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Chapter 1

Introduction

The goal of this book is to provide a broad background in probability and
statistics for students in statistics, computer science (especially data min-
ing and machine learning), mathematics, and related disciplines. This book
covers a much wider range of topics than a typical introductory text on
mathematical statistics. It includes modern topics like nonparametric curve
estimation, bootstrapping and classification, topics that are usually relegated
to follow-up courses. The reader is assumed to know calculus and a little lin-
ear algebra. No previous knowledge of probability and statistics is required.
The text is suitable for advanced undergraduates and graduate students.

Statistics, data mining and machine learning are all concerned with
collecting and analyzing data. For some time, statistics research was con-
ducted in statistics departments while data mining and machine learning re-
search was conducted in computer science departments. Statisticians thought
that computer scientists were reinventing the wheel. Computer scientists
thought that statistical theory didn’t apply to their problems.

Things are changing. Statisticians now recognize that computer scien-
tists are making novel contributions while computer scientists now recognize
the generality of statistical theory and methodology. Clever data mining al-
gorithms are more scalable than statisticians ever though possible. Formal
statistical theory is more pervasive than computer scientists had realized. All
agree students who deal with the analysis of data should be well grounded
in basic probability and mathematical statistics. Using fancy tools like neu-
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12 CHAPTER 1. INTRODUCTION

ral nets, boosting and support vector machines without understanding basic
statistics is like doing brain surgery before knowing how to use a bandaid.

But where can students learn basic probability and statistics quickly?
Nowhere. At least, that was my conclusion when my computer science col-
leagues kept asking me: “Where can I send my students to get a good a under-
standing of modern statistics quickly?” The typical mathematical statistic
course spends too much time on tedious and uninspiring topics (counting
methods, two dimensional integrals etc.) at the expense of covering modern
concepts (bootstrapping, curve estimation, graphical models etc.). So I set
out to redesign our undergraduate honors course on probability and mathe-
matical statistics. This book arose from that course. Here is a summary of
the main features of this book.

1. The book is suitable for honors undergraduates in math, statistics and
computer science as well as graduate students in computer science and
other quantitative fields.

2. T cover advanced topics that are traditionally not taught in a first
course. For example, nonparametric regression, bootstrapping, den-
sity estimation and graphical models.

3. I have omitted topics in probability that do not play a central role
in statistical inference. For example, counting methods are virtually
absent.

4. In general, I try to avoid belaboring tedious calculations in favor of
emphasizing concepts.

5. I cover nonparametric inference before parametric inference. This is the
opposite of most statistics books but I believe it is the right way to do it.
Parametric models are unrealistic and pedagogically unnatural. (How
would we know the everything about the distribution except for one or
two parameters?) I introduce statistical functionals and bootstrapping
very early and students find this quite natural.

6. I abandon the usual “First Term = Probability” and “Second Term
= Statistics” approach. Some students only take the first half and it
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would be a crime if they did not see any statistical theory. Furthermore,
probability is more engaging when students can see it put to work in
the context of statistics.

7. The course moves very quickly and covers much material. My col-
leagues joke that I cover all of statistics in this course and hence the
title. The course is demanding but I have worked hard to make the ma-
terial as intuitive as possible so that the material is very understandable
despite the fast pace. Anyway, slow courses are boring.

8. As Richard Feynman pointed out, rigor and clarity are not synony-
mous. | have tried to strike a good balance. To avoid getting bogged
down in uninteresting technical details, many results are stated without
proof. The bibliographic references at the end of each chapter point
the student to appropriate sources.

9. On my website are files with R code which students can use for doing all
the computing. However, the book is not tied to R and any computing
language can be used.

The first part of the text is concerned with probability theory, the formal
language of uncertainty which is the basis of statistical inference. The basic
problem that we study in probability is:

Given a data generating process, what are the properties of the out-
comes?

The second part of the book is about statistical inference and its close cousins,
data mining and machine learning. The basic problem of statistical inference
is the inverse of probability:

Given the outcomes, what can we say about the process that gener-
ated the data?

These ideas are illustrated in Figure 1.1. Prediction, classification, clus-
tering and estimation are all special cases of statistical inference. Data anal-
ysis, machine learning and data mining are various names given to the prac-
tice of statistical inference, depending on the context. The second part of
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Probability

/\

Observed data

\/

Inference and Data Mining

Data generating process

Figure 1.1: Probability and inference.

the book contains one more chapter on probability that covers stochastic
processes including Markov chains.

I have drawn heavily on other books in many places. Most chapters
contain a section called Bilbliographic Remarks which serves both to ac-
knowledge my debt to other authors and to point readers to other useful
references. 1 would especially like to mention the books by DeGroot and
Schervish (2002) and Grimmett and Stirzaker (1982) from which I adapted
many examples and excercises.
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Statistics/Data Mining Dictionary

Statisticians and computer scientists often use different language for the

same thing. Here is a dictionary that the reader may want to return to

throughout the course.

Statistics Computer Science Meaning
estimation learning using data to estimate
an unknown quantity
classification supervised learning predicting a discrete Y from X € X
clustering unsupervised learning putting data into groups
data training sample (X1, Y1), ..., (Xn, Ya)
covariates features the X;’s
classifier hypothesis a map from covariates to outcomes
hypothesis — subset of a parameter space ©
confidence interval — interval that contains unknown quantity
with a prescribed frequency
directed acyclic graph  Bayes net multivariate distribution with

Bayesian inference

frequentist inference

large deviation bounds

Bayesian inference

PAC learning

specified conditional

independence relations

statistical methods for using data

to update subjective beliefs

statistical methods for producing

point estimates and confidence intervals
with guarantees on frequency behavior
uniform bounds on probability of errors
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Notation
Symbol Meaning
R real numbers
inf,ca f(2) infimum: the largest number y such that y < f(z) forall z € A
think of this as the minimum of f
SUPgea f(2) supremum: the smallest number y such that y > f(x) for all z € -
think of this as the maximum of f
n! nx(n—1)xn—2)x--+x3x2x1
(+) o
() Gamma function [;° y* ‘e vdy
w outcome
Q sample space (set of outcomes)
A event (subset of )
I4(w) indicator function; 1 if w € A and 0 otherwise
P(A) probability of event A
|A| number of points in set A
Fx cumulative distribution function
fx probability density (or mass) function
X~F X has distribution F
X~ f X has density f
XLty X and Y have the same distribution
X,..., Xy~ F sample of size n from F
[0) standard Normal probability density
) standard Normal distribution function
Zo upper « quantile of N(0,1) i.e. 71(1 — )

Cov(X,Y)
X1, ., Xn
n

P
—
PUNN
LN

expected value (mean) of random variable X
expected value (mean) of r(X)

variance of random variable X

covariance between X and Y

data

sample size

convergence in probability
convergence in distribution

convergence in quadratic mean
(Xo —p)/on ~ N(0,1)



Notation Continued

Symbol Meaning

5 statistical model; a set of distribution functions,
density functions or regression functions

0 parameter

) estimate of parameter

T(F) statistical functional (the mean, for example)

L, (0) likelihood function

Tn = o(ay) Tn/n — 0

Tn = O(ay) |zn/ax| is bounded for large n

X, = op(ay) Xn/aniﬂ)

X, =O0p(a,) |Xn/an| is bounded in probability for large n

17
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Useful Math Facts

ED Dt I T

Zﬁkrj=%f0r0<r<1

lim, o0 (1+2)" = e

The Gamma function is is defined by I'(a) = [;°y* e ¥dy for o > 0. If
a > 1 then I'(a) = (¢ — 1)['(aw — 1). If n is an integer then I'(n) = (n — 1)!.
Some special values are: I'(1) =1 and I'(1/2) = /7.
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Chapter 2

Probability

2.1 Introduction

Probability is the mathematical language for quantifying uncertainty. We
can apply probability theory to a diverse set of problems, from coin flipping to
the analysis of computer algorithms. The starting point is to specify sample
space, the set of possible outcomes.

2.2 Sample Spaces and Events

The sample space (2, is the set of possible outcomes of an experiment.
Points w in 2 are called sample outcomes or realizations. Events are
subsets of 2.

Example 2.1 If we toss a coin twice then Q = {HH, HT,TH,TT}. The event
that the first toss is heads is A={HH,HT}. B

Example 2.2 Let w be the outcome of a measurement of some physical quan-
tity, for example, temperature. Then 2 = R = (—o00, 00). The event that the
measurement is larger than 10 but less than or equal to 23 is A = (10,23]. B

Example 2.3 If we toss a coin forever then the sample space is the infinite set
Q= {w = (w1, W, W3, -+, ), Wi € {H,T}}.

Let E be the event that the first head appears on the third toss. Then

E= {(MI,UJQ,UJ:.;,...,) s wy =T,wy=T,ws =H, w; € {H, T} for i > 3}. [ |

21



22 CHAPTER 2. PROBABILITY

Given an event A, let A° = {w € Q; w ¢ A} denote the complement
of A. Informally, A¢ can be read as “not A.” The complement of €) is the
empty set (). The union of events A and B is defined A|JB={w e Q; we
Aorw € Bor w € both} which can be thought of as “A or B.” If Ay, Ay, ...

is a sequence of sets then

UAi = {w € Q: we A, for at least one i}.

=1

The intersection of A and B is A(1B = {w € ; w € A and w € B} read
“A and B.” Sometimes we write A(|B as AB. If Ay, Ay, ... is a sequence
of sets then

éAi:{WEQ: wEAZ-foralli}.

Let A—B={w: we€ A w¢ B}. If every element of A is also contained in
B we write A C B or, equivalently, B D A. If A is a finite set, let |A| denote
the number of elements in A. See Table 1 for a summary.

Table 1. Sample space and events.
Q sample space
w outcome
A event (subset of €2)
|A| number of points in A (if A is finite)
A complement of A (not A)
A|JB union (A or B)
A B or AB intersection(A and B)
A-B set difference (points in A that are not in B)
ACB set inclusion (A is a subset of or equal to B)
0 null event (always false)
Q true event (always true)

We say that Ay, As, . .. are disjoint or are mutually exclusiveif A;( 4, =
() whenever i # j. For example, A; = [0,1), Ay = [1,2), A3 = [2,3),... are
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disjoint. A partition of 2 is a sequence of disjoint sets A, Ao, ... such that
U2, Ai = Q. Given an event A, define the indicator function of A by

1 ifweA

IA(“’)_I(WEA)_{ 0 ifw¢ A
A sequence of sets Aj, Ag, ... is monotone increasing if A; C Ay C
- and we define lim,,_,oo A, = s, 4i- A sequence of sets Aq, Ay, ... is

monotone decreasing if A; D Ay D --- and then we define lim, _,,, A, =
Moo, Ai. In either case, we will write A, — A.

Example 2.4 Let Q =R and let A; = [0,1/3) fori=1,2,.... Then|J;2; A =
[0,1) and ;2 Ai = {0}. If instead we define A; = (0,1/7) then ;o Ai =
(0,1) and N2, A;=0. 1

2.3 Probability

We want to assign a real number P(A) to every event A, called the prob-
ability of A. We also call P a probability distribution or a probability
measure. To qualify as a probability, P has to satisfy three axioms:

Definition 2.5 A function P that assigns a real number P(A) to each
event A is o probability distribution or ¢ probability measure if
it satisfies the following three axioms:

Axiom 1: P(A) > 0 for every A

Axiom 2: P(Q) =1

Axiom 3: If Ay, A, ... are disjoint then

There are many interpretations of P(A). The two common interpretations
are frequencies and degrees of beliefs. In frequency interpretation, P(A) is

It is not always pos-
sible to assign a
probability to every
event A if the sam-
ple space is large,
such as the whole
real line. Instead,
we assign probabil-
ities to a limited
class of set called
a o-field. See the
technical appendix
for details.



24 CHAPTER 2. PROBABILITY

the long run proportion of times that A is true in repetitions. For example,
if we say that the probability of heads is 1/2, when mean that if we flip the
coin many times then the proportion of times we get heads tends to 1/2 as
the number of tosses increases. An infinitely long, unpredictable sequence of
tosses whose limiting proportion tends to a constant is an idealization, much
like the idea of a straight line in geometry. The degree-of-belief interpreta-
tion is that P(A) measures an observer’s strength of belief that A is true.
In either interpretation, we require that Axioms 1 to 3 hold. The difference
in interpretation will not matter much until we deal with statistical infer-
ence. There, the differing interpretations lead to two schools of inference:
the frequentist and the Bayesian schools. We defer discussion until later.
One can derive many properties of P from the axioms. Here are a few:

P@®) = 0
AcCcB = P(A) <P(B)
0< P(4) <1
P(A%) = 1-P(A)
ANB=0 = ]P’(AUB) = P(A) + P(B). (2.1)

A less obvious property is given in the following Lemma.
Lemma 2.6 For any events A and B, P(A|JB) =P(A) + P(B) — P(AB).

PROOF. Write AJB = (AB°)|J(AB)J(A®B) and note that these
events are disjoint. Hence, making repeated use of the fact that P is ad-
ditive for disjoint events, we see that

IP(AUB) - ]P’((ABC)U ACB))
= ]P’(ABc)—i-IP(AB)—i-P(ACB)
= P(AB°) + P(AB) + P(A°B) + P(AB) — P(AB)
= P ((4B)|J4B)) + P ((4°B)| J(4B)) - P(4B)
= P(A)+P(B)—P(AB).

Example 2.7 Two coin tosses. Let Hy be the event that heads occurs on toss 1
and let Hy be the event that heads occurs on toss 2. If all outcomes are equally
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lzkely, that iS, P({Hl,HQ}) = ]P({Hl,TQ}) = ]P({Tl,HQ}) = ]P({Tl,TQ}) =
1/4, then P(Hi U Hs) = P(H1) + P(Ho) —P(H1Hy) =1+ 1 —-1=3/4 W
Theorem 2.8 (Continuity of Probabilities.) If A, — A then P(A,) — P(A) as

n — oQ.

PROOF. Suppose that A, is monotone increasing so that A; C Ay C - - -.
Let A = lim, o0 Ay, = U;2; Ai- Define By = Ay, By = {w € Q: w €
Ayw ¢ A1}, Bs = {w € Q: w e A3,w ¢ Ay,w ¢ A},... It can be
shown that By, Bs, ... are disjoint, A, = |J_, A; = U, B; for each n and
Uirs, Bi = Ui, Ai- (See excercise 1.) From Axiom 3,

P(4,) =P (LnJ Bi) = iP(Bi)

and hence, using Axiom 3 again,

lim P(4,) = lim Xn:IP(B,-) = io:]P’(B,-) =P (O Bz-> =P(4). N

=1

2.4 Probability on Finite Sample Spaces

Suppose that the sample space Q = {w;,...,w,} is finite. For example,
if we toss a die twice, then  has 36 elements: Q = {(7,j); i,5 € {1,...6}}.
If each outcome is equally likely, then P(A) = |A|/36 where |A| denotes the
number of elements in A. The probability that the sum of the dice is 11 is
2/36 since there are two outcomes that correspond to this event.

In general, if 2 is finite and if each outcome is equally likely, then

_ 14

P(4) = (g1

which is called the uniform probability distribution. To compute prob-
abilities, we need to count the number of points in an event A. Methods
for counting points are called combinatorial methods. We needn’t delve into
these in any great detail. We will, however, need a few facts from counting
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theory that will be useful later. Given n objects, the number of ways of
ordering these objects is n! = n(n—1)(n—2)---3-2- 1. For convenience, we
define 0! = 1. We also define

@ - w%k)' (2:2)

read “n choose k£”, which is the number of distinct ways of choosing k£ objects
from n. For example, if we have a class of 20 people and we want to select a
committee of 3 students, then there are

20\ 200  20x19x18
3/ 3171 3x2x1

= 1140

possible committees. We note the following properties:

(6) =)= e ()=
2.5 Independent Events

If we flip a fair coin twice, then the probability of two heads is 3 x 3. We
multiply the probabilities because we regard the two tosses as independent.
The formal definition of independence is as follows.

Definition 2.9 Two events A and B are independent if
P(AB) = P(A)P(B) (2.3)
and we write AIIl B. A set of events {A; : i € I} is independent if
P (ﬂ Ai> =[]P)
ieJ ieJ

for every finite subset J of I.

Independence can arise in two distinct ways. Sometimes, we explicitly
assume that two events are independent. For example, in tossing a coin
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twice, we usually assume the tosses are independent which reflects the fact
that the coin has no memory of the first toss. In other instances, we derive
independence by verifying that P(AB) = P(A)P(B) holds. For example, in
tossing a fair die, let A = {2,4,6} and let B = {1,2,3,4}. Then, A(\B =
{2,4}, P(AB) = 2/6 = P(A)P(B) = (1/2) x (2/3) and so A and B are
independent. In this case, we didn’t assume that A and B are independent
it just turned out that they were.

Suppose that A and B are disjoint events, each with positive probabil-
ity. Can they be independent? No. This follows since P(A)P(B) > 0 yet
P(AB) = P(f) = 0. Except in this special case, there is no way to judge
independence by looking a the sets in a Venn diagram.

Example 2.10 Toss a fair coin 10 times. Let A = “at least one Head.” Let T}
be the event that tails occurs on the j* toss. Then

P(A) = 1-P(A9)
1 —P(all tails)
1-— ]P(T1T2 v TlO)
(

= 1-P(T1)P(T3)---P(Tyy) using independence

1\ 10
= 1—<§> ~.999. 1

Example 2.11 Two people take turns trying to sink a basketball into a net.
Person 1 succeeds with probability 1/3 while person 2 succeeds with probability
1/4. What is the probability that person 1 succeeds before person 2% Let E
denote the event of interest. Let A; be the event that the first success is
by person 1 and that it occurs on trial number j. Note that A, As,... are
disjoint and that E = U2, A;. Hence,

Now, P(A;) = 1/3. Ay occurs if we have the sequence 1 misses, 2 misses, 1
succeeds. This has probability P(A2) = (2/3)(3/4)(1/3) = (1/2)(1/3). Fol-
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lowing this logic we see that P(A;) = (1/2)771(1/3). Hence,

p-35(G) =s5() -3

Here we used that fact that, if 0 <7 <1 then 3222, 17 =7*/(1—r). B

Summary of Independence
1. A and B are independent if P(AB) = P(A)P(B).
2. Independence is sometimes assumed and sometimes derived.

3. Disjoint events with positive probability are not independent.

2.6 Conditional Probability

Assuming that P(B) > 0, we define the conditional probability of A given
that B has occurred as follows.

Definition 2.12 If P(B) > 0 then the conditional probability of A
given B 1s

P(AB)
P(B) -

P(A|B) = (2.4)

Think of P(A|B) as the fraction of times A occurs among those in which
B occurs. Here are some facts about conditional probabilities. For any fixed
B such that P(B) > 0, P(-| B) is a probability i.e. it satisfies the three axioms
of probability. In particular, P(A|B) > 0, P(Q2|B) = 1 and if Ay, As, ... are
disjoint then P(U;2, Ai|B) = > o, P(A4;|B). But it is in general not true that
P(A/BUC) = P(A|B) + P(A|C). The rules of probability apply to events
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on the left of the bar. In general it is not the case that P(A|B) = P(B|A).
People get this confused all the time. For example, the probability of spots
given you have measles is 1 but the probability that you have measles given
that you have spots is not 1. In this case, the difference between P(A|B) and
P(B|A) is obvious but there are cases where it is less obvious. This mistake is
made often enough in legal cases that it is sometimes called the prosecutor’s
fallacy.

Example 2.13 A medical test for a disease D has outcomes + and —. The
probabilities are:

| D D
+|.0081 0900
— | .0090 9010

From the definition of conditional probability, P(+|D) = P(+, D)/P(D) =
.0081/(.0081+.0009) = .9 and P(—|D¢) = P(—, D°)/P(D*) = .9010/(.9010 +
.0900) ~ .9. Apparently, the test is fairly accurate. Sick people yield a
positive 90 percent of the time and healthy people yield a negative about 90
percent of the time. Suppose you go for a test and get a positive. What is the
probability you have the disease? Most people answer .90. The correct answer
is P(D|+) = P(+, D)/P(+) = .0081/(.0081+.0900) = .08. The lesson here is
that you need to compute the answer numerically. Don’t trust your intuition.
[ |

If A and B are independent events then

P(A|B) = Plé(ABE;) - ]P(;g()B ) _pa).

So another interpretation of independence is that knowing B doesn’t change
the probability of A.

