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Abstract

After some remarks on the fundamental physicd nature of information,
Bennett and Fredkin's ideas of reversible computation are introduced. This
leads on to the suggestions of Benioff and Feynman as to the passhility of
a new type of esentialy ‘quantum computers’. If we can buld such
devices, Deutsch showed that ‘quantum paradlelism’ leads to new
agorithms and rew complexity classes. This is dramaticdly ill ustrated by
Shor's quantum algorithm for fadorization which is poynomial in time in
contrast to algorithms for fadorization ona dassca Turing computer. This
discovery has potentialy important implicaions for the seaurity of many
modern cryptographic systems. The fundamentals of quantum computing
are then introduced - reversible logic gates, qulits and quantum registers.
The key quantum property of ‘ entanglement’ is described, with due homage
to Einstein and Bell. As an illustration d a quantum program, Grover's
database search algorithm is described in some detail . After al this theory,
the status of experimental attempts to buld a quantum computer is
reviewed: it will become evident that we have alongway to go kefore we
can fadorize even small numbers. Finaly, we end with some thoughs
abou the process of ‘quantum compilation’ - trandating a quantum
agorithm into adual physicd operations on a quantum system - and some
comments on prospeds for future progress

1. INTRODUCTION

The fundamental basis of quantum computation is Landauer’s observation that al information is
ultimately physicd [1, 2. Information, the 1's and Os of classcd computers, must inevitably be
recorded by some physicd system - be it paper or silicon. Which krings usto the key paint. Asfar as
we know today, all matter is compaosed of atoms - nuclel and eledrons - and the interadions and time
evolution d atoms are governed by the laws of quantum mecdhanics. Althoughthe peauli ariti es of the
guantum world may nat seam realily apparent at first glance a doser look reveds that applications
of quantum mechanics are dl around s (see for example Ref. [3]). As has been emphasized by
Minsky [4], the very existence of atoms owes everything nd to the chaotic uncertainties of classcd
medhanics, bu rather to the certainties of quantum medanics with the Pauli exclusion principle and
well -defined and stable aomic energy levels! Indeed without our quantum understanding o the solid
state and the band theory of metals, insulators and semiconductors, the whole of the semiconductor
indwstry with its transistors and integrated circuits - and hence the computer on which | am writing
this ledure - could na have developed. The same can be said abou quantum optics and lasers: huge
indwstries - from opticd communicaions to music and video CDs - have their basis in these
intrinsicdly quantum techndogies.



At bottom then, everything is quantum mechanicd and, like Feynman in his visionary 1959
‘Plenty of Room at the Bottom’ talk [5], we can certainly envisage storing kits of information on
single @oms or eledrons. However, these microscopic objeds do not obey Newton's Laws of
classcd medanics: instead, they evolve and interad acerding to the Schroedinger equation, the
‘Newton's Law’ of quantum medhanics. In fad, we know now that even this is only a suitable
approximation for everyday speads and energies: at high speeals and energies, we must use the Dirac
equation and Einstein's relativity, with its predictions of relativistic mass increase and particle-
antiparticle aedion, must be taken into acourt. However, for most of our everyday concerns, it is
safe for us to ignare these complicaions and wse the nonrelativistic version d quantum mechanics
emboded by Schroedinger's equation.

Informationis ultimately not an abstrad concept - it must be recorded and stored onmedia that
are fundamentally quantum mechanicd. We must therefore broaden ou definition d information as
merely a string d 1's and Os and examine the mnsequences of the quantum nature of media for
information. The implicaions of this new field of quantum information theory are still being
explored and may yet deliver more surprises. However, to introduce quantum computing, we shall
only neel a few quantum concepts and pinciples. But before we turn to a discusson d quhits and
the like, we must now make an apparently puzzing dversion and introduce some ideas of Ed Fredkin
and Charles Bennett abou reversible cmputing and reversible logic gates.

