|’
S M =1.125 | A | tsind|
i/ ,~" Sonic where lengths are still scaled arand@ is still the source position at the
’#44*—’70 R retarded timer.

To calculate the radiated noise, we simply take differetiamofo,
Figure 6.2: Points subject toranging from0 to 27 and calculate the corresponding valuesaind the
Doppler radiation from a rotat-
ing source. The dashed lines
indicate the curve? = (M? —
1)(r? — 1/M?) for different tip
Mach numbers.
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0.8

0.6 —

0.5 1 1.5 2 2.5 3 3.5
Ot/m

Figure 6.3: Time records for rotating source.

arrival times2t. If the values of) are evenly spaced, we do not expect the valuésab be evenly spaced,
but they will cover a range dfr.

Figure 6.3 showd /47 R|1 — M,| plotted againsf2t/n for three different values of/;. Note that
in each caseQt covers a range dir. As you might expect, the noise fad; = 0.5 is weaker (though
not much weaker) than that fae/; = 1 which is very much weaker than that faf; = 2. This is not
unexpected but there is something strange about the naisedréor M; = 2: there are three values of
pressure for some time points.

The reason for this is shown in figure 6.4 which shows the joosit as a function of2t. For M, = 2,
there is a range df2t for which there are three values of meaning that the sound received at each time
has a contribution from three different source positiortsisTs a feature unique to supersonically rotating
sources and illustrates the manner in which noise from saalcss isqualitatively different and is not
just a louder version of subsonic source noise.For highatiom speeds, there can be five, seven or more
retarded times for a given arrival time.

2 —

1.5+

0.5 1 1.5 2 2.5 3 3.5
Qt/m

Figure 6.4: Retarded times for rotating source: the vdrtiaahed line indicates a valuetdfor which there
are three values af.
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6.2 Questions

1. Given a source rotating at Mach numbég, at what azimuthal angle does it generate maximum

acoustic pressure at an observer? Account for both supgemot subsonic source Mach numbers.

. The figure below shows schematically the layout of the elleps on one wing of a four-engined

turboprop. The propellers are of diameter 3m and their htd& 25m and 6.75m respectively from
the fuselage (assumed to be of constant section). The peopare advanced high speed designs
rotating at 2300rpm. Calculate the blade tip Mach numberthnd the extent of the region on the
fuselage affected by supersonic source radiation.

. A supersonic transport makes a turn of radius 300km attandd of 12000m. If the flight Mach

numberM = 2, calculate the radius of the ‘quiet zone’ below the aircriaftw would this change if
M were reduced to 1.5?

. Repeat question 3 §R.5 but with the piston velocity distribution given by= V expl[j(nf — wt)]

(you will probably need to consult a big maths book such asi€reeyn & Ryzhik). The result tells
you about how sound at a given frequency radiates from amgtadurce.



Chapter 7

Aircraft noise: jets

The approach to sound generation by sources in a flow is thaglethill who developed the basis of modern
aeroacoustics in the 1950s, as civil jet engines were beingldped. The derivation given here follows
Lighthill's original approach but is closer to that of Powweho developed a theory of sound generation by
vorticity. The idea is to go through the motions§if.2 but without linearizing the equations. The exact
equations of inviscid fluid motion are:

dp
ot + V.(pv) =0, (7.1a)
p% + pvVv 4+ Vp = 0. (7.1b)

As in §1.2, we differentiate equation 7.1a with respect to timajagign 7.1b with respect to space and
subtract one from the other:

2

0 0
V2p — 8_t§ =V. (Vp—i— E(pv)) . (7.2)

To simplify this equation, we can rearrange equations 7.altipying equation 7.1b by and adding
it to equation 7.1a:

5}
a(pv) + V.(pvv) + Vp=0.

Inserting this into equation 7.2:

1 9% 0 0
2.~ ZF — _ Il _
Vi Gk = () Vo) - (o).
which includes the usual approximation for the relatiopsigtweerp andp. The producpvv is to be read
as a tensor (like a matrix, or vector of vectors) which can b&en:

)

PUZVy  PUyUy PV

PUzVz  PUyUg  PUzUx
T p—
PULVz  PUyV,  PUZU,

or, more compacthyl;; = pv;v;. The netresult is then:

9 1 0%

p— %w =—VV(pvv), (7.3)

which is an approximation to Lighthill's theory of aerodynially generated sound.
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7.1 Lighthill's eighth power law for jet noise

Solving Lighthill's equation for different sources is mdten we can manage in these notes, but we can
derive a scaling law for jet noise which was one of the firsagseiccesses of the theory. The ‘solution’ of
equation 7.3is

_ T(Y? t— R/CO)
p= vv/v v,

whereT = pvv. In the far field, we can approximate this integral by diffarating it: when we do
this, we will retain only terms which depend a/iR (everything else decays much more rapidly). Setting
coordinates so that the origin is inside the source regichy =~ x and

1 xx 1 62
~ =2 2 iyt — R/ey)dV.
P x3/‘/033t2 (v /o)

Figure 7.1: Parameters for jet noise.