From the definition of conditional probability we can write P(AB) =
P(A|B)P(B) and also P(AB) = P(B|A)P(A). Often, these formulae give us
a convenient way to compute P(AB) when A and B are not independent.
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Example 2.14 Draw two cards from a deck, without replacement. Let A be the
event that the first draw is Ace of Clubs and let B be the event that the second
draw is Queen of Diamonds. ThenP(A, B) = P(A)P(B|A) = (1/52)x(1/51).
[ |

Summary of Conditional Probability

1. If P(B) > 0 then
P(AB)
P(B)

P(A|B) =
2. P(-| B) satisfies the axioms of probability, for fixed B. In general, P(A|-)
does not satisfy the axioms of probability, for fixed A.
3. In general, P(A|B) # P(B|A).

4. A and B are independent if and only if P(A|B) = P(B).

2.7 Bayes’ Theorem

Bayes’ theorem is a useful result that is the basis of “expert systems” and
“Bayes’ nets.” First, we need a preliminary result.

Theorem 2.15 (The Law of Total Probability.) Let Aq,..., Ay be a partition
of Q). Then, for any event B, P(B) = Zle P(B|A;)P(A;).

PRroOOF. Define C; = BA; and note that (1, ..., Cy are disjoint and that
B = U§:1 C;. Hence,

P(B) = ZP(Cj) = Z]P’(BA]') = P(B|4;)P(4))

J
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since P(BA,;) = P(B|A;)P(A,) from the definition of conditional probability.
|

Theorem 2.16 (Bayes’ Theorem.) Let Ay, ..., Ag be a partition of Q such that
P(A;) > 0 for each i. If P(B) > 0 then, for eachi=1,...,k,

 P(BA)P(A)
F(AIB) = S~ B (BI4,)P(4,) (25)

Remark 2.17 We call P(A;) the prior probability of A and P(A;|B) the
posterior probability of A.

ProOF. We apply the definition of conditional probability twice, followed
by the law of total probability:

p(a, B) = EAB) _ PBIAPA) _ P(BIA)P(A)

P(B) PB) 3, PBIA)BA)

Example 2.18 I divide my email into three categories: Ay = “spam,” Ay =
“low priority” and Az = “high priority.” From previous experience I find that
P(A;) =.7, P(Ay) = .2 and P(A3) = .1. Of course, .7+ .2+ .1 =1. Let B be
the event that the email contains the word “free.” From previous experience,
P(B|A;) = .9, P(B|A,) = .01, P(B|A;) = .01. (Note: 94 .01+.01 #1.) I
recetve an email with the word “free.” What is the probability that it is spam?
Bayes’ theorem yields,

9 x.7
P(4i|B) = Ox N+l x D+ oixg 2 .

2.8 Bibliographic Remarks

The material in this chapter is standard. Details can be found in any
number of books. At the introductory level, there is DeGroot and Schervish
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(2002), at the intermediate level, Grimmett and Stirzaker (1982) and Karr
(1993), and at the advanced level, Billingsley (1979) and Breiman (1968). I
adapted many examples and problems from DeGroot and Schervish (2002)
and Grimmett and Stirzaker (1982).

2.9 Technical Appendix

Generally, it is not feasible to assign probabilities to all subsets of a sample
space (). Instead, one restricts attention to a set of events called a o-algebra
or a o-field which is a class A that satisfies:

(i) 0 € A,

(ii) if Ay, A, ..., € A then U2, A; € A and

(iii) A € A implies that A° € A.

The sets in A4 are said to be measurable. We call (2, .4) a measurable
space. If P is a probability measure defined on A then (£2, .4, P) is called a
probability space. When (2 is the real line, we take A to be the smallest
o-field that contains all the open subsets, which is called the Borel o-field.

2.10 Excercises

1. Fill in the details of the proof of Theorem 2.8. Also, prove the monotone
decreasing case.

2. Prove the statements in equation (2.1).

3. Let €2 be a sample space and let A, A,,..., be events. Define B, =

(a) Show that B; D By D -+ and that C; C By C - - -.

(b) Show that w € (-, B, if and only if w belongs to an infinite
number of the events Ay, Ao, .. ..

(c) Show that w € |J72, C,, if and only if w belongs to all the events
Ay, A, ... except possibly a finite number of those events.

4. Let {A; : i € I} be a collection of events where [ is an arbitrary index
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10.

set. Show that
(U A,-) =()4¢ and (ﬂ AZ) = J4¢
iel iel iel iel
Hint: First prove this for I = {1,...,n}.

Suppose we toss a fair coin until we get exactly two heads. Describe
the sample space S. What is the probability that exactly k tosses are
required?

Let © ={0,1,...,}. Prove that there does not exist a uniform distri-
bution on Q i.e. if P(A) = P(B) whenever |A| = |B| then P cannot
satisfy the axioms of probability.

Let Aq, As, ... be events. Show that
P(Ua) <3om
n=1 n=1

Hint: Define B, = A, — J;= A;. Then show that the B, are disjoint
and that J>°, A, =U,~, B

Suppose that P(A;) =1 for each i. Prove that

P(ﬁA) )

. For fixed B such that P(B) > 0, show that P(-|B) satisfies the axioms

of probability.

You have probably heard it before. Now you can solve it rigorously.
It is called the “Monty Hall Problem.” A prize is placed at random
between one of three doors. You pick a door. To be concrete, let’s
suppose you always pick door 1. Now Monty Hall chooses one of the
other two doors, opens it and shows you that it is empty. He then gives
you the opportunity to keep your door or switch to the other unopened
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11.

12.

13.

14.

15.

16.
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door. Should you stay or switch? Intuition suggests it doesn’t matter.
The correct answer is that you should switch. Prove it. It will help to
specify the sample space and the relevant events carefully. Thus write
Q= {(w,ws) : w; € {1,2,3}} where w; is where the prize is and wy is
the door Monty opens.

Suppose that A and B are independent events. Show that A¢ and B¢
are independent events.

There are three cards. The first is green on both sides, the second is
red on both sides and the third is green on one side and red on the
other. We choose a card at random and we see one side (also chosen
at random). If the side we see is green, what is the probability that
the other side is also green? Many people intuitively answer 1/2. Show
that the correct answer is 2/3.

Suppose that a fair coin is tossed repeatedly until both a head and tail
have appeared at least once.

(a) Describe the sample space ().

(b) What is the probability that three tosses will be required?

Show that if P(A) = 0 or P(A) = 1 then A is independent of every

other event. Show that if A is independent of itself then P(A) is either
0or 1.

The probability that a child has blue eyes is 1/4. Assume independence
between children. Consider a family with 5 children.

(a) If it is known that at least one child has blue eyes, what is the
probability that at least three children have blue eyes?

(b) If it is known that the youngest child has blue eyes, what is the
probability that at least three children have blue eyes?

Show that
P(ABC) =P(A|BC)P(B|C)P(C).
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17.

18.

19.

20.

21.

Suppose k events form a partition of the sample space €1, i.e. they
are disjoint and J{_, 4; = Q. Assume that P(B) > 0. Prove that if
P(A;|B) < P(A;) then P(A4;|B) > P(A;) for some i =2,..., k.

Suppose that 30 percent of computer owners use a Macintosh, 50 use
Windows and 20 percent use Linux. Suppose that 65 percent of the Mac
users have succumbed to a computer virus, 82 percent of the Windows
users get the virus and 50 percent of the Linux users get the virus. We
select a person at random and learn that her system was infected with
the virus. What is the probability that she is a Windows user?

A box contains 5 coins and each has a different probability of showing
heads. Let pq,...,ps denote the probability of heads on each coin.
Suppose that

pr=0, pp=1/4, p3=1/2, p, =3/4 and ps = 1.

Let H denote “heads is obtained” and let C; denote the event that coin
1 is selected.

(a) Select a coin at random and toss it. Suppose a head is obtained.
What is the posterior probability that coin 7 was selected (1 = 1,...,5)?
In other words, find P(C;|H) for i =1,...,5.

(b) Toss the coin again. What is the probability of another head? In
other words find P(H,|H;) where H; = “heads on toss j.”

Now suppose that the experiment was carried out as follows. We select
a coin at random and toss it until a head is obtained.

(c) Find P(C;| By) where By = “first head is obtained on toss 4.”

(Computer Experiment.) Suppose a coin has probability p of falling
heads. If we flip the coin many times, we would expect the proportion
of heads to be near p. We will make this formal later. Take p = .3 and
n = 1000 and simulate n coin flips. Plot the proportion of heads as a
function of n. Repeat for p = .03.

(Computer Experiment.) Suppose we flip a coin n times and let p denote
the probability of heads. Let X be the number of heads. We call X
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a binomial random variable which is discussed in the next chapter.
Intuition suggests that X will be close to np. To see if this is true,
we can repeat this experiment many times and average the X values.
Carry out a simulation and compare the average of the X’s to np. Try
this for p = .3 and n = 10, 100, 1000.

(Computer Experiment.) Here we will get some experience simulating
conditional probabilities. Consider tossing a fair die. Let A = {2,4,6}
and B = {1,2,3,4}. Then, P(A) = 1/2, P(B) = 2/3 and P(AB) = 1/3.
Since P(AB) = P(A)P(B), the events A and B are independent. Simu-
late draws from the sample space and verify that P(AB) = P(A)P(B)
where P(A) is the proportion of times A occurred in the simulation
and similarly for P(AB) and P(B). Now find two events A and B that
are not independent. Compute P(A), P(B) and P(AB). Compare the
calculated values to their theoretical values. Report your results and
interpret.



Chapter 3

Random Variables

3.1 Introduction

Statistics and data mining are concerned with data. How do we link
sample spaces and events to data? The link is provided by the concept of a
random variable.

Definition 3.1 A random variable is a mapping X : Q@ — R that
assigns a real number X (w) to each outcome w.

Technically, a ran-
At a certain point in most probability courses, the sample space is rarely dom variable must

mentioned and we work directly with random variables. But you should keep be measurable. See
the technical ap-

in mind that the sample space is really there, lurking in the background. _ ]
pendix for details.

Example 3.2 Flip a coin ten times. Let X (w) be the number of heads in the
sequence w. For example, if w= HHTHHTHHTT then X(w)=6. &

Example 3.3 Let Q = {(z,y); 22+y? < 1} be the unit disc. Consider drawing
a point “at random” from Q. (We will make this idea more precise later.) A
typical outcome is of the formw = (x,y). Some examples of random variables

are X(w)=z,Y(w) =y, Zw)=z+y, Ww)=+/22+y%2 R

Given a random variable X and a subset A of the real line, define X ~'(A) =
{we: X(w)e A} and let

37
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P(X €A = PXHA) =PHw € QY X(w) € A})
PX=2) = PX () =P{weQ; X(w)==z)}).

X denotes the random variable and x denotes a possible value of X.

Example 3.4 Flip a coin twice and let X be the number of heads. Then,
P(X =0)=P{7TT})=1/4, P(X =1)=P{HT,TH}) =1/2 and P(X =
2) = P({HH}) = 1/4. The random wvariable and its distribution can be
summoarized as follows:

w  P({w}) | Xw) _
TT 1/} 0 f)‘lf/(f_‘”)
TH 1?4 1 11172

HT 1/4 |1

HH 1/} |2 2|1/

Try generalizing this to n flips. A

3.2 Distribution Functions and Probability Func-
tions

Given a random variable X, we define an important function called the

cumulative distribution function (or distribution function) in the following
way.

Definition 3.5 The cumulative distribution function cbDr Fx : R —
[0,1] of a random wvariable X is defined by

Fx(z) =P(X < z).
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Fx(z)
1 O
75 O O
.25

0 1 2 z
Figure 3.1: cpF for flipping a coin twice (Example 3.6.)

You might wonder why we bother to define the ¢DF . You will see later
that the CDF is a useful function: it effectively contains all the information
about the random variable.

Example 3.6 Flip a fair coin twice and let X be the number of heads. Then
P(X =0)=P(X =2)=1/4 and P(X = 1) = 1/2. The distribution function
18

0 <0

1/4 0<z<1

3/4 1<z<?2

1 T > 2.

Fx(fE) =

The CDF is shown in Figure 3.1. Although this example is simple, study
it carefully. CDF ’s can be very confusing. Notice that the function is right
continuous, non-decreasing and that it is defined for all x even though the
random variable only takes values 0,1 and 2. Do you see why F(1.4) = .757
[ |

The following result, which we do not prove, shows that the cDF com-
pletely determines the distribution of a random variable.

Theorem 3.7 Let X have CDF F and let Y have cDF G. If F(z) = G(x)
for all x then P(X € A) =P(Y € A) for all A.

Theorem 3.8 A function F mapping the real line to [0,1] is a CDF for some
probability measure P if and only if it satisfies the following three conditions:

Technically, we only
have that P(X €
A) = P(Y € A)
for every measurable
event A.



A set is countable
if it is finite or
it can be put in
a one-to-one corre-
spondence with the
integers. The even
numbers, the odd
numbers and the ra-
tionals are count-
able; the set of real
numbers between 0
and 1 is not count-
able.
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(i) F is non-decreasing i.e. x1 < o implies that F(x) < F(x9).

(ii) F is normalized: lim,_, ., F(z) =0 and lim,_,, F(z) = 1.

(11i) F is right-continuous, i.e. F(x) = F(xz) for all x, where

F(z™) = llmZ;;F(y).

PROOF. Suppose that F' is a CDF . Let us show that (iii) holds. Let z
be a real number and let y,ys,... be a sequence of real numbers such that
Y1 > yp > --- and lim; y; = x. Let A; = (—o0,y;] and let A = (—o0, z]. Note
that A = ﬂ;’il A; and also note that A; D Ay D ---. Because the events are
P(N); Ai). Thus,

monotone, lim; P(A4;) =

F(z) = (ﬂA) = limP(4;) = im F () = F(a”).

Showing (i) and (ii) is similar. Proving the other direction namely, that if
F satisfies (i), (ii) and (iii) then it is a cDF for some random variable, uses
some deep tools in analysis. l

Definition 3.9 X s discrete if it takes countably many values

{.fL'l, To, .. }

We define the probability function or probability mass function
for X by

Thus, fx(z) > 0 for all z € R and ), fx(x;) = 1. The cpF of X is
related to fx by
Z fX xz

z; <z

Fx(z) =P(X < x)

Sometimes we write fx and Fx simply as f and F'.
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fx(z)

1

> ] !

0 1 2 z
Figure 3.2: Probability function for flipping a coin twice (Example 3.6.)

Example 3.10 The probability function for Fxample 3.6 is

1/4 =0
fx(x) = 1;421 iz;

0 =z¢{0,1,2}.

See Figure 3.2. B

Definition 3.11 A random wvariable X is continuous if there erists a
function fx such that fx(zx) > 0 for all z, ffooo fx(z)dz = 1 and for
every a < b,

Pla < X <b) = /b fx(z)dz. (3.1)

The function fx is called the probability density function (PDF ).
We have that

and fx(z) = Fi(x) at all points x at which Fx is differentiable.

Sometimes we shall write [ f(z)dz or simply [ f to mean [ f(z)dz.
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Fx(l')

0 1 z
Figure 3.3: ¢pF for Uniform (0,1).

Example 3.12 Suppose that X has PDF

fx($)={ 1 for0<z<1

0 otherwise.

Clearly, fx(z) >0 and [ fx(z)dz =1. A random variable with this density
is said to have a Uniform (0,1) distribution. The CDF is given by

0 <0
1 z>1.

See Figure 3.3. 1

Example 3.13 Suppose that X has PDF

0 for z <0

fl) = { m otherwise.

Since [ f(z)dz =1, this is a well-defined PDF . W

Warning! Continuous random variables can lead to confusion. First,
note that if X is continuous then P(X = z) = 0 for every x! Don’t try to
think of f(z) as P(X = z). This only holds for discrete random variables.
We get probabilities from a PDF by integrating. A PDF can be bigger than
1 (unlike a mass function). For example, if f(z) = 5 for z € [0,1/5] and 0
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otherwise, then f(z) > 0 and [ f(z)dz = 1 so this is a well-defined PDF
even though f(z) = 5 in some places. In fact, a PDF can be unbounded.
For example, if f(z) = (2/3)z7'/3 for 0 < z < 1 and f(z) = 0 otherwise,
then [ f(z)dz =1 even though f is not bounded.

Example 3.14 Let
0 for x <0

otherwise.

f(x):{ -

This is not a PDF  since [ f(z)dz = [;° dz/(1+z) = [ du/u =log(oc) =
oco. B

Lemma 3.15 Let F' be the CDF for a random variable X. Then:
(i) P(X =2) = F(z) — F(z™) where F(z™) = limyy, F(y),
(ii) Bz < X <y) = F(y) — F(s),

(#5i) P(X > z) =1— F(x),
(iv) If X is continuous then

Pa<X <b)=Pa<X<b)=Pla<X<b)=Pla<X<b).

It is also useful to define the inverse CDF (or quantile function).

Definition 3.16 Let X be a random variable with CDF F. The inverse
CDF or quantile function is defined by

F(q) = inf{x : F(z) < q}

for q € [0,1]. If F is strictly increasing and continuous then F~1(q) is
the unique real number x such that F(z) = q.

If you are unfamil-

We call F~'(1/4) the first quartile, F~'(1/2) the median (or second quar- iar with “inf”, just

tile) and F~'(3/4) the third quartile.

think of it as the
minimum.
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Two random variables X and Y are equal in distribution — written
X<y if Fx(z) = Fy(xz) for all z. This does not mean that X and Y are
equal. Rather, it means that all probability statements about X and Y will
be the same.

3.3 Some Important Discrete Random Vari-
ables

Warning About Notation! It is traditional to write X ~ F' to indicate
that X has distribution F'. This is unfortunate notation since the symbol ~
is also used to denote an approximation. The notation X ~ F'is so pervasive
that we are stuck with it. Read X ~ F as “X has distribution F” not as X
is approximately F'.

THE POINT MASS DISTRIBUTION. X has a point mass distribution at
a, written X ~ ¢,, if P(X = a) = 1 in which case
0 z<a
Fla) = { 1 z>a

The probability function is f(z) =1 for x = a and 0 otherwise.

THE DISCRETE UNIFORM DISTRIBUTION. Let £ > 1 be a given integer.
Suppose that X has probability mass function given by

_J1/k forz=1,...,k
f(z) = { 0 otherwise.

We say that X has a uniform distribution on {1,...,k}.

THE BERNOULLI DISTRIBUTION. Let X represent a coin flip. Then
P(X =1)=pand P(X =0) =1 — p for some p € [0,1]. We say that X has
a Bernoulli distribution written X ~ Bernoulli(p). The probability function
is f(z) = p®(1 — p)'~* for z € {0,1}.

THE BINOMIAL DISTRIBUTION. Suppose we have a coin which falls
heads with probability p for some 0 < p < 1. Flip the coin n times and let
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X be the number of heads. Assume that the tosses are independent. Let
f(z) = P(X = z) be the mass function. It can be shown that

Fa) = { (Z)px(l —p)"* forx=0,...,n

0 otherwise.

A random variable with the mass function is called a Binomial random
variable and we write X ~ Binomial(n,p). If X; ~ Binomial(n,p;) and
X, ~ Binomial(n, ps) then X; + X5 ~ Binomial(n, p; + ps).

Warning! Let us take this opportunity to prevent some confusion. X
is a random variable; x denotes a particular value of the random variable;
n and p are parameters, that is, fixed real numbers. The parameter p is
usually unknown and must be estimated from data; that’s what statistical
inference is all about. In most statistical models, there are random variables
and parameters: don’t confuse them.

THE GEOMETRIC DISTRIBUTION. X has a geometric distribution with
parameter p € (0,1), written X ~ Geom(p), if

P(X =k)=p(l-p*", k>L

We have that

[ee] o0 . p B
;]P’(X:k):p;(l—p) =Ta ="

Think of X as the number of flips needed until the first heads when flipping
a coin.

THE Po1ssoN DISTRIBUTION. X has a Poisson distribution with pa-
rameter )\, written X ~ Poisson(\) if

Note that
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The Poisson is often used as a model for counts of rare events like radioactive
decay and traffic accidents. If X; ~ Poisson(n, A1) and X, ~ Poisson(n, \2)
then X; + Xy ~ Poisson(n, A + Ag).

Warning! We defined random variables to be mappings from a sample
space €2 to R but we did not mention the sample space in any of the distri-
butions above. As I mentioned earlier, the sample space often “disappears”
but it is really there in the background. Let’s construct a sample space ex-
plicitly for a Bernoulli random variable. Let Q = [0, 1] and define PP to satisfy
P([a,b]) =b—afor 0 <a<b<1. Fixp € [0,1] and define

1 w<p
X(“):{o w > p.

Then P(X =1) = P(w < p) =P([0,p]) = p and P(X = 0) =1 —p. Thus,
X ~ Bernoulli(p). We could do this for all the distributions defined above.
In practice, we think of a random variable like a random number but formally
it is a mapping defined on some sample space.