2. REVERSIBLE COMPUTING

In 1973,Charles Bennett of IBM Reseach made aremarkable discovery [6]. Classcd computation
can be broken down into a series of steps, ead logicdly reversible, and thisin turn all ows physicd
reversibility of the computation. This result has implicaions for the energy disdpated by the
computation. Rolf Landauer, Bennett's long-term colleague and mentor, had ealier shown that it is
the ad of discarding information that incurs an urevoidable energy loss Thisis Landauer's Principle
and, for example, this is now central to ou current understanding d the problem of Maxwell's
Demon as given by Bennett [7, §. Bennett's result means that we can arrange our computer to
cdculate reversibly, very slowly, with an energy as snall aswe please. In hisledures on computation
in the 1980s [9], Feynman discusses a reversible mmputer that caculates for afew steps, then drifts
badk a bit, ‘uncdculating as it goes, before it drifts forward again to eventually complete the
cdculationwith aimost zero energy loss

To buld such a reversible computer requires us to use new types of logic gates that are
reversible, i.e. from the output of the gate one can reconstruct the input. It is easy to seethat a
conventional AND gate is nat reversible. If the output of an AND gate is 0, the signals on the two
input wires could be any ore of threeposgbhiliti es - 00, 01and 10.The possbility of reversible logic
gates was considered by Fredkin and Toffoli nealy 20 yeas ago [10]. Let us consider a simple
example. The truth table for a dasscd NOT gate is shown below (Fig. 1). It is clealy reversible:
from its output we can deduce its inpu. For this reason Feynman prefers to use the symmetricd
notationfor aNOT gate shown in Fig. 2. Two NOT gates put bad to badk evidently bring us bad to
the same place ad manifestly demonstrate the reversihility. Consider now the two-inpu gate shown
in Fig.3. Thisis cdled a‘Controlled NOT’ or CN gate, since the NOT operation onthe lower input
lineis only operative when thereisa‘l’ on the upper input: a‘0’ onthe upper input means that the
lower bit passes through urthanged. In effed, what appeas on the lower output is just the XOR
operation onthe two inpu bits (Fig. 4). However, the CN gate is more than just an XOR gate since
we retain information abou the wntrol bit. Thisis a general feaure of reversible gates: the price for
reversibility is that we neal to cary round extra bits of information. But, becaise we ae not
discarding any information, such agate is, in principle, more energy efficient than a dassca XOR
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Fig. 1 Truth Table for NOT gate.
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Fig. 2Alternative symbolsfor NOT gate.
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Fig. 3Controlled NOT or CN gate.

gate. Again, as saown in Fig. 5,the CN gate can be shown to be manifestly reversible by putting two
CN gates badk to badk. Any logicd operation can be built from one of several complete sets of
clasdcd logic gates - a chaice from NOT, AND, OR, XOR, NAND and so on. Similarly, ore can
show that there ae cmplete sets of reversible gates that allow us to perform any logic operation. In
fad, we nead more than just the CN gate: we can add a Controlled Controlled NOT (CCN) or
‘Toffoli’ gate (Fig. 6 or amore cmplicaed Fredkin exchange gate (Fig. 7).

Why dowe cae éou all this? Wdl for one thing it is pasgble that use of such gates may one
day be nealed to reduce power consumption d microprocessors implemented in CMOS silicon
techndogy. At present, the Intel Pentium discards something like 100,000 lts per flop with eath
discarded hit incurring at least the minimum Landauer energy loss[11]. In ou case, however, we ae
interested because the laws of quantum physics are reversible in time. This guarantees that
probability is conserved as a state evolves with time. Technicadly spe&ing, the Schroedinger time
evolution operator is unitary and preserves the norm of quantum mecdianicd states (see below). To
build a quantum computer with quantum states evolving acording to the Schroedinger equation
therefore necessarily requires usto use redisations of reversible logic gates.
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Fig. 4Truth Table for Controlled NOT gate.