There is no general solution for this equation, but we caiveer scaling law for the radiated acoustic
power. Figure 7.1 shows a simple jet flow with the relevanapaaters indicated. We take a characteristic
length L, characteristic velocity” and a mean densify,. Then:

oV

ot L’
111 2

p ) (K> POV2L37

~ E;CO L

T ~ POV27

and the pressure scales as:

VAL
P~ pPo—5 -
g x

From equation 1.16, the intensity scales as

_ Ve /LY’

g \T

The total acoustic powéi/ is the intensity integrated over a spherical surface ofuseiand

8
W ~ pov—5L2. (7.4)
i)

The total acoustic power thus scales on the eighth powet @é€|ecity. This is Lighthill's eighth power
law and was derived before experimental data were avaitabdenfirm it: it is one of the few scientific
predictions to have been a genuine prediction. It is syriotlly true for low speed flows, because we have
implicitly assumed the source to be compact. At higher spetb@ characteristic frequency of the source
increases and interference effects become important.
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Figure 7.2: Trends in aircraft design: the Boeing 777 hasdéngines providing almost as much thrust as
the four engines of the Boeing 747, a quieter, more fueliefiicsolution.

Example: Modern aircraft

Using Lighthill's scaling law, we can estimate the diffecerin noise from a twin-engine and four-engine
aircraft. We know that the thrust from an engine is proparido pV2D?2. The total thrusf is the same
in both cases, and:

F = 4pV} D} = 2pV; D3,
and the total noisé&/ is:
Wy =4VED3,
Wy = 2Vy Dj.
We can calculate the ratio of the total noise, by calculatiiregratio of the jet velocities:
F/4_ (Va)*(Dy)’
F/2  \V, Dy )’
Dy
Vo =V2—V,
2 \/_Dz 4,

and, if we assume thdd, = 2Dy,

which is a noise reduction ofd®.

7.2 Questions

1. The thrust from a jet of diameté? scales apV2D?. For a fixed thrust, find a relationship between
the noise from the jet and its diameter. What relevance ddlyiok this relationship has for aircraft
design?

2. Given that jet thrust scales a¥2D?, estimate the noise reduction to be had by converting a four
engined aircraft to use two engines of twice the exhaust efiam
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Some useful mathematics

Coordinate systems Differential operators

In Cartesian coordinates:

Cylindrical coordinates: of of of
Vf = (%7 a_ya &) )
n _ O Ofy O
. V'f_ax+ay+az’
2 2 2

02 0y 022

> In cylindrical coordinates:

r Y
0 _(0f 10f of
f Vf= (E,;%ag),
_19 10fy  Of:
. V.t = T@T(Tfr)_FT 90 + 9z
x =rcosf), y=rsind; . 9 ( o gy
r=(®+y")"% f=tanty/a. Vf:m(ra) 2062 T 9m
Spherical coordinates: In spherical coordinates:
‘ _(Oof 19f 1 Of
=L vi= (5r’r8¢’rsin¢(")6‘>’
190, 1 9 .
j VA= g (0 + g g Uesind)
L9k
T rsing 00’
by 10 (W0FY, 10 (. o
T 0 vf_r287“ Tar +7'2singz58gz5 Sm¢8¢
1 0%

r2gin? ¢ 002
r=rsingcosf, y=rsingsinb,
Z =T COS ¢; Complex variables

= (x2 +92+ z2)1/2, 6 = tan~! y/x,

. 2 | a1/ We often use complex variable notation to make life
¢ =tan" z/(z”+y7) /7. easier. If we write a complex number= z + jy
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wherej = /—1, then:

z = |z|e?,
|2 = (2® + y*)'/2,
¢ =tan"ty/x.

In dealing with constant frequency waves, we can
use the relation:

e = coswt — jsinwt

and if we wish to consider a general wayeof a
fixed frequency, say, this can be written:

p(t) = Pe 1",

where nowP contains information about the ampli-
tude and the phase.

The Dirac delta

The basic rule for integrating the delta function is:

/_OO f@)d(z — xo) dz = f(x0),

and in the more complicated case where the argu-
ment of the delta function is itself a function:

f(@g=0)

1 @iyl dr =

SOME USEFUL MATHEMATICS



He has never again encountered the most esteemed ArkadjoApach Sempleyarov
in connection with acoustical problems. The latter was kjyitransferred to Bryansk and
appointed director of a mushroom-growing center. Nowadilgscow residents eat pickled
saffron milk caps and marinated white mushrooms with ersdieish and praise, and never
stop rejoicing in the lucky transfer. Since it is all a matiéthe past now, we feel free to say
that Arkady Apollonovich never did make any headway withustizs, and, for all his efforts
to improve the sound, it remained as bad as it was.

The Master and MargaritaMikhail Bulgakov



1.2 expjkR/4n R exp|—jwt].
1.4 set20log,, R2/R1 = 60 and findRy = 3000m.