3.4 Some Important Continuous Random Vari-
ables

THE UNIFORM DISTRIBUTION. X has a Uniform(a, b) distribution, writ-
ten X ~ Uniform(a, b), if

o ={ 5

where a < b. The distribution function is

for z € [a, b]
otherwise

0 z<a
F(z)=4 72 z€[a,b]
1 x > b.

NORMAL (GAUSSIAN). X has a Normal (or Gaussian) distribution with
parameters y and o, denoted by X ~ N(u,0?), if

10) = ——exp{ o= wP}, zeR

oV 2w
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where © € R and o0 > 0. Later we shall see that p is the “center” (or
mean) of the distribution and o is the “spread” (or standard deviation) of
the distribution. The Normal plays an important role in probability and
statistics. Many phenomena in nature have approximately Normal distribu-
tions. Later, we shall see that the distribution of a sum of random variables
can be approximated by a Normal distribution (the central limit theorem).

We say that X has a standard Normal distributionif 4 =0and o = 1.
Tradition dictates that a standard Normal random variable is denoted by Z.
The PDF and CDF of a standard Normal are denoted by ¢(z) and ®(z).
The pDF is plotted in Figure 3.4. There is no closed-form expression for .
Here are some useful facts:

(i) If X ~ N(p,0?) then Z = (X — u)/o ~ N(0,1).
(ii) If Z ~ N(0,1) then X = p+0Z ~ N(u,0?).
(iii) If X; ~ N(p,02), i =1,...,n are independent then

SX, ~N<Zui,20i2).
=1 =1 1

=

It follows from (i) that if X ~ N(u,o?) then

]P’(a<X<b):]P’<a_u<Z<b_u>:cb(b_u>—cb(a_“).

o o

Thus we can compute any probabilities we want as long as we can compute
the cDF ®(z) of a standard Normal. All statistical computing packages will
compute ®(z) and ®~1(z). All statistics texts, including this one, have a
table of values of ®(z).

Example 3.17 Suppose that X ~ N(3,5). Find P(X > 1). The solution is

1-3

]P’(X>1):1—]P’(X<1):1—]P’(Z< 7

> =1 — ®(—0.8944) = .81.
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-2 -1 0 1 2 x

Figure 3.4: Density of a standard Normal.

Now find q such that P(X < q) = .2. In other words, find ¢ = ®71(.2). We
solve this by writing

.2:P(X<q)=IP<Z<q_“>:@(q_“).

g o

From the Normal table, ®(—.8416) = .2. Therefore,

q—p _q—3

o V5
and hence ¢ = 3 — .8416y/5 = 1.1181. W

—.8416 =

EXPONENTIAL DISTRIBUTION. X has an Exponential distribution with
parameter 3, denoted by X ~ Exp(3), if
L
flx)==e®" >0
g
where 5 > 0. The exponential distribution is used to model the lifetimes of
electronic components and the waiting times between rare events.

GAMMA DISTRIBUTION. For v > 0, the Gamma function is defined
by ['(e) = [;° y* ‘e ¥dy. X has a Gamma distribution with parameters «
and (3, denoted by X ~ Gamma(«, ), if

1
~ BeT(e)

e P x>0

/()
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where «, 8 > 0. The exponential distribution is just a Gamma(1, 8) distribu-

tion. If X; ~ Gamma(ay, §) are independent, then Y | X; ~ Gamma()_" o, f)
i=1%i P )

THE BETA DISTRIBUTION. X has an Beta distribution with parameters
a >0 and 8 > 0, denoted by X ~ Beta(a, §), if

f(z) = TET 11—zl o0<z<.

t AND CAUCHY DISTRIBUTION. X has a ¢ distribution with v degrees of
freedom — written X ~ t, — if

I (44) 1
flx) = g) (1 N w_;)(uﬂ)/z'

r(
The t distribution is similar to a Normal but it has thicker tails. In fact, the
Normal corresponds to a t with ¥ = co. The Cauchy distribution is a special

case of the ¢ distribution corresponding to ¥ = 1. The density is

1

f($)=m-

To see that this is indeed a density, let’s do the integral:

oo 1 [ dz 1 [ dtan™!
d - = e ———
/oof(x)x w/oolﬂs? w/w dz

= % [tan™" (c0) — tan™"(—o0)] = 1 [ﬁ — (—zﬂ =L

THE x? DISTRIBUTION. X has a x? distribution with p degrees of freedom
— written X ~ 2 — if

1
— - Lp/2)-1,-w/2
/() T(p/2)2772" e >0
If Z1,..., Z, are independent standard Normal random variables then Y _, Z? ~

X5
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3.5 Bivariate Distributions

Given a pair of discrete random variables X and Y, define the joint
mass function by f(z,y) = P(X =z and Y = y). From now on, we write
P(X=zand Y =y) as P(X =2,Y =y). We write f as fxy when we want
to be more explicit.

Example 3.18 Here is a bivariate distribution for two random wvariables X
and Y each taking values 0 or 1:

Y=0 Y=1
011/9 2/9 |1/3
112/9 4/9 |1/3
173 1/3 |1

Thus, P(X =1,V =1) = f(1,1) =4/9. W

X=
X=

Definition 3.19 In the continuous case, we call a function f(z,y) a pdf
for the random wvariables (X,Y) if (i) f(x,y) > 0 for all (x,y), (i)
[ [5 f(z,y)dady = 1 and, for any set A C R xR, P((X,Y) €
A) = [ [, f(z,y)dzdy. In the discrete or continuous case we define the
joint CDF as Fxy(z,y) =P(X <z,Y <vy).

Example 3.20 Let (X,Y) be uniform on the unit square. Then,

1 if0<z<1, 0<y<1
0 otherwise.

f(x,y)={

FindP(X <1/2,Y <1/2). The event A ={X <1/2,Y < 1/2} corresponds
to a subset of the unit square. Integrating f over this subset corresponds, in
this case, to computing the area of the set A which is 1/4. So, P(X <
1/2,Y <1/2)=1/4. &
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Example 3.21 Let (X,Y) have density

x4y f0<2<1, 0<y<1
f(z,y) _{ 0 otherwise.

1 1 1 1
//(x+y)dxdy = / [/ xdm} dy + [ ydx}
o Jo o LJo
1 1 1
= [ Zd dy=-+-=1
/02y+/yy 5+ 3

which verifies that this vs a PDF. W

Then

Example 3.22 If the distribution is defined over a non-rectangular region, then
the calcuations are a bit more complicated. Here is an nice example which 1
borrowed from DeGroot and Schervish (2002). Let (X,Y) have density
cx’y ifx?<y<1
flay) = { 0 otherwise.
Note first that —1 < x < 1. Now let us find the value of c. The trick here
s to be careful about the range of integration. We pick one variable, z say,

and let it range over its values. Then, for each fixed value of x, we let y vary
over its range which is x? < y < 1. It may help if you look at figure 3.5.

Thus,
1 = //fxydydx—c/ /:vydydx
2
o1 —gt 4c
= 2 d d —/ 2 d - 55
C/_1 [/ﬁ”}m LT T

Hence, ¢ = 21/4. Now let us compute P(X > Y). This corresponds to the
set A = {(z,y);0 <z < 1,22 <y < z}. (You can see this by drawing a
diagram.) So,

21 r
PX>Y) = / / ydyde = = | z [/ ydy] dx
0 2

1 —
= — xzx xdm 3 [ |
4 0 2 20
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x
Figure 3.5: The light shaded region is 2 < y < 1. The density is positive

over this region. The hatched region is the event X > Y intersected with
? <y< 1

3.6 Marginal Distributions

Definition 3.23 If (X, Y) have joint distribution with mass function fxy,
then the marginal mass function for X is defined by

fx@)=P(X=2)=) P(X=z,Y=y)=) flz,y) (33)

and the marginal mass function for Y is defined by

fr)=PY =y)=> PX=2Y=y) =) flz.y). (34)

Example 3.24 Suppose that fx y is given in the table that follows. The marginal
distribution for X corresponds to the row totals and the marginal distribution
for'Y corresponds to the columns totals.
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Y=0 Y=1
X=0]|1/10 2/10 | 3/10
X=1|3/10 4/10 | 7/10
4/10 6/10 | 1

For example, fx(0) = 3/10 and fx(1) =7/10. &

Definition 3.25 For continuous random variables, the marginal densities
are

/fxydy, and fy(y /fxy (3.5)

The corresponding marginal distribution functions are denoted by Fx
and Fy.

Example 3.26 Suppose that

fxy(@,y) =e
for z,y>0. Then fx(z) =e™ [Te¥dy=e*. B
Example 3.27 Suppose that

_Jax+y f0<2<1, 0<y<1
f(z,y) _{ 0 otherwise.

Then

1 1 1
1
fy(y)=/(x+y)dx=/ a:dx+/ ydy = +y. W

Example 3.28 Let (X,Y) have density

21,2, if .2
_ ) g7ty ifzr<y<1
z,y) = { 0 otherwise.

/fxy /lydy—%x(l—«’r“)

for =1 <z <1 and fx(x) =0 otherwzse. [

Thus,
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3.7 Independent Random Variables

Definition 3.29 Two random variables X and Y are independent if,
for every A and B,

P(X € A,Y € B)=P(X € A)P(Y € B). (3.6)

We write X11Y .

In principle, to check whether X and Y are independent we need to check
equation (3.6) for all subsets A and B. Fortunately, we have the following
result which we state for continuous random variables though it is true for
discrete random variables too.

Theorem 3.30 Let X and Y have joint pdf fxy. Then X 1Y if and only if
The statement is fxy(z,y) = fx(z)fy(y) for all values z and y.
not rigorous be-
cause the density is
defined only up to
sets of measure 0.

Example 3.31 Let X and Y have the following distribution:
Y=0 Y=1
X=0|1/4 1/4 1/2
X=1|1/4 1/4 1/2
1/2 1/2 1

Then, fx(0) = fx(1) = 1/2 and fy(0) = fy(1) =1/2. X and Y are inde-
pendent because fx(0)fy(0) = f(0,0), fx(0)fy(1) = £(0,1), fx(1)fv(0) =
f(1,0), fx(1)fy(1) = f(1,1). Suppose instead that X and Y have the fol-
lounng distribution:

Y=0 Y=1
X=0|1/2 0 1/2
X=1|0 1/2 | 1/2

172 1/2 |1
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These are not independent because fx(0)fy(1) = (1/2)(1/2) = 1/4 yet
f(0,1)=0. W

Example 3.32 Suppose that X andY are independent and both have the same

density
2z f0<zx <1
)= { 0 otherwise.

Let us find P(X +Y < 1). Using independence, the joint density is

_ J 4y it0<2<1, 0<y<1
F,y) = Fx(@)fv(y) = { 0 otherwise.

Now,

PX+Y <1) = // f(z,y)dydx

z+y<1
1

= 4/0 m[/ﬂl_zydy] dz

1 ERY
- 4/x(1 Vgr=' m
. 2 6

The following result is helpful for verifying independence.

Theorem 3.33 Suppose that the range of X and Y is a (possibly infinite)
rectangle. If f(z,y) = g(x)h(y) for some functions g and h (not necessarily
probability density functions) then X and'Y are independent.

Example 3.34 Let X and Y have density

2e=(=+2) if x> 0 and y > 0
flz,y) = { 0 otherwise.

The range of X andY is the rectangle (0,00)x(0,00). We can write f(z,y) =
g(z)h(y) where g(x) = 2¢7® and h(y) = e . Thus, X1IY. B



We are treading in
deep water here.
When we compute
P(X € AlY = y)
in the continuous
case we are condi-
tioning on the event
{Y = y} which has
probability 0. We
avoid this problem
by defining things
in terms of the
PDF . The fact
that this leads to a
well-defined theory
is proved in more
advanced courses.
We simply take it
as a definition.

26 CHAPTER 3. RANDOM VARIABLES

3.8 Conditional Distributions

If X and Y are discrete, then we can compute the conditional distribution
of X given that we have observed Y = y. Specifically, P(X = z|Y = y) =
P(X = z,Y = y)/P(Y = y). This leads us to define the conditional mass
function as follows.

Definition 3.35 The conditional probability mass function is

P(X ==z,Y =y) _ Ifxy(z,v)
P(Y =y) fr ()

fX\Y($|y) = P(X = x‘Y = y) =

if fy(y) > 0.

For continuous distributions we use the same definitions. The interpre-
tation differs: in the discrete case, fxy(z|y) is P(X = z|Y = y) but in the
continuous case, we must integrate to get a probability.

Definition 3.36 For continuous random variables, the conditional prob-
ability density function is

fX,Y(‘,L.a y)

fX\Y(x‘y) = fY(y)

assuming that fy(y) > 0. Then,

POX €AY =) = [ frn(aly)ds,

Example 3.37 Let X and Y have a uniform distribution on the unit square.
Verify that fxy(z|y) =1 for 0 < x <1 and 0 otherwise. Thus, givenY =1y,
X is Uniform (0,1). We can write this as X|Y =y ~ Unif(0,1). W

From the definition of the conditional density, we see that fxy(z,y) =
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Ixiy (@|y) fy(y) = frix(y|z)fx(x). This can sometimes be useful as in the
next example.

Example 3.38 Let

_Jx+y H0<2<1, 0<y<1
f(z,y) _{ 0 otherwise.

Let us find P(X < 1/4|Y = 1/3). In example 3.27 we saw that fy(y) =
y+ (1/2). Hence,

fxy(@y) _z+y
fr(y) y+3

fxy(zly) =

So,

Example 3.39 Suppose that X ~ Unif(0,1). After obtaining a value of X we
generate Y| X = z ~ Uniform(z,1). What is the marginal distribution of Y ¢
First note that,

felo) = 1 f0<z<1
X7 0 otherwise
and o
) ifo<z<y<l
frix(yle) = { 0  otherwise.
So,

L ifo<z<y<l1
— — 1—x
fxy(z,y) = frix(ylz) fx(z) = { 0" otherwise.

The marginal for'Y is

Y Y 1-y
fr(y) = / Fxw (@, y)de = / L / B log(1—y)

l1—z U

foro<y<1l. 1
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Example 3.40 Consider the density in Example 3.28. Let’s find fy x(y|z).
When X = z, y must satisfy 2> < y < 1. Earlier, we saw that fx(z) =
(21/8)x2(1 — z*). Hence, for 2> <y <1,

_fly) Ty %
frix(ylz) = Fe(x) %9624(1 —z4) 11—zt

Now let us compute P(Y > 3/4|X = 1/2). This can be computed by first
noting that fy x(y|1/2) = 32y/15. Thus,
' 7

132
P23/ =1/2) = [ fly2dy= [ Fay—. m
3/4 3/4

3.9 Multivariate Distributions and 11D Samples

Let X = (Xy,...,X,) where Xy,..., X, are random variables. We call
X a random vector. Let f(x1,...,z,) denote the pdf. It is possible to define
their marginals, conditionals etc. much the same way as in the bivariate case.
We say that Xi,..., X, are independent if, for every Ay,..., A,,

P(X) € Ay,..., X, € A,) = [[P(X; € 4)). (3.7)

i=1

It suffices to check that f(x1,...,2,) = ]_[i:1 (@) T X1, ., X, are inde-

pendent and each has the same marginal distribution with density f, we say
that Xi,..., X, are 1ID (independent and identically distributed). We shall
write this as X;,...X,, ~ f or, in terms of the cDF ;, Xy,... X, ~ F. This
means that X,...,X,, are independent draws from the same distribution.
We also call X1, ...,X, a random sample from F'.

Much of statistical theory and practice begins with 11D observations and
we shall study this case in detail when we discuss statistics.

3.10 Two Important Multivariate Distribu-
tions
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MurTINOMIAL. The multivariate version of a Binomial is called a Multi-
nomial. Consider drawing a ball from an urn which has balls with & different
colors labeled color 1, color 2, ... , color k. Let p = (p1,...,px) where
p; > 0 and 2521 p; = 1 and suppose that p; is the probability of drawing
a ball of color j. Draw n times (independent draws with replacement) and
let X = (X3,..., X)) where X is the number of times that color j appears.
Hence, n = 2?21 X;. We say that X has a Multinomial (n,p) distribution
written X ~ Multinomial(n, p). The probability function is

s =(, ", (38)

n n!
T1...% !zl

Lemma 3.41 Suppose that X ~ Multinomial(n,p) where X = (X,..., X})
and p = (p1,...,px). The marginal distribution of X; is Binomial (n,p;).

where

MULTIVARIATE NORMAL. The univariate Normal had two parameters,
@ and o. In the multivariate version, u is a vector and o is replaced by a
matrix . To begin, let

7
Z=| :
Zy
where 71, ..., Zy ~ N(0,1) are independent. The density of Z is If @ and b are vec-

\ tors then afb =

1 1 b 9 1 1 T fﬁlaibi.
f(z) = Hf(z,) = ane exp{—§;zj} = Qe exp{—iz z} 2

i=1

We say that Z has a standard multivariate Normal distribution written 2 ~
N(0,1) where it is understood that 0 represents a vector of k zeroes and I
is the k£ x k identity matrix.

More generally, a vector X has a multivariate Normal distribution, de-

noted by X ~ N(u,X), if it has density ¥ is the inverse of

) the matrix X.

e 03) = G e { - a0 69)




A matrix X is pos-
itive definite if, for
all non-zero vectors
z, 27X X > 0.
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where det(-) denotes the determinant of a matrix, p is a vector of length &
and X is a k X k symmetric, positive definite matrix. Setting y = 0 and
Y = I gives back the standard Normal.

Since X is symmetric and positive definite, it can be shown that there
exists a matrix ¥'/2 — called the square root of ¥ — with the following
properties: (i) ¥'/2 is symmetric, (ii) ¥ = X/2%Y2 and (iii) ©/2%"1/2 =
Y1252 = [ where X712 = (%1/2)71,

Theorem 3.42 If Z ~ N(0,I) and X = p+ X2Z then X ~ N(u,X).
Conversely, if X ~ N(u,X), then L=Y2(X — ) ~ N(0, ).

Suppose we partition a random Normal vector X as X = (X,, X;) We
can similarly partition p = (g, 1) and

Yo 2ab
E — aa a .
( Yba  Lpp )
Theorem 3.43 Let X ~ N(u,X). Then:

(1) The marginal distribition of X, is Xoq ~ N(lta, Xaa)-
(2) The conditional distribition of X, given X, = x, is

Xo|Xo =T ~ N (1o + Z6a0y (Ta — ta)y Zov — TsaZgq Tab ) -

(3) If a is a vector then a¥ X ~ N(aT p,a’a).
(4)V =X =S (X —p) ~ X

3.11 Transformations of Random Variables

Suppose that X is a random variable with PDF fx and CDF Fx. Let
Y = r(X) be a function of X, for example, Y = X? or Y = eX. We call
Y = r(X) a transformation of X. How do we compute the PDF and CDF of

Y? In the discrete case, the answer is easy. The mass function of Y is given
by
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fr(@y) =PY =y) =P(r(X) =y) = P({z; r(z) = y}) =P(X e r~'(y)).

Example 3.44 Suppose that P(X = —1) =P(X =1)=1/4 and P(X =0) =
1/2. Let Y = X?. Then, P(Y =0) =P(X =0) =1/2 and P(Y = 1) =
P(X =1)+P(X = —1) = 1/2. Summarizing:

% y fr(y)
0 1/2
0 1/2 11/
1 1/4
Y takes fewer values than X because the transformation is not one-to-one.

The continuous case is harder. There are three steps for finding fy:

Three steps for transformations

1. For each y, find the set A, = {z: r(z) < y}.

2. Find the cDF

Fy(y) = PY <y)=Pr(X)<y)

3. The pDF is fy(y) = Fi (y).

Example 3.45 Let fx(z) = e™® for x > 0. Then Fx(z) = [ fx(s)ds =
1—e™ LetY =r(X)=1logX. Then Ay ={z: = < e} and

Fy(y) =P <y)=Plog X <y) =P(X <e¥) = Fx(e¥) =1—¢ “.

Therefore, fy(y) = eve " fory e R. B
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Example 3.46 Let X ~ Unif(—1,3). Find the pdf of Y = X?. The density of
X s

149 —1<2<3
Fx(@) = { 0 otherwise.