Fig. 5CN gates are reversible.
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Fig. 6 Controlled Controlled NOT, CCN or Toffoli gate.
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Fig. 7 Fredkin Exchange gate.



3. QUANTUM COMPLEXITY

Complexity is the study d agorithms. The ‘universality’ of Turing Madines makes it possble for
computer scientists to classfy algorithms into dfferent ‘complexity classes. For example,
multiplication d two N x N matrices requires an operation court that grows like N° with the size of
the matrix. This can be analysed in detail for a simple Turing macdhine implementation o the
algorithm. However, the important point abou ‘universality’ is that athough youmay be ale to
multiply matrices smewhat faster than ona Turing machine, you canna change from an N° growth
of operations no matter what Pentium chip o spedal purpose matrix multiply hardware you chocse
to use. Thus agorithms, such as matrix multiply, for which exeaition time and resources grow
paynomially with problem size, are said to be ‘tradable’ and in the complexity class‘P'. Algorithms
for which time and resources are found to gow exporentialy with problem size ae said to be
‘intradable’. There ae many subtleties to this classficaion scheme: the famous ‘Travelling
Salesperson Problem’, for example, is in the rather mysterious complexity class‘NP. The book by
David Harel [12] contains an excdlent introductionto this subjed.

What has this to do with quantum information and quantum computers? In 1985 David
Deutsch pdnted ou that since aquantum computer was not a Turing machine there was the
posshility of new complexity classficaion d algorithms [13]. As we will see quantum computers
evolve a oherent superposition d quantum states © that ead of these states could foll ow a distinct
computational path urtil a final measurement is made & the output. It is therefore ceatainly
conceptually possblethat at least for some problems, quantum computers could surpassthe power of
clasdcd Turing computers. The first speadlation that this might be so is probably due to Feynman in
1981[14]. However, it was not until 1994 that interest in this sibjed exploded after Peter Shor's
discovery of anew quantum algorithm for fadorizing large numbers[15].

Mathematicians believe (althoughit has yet to be proved) that the number of steps required on
a dasscd computer to fadorize anumber with N dedmal digits grows exporentially with N. Since
the omputational work required grows very rapidly, the difficulty of fadorizing very large numbers
has been made the basis of the seaurity of the RSA encryption method (see Ref. [13] for a good
review of encryption techniques). This g/stem is widely used to proted eledronic bank acourts, for
example. The significance of Shor's result was that his algorithm, running ona quantum computer,
could solve the fadorizaion poblem in pdynomial time. What this coud mean for the RSA
cryptographic system may be ill ustrated by the time required to fadorize a129 dgit number known
as RSA129[16]. In 1994this required 5000MIPSyeas of computer time to fadorizeinto its 64 and
65 bt prime fadors, using over 1000workstations over a period d 8 months. A quantum computer
using Shar's algorithm with a dock speed of 100 MHz could fador RSA129in a few seands. This
explains the interest of various ‘seaet’ government agencies around the world in the feasibility of
building quantum computers!

4. QUBITSAND QUANTUM GATES

Instead of using Hghand low voltages to represent the 1's and Os of binary data, thereisnoreasonin
principle for us not to be @le to any two state quantum system. Two commonly discussed
posshiliti es are the two spin states of an eledron:

1) and |0) as t and |



or two pdarizaion states of a phaton:

1) and |0) as H and V

The time evolution d a quantum system is usually well approximated by the Schroedinger
equation. In a cordinate space representation, for example, the Schroedinger equation is a linea
partial differential equation with the property that any linea superpasition d eigenfunctionsisaso a
solution. This superposition property of quantum medianics means that the general state may be
written as a superposition d eigenstates. In the cae of our 2-state quantum system the genera state
may be written as:

w)=alL+B|o)