2.3 treat the intake as a piston with radius= 1.5m, £ = 80 x 27/340 = 1.478/s andv = 0.02m/s.
Then:

p= —pQCU(eija _ ejkz)’
with z = 20m. Insert the numbers:

R, = 20.056,
p=—1.2x 340 x 0.02(cos29.643 + jsin 29.643 — cos 29.56 — j sin 29.56)
= 8.16 x (0.080299 — j0.019970),
|p| = 0.67519,
SPL = 20log,, 2%1'()75,
= 90.5dB

2.4

]wt
Pe 25 / / 47TR S,
2m
wpov/ / —7’1d7’1d01,

R=(r*+ 72 — 2rr cos 0y —|—z2)1/2,

In the far fieldR =~ Ry — 1 sin¢ cosf; andl/R ~ 1/ Ry so that:

wpov ekl 2
p A 2p72 / / 7_]]{}7‘1 sin ¢ cos 01 del r dT‘l

Using the integral definition afy( - ):

. eJkRO
= —Jwpov
p JWpo Ro

/ Jo(kry sin ¢)ry dr.
0

Changing variables = kry sin ¢:

e.]k;RO ka sin ¢
= -_ J d .
L TR

Integrating:

elffo J) (kasin ¢)
kasinpRy kasing

—Jjwpov
3.1 As in the notes, place at source at the image point in thaedery. The boundary condition is now
thatp = 0 so the sound field is:

olkR+  GikR-

T 4rR, 4rR_




3.2 The incident and reflected waves arexp jkx and B exp|—jkz] as before. Applying the boundary
condition atr = 0:

A+ B =0,
B=—-A,
p = A(e*® — eIk,

3.3 As already proven:

—1/2
T| =

2
1+ (@) cos? 0]
2pc

For Perspexm = 6kg/m?. With w = 27 x 100, |T'| = 1/4.727 = —13.5dB. For aluminium,
m = 5.4kg/m? and|T| = 1/4.27 = —12.6dB. At 1kHz, |T| = 1/46.2 = —33.3dB for Perspex
and|T| = 1/41.59 = —32.4dB.

The noise reduction for each material is about the same:ntk&ns that increasing the thickness
of one material will not help the noise reduction much. Botitenials need to be made thicker (or
insulated) to give good noise reduction. AtHz, the noise reduction is large so there is no need to
increase it.

3.4 The basic frequency is = 27 x 20 x 6000/60 = 12.566 x 10%rad/s. Rearrange the formula for
resonant frequency to find:

2

V= g — 7.666 x 10~ "m?,
w?l

V = hrnD?/4,

D= (4V/7Th)1/2 = 10mm.
5.2 Given the source frequency and position, we can worklwut¢lative Mach number. The source
frequency is

£ =4 x 500/60,
= 33.3Hz

with the multiplication by 4 because there are four bladém dngle between the source velocity and
the direction to the microphonetisn—! 200/400 = 0.464rad. If the measured frequency/f then

f
I_

f _1_Mr’
MT=1—%=MC080,
_ i
o L

cos

whereM is the flight Mach number. Inserting the numbers,

11— 33.3/60
" cos0.464
=0.498

and the flight velocity is\/¢ = 0.498 x 340 = 169m/s.



6.1 In the subsonic case, the highest pressure occurs wheis a maximum, i.e. when the source
approaches the observer at its highest velocity. In thersop& case, the highest pressure occurs if
the source approaches the observev/at= 1 and otherwise when/,. has a maximum.

6.2 First calculate the tip Mach number:

Q
Mt = _av
C
212300 1.5
60 340’
= 1.063.

From the notes the region affected by a supersonic source is:

1
ZQZ(MI?—].)('IQ—W)

The affected region will be that due to the outboard propelleere, scaling on propeller radius,
r=16.75/1.5=4.5and

1
2 =(1.063% — 1) | 4.5 —
@ = ) 1.0632 )
= 2.52.
The affected region is upstream and downstream of the deszal
z = =41.59

and we have to rescale to get the full extent so the solution is

z=41.59 x 1.5,
= +2.39m

and the length of the affected region is 4.78m.
7.1 The thrust and noise power are given by:
T = pV?D?,
w=Lvip2,

For fixed thrust:

so that the noise is given by:

4
p 1L (T 2
W=-——|—) D
c® D¥ ( p) ’
T 1
" A DS

The implication is that large jets are very much quieter tsraall ones which is why modern aircraft
have such high bypass ratios: to reduce the jet exhaustitseloc



7.2 Assume a given total thrust On the two-engined aircraft:

T

5 = V22D§v
Wy = 2VPD3,

where the scaling factorg @ndc) have been ignored. On the four engined aircratft:

T
Z = VfDZ,
Wy = 2VED3,
so the first thing we can write down is:
Wo _2(1e\" (D2’
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We know the diameter ratio so we now have to find the veloctip r&Ve get this from the thrust:
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Inserting this into the expression foiry /T,
W _1(1 8(2)2
Wy, 2\V2 ’
= 0.125.

In decibels, this i401og,,(W2/W4) = —9dB.