Y can only take values in (0,9). Consider two case: (i) 0 < y < 1 and
(i) 1 <y < 9. For case (i), Ay = [—\/¥,/y] and Fy(y) = fAy fx(z)dz =

(1/2)\/y. For case (i), A, = [—1,/y] and Fy(y) = fAy fx(z)dz = (1/4)(\/y+
1). Differentiating F we get

if0<y<1

Frly)=9 557 f1<y<9
0 otherwise. N

When r is strictly monotone increasing or strictly monotone decreasing
then r has an inverse s = r~! and in this case one can show that

fr(y) = fx(s(y)) (3.11)

dy

ds(y) ‘ _

3.12 Transformations of Several Random Vari-
ables

In some cases we are interested in transformation of several random vari-
ables. For example, if X and Y are given random variables, we might want
to know the distribution of X/Y, X +Y, max{X,Y} or min{X,Y}. Let
Z = r(X,Y) be the function of interest. The steps for finding f; are the
same as before:
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1. For each z, find the set A, = {(z,y) : r(z,y) < z}.
2. Find the cDF
Fz(z) = P(Z<z2)=Pr(X,Y) <z2)
= P ren <) = [ [ perlo) dody

3. Then fz(z) = Fj(2).

Example 3.47 Let X, Xy ~ Unif(0,1) be independent. Find the density of
Y = X + Xo. The joint density of (X1, Xs) is

f(z1,22) ={

Let r(xq,22) = 21 + x2. Now,

Fy(y) = P(Y <y) =P(r(X;, X3) <y)
= P({(z1,22) : r(z1,22) <y}) = //A f(z1, x9)dx dxs.

Now comes the hard part: finding A,. First suppose that 0 <y < 1. Then
Ay is the triangle with vertices (0,0), (y,0) and (0,y). See Figure 3.6. In
this case, ffAy f(z1,29)dx1dzs is the area of this triangle which y?/2. If
1 <y <2 then Ay is everything in the unit square except the triangle with
vertices (1,y — 1),(1,1), (y — 1,1). This set has area 1 —y?/2. Therefore,

1 0<z1<1,0<22<1
0 otherwise.

0 y <0
v 0<y<1
FY(y) = 2 y? -
1-2 1<y<?
1 y > 2.
By differentiation, the PDF is
Y 0<y<l1
friy)=q 1-y 1<y<2

0 otherwise. W
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(0,9)

CHAPTER 3. RANDOM VARIABLES

(y_ 1a1)

(Ly_ 1)

(v,0) 1 0 1

This is the case 0 < y < 1. This is the case 1 < y < 2.

Figure 3.6: The set A, for example 3.47.

3.13 Technical Appendix

Recall that a probability measure PP is defined on a o-field A of a sam-
ple space €2. A random variable X is a measurable map X : @ — R
Measurable means that, for every z, {w: X(w) <z} € A.

3.14 Excercises

1.

Show that

and

Let X be such that P(X = 2) = P(X = 3) = 1/10 and P(X =

5) = 8/10. Plot the cpF F. Use F to find P(2 < X < 4.8) and
P(2 < X < 4.8).

Prove Lemma 3.15.

Let X have probability density function

1/4 0<z<1
fx(x)=14 3/8 3<z<5b
0 otherwise.
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10.

11.

12.

(a) Find the cumulative distribution function of X.
(b) Let Y = 1/X. Find the probability density function fy(y) for Y.
Hint: Consider three cases: : <y <3, 3 <y<landy>1.

Let X and Y be discrete random variables. Show that X and Y are
independent if and only if fxy(z,y) = fx(x)fy(y) for all z and y.

Let X have distribution F' and density function f and let A be a subset
of the real line. Let I4(z) be the indicator function for A:

1 z€A

IA(""”):{O z ¢ A

Let Y = I4(X). Find an expression for the cumulative distribution of
Y. (Hint: first find the probability mass function for Y.)

Let X and Y be independent and suppose that each has a Uniform(0, 1)
distribution. Let Z = min{X,Y}. Find the density fz(z) for Z. Hint:
It might be easier to first find P(Z > z).

Let X have cdf F. Find the cdf of X* = max{0, X'}.
Let X ~ Exp(3). Find F(x) and F~'(q).

Let X and Y be independent. Show that g(X) is independent of h(Y")
where g and h are functions.

Suppose we toss a coin once and let p be the probability of heads. Let
X denote the number of heads and let Y denote the number of tails.
(a) Prove that X and Y are dependent.

(b) Let N ~ Poisson(\) and suppose we toss a coin N times. Let X
and Y be the number of heads and tails. Show that X and Y are
independent.

Prove Theorem 3.33.
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13.

14.

15.

16.

17.

18.
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Let X ~ N(0,1) and let Y = e*.
(a) Find the pdf for Y. Plot it.

(b) (Computer Experiment.) Generate a vector x = (1, ...,%10,000)
consisting of 10,000 random standard Normals. Let y = (y1,. . ., Y10,000)
where y; = e%. Draw a histogram of y and compare it to the PDF you
found in part (a).

Let (X,Y) be uniformly distributed on the unit disc {(z,y) : 2*+y? <
1}. Let R =+ X2+ Y2 Find the cdf and pdf of R.

(A universal random number generator.) Let X have a continuous,
strictly increasing CDF F. Let Y = F(X). Find the density of Y. This
is called the probability integral transform. Now let U ~ Uniform(0, 1)
and let X = F~'(U). Show that X ~ F. Now write a program that
takes Uniform (0,1) random variables and generates random variables
from an Exponential (3) distribution.

Let X ~ Poisson()) and Y ~ Poisson(y) and assume that X and Y are
independent. Show that the distribution of X given that X +Y =n
is Binomial(n, ) where m = /(A + p).

Hint 1: You may use the following fact: If X ~ Poisson(\) and YV ~
Poisson(u), and X and Y are independent, then X +Y ~ Poisson(u +
A).

Hint 2: Note that {X =z, X +Y =n}={X =2, Y =n—z}.
Let )
R
Find P(X <3 |Y =3).
Let X ~ N(3,16). Solve the following using the Normal table and
using a computer package.

(a) Find P(X < 7).
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19.

20.

21.

22.

23.
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(b) Find P(X > —2).

(c¢) Find z such that P(X > z) = .05.
(d) Find P(0 < X < 4).

(e) Find z such that P(|X| > |z|) = .05.

C

Prove formula (3.11).

Let X,Y ~ Unif(0,1) be independent. Find the PDF for X — Y and
X/Y.

Let Xi,..., X, ~ Exp(f) be up . Let Y = max{X;,...,X,}. Find
the PDF of Y. Hint: YV <y if and only if X; <y fori=1,...,n.

Let X and Y be random variables. Suppose that E(Y|X) = X. Show
that Cov(X,Y) = V(X).

Let X ~ Uniform(0,1). Let 0 <a < b < 1. Let

v — 1 0<z<b
| 0 otherwise

and let

7 _ I a<z<1
| 0 otherwise

(a) Are Y and Z independent? Why/Why not?

(b) (10 points) Find E(Y|Z). Hint: What values z can Z take? Now
find E(Y|Z = 2).






Chapter 4

Expectation

4.1 Expectation of a Random Variable

The expectation (or mean) of a random variable X is the average value
of X. The formal definition is as follows.

Definition 4.1 The expected value, or mean, or first moment, of
X s defined to be

E(X) = /.TdF(.T) _ { Ypxf(x) if X is discrete (41)

Jzf(xz)dz if X is continuous

assuming that the sum (or integral) is well-defined. We use the follow-
ing notation to denote the expected value of X :

E(X)=EX = /ach(:c) =/ = lx. (4.2)

The expectation is a one-number summary of the distribution. Think of
E(X) as the average value you would obtain if you computed the numerical
average n~' " | X, of a large number of 1ID draws Xi,...,X,. The fact
that E(X) ~ n~" Y., X; is actually more than a heuristic: it is a theorem
called the law of large numbers that we will discuss later. The notation

69
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[ x dF(z) deserves some comment. We use it merely as a convenient unifying
notation so we don’t have to write > xf(x) for discrete random variables
and [ z f(z)dxz for continuous random variables but you should be aware that
[ 2 dF(x) has a precise meaning that is discussed in real anlysis courses.

To ensure that E(X) is well defined, we say that E(X) existsif [ |z|dFx(z) <
o0o. Otherwise we say that the expectation does not exist.

Example 4.2 Let X ~ Bernoulli(p). Then E(X) = Y2 xf(z) = (0 x (1 —
p))+(1xp) =p W

Example 4.3 Flip a fair coin two times. Let X be the number of heads. Then,
E(X) = [2dFx(z) = 3, 2fx(z) = (0 x f(0)) + (1 x f(1)) + (2 x f(2)) =
0x(1/4)+(1x(1/2)+(2x(1/4)=1. 1

Example 4.4 Let X ~ Unif(—1,3). Then, E(X) = [2dFx(z) = [zfx(z)dz =
1 r3
[ xdz=1. 1

Example 4.5 Recall that a random variable has a Cauchy distribution if it has
density fx(z) = {m(1 + 2%)}~'. Using integration by parts, (set u = x and
v=tan"'z),

2 o 00 o0
/\x\dF(ac) = —/ zdv _ [z tan™'(z)] —/ tan™' z dz = oo
0 0

T 1+ 22

so the mean does not exist. If you simulate a Cauchy distribution many
times and take the average, you will see that the average never settles down.
This is because the Cauchy has thick tails and hence extreme observations
are common. B

From now on, whenever we discuss expectations, we implicitly assume
that they exist.

Let Y = r(X). How do we compute E(Y)? One way is to find fy(y) and
then compute E(Y) = [y fy(y)dy. But there is an easier way.
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Theorem 4.6 (The rule of the lazy statistician.) Let Y = r(X). Then

E(Y)=E(r(X)) = /r(x)dFX(m). (4.3)

This result makes intuitive sense. Think of playing a game where we
draw X at random and then I pay you Y = r(X). Your average income is
r(z) times the chance that X = z, summed (or integrated) over all values
of x. Here is a special case. Let A be an event and let r(x) = [4(z) where
Iy(z) =1ifx € Aand I4(x) =0if z ¢ A. Then

E([4(X)) = / (@) fx(2)d = / Fx(z)dz = P(X € A).
A
In other words, probability is a special case of expectation.

Example 4.7 Let X ~ Unif(0,1). Let Y = r(X) = e*. Then,

E(Y) = /01 ¢ f () da = /01 ey = e — 1.

Alternatively, you could find fy(y) which turns out to be fy(y) = 1/y for
l<y<e. Then, EY)= [[yfly)dy=e—1. M

Example 4.8 Take a stick of unit length and break it at random. LetY be the
length of the longer piece. What is the mean of Y ¢ If X is the break point
then X ~ Unif(0,1) and Y = r(X) = max{X,1 — X}. Thus, r(z) =1—x
when 0 < x < 1/2 and r(x) = © when 1/2 <z < 1. Hence,
1/2 1 3
EY)= /r(x)dF(a:) :/ (1- x)dm+/ rzdr=—. B
0 1/2 4
Functions of several variables are handled in a similar way. If Z = r(X,Y)
then

E(Z) = E(r(X,Y)) = / / r(z,y)dF (. y). (4.4)
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Example 4.9 Let (X,Y) have a jointly uniform distribution on the unit square.
Let Z=r(X,Y)=X?>+Y? Then,

E(2) ://r(as,y)dF(:c,y):/01/01(x2+y2) dxdyz/olxzdx—i—/ol Siy=> m

The k" moment of X is defined to be E(X*) assuming that E(|X |¥) <
0o. We shall rarely make much use of moments beyond k = 2.

4.2 Properties of Expectations

Theorem 4.10 If X4,...,X,, are random wvariables and a4, ...,a, are con-
stants, then

E (Z aiXZ-> =) aE(X;). (4.5)

Example 4.11 Let X ~ Binomial(n,p). What is the mean of X ¢ We could
try to appeal to the definition:

500 = [adrx(e) = Yatete) =3 () -py

T z=0

but this is not an easy sum to evaluate. Instead, note that X =Y . X,
where X; = 1 if the i™ toss is heads and X; = 0 otherwise. Then E(X;) =

(0 1)+ (1~ p) x 0) = p and E(X) = E(Y, X;) = ¥, B(X,) = np.

Theorem 4.12 Let X4,..., X, be independent random variables. Then,
E (H XZ-> = [[EX). (4.6)
i=1 i

Notice that the summation rule does not require independence but the
multiplication rule does.
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4.3 Variance and Covariance

The variance measures the “spread” of a distribution.

Definition 4.13 Let X be a random variable with mean p. The variance
of X — denoted by 02 or 0% or V(X) or V(X) or VX — is defined by

o? = E(X — i)’ = / (2 — pdF(z) (4.7)

assuming this expectation exists. The standard deviation is sd(X)
V(X) and is also denoted by o and ox.

Theorem 4.14 Assuming the variance is well defined, it has the following
properties:

1. V(X) = E(X?) — p?.
2. If a and b are constants then V(aX + b) = a*V(X).

3. If X4,...,X, are independent and aq,...,a, are constants, then

Example 4.15 Let X ~ Binomial(n,p). We write X =Y. X; where X; =1
if toss i is heads and X; = 0 otherwise. Then X = ). X; and the random
variables are independent. Also, P(X; = 1) = p and P(X; = 0) =1 — p.
Recall that

(4.8)

E(X;) = [px 1]+ [(1 —p) x 0] = p.
Now,
E(X?) =[px "] +[(1—p) x 0°] =p.
Therefore, V(X;) = I)E(Xf) —p* =p—p* =p(l—p). Finadly, V(X)

VO, Xi) =>,V(X;) =), p(1 —p) =np(l — p). Notice that V(X) = 0 if
p=1orp=0. Make sure you see why this makes intuitive sense.
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If Xy,...,X, are random variables then we define the sample mean to
be
_ 1 —
X,=—) X; 4.9
- ; (4.9)

and the sample variance to be

§2 =3 (X - X,)% (4.10)

n—1
i=1

Theorem 4.16 Let X1,...,X, be ID and let u = E(X;), 0 = V(X;). Then

2

E(X,) = V(X.)== and E(S})=0".

If X and Y are random variables, then the covariance and correlation
between X and Y measure how strong the linear relationship is between X

and Y.

Definition 4.17 Let X and Y be random variables with means ux and
wy and standard deviations ox and oy. Define the covariance between

X andY by
Cov(X,Y) = E[(X — pux)(Y — py)] (4.11)

and the correlation by
Cov(X,Y)

p=pxy=pX,)Y)=——""
0,0y

(4.12)

Theorem 4.18 The covariance satisfies:
Cov(X,Y) =E(XY) - E(X)E(Y).

The correlation satisfies:

-1<p(X,Y) <1




4.4. EXPECTATION AND VARIANCE OF IMPORTANT RANDOM VARIABLEST5

If Y = a+ bX for some constants a and b then p(X,Y) =1 ifb > 0 and
p(X,Y)=—-1ifb<0. If X andY are independent, then Cov(X,Y) = p = 0.
The converse is not true in general.

Theorem 4.19 V(X +Y) = V(X) + V(YY) + 2Cov(X,Y) and V(X - Y) =
V(X)+V(Y)—2Cov(X,Y). More generally, for random variables X1, . .., X,,

A% (Z aZX,> = Z (LZQV(X,) +2 Z Z aiajCov(Xi, XJ)

1<j

4.4 Expectation and Variance of Important
Random Variables

Here we record the expectation of some important random variables.

Distribution Mean Variance

Point mass at a a 0

Bernoulli (p) p p(1-p)

Binomial (n,p) p n p (1-p)
Geometric (p) 1/p (1-p)/p?

Poisson () A A

Uniform (a,b) (a+b)/2 (b—a)?/12

Normal (u, 0?) 1 o?

Exponential (3) I5; 52

Gamma (o, 3) af a3?

Beta (c, §) af(a+pB)  af/((a+B)*(a+B+1))
ty 0@ifvr>1) v/(v—2) (ifv>2)
X; p 2p

Multinomial (n, p) np see below
Multivariate Normal (p,X) p )

We derived E(X) and V(X) for the binomial in the previous section. The
calculations for some of the others are in the excercises.
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The last two entries in the table are multivariate models which involve a
random vector X of the form

X1
X = :
Xk
The mean of a random vector X is defined by
241 E(Xl)
n= : = :
Mk E(Xk)
The variance-covariance matrix X is defined to be
V(Xl) COV(Xl, Xg) s COV(Xl, Xk;)
V(X) _ ‘COV(XQ, Xl) V(XQ) .. .COV(XQ, Xk:)
COV(Xk,Xl) COV(Xk,XQ) V(Xk)
If X ~ Multinomial(n, p) then E(X) = np = n(p1,...,pr) and
prl(l - p1) —np1p2 st —NP1Pk
V(X) _ '_np2p1 ?’Lp2(1 - p2) o '_np2pk
—NpgP1 —NPxP2 < npk(l — pg)

To see this, note that the marginal distribution of any one component of
the vector is binomial, that is X; ~ Binomial(n,p;). Thus, E(X;) = np;
and V(X;) = np;(1 — p;). Note that X; + X; ~ Binomial(n, p; + p;). Thus,
V(X; + X;) = n(p; +p;)(1 — [p; + p;])- On the other hand, using the formula
for the variance of a sum, we have that V(X; + X;) = V(X;) + V(X;) +
2Cov(X;, X;) = npi(1 — p;) + np;(1 — p;) + 2Cov(X;, X;). If you equate this
formula with n(p; + p;)(p; + p;) and solve, one gets Cov(X;, X;) = —np;p;.

Finally, here is a lemma that can be useful for finding means and variances
of linear combinations of multivariate random vectors.

Lemma 4.20 If a is a vector and X is a random wvector with mean p and
variance ¥ then E(aTX) = oy and V(a¥X) = a*Sa. If A is a matriz then
E(AX) = Au and V(AX) = A AT,
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4.5 Conditional Expectation

Suppose that X and Y are random variables. What is the mean of X
among those times when Y = y? The answer is that we compute the mean
of X as before but we substitute fxy(z|y) for fx(z) in the definition of
expectation.

Definition 4.21 The conditional expectation of X given Y =y is

>z fxjy(z|ly) der discrete case

E(X|Y =y) = { (4.13)

J = fxjy(z|y)dz  continuous case.
If r(x,y) is a function of x and y then

Y- r(z,y) fx)y(z|y) dez discrete case

[ r(z,y) fxjv(z|y)dz  continuous case.
(4.14)

E(r(X, Y)Y =y) = {

Whereas, E(X) is a number, E(X|Y = y) is a function of y. Before we
observe Y, we don’t know the value of E(X|Y = y) so it is a random variable
which we denote E(X|Y). In other words, E(X|Y) is the random variable
whose value is E(X|Y = y) when y = y. Similarly, E(r(X,Y)|Y) is the
random variable whose value is E(r(X,Y)|Y = y) when y = y. This is a
very confusing point so let us look at an example.

Example 4.22 Suppose we draw X ~ Unif(0,1). After we observe X = z,
we draw Y|X = x ~ Unif(z,1). Intuitively, we ezxpect that E(Y|X = z) =
(1+2)/2. In fact, fyix(ylz) =1/(1 —x) forz <y <1 and

B X =0)= [ uhtidy = / —

as expected. Thus, E(Y|X) = (14+X)/2. Notice that E(Y|X) = (1+X)/2 is
a random variable whose value is the number E(Y|X = z) = (1 + x)/2 once
X =1z s observed. B
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Theorem 4.23 (The rule of iterated expectations.) For random variables X and
Y, assuming the expectations exist, we have that

EE(Y|X)]=E(Y) and E[E(X|Y)]=E(X). (4.15)
More generally, for any function r(z,y) we have

EE(r(X,Y)X)]=E(r(X,Y)) and E[E(r(X,Y)X)]=E(r(X,Y)).
(4.16)

Proor. We'll prove the first equation. Using the definition of conditional
expectation and the fact that f(x,y) = f(x)f(y|x),

BEYX)] = [BVX =) fx@do= [ [urle)dys@)is
~ [ [vtns@isay= [ [use.p)dudy=E(v). m

Example 4.24 Consider example 4.22. How can we compute E(Y)? One
method is to find the joint density f(z,y) and then compute E(Y) = [ [yf(z,y)dzdy.
An easier way is to do this in two steps. First, we already know that E(Y | X) =

(14 X)/2. Thus,

E(Y) = EE(Y|X) = E (“ZX)) _ Q+EX) (HS/?)) —3/4. W

2
Definition 4.25 The conditional variance is defined as
VYIX =)= [ (0= o) Fole)dy (1.17)
where u(z) =E(Y|X = z).
Theorem 4.26 For random variables X and Y,

V(Y) =EV(Y|X) + VE(Y|X).
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Example 4.27 Draw a county at random from the United States. Then draw
n people at random from the county. Let X be the number of those people
who have a certain disease. If () denotes the proportion of of people in that
county with the disease then ) is also a random variable since it varies from
county to county. Given @ = q, we have that X ~ Binomial(n,q). Thus,
E(X|Q = q) = nqg and V(X|Q = q) = ng(1l — q). Suppose that the random
variable P has a Uniform (0,1) distribution. Then, E(X) = EE(X|Q) =
E(nQ) = nE(Q) = n/2. Let us compute the variance of X. Now, V(X) =
EV(X|Q) + VE(X|Q). Let’s compute these two terms. First, EV(X|Q) =
EnQ(1-Q)] = nE(Q(1-Q)) =n [ q(1-q)f(q)dg = n [; q(1—q)dg = n/6.
Nest, VE(X|Q) = V(nQ) = n*V(Q) = n® [(q¢ — (1/2))?dq = n?/12. Hence,
V(X) = (n/6) + (n?/12). W

4.6 Technical Appendix

4.6.1 Expectation as an Integral

The integral of a measurable function r(z) is defined as follows. First sup-
pose that r is simple, meaning that it takes finitely many values aq, ..., a
over a partition Aj,..., Ay. Then [r(z)dF(z) = SF, aP(r(X) € A)).
The integral of a positive measurable function r is defined by [ r(z)dF(z) =
lim; [ r;(z)dF(x) where r; is a sequence of simple functions such that r;(z) <
r(z) and 7;(x) — r(z) as ¢ — oo. This does not depend on the partic-
ular sequence. The integral of a measurable function r is defined to be
[ r(z)dF(z) = [rt(z)dF(z) — [r~(z)dF(z) assuming both integrals are
finite, where r*(z) = max{r(z),0} and r~(z) = — min{r(x), 0}.