According to the standard interpretation d quantum medhanics, any measurement (of spin o
pdarizaion) made onthis gate will alwaysyield ore of the two eigenvalues with noway of knowing
which ore. If we prepare an ‘ensemble’ of identicd systems then gquantum medhanics asures us that
we will observeresult ‘1’ with probability | o | > and result ‘0" with probability | | °. Normalizaion
of the state to urity guarantees:

al*+|B]" =1

and this normali zation and hence the probability interpretation is maintained by any uritary operator
U defined bythe property:

U u=1

Information stored in a 2-state quantum system is cdled a quantum bit or ‘qubt’: besides
storing classcd ‘1 and ‘0" information there is also the paosshility of storing information as a
superpaosition d ‘1" and ‘0’ states.

We can define quantum analogues of classcd reversible gates by means of unitary operators

ading onthe qubt basis dates. For example, a quantum version d the NOT operator may be defined
asfollows:

UNOT|1>:|O>
Uor|0) = —1)

The phase is chasen for consistency of interpretation in terms of rotations of a spin half
particle. The NOT gate rresponds to a 180 degree spin rotation. An owerall phase makes no



difference to the probability of measuring the particular basis date dthough any relative phase
diff erence does aff ed measurements which depend onthe interference between the two basis dates.

We now seetwo passhle quantum generali sations compared to computation with classcd bits.
First, we can perform unitary operations on coherent linea combinations of the two basis dates:

Usor 5 (18410 )= 5 (j0)- 1)

Semond, we can consider operations on qulbits that have no classcd analogue. For example,
Deutsch introduces the * Square Root of NOT' operator defined by

(USRN)2 =Uyor
Uon [1= (19 +]0))

Usn|0) == (-9 +[0))

In physicd terms, such an operation merely corresponds to a 90 cegree spin rotation'.
Generalizing away from this gedfic spin interpretation, a transformation that takes a basis date and
transforms it into a linea combination d the two basis dates is very useful in the construction o
guantum algorithms andis cdled a‘Hadamard’ transformation.

We have mnsidered a single dedron system for storing a single quhkit. By considering
multi particle systems we can construct quantum registers. Thus an n-bit register may be written as:

w,)=[00)..0[1)=|11...1)

' The extraminus sgns floating aroundarise from the fad that spin half systems are doude-valued
representations of the rotation goup. A 360rotation yieldsthe original state gart from an overall minus sgn: a
720rotationisrequired to return to where we started.



If we now apply our SRN or Hadamard transformation to this date we now generate asuperposition
of all 2" states:

T

|W,) =Usw O Usa i) Usn[L 1)
=2 (18+/0))0 (1) +[0))-.0 (19 +[0})
2 2

{120 +|12.0) +...+|00..0) }
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In ather words, by applying a linea number of operations to the quantum register we ae ale
to generate aregister state with an exporential (2") number of terms. The aility to creae such
superpasitions is one of the key properties that gives quantum parall el procesdngits power.

We now sean to have dl the ingredients - logic gates and registers - to construct a quantum
computer. However, neither reversible gates nor superpasitions are spedficdly quantum mecdhanicd.
Quantum algorithms derive their remarkable power from one intrinsicdly quantum phenomenon that
we have nat so far considered. Thisisthe property cdled quantum entanglement and, as we shall seg
takes usto the very heat of the peauliariti es of quantum mechanics.

5. THE‘EPR’ PARADOX AND QUANTUM ENTANGLEMENT

Asiswell known, Einstein was suspicious of the probabiliti es inherent in quantum medhanics.
In the famous ‘Bohr-Einstein debate’ he tried ursuccessully to pinpant an intrinsic contradiction in
guantum theory. The dimax of this debate was his formulation, with Poddsky and Rosen, d a
situation in which ore of the essential peadliarities of quantum medanics was exposed [17]. A
modern variant (due to Bohm) of the agument of Einstein, Poddsky and Rosen gaces as follows [18].
Imagine we have an elementary particle with zero charge and spin - such as a neutral pion - at rest,
which then dsintegrates into a spin /2 eledron and a spin 12 pasitron (Fig. 8). Since anguar
momentum is conserved in this decg, the two spin half particles must together combine to form a
spin zero state. Thus if we measure the dedron spin to be up, for example, we know that the pasitron
spin must be down - and viceversa.