4.6.2 Moment Generating Functions
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Definition 4.28 The moment generating function (mgf), or Laplace
transform, of X is defined by

Vx(t) = B(e™) = / e dF ()

where t varies over the real numbers.

In what follows, we assume that the mgf is well defined for all ¢ in small
neighborhood of 0. A related function is the characteristic function, defined
by E(e*X) where i = /—1. This function is always well defined for all . The
mgf is useful for several reasons. First, it helps us compute the moments of
a distribution. Second, it helps us find the distribution of sums of random
variables. Third, it is used to prove the central limit theorem which we
discuss later.

When the mgf is well defined, it can be shown that we change interchange
the operations of differentiation and “taking expectation.” This leads to

d o ix d ix tX
wl(O) = [%]Ee }tzo =E [%6 o =F [X@ ]tZO = IE(X)
By taking for derivatives we conclude that *)(0) = E(X*). This gives us a

method for computing the moments of a distribution.

Example 4.29 Let X ~ Exp(1). For anyt <1,

o o0 1
Yx(t) = Ee' = / e dx :/ elt=ledy = —
The integral is divergent if t > 1. So, ¥x(t) = 1/(1 —t) for all t < 1. Now,
Y'(0) = 1 and ¢¥"(0) = 2. Hence, E(X) = 1 and V(X) = E(X?) — p? =
2—-1=1.

Lemma 4.30 Properties of the mgf.

(1) If Y = aX + b then vy (t) = e®thx (at).

(2) If X1,..., X, are independent and Y =Y, X; then ¢y (t) = [[; ¢i(t)
where 1; is the mgf of X;.
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Example 4.31 Let X ~ Binomial(n,p). As before we know that X =Y, X;
where P(X; = 1) = p and P(X; = 0) = 1 —p. Now 9;(t) = Ee** = (p x ') +
(1 = p)) = pe* + q where ¢ =1 — p. Thus, Yx(t) = [1;%:i(t) = (pe' + ¢)".

Theorem 4.32 Let X and Y be random variables. If 1¥x (t) = 1y (t) for all t

i an open interval around 0, then X Ly,

Example 4.33 Let X ~ Binomial(n,p) and X ~ Binomial(ng, p) be indepen-
dent. LetY = X + X5. Now

Py (t) = 1 (t)1ha(t) = (pe' + q)™ (pe’ + q)" = (pe’ + ¢)™ ™

and we recognize the latter as the mgf of a Binomial(ny + ng,p) distribution.
Since the mgf characterizes the distribution (i.e. there can’t be another ran-
dom variable which has the same mgf) we conclude that Y ~ Bin(ny +na, p).

Moment Generating Function for Some Common Distributions

Distribution mgf

Bernoulli (p)  pe' + (1 —p)
Binomial (n,p) (pe’ + (1 — p))"
Alet-1)

Poisson () e
Normal (pu,0)  exp {ut + %}

Gamma (a,3) <%>a fort <

4.7 Excercises

1. Suppose we play a game where we start with ¢ dollars. On each play of
the game you either double or half your money, with equal probability.
What is your expected fortune after n trials?

2. Show that V(X) = 0 if and only if there is a constant ¢ such that
P(X =c¢)=1.

3. Let Xi,..., X, ~ Uniform(0,1) and let ¥;, = max{Xy,...,X,,}. Find
E(Y,).
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11.
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A particle starts at the origin of the real line and moves along the
line in jumps of one unit. For each jump the probability is p that the
particle will jump one unit to the left and the probability is 1 — p that
the particle will jump one unit to the right. Let X,, be the position of
the particle after n units. Find E(X,) and V(X,). (This is known as
a random walk.)

A fair coin is tossed until a head is obtained. What is the expected
number of tosses that will be required?

Prove Theorem 4.6 for discrete random variables.

Let X be a continuous random variable with ¢DF F'. Suppose that
P(X > 0) =1 and that E(X) exists. Show that E(X) = [[*P(X >
x)dx.

Hint: Consider integrating by parts. The following fact is helpful: if
E(X) exists then lim, , z[1 — F(z)] = 0.

Prove Theorem 4.16.

(Computer Experiment.) Let X3, Xs,..., X, be N(0,1) random vari-
ablesand let X,, = n~! > iy X;. Plot X, versus nforn =1,...,10, 000.
Repeat for Xy, X,, ..., X,, ~ Cauchy. Explain why there is such a dif-
ference.

Let X ~ N(0,1) and let Y = ¢*. Find E(Y) and V(Y).

(Computer Experiment: Simulating the Stock Market.) Let Y7, Y5, ... be
independent random variables such that P(Y; = 1) = P(Y; = —1) =
1/2. Let X, =" | Y;. Think of ¥; =1 as “the stock price increased
by one dollar”, ¥; = —1 as “the stock price decreased by one dollar”
and X,, as the value of the stock on day n.

(a) Find E(X,,) and V(X,,).
(b) Simulate X,, and plot X,, versus n for n =1,2,...,10,000. Repeat

the whole simulation several times. Notice two things. First, it’s easy
to “see” patterns in the sequence even though it is random. Second,
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13.
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you will find that the four runs look very different even though they
were generated the same way. How do the calculations in (a) explain
the second observation?

Prove the formulas given in the table at the beginning of Section 4.4
for the Bernoulli, Poisson, Uniform, Exponential, Gamma and Beta.
Here are some hints. For the mean of the Poisson, use the fact that
e* = > ,a”/z!. To compute the variance, first compute E(X (X —1)).
For the mean of the Gamma, it will help to multiply and divide by
['(a+1)/8*t! and use the fact that a Gamma density integrates to 1.
For the Beta, multiply and divide by I'(a + 1)I'(8) /T (e + 8 + 1).

Suppose we generate a random variable X in the following way. First
we flip a fair coin. If the coin is heads, take X to have a Unif(0,1)
distribution. If the coin is tails, take X to have a Unif(3,4) distribution.

(a) Find the mean of X.
(b) Find the standard deviation of X.

Let X1,...,X,, and Y7,...,Y, be random variables and let a4, ..., a,,
and by, ...,b, be constants. Show that

Cov (iaiX,-, ibjyvj) = i - aib]-Cov(Xi,Yj).
i=1 j=1 i=1

i j=1
Let

z+y) 0<2<1,0<y<?
= 3 1 N ’ - B
fxy(z,y) { 0 otherwise.

Find V(2X — 3Y + 8).
Let r(x) be a function of x and let s(y) be a function of y. Show that
E(r(X)s(Y)|X) = r(X)E(s(Y)[X).

Also, show that E(r(X)|X) = r(X).
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17. Prove that

18.

19.

20.

V() =EV(Y | X) + VE(Y | X).

Hint: Let m = E(Y') and let b(z) = E(Y|X = z). Note that E(b(X)) =
EE(Y|X) = E(Y) = m. Bear in mind that b is a function of z. Now
write V(Y) = E(Y —m)? = E((Y —b(X)) + (b(X) —m))%. Expand the
square and take the expectation. You then have to take the expectation

of three terms. In each case, use the rule of the iterated expectation:
i.e. E(stuff) = E(E(stuff|X)).

Show that if E(X|Y = y) = ¢ for some constant ¢ then X and Y are
uncorrelated.

This question is to help you understand the idea of a sampling dis-
tribution. Let X,..., X, be IID with mean y and variance o2. Let
X, =n"'Y7X;. Then X, is a statistic, that is, a function of the
data. Since X, is a random variable, it has a distribution. This distri-
bution is called the sampling distribution of the statistic. Recall from
Theorem 4.16 that E(X,) = p and V(X,,) = 0?/n. Don’t confuse the
distribution of the data fx and the distribution of the statistic fyn. To
make this clear, let X,..., X, ~ Uniform(0,1). Let fx be the density
of the Uniform(0, 1). Plot fy. Now let X, =n~*>""  X;. Find E(X,)
and V(X,,). Plot them as a function of n. Comment. Now simulate the
distribution of X, for n = 1, 5,25, 100. Check that the simulated values
of E(X,) and V(X,) agree with your theoretical calculations. What
do you notice about the sampling distribution of X, as n increases?

Prove Lemma 4.20.
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Inequalities

5.1 Markov and Chebychev Inequalities

Inequalities are useful for bounding quantities that might otherwise be
hard to compute. They will also be used in the theory of convergence which
is discussed in the next chapter. Our first inequality is Markov’s inequality.

Theorem 5.1 (Markov's Inequality.) Let X be a non-negative random
variable and suppose that B(X) exists. For anyt > 0,

P(X > t) < ?. (5.1)

ProoF. E(X) = [;° zf(z)dz = fot of(z)dz+ [F zf(z)dz > [ zf(z)d >
t [ f(x)dz =tP(X >t). W

t

85
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Theorem 5.2 (Chebyshev's inequality.) Let u = E(X) and o? = V(X).

Then,
2

P(X —p > ) <% and P(|Z|zk)§% (5.2)

where Z = (X — u)/o. In particular, P(|Z] > 2) < 1/4 and P(|Z| >
3) < 1/9.

PrOOF. We use Markov’s inequality to conclude that

E(X —p)? o’

P(X —pl > 0) =P(X - p? > ) < == = T

The second part follows by setting ¢ = ko. B

Example 5.3 Suppose we test a prediction method, a neural net for example,
on a set of n new test cases. Let X; = 1 if the predictor is wrong and X; = 0
if the predictor is right. Then X, =n~" > Xi is the observed error rate.
FEach X; may be regarded as a Bernoulli with unknown mean p. We would
like to know the true, but unknown error rate p. Intuitively, we expect that
X,, should be close to p. How likely is X, to not be within € of p? We have
that V(X,) = V(X,)/n? = p(1 — p)/n and

VIX,) _pl-p) _ 1

]P’Y— > < =
(X—pl>0< o) PEoD) L

since p(1 —p) < i for all p. For e =.2 and n = 100 the bound is .0625. B

5.2 Hoeffding’s Inequality

Hoeffding’s inequality is similar in spirit to Markov’s inequality but it is
a sharper inequality. We present the result here in two parts. The proofs are
in the technical appendix.
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Theorem 5.4 Let Yi,...,Y, be independent observations such that
E(Y;) =0 and a; <Y; <b;. Let € > 0. Then, for anyt > 0,

P (ZY; > e) <e Het (bi—ai)”/8 (5.3)
i=1 i=1

Theorem 5.5 Let X;,...,X, ~ Bernoulli(p). Then, for any e > 0,
P (X, —p|>e€) <22 (5.4)

where X, =n~' >0 X

Example 5.6 Let X1,..., X, ~ Bernoulli(p). Let n = 100 and ¢ = .2. We
saw that Chebyshev’s yielded

P(| X, — p| > €) < .0625.
According to Hoeffding’s inequality,
P(|X — p| > .2) < 2 21902° = 00067
which is much smaller than .0625. B

Hoeffding’s inequality gives us a simple way to create a confidence in-
terval for a binomial parameter p. We will discuss confidence intervals later
but here is the basic idea. Fix o > 0 and let

1 9 1/2
n=14—log (= :
o=l (0)y

By Hoeffding’s inequality,

2
n

P (| X, —p| > €,) < 2e7

|
R
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Let C = (X, — ¢, X, +¢). Then, P(C ¢ p) = P(|X,, — p| > ¢) < a. Hence,
P(p € C) > 1 — «, that is, the random interval C traps the true parameter
value p with probability 1 — «; we call C' a 1 — « confidence interval. More
on this later.

5.3 Cauchy-Schwarz and Jensen Inequalities

This section contains two inequalities on expected values that are often
useful.

Theorem 5.7 (Cauchy-Schwarz inequality.) If X and Y have finite vari-

ances then
E|XY| < VE(X?2)E(Y?). (5.5)

Recall that a function g is convex if for each z,y and each «a € [0, 1],

glaz+ (1 — a)y) < ag(z) + (1 — a)g(y).

If g is twice differentiable, then convexity reduces to checking that g”(z) > 0
for all z. It can be shown that if g is convex then it lies above any line that
touches g at some point, called a tangent line. A function g is concave if

—g is convex. Examples of convex functions are g(z) = 2% and g(z) = €”.
Examples of concave functions are g(r) = —z? and g(z) = log z.
Theorem 5.8 (Jensen's Inequality.) If g is convex then
Eg(X) > g(EX). (5.6)
If g is concave then
Eg(X) < g(EX). (5.7)

PROOF. Let L(z) = a + bz be a line, tangent to g(z) at the point E(X).
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Since ¢ is convex, it lies above the line L(x). So,

Eg(X) > EL(X) = E(a + bX) = a+ bE(X) = L(E(X)) = g(EX). W

From Jensen’s inequality we see that EX? > (EX)? and E(1/X) >
1/E(X). Since log is concave, E(log X) < logE(X). For example, suppose
that X ~ N(3,1). Then E(1/X) > 1/3.

5.4 Technical Appendix: Proof of Hoeffding’s
Inequality

We will make use of the exact form of Taylor’s theorem: if g is a smooth
function, then there is a number £ € (0,u) such that g(u) = g(0) + ug'(0) +

g (£).

PROOF of Theorem 5.4. For any t > 0, we have, from Markov’s inequality,
that

P(ZEZe) = ]P’(tZKZte) :P(etzyﬂy"Zete)
i=1

=1

< IR (etELlYi) — ot H]E(etyz) (58)

Since a; < Y; < b;, we can write Y; as a convex combination of a; and b;,
namely, Y; = ab;+ (1 —«)a; where a = (Y;—a;)/(b;—a;). So, by the convexity
of e” we have
e < Y - a’ietbi T bi — Yrieta,-‘
bi — Q; bz — Qa;

Take expectations of both sides and use the fact that E(Y;) =0 to get

EetYi S _ a; etbi + Letai = eg(u) (59)
i — G bi — a;

where u = t(b; — a;), g(u) = —yu +log(1l — v+ ve*) and v = —a;/(b; — a;).
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Note that ¢(0) = ¢'(0) = 0. Also, ¢" (u) < 1/4 for all u > 0. By Taylor’s
theorem, there is a £ € (0, u) such that

g(w) = 9(0) +ug(0) + 5g"(©)
= %g"(S) < % £ 2 %)

Hence,
EetYi < eg(u) < etz(bifa,-)2/8.

The result follows from (5.8). W

PROOF of Theorem 5.5. Let ¥; = (1/n)(X; — p). Then E(Y;) = 0 and
a <Y; <bwhere a = —p/n and b = (1 — p)/n. Also, (b —a)? = 1/n?.
Applying the last Theorem we get

P(X,—p>¢€) = P(ZYZ > e) < et/

The above holds for any ¢ > 0. In particular, take ¢ = 4ne and we get
P(X,—p > €) < e72"¢. By a similar argument we can show that P(X, —p <
—€) < e72"¢" Putting these together we get P (| X, —p|>¢) < DI

5.5 Bibliographic Remarks
An excellent reference on probability inequalities and their use in statistics

and pattern recognition is Devroye, Gyorfi and Lugosi (1996). The proof of
Hoeffding’s inequality is from that text.

5.6 Excercises

1. Let X ~ Exponential(8). Find P(|X —pux| > kox) for k > 1. Compare
this to the bound you get from Chebyshev’s inequality.

2. Let X ~ Poisson()). Use Chebyshev’s inequality to show that P(X >
2)) < 1/

3. Let X1,..., X, ~ Bernoulli(p) and X, =n~' > " | X;. Bound P(|X,,—
p| > €) using Chebyshev’s inequality and using Hoeffding’s inequality.
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Show that, when n is large, the bound from Hoeffding’s inequality is
smaller than the bound from Chebyshev’s inequality.

4. Let Xi,...,X, ~ Bernoulli(p).
(a) Let a > 0 be fixed and define

11 2
€, = /—log|—|.
Qnga

Letp, =n 'Y | X;. Define C,, = (D — €5, Pn + €,). Use Hoeffding’s
inequality to show that

P(C,, contains p) > 1 — a.

We call C,, a 1 — a confidence interval for p. In practice, we truncate
the interval so it does not go below 0 or above 1.

(b) (Computer Experiment.) Let’s examine the properties of this confi-
dence interval. Let @ = 0.05 and p = 0.4. Conduct a simulation study
to see how often the interval contains p (called the coverage). Do this
for various values of n between 1 and 10000. Plot the coverage versus
n.

(c) Plot the length of the interval versus n. Suppose we want the length
of the interval to be no more than .05. How large should n be?
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Convergence of Random Variables

6.1 Introduction

The most important aspect of probability theory concerns
the behavior of sequences of random variables. This part of
probability is called large sample theory or limit theory
or asymptotic theory. This material is extremely important
for statistical inference. The basic question is this: what can we
say about the limiting behavior of a sequence of random vari-
ables X7, Xo, X3,...7 Since statistics and data mining are all
about gathering data, we will naturally be interested in what
happens as we gather more and more data.

In calculus we say that a sequence of real numbers x, con-
verges to a limit z if, for every € > 0, |z, — 2| < € for all
large n. In probability, convergence is more subtle. Going back
to calculus for a moment, suppose that z,, = x for all n. Then,
trivially, lim, x,, = x. Consider a probabilistic version of this
example. Suppose that X;, X5, ... is a sequence of random vari-
ables which are independent and suppose each has a N(0,1)
distribution. Since these all have the same distribution, we are
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tempted to say that X, “converges” to X ~ N(0,1). But this

can’t quite be right since P(X,, = Z) = 0 for all n. (Two con-

tinuous random variables are equal with probability zero.)
Here is another example. Consider X, Xs,... where X; ~

N(0,1/n). Intuitively, X,, is very concentrated around 0 for large

n. But P(X,, = 0) = 0 for all n. This chapter develops appro-

priate methods of discussing convergence of random variables.
There are two main ideas in this chapter:

1. The law of large numbers says that sample average
X, =n"" >, X; converges in probability to the ex-
pectation p = E(X).

2. The central limit theorem says that sample average
has approximately a Normal distribution for large n. More
precisely, v/n(X, — i) converges in distribution to a
Normal(0, 02) distribution, where ¢ = V(X).

6.2 Types of Convergence

The two main types of convergence are defined as follows.
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Definition 6.1 Let X1, X5, ... be a sequence of random vari-
ables and let X be another random variable. Let F,, de-
note the CDF of X,, and let F' denote the CDF of X.

1. X, converges to X in probability, written XnL X,
if, for every e > 0,

P(|X, — X| > ¢) — 0 (6.1)
as n — Q0.

2. X, converges to X in distribution, written X,, ~ X,
if,
lim F,(t) = F(t) (6.2)

n—oo

at all t for which F is continuous.

There is another type of convergence which we introduce

mainly because it is useful for proving convergence in proba-
bility.

Definition 6.2 X, converges to X in quadratic mean
(also called convergence in Ly ), written X, X, if,

E(X, — X)? =0 (6.3)

as n — oQ.

If X is a point mass at ¢ — that is P(X = ¢) = 1 — we write
X, ¢ instead of X X. Similarly, we write XnLc and
X, ~ c.

Example 6.3 Let X,, ~ N(0,1/n). Intuitively, X,, is concentrat-
ing at 0 so we would like to say that X, ~> 0. Let’s see if this
s true. Let ' be the distribution function for a point mass at
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0. Note that \/nX,, ~ N(0,1). Let Z denote a standard normal
random variable. For t < 0, F,(t) = P(X,, < t) = P(y/nX, <
Vvnt) = P(Z < /nt) — 0 since \/nt — —oo. Fort > 0,
F.(t) = P(X, <t) =P(\/nX, < /nt) =P(Z < /nt) — 1
since \/nt — oo. Hence, F,(t) — F(t) for all t # 0 and so
X,, ~ 0. But notice that F,,(0) = 1/2 # F(1/2) = 1 so con-
vergence fails at t = 0. But that doesn’t matter because t = 0 s
not a continuity point of I and the definition of convergence in
distribution only requires convergence at continuity points. B

The next theorem gives the relationship between the types of
convergence. The results are summarized in Figure 6.1.

Theorem 6.4 The following relationships hold:

(a) X225 X implies that X,— X.

(b) X,— X implies that X, ~ X.

(c) If X, ~ X and if P(X = ¢) =1 for some real number c,
then XHL X.

In general, none of the reverse implications hold except the
special case in (c).

PROOF. We start by proving (a). Suppose that X, —— X. Fix
€ > 0. Then, using Chebyshev’s inequality,

E|X, — X|?
<

= 62

P(|X, — X| >¢) =P(|X, — X|* > ) 0.

Proof of (b). This proof is a little more complicated. You may
skip if it you wish. Fix € > 0 and let x be a continuity point of
F. Then

Fo(z) = PX,<2)=PX,<z,X<z+¢€+PX,<z,X>z+¢€)
< PX <z+4¢e)+P(X,—X|>e¢)
= Flz+e)+P(X,— X|>e).

Also,
Flz—¢) = PX<z—¢=PX<z—-—6X,<2)+P(X <z+¢X,>x)
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< Fu(x)+P(X, — X| > e€).
Hence,
Flrz—e)—P(|X,—X| > €) < F,(z) < F(z+¢)+P(| X, — X| > ¢).
Take the limit as n — oo to conclude that

F(x —¢€) <liminf F,(z) < limsup F,(z) < F(z + ¢).

n—00 n—00

This holds for all € > 0. Take the limit as € — 0 and use the fact
that F'is continuous at x and conclude that lim,, F,(z) = F(z).
Proof of (c). Fix € > 0. Then,

P(|X,—c|>¢) = PX,<c—¢)+P(X, >c+e)
< PX,<c—€)+P(X, >c+e)
= Fc—e)+1—-F,(c+e)

— Flc—e¢)+1—F(c+e)
0+1—-0=0.

Let us now show that the reverse implications do not hold.

CONVERGENCE IN PROBABILITY DOES NOT IMPLY CON-
VERGENCE IN QUADRATIC MEAN. Let U ~ Unif(0, 1) and let
X = Vilioam(U). Then B(X,| > ¢) = Byl (U) >
¢) =P0<U<1/n)=1/n — 0. Hence, Then X,—0. But
E(X?) =n Ol/n du = 1 for all n so X,, does not converge in
quadratic mean.

CONVERGENCE IN DISTRIBUTION DOES NOT IMPLY CON-
VERGENCE IN PROBABILITY. Let X ~ N(0,1). Let X,, = =X
forn=1,2,3,...; hence X,, ~ N(0,1). X, has the same distri-
bution function as X for all n so, trivially, lim,, F,(z) = F(x)
for all z. Therefore, X,, % X. But P(|X,, — X| > ) = P(|2X]| >
€) =P(|X]| > €/2) # 0. So X,, does not tend to X in probability.
|



We can conclude
that E(X,) — b
if X, is uniformly
integrable. See the
technical appendix.
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point-mass distribution

DY
........
.....
.
o

quadratic mean probability =—— distribution

FIGURE 6.1. Relationship between types of convergence.

Warning! One might conjecture that if X,,—— b then E(X,) —
b. This is not true. Let X,, be a random variable defined by
P(X, =n?) =1/n and P(X,, = 0) =1 — (1/n). Now, P(|X,| <
e) = P(X, =0) =1-(1/n) — 1. Hence, Z-250. However,
E(X,) = [n*x(1/n)]+[0x (1—(1/n))] = n. Thus, E(X,,) — oo.

Summary. Stare at Figure 6.1.
Some convergence properties are preserved under transforma-
tions.

Theorem 6.5 Let X,,, X,Y,,,Y be random variables. Let g be a
continuous function.

(a) If Xo—> X and Y,—>Y, then X, +Y,—> X + Y.

() If X, 25 X and Y, 25 Y, then X, + Y~ X +Y.

(c) If X;, ~ X and Y, ~ ¢, then X,, +Y,, ~ X +c.

(d) If X,—~ X and Y,—>Y, then X,Y,—— XY.

(e) If X;, ~ X and Y, ~ ¢, then XY, ~ cX.

(f) If X,— X then g(X,)— g(X).

(9) If X, ~ X then g(X,) ~ g(X).

6.3 The Law of Large Numbers

Now we come to a crowning achievement in probability, the law
of large numbers. This theorem says that the mean of a large
sample is close to the mean of the distribution. For example,
the proportion of heads of a large number of tosses is expected
to be close to 1/2. We now make this more precise.
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Let X3, X5,..., be an 11D sample and let p = E(X;) and
0? = V(X)). Recall that the sample mean is defined as X, =
n~tY" | X; and that E(X,,) = p and V(X,,) = o%/n.

Theorem 6.6 (The Weak Law of Large Numbers (WLLN).)
If Xq,..., X, are ID , then YHL 1.

Interpretation of WLLN: The distribution of X, be-
comes more concentrated around v as n gets large.

PROOF. Assume that ¢ < oo. This is not necessary but it
simplifies the proof. Using Chebyshev’s inequality,
V(X,) o2

P(|X, —pul>e) < = =3

which tends to 0 as n — oo. B

Example 6.7 Consider flipping a coin for which the probability
of heads is p. Let X; denote the outcome of a single toss (0
or 1). Hence, p = P(X; = 1) = E(X;). The fraction of heads
after n tosses is X,. According to the law of large numbers,
X, converges to p in probability. This does not mean that X,
will numerically equal p. It means that, when n s large, the
distribution of X, is tightly concentrated around p. Suppose that
p = 1/2. How large should n be so that P(4 < X, < .6) > .77
First, E(X,) = p = 1/2 and V(X,,) = 0?/n = p(1 —p)/n =
1/(4n). From Chebyshev’s inequality,

P(4<X,<.6) = P(X,—pu <.1)

= 1-P(|X, —pu| >.1)
1 25
> 1- =1-=.
4n(.1)2 n

The last expression will be larger than .7 if n =84. A

Note that u =
E(X;) is the same
for all @ so we can
define p = E(X;)
for any i. By con-
vention, we often
write 1 = E(X)).

There is a stronger
theorem in the ap-
pendix called the
strong law of large
numbers.
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6.4 The Central Limit Theorem

Suppose that X,..., X, are iid with mean p and variance o
The central limit theorem (CLT) says that X, = n ™'Y X;
has a distribution which is approximately Normal with mean u
and variance o2 /n. This is remarkable since nothing is assumed
about the distribution of Xj;, except the existence of the mean
and variance.

be 11D with mean p and variance 0. Let X, =n='>"" X
Then

where Z ~ N(0,1). In other words,

=1
lim P(Z, < z2) = ®(z2) = / ——e "y,

n—00 —oo \ 27

Interpretation: Probability statements about X, can
be approximated using a Normal distribution. It's the
probability statements that we are approximating, not
the random variable itself.

In addition to Z,, ~» N(0,1), there are several forms of nota-
tion to denote the fact that the distribution of Z,, is converging
to a Normal. They all mean the same thing. Here they are:

Z, ~ N(0,1)
X, ~ N(y,a—)
n
2
n
Vn(X, —p) =~ N (0, 0%

Theorem 6.8 (The Central Limit Theorem (CLT).) Let X4/...
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vrXa—p) N(0,1).

o

Example 6.9 Suppose that the number of errors per computer
program has a Poisson distribution with mean 5. We get 125 pro-
grams. Let X1, ..., Xqo5 be the number of errors in the programs.
We want to approvimate P(X < 5.5). Let p = E(X;) =X =5
and 0> = V(X,) = XA = 5. Then,

MY<5®:P<

o o

The central limit theorem tells us that Z, = \/n(X — u)/o

is approximately N(0,1). However, we rarely know o. We can
estimate o2 from X,..., X, by

52 = ! D (X - X%

n—14%
=1

This raises the following question: if we replace o with S, is the
central limit theorem still true? The answer is yes.

Theorem 6.10 Assume the same conditions as the CLT. Then,

Vi(Xn —p)
5 ~ N(0,1).

You might wonder, how accurate the normal approximation
is. The answer is given in the Berry-Esseen theorem.

Theorem 6.11 (Berry-Esseen.) Suppose that E|X;|* < co. Then

33E[Xy — pf?
4 /nod

There is also a multivariate version of the central limit theo-

sup |P(Z, < z) — ®(2)] < (6.4)

renm.

VX ) _ (55 - u>) ~P(Z < 25) = 9938,
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Theorem 6.12 (Multivariate central limit theorem) Let X, ...

be ID random vectors where

X1
X, = X‘m'
X
with mean
251 E(Xh)
M2 E(X2z)
ILL g g .
Lk E(Xki)
and variance matrix >. Let
X,
x|
X

where X; =n~ 3" | Xy;. Then,

V(X — ) ~ N(0,%).

6.5 The Delta Method

If Y,, has a limiting Normal distribution then the delta method
allows us to find the limiting distribution of ¢(Y;,) where g is
any smooth function.

Theorem 6.13 (The Delta Method) Suppose that

M ~ N(0,1)

o

and that g is a differentiable function such that g'(1) # 0. Then

V(g(Yn) — g(p))
19" ()]0

~ N(0,1).
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In other words,
2

N (i) = g =N (ol 7L ).

Example 6.14 Let Xy,..., X, be 1ID with finite mean p and fi-
nite variance o®. By the central limit theorem, /n(X,)/o ~
N(0,1). Let W, = eXn. Thus, W, = g(X,) where g(s) = e*.
Since ¢'(s) = €*, the delta method implies that W,, = N (e*, e*'c?/n).
]

There is also a multivariate version of the delta method.

Theorem 6.15 (The Multivariate Delta Method) Suppose that
Y, = (Yar, ..., Yak) is a sequence of random vectors such that
VY, = 1)~ N(0,3).

Let g : R¥ — R ane let

99

o1

Vgly) = |
g
Oyk

Let V,, denote Vg(y) evaluated at y = p and assume that the
elements of V,, are non-zero. Then

V(g(Y,) = g(p) ~ N (0, VIZV,).

Example 6.16 Let

(Xn) <X12) (Xm)
X21 ’ X22 oY X2n

be TID random vectors with mean p = (1, ) and variance ..

Let . .
_ 1 — 1
Xlzﬁgxu, XZ:;;X%



100 6. Convergence of Random Variables

and define Y, = X1 Xy. Thus, Y,, = g(X1, X3) where g(s1,52) =

$189. By the central limit theorem,

\/ﬁ(%:ﬁz > ~ N(0,%).

w- ()= (2)

T _ 011 012 2 .2 2
VMZVM - (NZ Ml) ( 01y O ) ( 10 ) = 153011 + 241 f1o012 + [17022.

and so

Therefore,

V(X1 Xg — prapg) ~ N<0,M5011 + 2p o012 + M%Um)- |

6.6 Bibliographic Remarks

Convergence plays a central role in modern probability the-
ory. For more details, see Grimmet and Stirzaker (1982), Karr
(1993) and Billingsley (1979). Advanced convergence theory is
explained in great detail in van der Vaart and Wellner (1996)
and van der Vaart (1998).

6.7 Technical Appendix

6.7.1 Almost Sure and L, Convergence

We say that X, converges almost surely to X, written
X, X, if
P({s: X.(s) — X(s)}) =1

We say that X,, converges in L; to X, written X, —% X, if

E|X, — X| — 0
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as n — 00.

Theorem 6.17 Let X,, and X be random vaiables. Then:
(a) X, X implies that X,— X.
(b) Xn—5 X implies that X, X
(c) X, 25 X implies that X,— X.

The weak law of large numbers says that X, converges to
[EX, in probability. The strong law asserts that this is also true
almost surely.

Theorem 6.18 (The strong law of large numbers.) Let X, X, ...
be iid. If p = E|X,| < oo then X, pu.

A sequence X, is asymptotically uniformly integrable if

im limsupE (|X,,|I(|X,| > M)) = 0.

1
M—00 pno0

If Xni b and X, is asymptotically uniformly integrable, then
E(X,) —b.

6.7.2  Proof of the Central Limit Theorem

If X is a random variable, define its moment generating func-

tion (mgf) by ¥x(t) = FeX. Assume in what follows that the
mgf is finite in a neighborhood around ¢t = 0.
Lemma 6.19 Let Z1,Zs,... be a sequence of random wvariables.
Let 1, the mgf of Z,. Let Z be another random wvariable and
denote its mgf by V. If ¥, (t) — (t) for all t in some open
interval around 0, then Z, ~ Z.

PROOF OF THE CENTRAL LIMIT THEOREM. Let Y; = (X; —
p)/o. Then, Z, = n~/23" ;. Let 1(t) be the mgf of Y;. The
mgf of Y. Y; is (¢(¢))" and mgf of Z, is [¢(t/v/n)]" = &.(t).
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Now ¢'(0) = E(Y;) =0, ¥"(0) = E(Y?) = Var(Y;) = 1. So,
Vi) = (0 +1(0) + Su0) + t—iwm +
= 1+0+t2 + @b”( )+

t2
= l+5+ ¢”()

wo - ()]

12 3 ] "

Now,

— "
— 1+2—+3| 770"(0) + -

3'n1/2 ¢//( )

n

:1+

2
. 6t/2

which is the mgf of a N(0,1). The result follows from the previous
Theorem. In the last step we used the fact that, if a,, — a then

(1—}— a—”) — e”.
n

6.8 Excercises

1. Let Xi,...,X, be iid with finite mean p = E(X;) and
finite variance 02 = V(X)). Let X,, be the sample mean
and let S? be the sample variance.

(a) Show that E(S?) = o2

(b) Show that 52— 2. Hint: Show that S2 = ¢,n ! S27 | X2
dnYi where ¢, — 1 and d,, — 1. Apply the law of large
numbers to n=1 Y7 | X2 and to X,,. Then use part (e) of
Theorem 6.5.
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. Let X1, X5,... be a sequence of random variables. Show
that X, — b if and only if

lim E(X,) =06 and lim V(X,)=0.

n—oo n—oo

. Let Xy,..., X, be iid and let p = E(X;). Suppose that
the variance is finite. Show that X, —— /.

. Let X1, X5,... be a sequence of random variables such
that
1 1 1

Does X, converge in probability? Does X, converge in
quadratic mean?

. Let Xi,..., X, ~ Bernoulli(p). Prove that

n

1 - P 1 qm
— E X2 — d — E X225
n 2 i p an 0 i D

=1

. Suppose that the height of men has mean 68 inches and
standard deviation 4 inches. We draw 100 men at ran-
dom. Find (approximately) the probability that the aver-
age height of men in our sample will be at least 68 inches.

. Let A, =1/nforn=1,2,.... Let X,, ~ Poisson(\,).
(a) Show that X,—0.
(b) Let Y,, = nX,,. Show that Yni 0.

. Suppose we have a computer program consisting of n =
100 pages of code. Let X; be the number of errors on the
page of code. Suppose that the X!s are Poisson with mean
1 and that they are independent. Let Y = """ | X; be the
total number of errors. Use the central limit theorem to
approximate P(Y < 90).
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10.

11.

12.

6. Convergence of Random Variables
Suppose that P(X = 1) = P(X = —1) = 1/2. Define

Y X with probability 1 — %
" | e" with probability &.

Does X,, converge to X in probability? Does X,, converge
to X in distribution? Does E(X — X,,)? converge to 07

Let Z ~ N(0,1). Let t > 0.
(a) Show that, for any k& > 0,

E|Z|*

B(|z] > 1) < =5

(b) (Mill's inequality.) Show that

) 1/2 —t2/2
P(|Z\>t)§{—} -

s t

Hint. Note that P(|Z] > t) = 2P(Z > t). Now write out
what P(Z > t) means and note that z/t > 1 whenever
x >t.

Suppose that X,, ~ N(0,1/n) and let X be a random
variable with distribution F(z) = 0if x < 0 and F(z) =1
if z > 0. Does X, converge to X in probability? (Prove or
disprove). Does X, converge to X in distribution? (Prove
or disprove).

Let X, X1, X5, X3,... be random variables that are posi-
tive and integer valued. Show that X,, ~» X if and only
if

lim P(X, = k) =P(X =k)

n—oo

for every integer k.
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13. Let Z1, Zs, ... be i.i.d., random variables with density f.
Suppose that P(Z; > 0) = 1 and that A = lim, o f(z) > 0.
Let

X, =nmin{Zy,...,Z,}.
Show that X,, ~ Z where Z has an exponential distribu-
tion with mean 1/\.

14. Let X1, ..., X, ~ Uniform(0,1). Let ¥, = X_. Find the
limiting distribution of Y,,.

15. Let

Xn X2 Xin
Xo1 )7\ X2 J7 77\ Xop
be iid random vectors with mean p = (1, o) and variance
2. Let
. 1 n L 1 n
X =— X1y, Xo=-— Xo;

and define Y,, = X, /X,. Find the limiting distribution of
Y,.
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7

Models, Statistical Inference and
Learning

7.1 Introduction

Statistical inference, or “learning” as it is called in computer
science, is the process of using data to infer the distribution
that generated the data. The basic statistical inference problem
is this:

We observe Xi,..., X, ~ F. We want to infer (or
estimate orlearn) F' orsome feature of F' such as its
mean.

7.2 Parametric and Nonparametric Models

A statistical model is a set of distributions (or a set of
densities) §. A parametric model is a set § that can be pa-
rameterized by a finite n unber of parameters. For example, if
we assume that the data come from a Normal distribution then



The distinction
between parametric
and nonparametric
is more subtle than
this but we don't

need a rigorous
definition for our
purposes.
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the model is

1
S_ {f(iU,ILL,O') - 0\/7—1_
(7.1)
This is a two-parameter model. We have written the density
as f(x;u,0) to show that x is a value of the random variable
whereas p and o are parameters. In general, a parametric model

takes the form
S:{f(x; g) : 06@}

where # is an unknown parameter (or vector of parameters) that

(7.2)

can take values in the parameter space ©O. If 0 is a vector but
we are only interested in one component of #, we call the re-
maining parameters nuisance parameters. A nonparamet-
ric model is a set § that cannot be parameterized by a finite
number of parameters. For example, §a . = {all cDF 's} is non-
parametric.

Example 7.1 (One-dimensional Parametric Estimation.) Let X1, ...

be independent Bernoulli(p) observations. The problem is to es-
timate the parameter p. B

1
exp{—ﬁ(aj—uf}, e R, 0>0}.

Example 7.2 (Two-dimensional Parametric Estimation.) Suppose that

Xi,..., X, ~ F and we assume that the PDF f € § where § is
given in (7.1). In this case there are two parameters, u and o.
The goal 1s to estimate the parameters from the data. If we are
only interested in estimating pu then p is the parameter of inter-
est and o s a nuisance parameter. B

Example 7.3 (Nonparametric estimation of the cdf.) Let Xy, ...
be independent observations from a cdf F'. The problem is to es-
timate F' assuming only that F' € $aL = {all cDF 's}. A

Example 7.4 (Nonparametric density estimation.) Let X;,..., X,
be independent observations from a cdf F' and let f = F' be the

7X’I'L
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PDF . Suppose we want to estimate the PDF f. It is not pos-
sible to estimate f assuming only that F' € Far. We need to
assume some smoothness on f. For example, we might assume

that f € § = Spens [ Ssos where Spens s the set of all proba-
bility density functions and

Ssop = {f : /(f”(x))de < oo} |

The class §sop is called a Sobolev space; it is the set of func-
tions that are not “too wiggly.” M

Example 7.5 (Nonparametric estimation of functionals.) Let X, ...