Fig. 8EPR pair creaed by ° ® €' € decay.

So what is the problem? Wdl, the dedron and paitron are separating rapidly in oppaite
diredions (conservation d linea momentum). If we make the first spin measurement on the dedron,
we ould in principle measure the positron spin before even alight signal had time to communicae to
the positron whether its gin hasto be up a down! In fad, no matter what we do, we dways find
perfed anti-correlation ketween the spins, even though there culd have been no phwicd
communicaion ketween the two particles. Einstein though that this demonstrated that the spins of
the two particles are therefore not indeterminate before measurement but are adually ‘elements of
physicd redity’. According to Bohr's ‘Copenhagen’ interpretation d quantum medhanics, it is
meaninglessto talk of the spin dredion d the particles until you make ameasurement. This is the
truly startling pant abou quantum mechanics: orthodoxy las it that there is no oljedive redity (a
redity independent of an ‘observer’) for the dedrons and their spins! Einstein would have nore of
this and though that things must redly be predetermined in advance of the measurement. In ather
words, although ouw present formulation d quantum mecdhanics has the spins as only having a
probabili stic value, and since‘ spooky, faster than light’ signaling is out of the question, there must be
some ‘hidden variables' that make the diredions of the spins predetermined from the outset. After
several months of frantic adivity devising a resporse to Einstein's chall enge, Bohr dedared the EPR
paradox nd to be aparadox at all and argued essentially that quantum mechanics demands that you
are only alowed to trea the dedron-paositron system as a single quantum system. And there the
matter rested, as a rather abstrad and philosophicd debate &ou hidden variables and oljedive
redity - since neither side denied that quantum mechanics worked as a predictive framework. Until
JohnBell entered the debate.

John Bell's grea contribution was to devise away of putting these two views - hidden
variables/objedive redity and guantum medhanics/no oljedive redity - to an experimental test. In
our discusson above, we only discussed measuring spins in the ‘up’ and ‘down’ diredion. What
happens if we measure ‘up/down’ for the dedron bu ‘left/right’ for the positron. This is easy to
cdculate acording to guantum mechanics. If the dedronisfoundto be ‘up’, the positron state must
be ‘down’ for our zero spin initial state, and by standard quantum mechanics a down state may be
written as an equal superposition d ‘left’ and ‘right’ eigenstates. Thus a measurement of the
‘right/left’ kind on the paositron would yield right or left with equal probabilities’. John Bell's
contribution, as he was proud d saying, was to consider the crrelations predicted for spin
measurements nat at right angles but at an angle of 37 degrees, say. In this case, the probabiliti es for
‘up’ and ‘down’ aong this new diredion are now not equal and are not purely randam. What Bell
was able to prove was that the wrrelations predicted by quantum mechanics are greder than could be

? 1t isjust this property of quantum mechanics that is used as the basis for provably seaure key distributionin
guantum cryptographic systems[19].



obtained from any local hidden variable theory - where locd means there is no faster than light
signaling a any aher peadliar, acaisal behaviour [20]. Unfortunately for Einstein, Alain Asped and
co-workers, in afamous series of experiments, demonstrated (to most people's stisfadion) that Bell's
hidden variable inequaliti es are violated and Nature gppeasto okey quantum mechanics [20].

Why have we made this apparent diversion to discussthe EPR paradox? The reason is that the
EPR state of the dedron and paitronis an example of an ‘entangled state’. If we write the spin zero
spin state in terms of the spin states of particles 1 and 2we have:

=022 (1)), = [4))1).)