F. Suppose we want to estimate p = E(X,) = [xdF(x) as-
suming only that p exists. The mean p may be thought of as a
function of F: we can write p = T(F) = [z dF(x). In general,
any function of F is called a statistical functional. Other
ezamples of functions are the variance T(F) = [x*dF(z) —
(f a;dF(x))2 and the median T(F) = F~'/2. &

Example 7.6 (Regression, prediction and classification.) Suppose we

observe pairs of data (X1,Y1),...(Xy,Y,). Perhaps X; is the
blood pressure of subject i and Y; is how long they live. X is
called a predictor or regressor or feature or independent
variable. Y is called the outcome or the response variable
or the dependent variable. We call r(z) = E(Y|X = z) the
regression function. If we assume that f € § where § is fi-
nite dimensional — the set of straight lines for example — then
we have o parametric regression model. If we assume that
f € § where § is not finite dimensional then we have a para-
metric regression model. The goal of predicting Y for a new
patient based on their X wvalue is called prediction. If Y is dis-
crete (for example, live or die) then prediction is instead called
classification. If our goal is to estimate the functin f, then we
call this regression or curve estimation. Regression models
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are sometimes written as
Y = f(X)+e (7.3)

where E(e) = 0. We can always rewrite a regression model this
way. To see this, define e =Y — f(X) and hence Y =Y +
F(X)—f(X) = f(X)+e. Moreover, E(e) = EE(¢| X) = E(E(Y —
FX))X) = EEY|X) - f(X)) =E(f(X) - f(X))=0. 1

WHAT’S NEXT? It is traditional in most introductory courses
to start with parametric inference. Instead, we will start with
nonparametric inference and then we will cover parametric in-
ference. In some respects, nonparametric inference is easier to
understand and is more useful than parametric inference.

FREQUENTISTS AND BAYESIANS. There are many approaches
to statistical inference. The two dominant approaches are called
frequentist inference and Bayesian inference. We’ll cover
both but we will start with frequentist inference. We’ll postpone
a discussion of the pro’s and con’s of these two until later.

SOME NOTATION. If § = {f(x; 0) : 6 € O} is a parametric
model, we write Po(X € A) = [, f(z; 0)dz and Ey(r(X)) =
[ r(z)f(z; 0)dz. The subscript 6 indicates that the probability
or expectation is with respect to f(z; #); it does not mean we
are averaging over #. Similarly, we write Vy for the variance.

7.3 Fundamental Concepts in Inference

Many inferential problems can be identified as being one of
three types: estimation, confidence sets or hypothesis testing.
We will treat all of these problems in detail in the rest of the
book. Here, we give a brief introduction to the ideas.

7.83.1 Point Estimation
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Point estimation refers to providing a single “best guess”
of some quantity of interest. The quantity of interest could be a
parameter in a parametric model, a CDF F', a probability density
function f, a regression function r, or a prediction for a future
value Y of some random variable.

By convention, we denote a point estimate of 6 by 9.
Remember that 6 is a fixed, unknown quantity. The es-
timate # depends on the data so 6 is a random variable.

More formally, let Xy,..., X,, be n 11D data point from some
distribution F'. A point estimator #, of a parameter # is some
function of Xy,..., X,:

~

071 = g(Xl, PN ;Xn)

We define

-~ ~

bias (8,) = Ey(6,,) — 0 (7.4)

to be the bias of /H\R We say that @\n is unbiased if ]E(@\n) =6.
Unbiasedness used to receive much attention but these days it is
not considered very important; many of the estimators we will
use are biased. A point estimator @\n of a parameter # is con-
sistent if @\HL 0. Consistency is a reasonable requirement for
estimators. The distribution of @\n is called the sampling dis-
tribution. The standard deviation of @\n is called the standard
error, denoted by se:

se =se (6,) = \/V(6,). (7.5)

Often, it is not possible to compute the standard error but usu-
ally we can estimate the standard error. The estimated standard
error is denoted by se.

Example 7.7 Let Xy, ..., X, ~ Bernoulli(p) and letp, =n"' >, X;.
ThenE(p,) = n~' >, E(X;) = p so D, is unbiased. The standard
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error is se = \/V(p,) = /p(1 — p)/n. The estimated standard
error is 6 = /p(1 —p)/n. A

The quality of a point estimate is sometimes assessed by the
mean squared error, or MSE, defined by

MSE = Ey (6, — 6)>.

Recall that Ey(-) refers to expectation with respect to the dis-
tribution

n

i=1
that generated the data. It does not mean we are averaging over
a density for 6.
Theorem 7.8 The MSE can be written as

MSE = bias (6,)% + Vy(8,.).

(7.6)

PROOF. Let 8, = Ey(f,). Then
Ey(6, — 0)> = E¢(6, — 0, + 0, — 0)?
= Ey(b, — 0,)> + 20, — 0)°Ey(0,, — ) + Ey(0,, — 0)?
= (0, —0)>+Ey(6, —0,)’
— bias? +V(6,). ®
Theorem 7.9 If bias — 0 and se — 0 as n — oo then @\n I8

consistent, that is, @\ni 0.

Proor. If bias — 0 and se — 0 then, by Theorem 7.8,
MSE — 0. It follows that 6, 6. (Recall definition 6.3.) The
result follows from part (b) of Theorem 6.4. B

Example 7.10 Returning to the coin flipping example, we have
that E,(p,) = p so that bias = p—p = 0 andse = \/p(1 —p)/n —

0. Hence, ﬁnip, that is, D, is a consistent estimator. B
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Many of the estimators we will encounter will turn out to
have, approximately, a Normal distribution.

Definition 7.11 An estimator is asymptotically Nor-
mal if

~

0, — 0
se

s N(0,1). (7.7)

7.3.2  Confidence Sets

A 1—«a confidence interval for a parameter  is an interval
Cpn = (a,b) where a = a(Xy,...,X,) and b =b(X,,..., X)) are
functions of the data such that

Py eC,) >1—a, forall f €O. (7.8)

In words, (a,b) traps # with probability 1 — «. We call 1 — «
the coverage of the confidence interval. Commonly, people use
95 per cent confidence intervals which corresponds to choosing
a = 0.05. Note: C,, is random and 6 is fixed! If 6 is a vector
then we use a confidence set (such a sphere or an ellipse) instead
of an interval.

Warning! There is much confusion about how to interpret
a confidence interval. A confidence interval is not a probability
statement about € since # is a fixed quantity, not a random
variable. Some texts interpret confidence intervals as follows: if
I repeat the experiment over and over, the interval will contain
the parameter 95 per cent of the time. This is correct but useless
since we rarely repeat the same experiment over and over. A
better interpretation is this:

On day 1, you collect data and construct a 95 per
cent confidence interval for a parameter ¢;. On day
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2, you collect new data and construct a 95 per cent
confidence interval for an unrelated parameter 65. On
day 3, you collect new data and construct a 95 per
cent confidence interval for an unrelated parameter 65.
You continue this way constructing confidence inter-
vals for a sequence of unrelated parameters 6, 60,, ...
Then 95 per cent your intervals will trap the true pa-
rameter value. There is no need to introduce the idea
of repeating the same experiment over and over.

Example 7.12 Every day, newspapers report opinion polls. For
example, they might say that “83 per cent of the population fa-
vor arming pilots with guns.” Usually, you will see a statement
like “this poll is accurate to within 4 points 95 per cent of the
time.” They are saying that 83 £ 4 is a 95 per cent confidence
interval for the true but unknown proportion p of people who
favor arming pilots with guns. If you form a confidence inter-
val this way everyday for the rest of your life, 95 per cent of
your intervals will contain the true parameter. This is true even
though you are estimating a different quantity (a different poll
question) every day.

Later, we will discuss Bayesian methods in which we treat
f as if it were a random variable and we do make probability
statements about . In particular, we will make statements like
“the probability that # is C),, given the data, is 95 per cent.”
However, these Bayesian intervals refer to degree-of-belief prob-
abilities. These Bayesian intervals will not, in general, trap the
parameter 95 per cent of the time.

Example 7.13 In the coin flipping setting, let C,, = (Pn—€n, Dn+
€,) where €2 =log(2/a)/(2n). From Hoeffding’s inequality (5.4)
it follows that

PpeC,) >1—-a

for every p. Hence, C,, is a 1 — a confidence interval. B



7.3 Fundamental Concepts in Inference 113

As mentioned earlier, point estimators often have a limiting
Normal distribution, meaning that equation (7.7) holds, that
is, 0, ~ N(#,s8?). In this case we can construct (approximate)
confidence intervals as follows.

Theorem 7.14 (Normal-based Confidence Interval.) Suppose that
0, ~ N(0,8%). Let ® be the CDF of a standard Normal and
let zq0 = @711 — (/2)), that is, P(Z > zap) = a/2 and
P(=2ay2 < Z < Zaj2) =1 — o where Z ~ N(0,1). Let

Co = (O — 2a258, O + 20258 ). (7.9)

Then
Py(0 € Cy) — 1 — . (7.10)

PROOF. Let Z,, = (@\n —0)/se. By assumption Z,, ~» Z where
Z ~ N(0,1). Hence,

Py(0eC,) = Py (@\n — Zqj295€ <0< @\n + 202 s/é)

0, — 0
- ]P)G <_Za/2 < ~ < Za/2>
se

— P(—Za/2<Z<Za/2)
= l—-a N

For 95 per cent confidence intervals, o = 0.05 and 2./, =
1.96 ~ 2 leading to the approximate 95 per cent confidence
interval é\n + 2se . We will discuss the construction of confidence
intervals in more generality in the rest of the book.

Example 7.15 Let X1, ..., X, ~ Bernoulli(p) and letp, =n~'> " | X;.
ThenV(p,) =n2Y " V(X;) =n23 "  p(1—p) =nnp(1—
p) = p(1—p)/n. Hence, se = \/p(1 —p)/n ands€ = \/Dn(1 — Dpn)/n.
By the Central Limit Theorem, p, ~ N(p,3e?). Therefore, an
approximate 1 — a confidence interval is

ﬁn(l - ﬁn)

Pt zas$e = Pt 2| P
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Compare this with the confidence interval in the previous exam-
ple. The Normal-based interval is shorter but it only has approz-
imately (large sample) correct coverage. B

7.3.83 Hypothesis Testing

In hypothesis testing, we start with some default theory
— called a null hypothesis — and we ask if the data provide
sufficient evidence to reject the theory. If not we retain the null
The term “retaining hypothesis.
the null hypothesis” Example 7.16 (Testing if a Coin is Fair) Suppose X1,. .., X,, ~ Bernoulli(p)

is due to Chris Gen- jenote n independent coin flips. Suppose we want to test if the
ovese. Other termi-

nology is “accepting
the null” or “failing
to reject the null.”

coin s fair. Let Hy denote the hypothesis that the coin is fair
and let H; denote the hypothesis that the coin is not fair. Hy
15 called the null hypothesis and H, is called the alternative
hypothesis. We can write the hypotheses as

Hy:p=1/2 versus H,:p#1/2.

It seems reasonable to reject Hy if T = |p, — (1/2)] is large.
When we discuss hypothesis testing in detail, we will be more
precise about how large T should be to reject Hy. W

7.4 Bibliographic Remarks

Statistical inference is covered in many texts. Elementary
texts include DeGroot and Schervish (2001) and Larsen and
Marx (1986). At the intermediate level I recommend Casella
and Berger (2002) and Bickel and Doksum (2001). At the ad-
vanced level, Lehmann and Casella (1998), Lehmann (1986) and
van der Vaart (1998).

7.5 Technical Appendix
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Our definition of confidence interval requires that Py €
Cn) > 1—a for all @ € ©. An pointwise asymptotic con-
fidence interval requires that lim inf, , Py(6 € C,,) > 1 — « for
all # € ©. An uniform asymptotic confidence interval requres
that liminf, , infyco Py(¢ € C,) > 1 — a. The approximate
Normal-based interval is a pointwise asymptotic confidence in-
terval. In general, it might not be a uniform asymptotic confi-
dence interval.
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8

Estimating the CDF and Statistical
Functionals

The first inference problem we will consider is nonparametric
estimationthf CDF F' and functions of the CDF.

8.1 The Empirical Distribution Function

Let Xq,...,X,, ~ F be ID where F is a distribution function
on the real line. We will estimate F' with the empirical distribu-
tion function, which is defined as follo ws.

Definition 8.1 The empirical distribution function E,
is the CDF that puts mass 1/n at e ach data pint X;. For-

mally,
~ TOIX; <
Fn(a:) — Zz:l ( — J?)
n
_ nunber of observations less than or equal fo &
—_— n \U- }
where

I(X"Sx):{ 0 if X; > z.




Actually,

sup, | Fu () = F(z)|

converges  to
almost surely.

0
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Example 8.2 (Nerve Data.) Coz and Lewis (1966) reported 799
waiting times between successive pulses along a nerve fibre. The
first plot in Figure 8.1 shows the a “toothpick plot” where each
toothpick shows the location of one data point. The second plot
shows that empirical CDF ﬁn Suppose we want to estimate the
fraction of waiting times between .4 and .6 seconds. The estimate

is F,,(.6) — F,(.4) = .93 — .84 =.09. W
The following theorems give some properties of Fj,(z).

Theorem 8.3 At any fized value of x,

E(Fy(x)) = F(z) and V(ﬁn(x)):F(”j)“;F(x)).

Thus,
F(z)(1 - F(x))

n

MSE = — 0

and hence, ﬁn(x)i) F(x).

Theorem 8.4 (Glivenko-Cantelli Theorem.) Let X;,..., X, ~ F.
Then
sup |y (z) — F(z)|-=> 0.

8.2 Statistical Functionals

A statistical functional T(F') is any function of F'. Examples
are the mean p = [ zdF(x), the variance 0 = [(z — p)*dF ()
and the median m = F~1(1/2).

Definition 8.5 The plug-in estimator of § = T(F) is
defined by
0, =T(Fp,).

In other words, just plug in ﬁn for the unknown F.
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FIGURE 8.1. Nerve data. The solid line in the middle is the empirical
distribution function. The lines above and below the middle line are
a 95 per cent confidence band. The confidence band is explained in
the appendix.
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A functional of the form [ r(z)dF(x) is called a linear func-
tional. Recall that [r(z)dF(z) is defined to be [r(z)f(x)dx
in the continuous case and >, r(z;)f(z;) in the discrete. The
empirical cdf ﬁn(a:) is discrete, putting mass 1/n at each X;.
Hence, if T(F) = [r(z)dF(z) is a linear functional then we
have:

T(F,) = /r(x)dﬁn(x) - er(Xi).

The plug-in estimator for linear functional T'(F) = [ r(z)dF(z) is:

Sometimes we can find the estimated standard error Se of
T(F,) by doing some calculations. However, in other cases it
is not obvious how to estimate the standard error. In the next
chapter, we will discuss a general method for finding Se. For
now, let us just assume that somehow we can find Se. In many

cases, it turns out that
T(F,) = N(T(F), 5¢°).

By equation (7.10), an approximate 1 — « confidence interval
for T(F') is then

T(F,) + 2q/2 5¢.

(8.3)

We will call this the Normal-based interval. For a 95 per cent
confidence interval, z,/2 = 2052 = 1.96 &~ 2 so the interval is

~

T(F,) +2 5.

Example 8.6 (The mean.) Let pp=T(F) = [xdF(z). The plug-
in estimator is i = [xdF,(z) = X,. The standard error is

se = \/V(X,) = o/v/n. If G denotes an estimate of o, then
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the estimated standard error is & /\/n. (In the next example, we
shall see how to estimate o.) A Normal-based confidence interval
Jor pis Xy, & zq25¢%. B

Example 8.7 (The Variance) Leto® =T(F) =V (X) = [2*dF(z)—
(f :rdF(x))2. The plug-in estimator is

2
52 = / 2dF(x) — ( / xan(x)>
1 ¢ 1 ¢ ’
= = X2 | = ,
- (3]
=1 =1
1 < —
- ﬁ Z(Xz - Xn) .
=1
Another reasoable estimator of o2 is the sample variance

Sm— wp A &3

n—14%

=1

In practice, there is little difference between 6% and S? and you
can use either one. Returning the our last example, we now see
that the estimated standard error of the estimate of the mean is

se=0/y/n. B

Example 8.8 (The Skewness) Let pu and o denote the mean and
variance of a random variable X. The skewness is defined to be

_EX —p)? [ —p)dF(z)
7 {Je - P @)
The skewness measure the lack of symmetry of a distribution.
To find the plug-in estimate, first recall that f=n"1Y", X; and
o2 =n"' Y .(X; — p)? The plug-in estimate of K is
J@ = pPdFa@) 23X - p)
~ 3/2 53 :
{ [ = wpdFi(x)}

R =
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Example 8.9 (Correlation.) Let Z = (X,Y) and let p = T(F) =

E(X —px)(Y —py)/(0,0y) denote the correlation between X and

Y, where F(x,y) is bivariate. We can write T'(F) = a(T\(F), To(F), T5(F), T4 (F), T5(F))
where

T\(F)= [2dF(z) Ty(F)= [ydF(z) T3(F)= [zydF(z)

and P
a(ty, ... ts) = E 212 —.
V(ts—1)(ts — 15)
Replace F with F, in T\(F), ..., Ts(F), and take
p=a(T1(F,), To(F,), T5(Fy), Tu(Fy), Ts(F)).
We get

S = X)) (5 - V)
VX = X2 (0 - V)2

which is called the sample correlation. l

5=

Example 8.10 (Quantiles.) Let F' be strictly increasing with den-
sity f. The T(F) = F~(p) be the p™ quantile. The estimate
if T(F) is ﬁ,;l(p). We have to be a bit careful since F, is
not invertible. To avoid ambiguity we define F7'(p) = inf{z :
Fo(x) > p}. We call E7(p) the p™ sample quantile. B

Only in the first example did we compute a standard error or
a confidence interval. How shall we handle the other examples.
When we discuss parametric methods, we will develop formulae
for standard errors and confidence intervals. But in our non-
parametric setting we need something else. In the next chapter,
we will introduce two methods — the jackknife and the bootstrap
— for getting standard errors and confidence intervals.

Example 8.11 (Plasma Cholesterol.) Figure 8.2 shows histograms
for plasma cholesterol (in mg/dl) for 371 patients with chest
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pain (Scott et al. 1978). The histograms show the percentage of
patients in 10 bins. The first histogram s for 51 patients who
had no evidence of heart disease while the second histogram is
for 320 patients who had narrowing of the arteries. Is the mean
cholesterol different in the two groups? Let us regard these data
as samples from two distributions Fy and Fy. Let iy = [ zdFy(x)
and py = fxng(aj) denote the means of the two populations.
The plug-in estimates are Ji; = f:rdﬁn,l(x) = X, = 195.27

and Jiy = fxdﬁng(a;) = X, 2 = 216.19. Recall that the standard
error of the sample mean i = = 3" | X; is

2

se (7)) = V(%i&)z %ii;wxi): "i:%

n2

which we estimate by

where

=1

For the two groups this yields s€ (ji1) = 5.0 and sé (lz) = 2.4.
Approzimate 95 per cent confidence intervals for py and py are
Tl + 258 (i) = (185,205) and fis £ 288 (i) = (211, 221).

Now, consider the functional @ = T (Fy)—T(F) whose plug-in
estimate is 0 = o —ip = 216.19—195.27 = 20.92. The standard
error of 0 is

se = V(i — 1) = VV(fi2) + V(i) = v/(se (fin))? + (se (fi2))?

and we estimate this by

& = /(% ()2 + (2 (fiz))2 = 5.55.
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An approzimate 95 per cent confidence interval for 0 is D+2s8 =
(9.8,32.0). This suggests that cholesterol is higher among those
with narrowed arteries. We should not jump to the conclusion
(from these data) that cholesterol causes heart disease. The leap
from statistical evidence to causation is very subtle and is dis-
cussed later in this text. W

8.3 Technical Appendix

In this appendix we explain how to construct a confidence
band for the CDF .
Theorem 8.12 (Dvoretzky-Kiefer-Wolfowitz (DKW) inequality.) Let
Xy, ..., X, beud from F. Then, for any e > 0,

P(sgp |F(z) — Fy(2)] > 6> < 272 (8.4)

From the DKW inequality, we can construct a confidence set.
Let €2 = log(2/a)/(2n), L(z) = max{F,(z)—€,, 0} and U(z) =
min{ F,(z) + €,, 1}. It follows from (8.4) that for any F,

P(FeC,)>1-a.

Thus, C), is a nonparametric 1 —« confidence set for F'. A better
name for (), is a confidence band. To summarize:

A 1 — o nonparametric confidence band for F'is (L(z), U(z)) where

L(z) = max{F,(z) — €, 0}
Uz) = min{F,(z)+ e, 1}

o = \faree(2):
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FIGURE 8.2. Plasma, cholesterol for 51 patients with no heart disease
and 320 patients with narrowing of the arteries.
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Example 8.13 The dashed lines in Figure 8.1 give a 95 per cent
confidence band using €, = ﬁ log (%) =.048. &

8.4 Bibliographic Remarks

The Glivenko-Cantelli theorem is the tip of the iceberg. The
theory of distribution functions is a special case of what are
called empirical processes which underlie much of modern statis-
tical theory. Some references on empirical processes are Shorack

and Wellner (1986) and van der Vaart and Wellner (1996).