In the EPR case these two particles are rapidly flying apart. The key point abou an entangled
stateisthat it isnot possble to write such a state & a simple product state of particle 1 and particle 2.
Particle 1 isnaot in adefinite spin state - the spin informationis shared between the two perticles. This
isan example of what is smetimes cdled an ‘entangled qubt’ or just an ‘e-bit’. The important thing
to remember is that it iswith such states that quantum medhanics showsits bizarre non-locd power.

Why are entangled states of relevance to quantum computing? Consider the adion d a
guantum CN gate:

Un —>

b . alb

If we gply this transformation to the following product state we generate predsely a state of
the EPR form:

tol

Vo 519+ 18)10)= (00 + 1)

2

It isthe sharing d two halves of an entangled pair that makes passble such things as ‘ quantum
teleportation’ [21]. In this case, interading with ore half of an EPR pair affeds the other half in a
nonlocd way. Thisremarkable nonlocd nature of quantum medhanicsis also an essential ingredient
of quantum algorithms on quantum computers.



6. GROVER'S FEARCH ALGORITHM: AN EXAMPLE OF A QUANTUM ALGORITHM

Consider the problem of searching a database with N names in a randam order for the telephore
number of a friend. Classcdly this would require on average N/2 steps to find the required entry
since there is no smarter way than a brute force O(N) seach. Lov Grover was able to devise a
guantum algorithm to seach an analogows quantum database with N items in O(VN) steps [22].
Althoughthis quantum algorithm does not change the complexity classit still provides sgnificant
speed-up for large N. The problem may be formulated as follows. We have asystem with N = 2
states. Each state can therefore be labeled asan L-bit string S,,S,, ... S,. The state we want is S_ which
satisfies the condtion:

C(S,)=1forn=m
C(S) =0forn#m

The problem isto identify the state S, .
Grover's agorithm spedfies the foll owing steps:

1. Start with L qub it register in state

10) =|00...0)

2. Apply Hadamard transformation to generate a superposition of all possible states

3. DO FOR SQRT N TIMES

4. Apply the operator Uy, defined by
U,/n)=|n) for n#m
U,|n)=-n) for n=m

5. Apply Grover's ‘Diffusion’ operator
U, =U,uu,
6. END DO

7. Measurement yields state S, with high probability




Althoughthis algorithm may appea rather cryptic, the dfed of these operations is in fad
rather simple. The diffusion ogerator corresponds to a refledion d all the amplitudes abou their
mean. Because the sign d the amplitude we want has been reversed, this operation amplifies this
amplitude & the expense of the others. Thisisill ustrated below for the case N =8,L = 3 (Fig. 9.

T = L
(@) —>

o T & filir

Fig. 9Representation o amplitudes and operators for N=8 L=3 Grover Seach.
(Asumed marked bt ism=3.)

Boyer et a. [23] have pointed ou that Grover's algorithm is one of a genera class of
‘“amplitude enhancement’ quantum algorithms.

What uses could there be for Grover's algorithm? It will not be very useful for seaching a
conventional database since it would first be necessary to transfer all the data into a quantum
database and thisin itself is an O(N) operation. However, it could be dfedive in cryptoanalysis. In
the DES encryption system, the seaurity is ensured by the time required to seach alarge aray of
keys. Using Grover's algorithm, a quantum computer could reduce the search time from thousands of
yeasto minutes.



7. EXPERIMENTAL QUANTUM COMPUTING: STATE OF THE ART

Thisis fast moving field and several different physicd redisations of quantum logic gates are being
explored by goupsin many dfferent countries. The front-runners at the moment are ion traps, cavity
QED and NMR ‘ensemble’ quantum computing. The group d David Wineland in Boulder have
recantly demonstrated aredisation d a CN gate using the two lowest energy levels of two Beionsto
redise the two quhit states [24]. The ions are mnfined in alinea array in an ion trap and cooled to
very low temperature using laser coaling techniques. The muding between the two ions is provided
by the vibrational modes of the two ions and Wineland and his group have succesdully coded the
system to its vibrational groundstate to implement a CN gate. The Caltech group have used an atom
interading with phdonsin a cavity to demonstrate condtional phase rotations for atwo qubt system
[25]. Both these gproaches attempt to manipulate individual qubts diredly. By contrast, an
approach using conventional NMR machines manipulates many moleaulesin buk. Thereis no dred
control of the qubts of individual moleaules but clever manipulation o the NMR operations all ows
ore to effedively isolate pure quht states. Several groups have investigated guantum systems
containing two o three qukits [26-28]. More recently, Jones and co-workers in Oxford have
succesully implemented bah Grover's and Deutsch's algorithms on a two quht system [29, 3Q.
Althoughit seams clea that it will be possble to buld and implement quantum algorithms on small
numbers of qubts using these techndogies, it is by nomeans clea that any of these will scade to the
sort of numbers required for fadorizing large numbers.

Most receitly Paul Kwiat and co-workers at Los Alamos National Laboratory have
implemented Grover's ®ach agorithm using conventional opticd interferometers [31]. In this
redisation the two qubts are the two phdon pdarizaions and the two dredions through the
interferometer. Thus athough om can demonstrate quantum gates and algorithms using this
technique, no multi-particle entanglement is involved. It is therefore no surprise that increasing the
number of qubits using this approach requires exporentialy increasing resources.

Several authors have speaulated abou using solid state devices such as quantum dots or
SQUIDs but there seam to be grea difficulties in bah the cntrol and readou of individual quhits
and aso in isolating the quantum ‘system’ from the ‘environment’. This last problem is the
‘decoherence problem. The muging to the environment sets bounds to the length of time one can
allow the quantum computer to cdculate and kegp meaningful phase relations between the diff erent
states. An exciting futuristic but potentially feasible scheme using carefully positioned phasphaus
impurity nuclei in isotopicdly pure sili con semiconductor has been propased by Kane [32]. It will be
someyeas, if ever, before such an approach delivers aworking guantum computer.

8. CONCLUSIONS

There ae many exciting avenues to be explored invaving computer scientists, quantum physicists
and eledronic and phdonic engineas. One example has been provided by Butler and Hartel at
Southampton [33]. They have shown how Grover's sach agorithm can be expressed in terms of a
probabili stic version o Djikstra's wp cdculus and derived closed forms for its convergence Ancther
example is the new field of ‘ quantum compil ers'! Quantum compil ation is the businessof tranglating
an abstrad quantum algorithm down to operations in a given implementation techndogy. For NMR,
for example, a Hadamard transformation must be translated into a spedfic set of NMR magnetic field
pulses.

Aswe have sea, the extraordinary power of quantum algorithms ansto be derived from the
properties of multiparticle entangled states. This is where the pealliar nonlocd behaviour of



guantum mechanics enters the game. In addition, for a pradicd quantum computation to survive
interadions with the elvironment and tolerate dightly inacarate quantum gate operations, the
guestion d error corredion must be aldressed. Surprisingly, Shor [34] and Steane [35 have
independently propcsed schemes that show that quantum error corredion is indeed pasdble in
principle - something that had hitherto been doulied. Again, entanglement is at the heat of these
error corredion schemes.

In his 1981 talk [14] in which he first proposed the ideaof a quantum computer, Feynman
confessed that he was "nat sure if thereis ared problem with quantum medhanics." He was aso na
clea whether quantum computers could be made or would ever do anything useful. But he thougtt
that quantum computation was awonderful problem to "squeezethe difficulty of quantum mecdhanics
into a smaller and smaller place"” Since quantum computation relies © heavily on the nonlocd
asped of quantum theory we can extend and stress the theory in new and exciting ways. We may
have the founditions of a new multibilli on industry or we may find the first clues towards a theory
that may eventually suppgant quantum mecdanics! Both passhiliti es are exciting.
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