8.5 HKExercises

1. Prove Theorem 8.3.

2. Let X1,..., X, ~ Bernoulli(p) and let Y7, . .., Y;, ~ Bernoulli(g).
Find the plug-in estimator and estimated standard error
for p. Find an approximate 90 per cent confidence interval
for p. Find the plug-in estimator and estimated standard
error for p—q. Find an approximate 90 per cent confidence
interval for p — q.

3. (Computer Experiment.) Generate 100 observations from
a N(0,1) distribution. Compute a 95 per cent confidence
band for the cDF F'. Repeat this 1000 times and see how
often the confidence band contains the true distribution
function. Repeat using data from a Cauchy distribution.

4. Let X1,..., X, ~ F and let F},(2) be the empirical distri-
bution function. For a fixed z, use the central limit theo-
rem to find the limiting distribution of F),(x).

5. Let 2 and y be two distinct points. Find Cov(F, (z), F,(y)).
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. Let Xq,...,X,, ~ F and let F be the empirical distri-

bution function. Let a < b be fixed numbers and define
0 =T(F)=F(®b)— F(a). Let 0 = T(F,) = F,(b) — F,(a).
Find the estimated standard error of 8. Find an expression
for an approximate 1 — « confidence interval for 6.

Data on the magnitudes of earthquakes near Fiji are avail-
able on the course website. Estimate the cdf F'(z). Com-
pute and plot a 95 per cent confidence envelope for F.
Find an approximate 95 per cent confidence interval for
F(4.9) — F(4.3).

Get the data on eruption times and waiting times between
eruptions of the old faithful geyser from the course web-
site. Estimate the mean waiting time and give a standard
error for the estimate. Also, give a 90 per cent confidence
interval for the mean waiting time. Now estimate the me-
dian waiting time. In the next chapter we will see how to
get the standard error for the median.

100 people are given a standard antibiotic to treat an in-
fection and another 100 are given a new antibiotic. In the
first group, 90 people recover; in the second group, 85 peo-
ple recover. Let p; be the probability of recovery under
the standard treatment and let py be the probability of
recovery under the new treatment. We are interested in
estimating # = p; — po. Provide an estimate, standard er-
ror, an 80 per cent confidence interval and a 95 per cent
confidence interval for 6.

In 1975, an experiment was conducted to see if cloud seed-
ing produced rainfall. 26 clouds were seeded with silver
nitrate and 26 were not. The decision to seed or not was
made at random. Get the data from

http://lib.stat.cmu.edu/DASL/Stories/CloudSeeding.html
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Let 0 be the difference in the median precipitation from
the two groups. Estimate . Estimate the standard error of
the estimate and produce a 95 per cent confidence interval.
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The Bootstrap

The bootstrap is a nonparametric method for estimating stan-
dard errors and computing confidence intervals. Let

Tn :g(XlaaXn)

be a statistic, that is, any function of the data. Suppose we
want to know Vp(7),), the varianceof T,,. We have written Vjp
to emphasize that the variance usually depends on the unknown
distribution function F. For example, if T, = n~' Y | X; then
Vp(T,) = 0?/n where 0% = [(x — p)?dF(z) and p = [ zdF(z).
The bootstrap idea has two parts. First we estimate Vg(7,,) with
Vi (Ty). Thus, for T, = n~' Y71, X; we have V (T,) = 5%/n
where 2 =n=1 Y (X; — X,,). However, in moremplicated
cases we cannot write down a simple formula for V (7;,). This
leads us to the second step which is to approximate V (75,)
using simulation. Before proceeding, let us discuss the idea of
simulation.

9.1 Simulation
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Suppose we draw an IID sample Y, ..., Yy from a distribution
G. By the law of large numbers,

Y, = %ZYH [ vac) =E)

as B — 00. So if we draw a large sample from G, we can use the
sample mean Y, to approximate E(Y). In a simulation, we can
make B as large as we like in which case, the difference between
Y, and E(Y) is negligible. More generally, if & is any function
with finite mean then

. >0 [ b)aG) = Eh(y)

as B — oo. In particular,

gi@—?f = éf}ﬁ—(éin)zi [varw ([ varw) = von,

Hence, we can use the sample variance of the simulated values
to approximate V(Y').

9.2 Bootstrap Variance Estimation

According to what we just learned, we can approximate Vg (T,)
by simulation. Now Vz (7;,) means “the variance of T, if the
distribution of the data is ﬁn.” How can we simulate from the
distribution of 7}, when the data are assumed to have distribu-
tion F},? The answer is to simulate X7, ..., X from F,, and then
compute T)F = g(X7,...,X}). This constitutes one draw from
the distribution of 7,,. The idea is illustrated in the following
diagram:

Real world F — Xi,...,X,
Bootstrap world F,, — X{,..., X

3 %
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How do we simulate X7, ..., X from ﬁn? Notice that ﬁn puts
mass 1/n at each data point X, ..., X,,. Therefore, drawing an
observation from ﬁn is equivalent to drawing one point
at random from the original data set. Thu, to simulate
X7, X0~ F, it suffices to draw n observations with re-
placement from Xi,...,X,. Here is a summary:

Boostrap Variance Estimation

1. Draw X7,..., X} ~ F,.

2. Compute T = g(X7,..., X}).

3. Repeat steps 1 and 2, B times, to get T ,..., T} p.
4. Let

B
b=

B 2
1 * 1 *
Uboot — E Z (Tn,b - E ;Tn’b> : (91)

1

Example 9.1 The following pseudo-code shows how to use the
bootstrap to estimate the standard of the median.
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Bootstrap for The Median

Given data X = (X(1), ..., X(n)):

T <- median(X)

Tboot <- vector of length B

for(i in 1:M){
Xstar <- sample of size n from X (with replacement)
Tboot[i] <- median(Xstar)
}

se <- sqrt(variance(Tboot))

The following schematic diagram will remind you that we are
using two approximations:

not so small small
~ N
Vr(T,) ~ Vi (T,) = Voot

n

Example 9.2 Consider the nerve data. Let 0 = T(F) = [(x —
w)3dF (z)/o3 be the skewness. The skewness is a measure of
asymmetry. A Normal distribution, for example, has skewness
0. The plug-in estimate of the skewness is

f(x - ,u)3dﬁn(x) _ %Z?:l(Xl - Yn)3

o3 o3

0 =T(F,) = = 1.76.
To estimate the standard error with the bootstrap we follow the
same steps as with the medin example except we compute the
skewness from each bootstrap sample. When applied to the nerve
data, the bootstrap, based on B = 1000 replications, yields a
standard error for the estimated skewness of .16.
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9.3 Bootstrap Confidence Intervals

There are several ways to construct bootstrap confidence in-
tervals. Here we discuss three methods.

Normal Interval. The simplest is the Normal interval
Tn + Za/g S/é boot (92)

where $€00¢ 18 the bootstrap estimate of the standard error.
This interval is not accurate unless the distribution of T,, is
close to Normal.

Pivotal Intervals. Let § = T(F) and 6, = T(F,) and define the

-~

pivot R, = /H\R — 0. Let 0, ,,...,0; 5 denote bootstrap replica-

n,ls

tions of 6. Let H(r) denote the cDF of the pivot:
H(r) =Pp(R, <7). (9.3)
Define C* = (a,b) where
_9 _pg1(1_¢ _y _g1(®
a=0,—H (1 2) and b=6,—H (2) (9.4)

It follows that

Pla<@<b) = Pla—0,<0-0,<b—10,)
P(6, —b<8,—0<8,—a)

P(6, — b < R, <6, —a)

= H(,—a)— H(b, —b)

Hence, C} is an exact 1 — « confidence interval for 6. Unfortu-
nately, a and b depend on the unknown distribution H but we
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can form a bootstrap estimate of H:

B

()= 5 S 1R, <) (9.5)

b=1

where R , = é\:;b — B,,. Let rj denote the § sample qauntile
of (R}, ,,..., Ry z) and let 05 denote the 3 sample qauntile of

n,l’

~

(0105 5)- Note that 75 = 05 — 0,. It follows that an ap-

~

proximate 1 — « confidence interval is C,, = (@, b) where

a = /g\n_i—\l_l <1 - g) :@\n_rffa/Z :2571 - Tfa/2
N ) 77— o o * o *
b= 0—H(5)  =ha-rin =200

In summary:

The 1 — a bootstrap pivotal confidence interval is
C = (29; — 0% jay 20, — 0 /2) .

Typically, this is a pointwise, asymptotic confidence interval.

Theorem 9.3 Under weak conditions on T'(F), Pr(T(F) € C,,) —
1 — a as n — oo, where C,, is given in (9.6).

Percentile Intervals. The bootstrap percentile interval is
defined by

Cn = ( 3/27 Tfa/2) :

The justification for this interval is given in the appendix.

Example 9.4 For estimating the skewness of the nerve data, here
are the varitous confidence intervals.
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Method 95% Interval
Normal (1.44, 2.09)
Percentile (1.42, 2.03)
Pivotal (1.48, 2.11)

All these confidence intervals are approximate. The probabil-
ity that T'(F) is in the interval is not exactly 1 — . All three
intervals have the same level of accuracy. There are more accu-
rate bootstrap confidence intervals but they are more compli-
cated and we will not discuss them here.

Example 9.5 (The Plasma Cholesterol Data.) Let us return to the
cholesterol data. Suppose we are interested in the difference of
the medians. Pseudo-code for the bootstrap analysis is as follows:

xl <- first sample

x2 <- second sample

nl <- length(x1)

n2 <- length(x2)

th.hat <- median(x2) - median(x1)

B <- 1000

Tboot <- vector of length B

for(i in 1:B){
xxl <- sample of size nl with replacement from x1
xx2 <- sample of size n2 with replacement from x2
Tboot[i] <- median(xx2) - median(xx1)
}

se <- sqrt(variance(Tboot))

Normal <- (th.hat - 2%se, th.hat + 2x*se)

percentile <- (quantile(Tboot,.025), quantile(Tboot,.975))

pivotal <- ( 2xth.hat-quantile(Tboot,.975), 2*th.hat-quantile(Tboot,.025) )

The point estimate is 18.5, the bootstrap standard error is 7.42
and the resulting approximate 95 per cent confidence intervals
are as follows:
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Method 95% Interval
Normal (3.7, 33.3)
Percentile (5.0, 33.3)
Pivotal (5.0, 84.0)

Since these intervals exclude 0, it appears that the second group

has higher cholesterol although there is considerable uncertainty
about how much higher as reflected in the width of the intervals.

The next two examples are based on small sample sizes. In
practice, statistical methods based on very small sample sizes
might not be reliable. We include the examples for their peda-
gogical value but we do want to sound a note of caution about
interpreting the results with some skepticism.

Example 9.6 Here is an example that was one of the first used
to illustrate the bootstrap by Bradley Efron, the inventor of the
bootstrap. The data are LSAT scores (for entrance to law school)
and GPA.

LSAT 576 63b 568 578 666 580 bbb 661
651 605 653 575 b4 572 594

GPA 3.39 3.30 2.81 3.03 3.44 3.07 3.00 3.43
3.36 3.13 3.12 2.74 2.76 2.88 3.96

FEach data point is of the form X; = (Y;, Z;) where Y; = LSAT;
and Z; = GPA;. The law school is interested in the correlation

o JJy—m)z—p)dF(y,z)
\/f(y — py)PdF(y) [(z — pz)*dF ()
The plug-in estimate is the sample correlation
S0-VE-7)
VI -V Y2 - Z)

0=
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The estimated correlation is 0 = .776. The bootstrap based on
B = 1000 gives se = .137. Figure 9.1 shows the data and a his-
togram of the bootstrap replications @\1‘, cee 513 This histogram is
an approximation to the sampling distribution of 0. The Normal-
based 95 per cent confidence interval is .78 + 2se¢ = (.51,1.00)
while the percentile interval is (.46,.96). In large samples, the
two methods will show closer agreement.

Example 9.7 This example is borrowed from An Introduction to
the Bootstrap by B. Efron and R. Tibshirani. When drug com-
panies introduce new medications, they are sometimes requires
to show bioequivalence. This means that the new drug is not
substantially different than the current treatment. Here are data
on eight subjects who used medical patches to infuse a hormone
into the blood. Each subject received three treatments: placebo,
old-patch, new-patch.

subject  placebo old new old-placebo new-old
1 9243 17649 16449 8406 -1200
2 9671 12013 14614 2342 2601
3 11792 19979 17274 8187 -2705
4 13357 21816 23798 8459 1982
5 9055 13850 12560 4795 -1290
6 6290 9806 10157 3516 351
7 12412 17208 16570 4796 -638
8 18806 29044 26325 10238 -2719

Let Z = old — placebo and Y = new — old. The Food and
Drug Administration (FDA) requirement for bioequivalence is
that 10| < .20 where




138

GPA

3.0 32 34

2.8

150

100

50

9. The Bootstrap

560 580 600 620

LSAT

640 660

0.2 0.4 0.6

Bootstrap Samples

FIGURE 9.1. Law school data.
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The estimate of 0 is

Y  —452.

0=
7 6342

The bootstrap standard error is se = .105. To answer the bioe-
quivalence question, we compute a confidence interval. From
B = 1000 bootstrap replications we get the 95 per cent inter-
val is (-.24,.15). This is not quite contained in [-.20,.20] so at
the 95 per cent level we have not demonstrated bioequivalence.
Figure 9.2 shows the histogram of the bootstrap values.

9.4 Bibliographic Remarks

The boostrap was invented by Efron (1979). There are several
books on these topics including Efron and Tibshirani (1993),
Davison and Hinkley (1997), Hall (1992), and Shao and Tu
(1995). Also, see section 3.6 of van der Vaart and Wellner (1996).
9.5 Technical Appendix

9.5.1 The Jackknife

There is another method for computing standard errors called
the jackknife, due to Quenouille (1949). It is less computa-
tionally expensive than the bootstrap but is less general. Let
T, =T(X1,...,X,) be astatistic and 7(_;) denote the statistic
with the i*" observation removed. Let T,, = n=' Y7 | T(_;). The
jackknife estimate of var(7},) is

n

n—1 —
Vjack = Z(T(fi) - Tn)2
i=1

n

and the jackknife estimate of the standard error is 5ej, =
/Vjack- Under suitable conditions on 7', it can be shown that

Vjack consistently estimates var(7,) in the sense that vjsc/var(T,) LN
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FIGURE 9.2. Patch data.
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1. However, unlike the bootstrap, the jackknife does not produce
consistent estimates of the standard error of sample quantiles.

9.5.2  Justification For The Percentile Interval

Suppose there exists a monotone transformation U = m(7T)
such that U ~ N(¢, ¢?) where ¢ = m(0). We do not suppose we
know the transformation, only that one exist. Let Uy = m(6; ,).
Let ujz be the § sample quantile of the U;’s. Since a mono-
tone transformation preserves quantiles, we have that u’ o =
m(0},)- Also, since U ~ N(¢,c?), the /2 quantile of U is
¢ — 24/2¢. Hence u’;/Q = ¢ — 2y 2¢. Similarly, u’{fa/Q = ¢+ 2q/2C.
Therefore,

P(6;, a2 S 0 <07 a/2) = P(m(0 a/2) m(0) < m(6_ a/2))
= P(u 3/2 <op<u a/2)
v

= P(U — czas2 <¢< U+ czq/2)
= ]P(_Za/2 < < Za/Z)
= 1—a.

An exact normalizing transformation will rarely exist but there
may exist approximate normalizing transformations.
9.6 Excercises

1. Consider the data in Example 9.6. Find the plug-in esti-
mate of the correlation coefficient. Estimate the standard
error using the bootstrap. Find a 95 per cent confidence
inerval using all three methods.

2. (Computer Experiment.) Conduct a simulation to compare
the four bootstrap confidence interval methods. Let n =
50 and let T(F) = [(x — p)*dF(x)/o® be the skewness.
Draw Yy,..., X, ~ N(0,1) and set X; =e'i, i =1,...,n
Construct the four types of bootstrap 95 per cent intervals
for T(F) from the data Xi,...,X,. Repeat this whole
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thing many times and estimate the true coverage of the
four intervals.

Let
Xl,...,Xnth

where n = 25. Let 0 = T(F) = (¢.75 — q.25)/1.34 where g,
denotes the p* quantile. Do a simulation to compare the
coverage and length of the following confidence intervals
for @: (i) Normal interval with standard error from the
bootstrap, (ii) bootstrap percentile interval.

Remark: The jackknife does not give a consistent estima-
tor of the variance of a quantile.

Let Xi,..., X, be distinct observations (no ties). Show

that there are
2n — 1
n

distinct bootstrap samples.

Hint: Imagine putting n balls into n buckets.

Let X7, ..., X, be distinct observations (no ties). Let X7, ...

denote a bootstrap sample and let Y; =n 'y X7
Find: E(X |X1,...,X,), V(X |X1,...,X,), E(X,) and

%

V(X).

n

(Computer Experiment.) Let Xi,..., X;, Normal(y, 1). Let
0 = e and let § = e* be the mle. Create a data set (using
p = 5) consisting of n=100 observations.

(a) Use the bootstrap to get the seand 95 percent confi-
dence interval for 6.

(b) Plot a histogram of the bootstrap replications for the
parametric and nonparametric bootstraps. These are es-
timates of the distribution of 8. Compare this to the true
sampling distribution of 0.
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7. Let X1, ..., X,, Unif(0,6). The mleis § = X4, = max{X, ...

Generate a data set of size 50 with 0 = 1.

(a) Find the distribution of §. Compare the true distri-
bution of # to the histograms from the parametric and
nonparametric bootstraps.

(b) This is a case where the nonparametric bootstrap does
very poorly. In fact, we can prove that this is the case.
Show that, for the parametric bootstrap P(é\* = @\) =0
but for the nonparametric bootstrap P(@\* = @\) ~ .632.
Hint: show that, P(8* = 8) =1 — (1 — (1/n))" ¢

the limit as n gets large.

hen take

CLet T, = Xo, p = E(Xy), oy = [z — p*dF(z) and
ar=n"1>"  |X; — X,[*. Show that

<2 - ~ o~

4X, oy n 4X,03 Oy

Uboot — + —.
n n? n3
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Parametric Inference

We now turn our attention to parametric models, that is,
models of the form

3:{f(x;9): 96@} (10.1)

where the © C R¥ is the parameter space and 0 = (0y,...,0)
is the parameter. The problem of inference then reduces to the
problem of estimating the parameter 6.

Students learning statistics often ask: how would we ever
know that the distribution that generated the data is in some
parametric model? This is an excellent question. Indeed, we
would rarely havesuch knowledge which is why nonparametric
methods are preferable. Still, studying methods for parametric
models is useful for two reasons. First, there are some cases
where background knowledge suggests that a parametric model
provides a reasonable approximation. F orexample, counts of
traffic accidents are known from prior experience to follow ap-
proximately a P oissonmodel. Second, the inferential concepts
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for parametric models provide background for understanding
certain nonparametric methods.

We will begin with a brief dicussion about parameters of in-
terest and nuisance parameters in the next section, then we will
discuss two methods for estimating #, the method of moments
and the method of maximum likelihood.

10.1 Parameter of Interest

Often, we are only interested in some function 7°(#). For ex-

ample, if X ~ N(u,0?) then the parameter is § = (u, o). If our
goal is to estimate p then p = T'(6) is called the parameter
of interest and o is called a nuisance parameter. The pa-
rameter of interest can be a complicated function of # as in the
following example.
Example 10.1 Let Xy,..., X, ~ Normal(u,0?). The parameter
is 0 = (p,0) is © ={(p,0) : peR, o>0}. Suppose that X;
s the outcome of a blood test and suppose we are interested in
T, the fraction of the population whose test score is larger than
1. Let Z denote a standard Normal random variable. Then

X—n 1-
T:]P’(X>1):1—IP’(X<1):1—IP’< g “)
g o

— 1—]P’<Z<1_M>:1—<I><Z<1_M>.
g o

The parameter of interest is T =T (p,0) =1—®(1 —pu)/o). A

Example 10.2 Recall that X has a Gamma(c, 3) distribution if

1
pel(a)

e >0

flz; a,p) =

where a, B > 0 and
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is the Gamma function. The parameter is @ = («, 3). The Gamma
distribution is sometimes used to model lifetimes of people, an-
imals, and electronic equipment. Suppose we want to estimate

the mean lifetime. Then T(«, f) = Eo(X7) = af. B

10.2 The Method of Moments

The first method for generating parametric estimators that
we will study is called the method of moments. We will see
that these estimators are not optimal but they are often easy to
compute. They are are also useful as starting values for other
methods that require iterative numerical routines.

Suppose that the parameter § = (0y,...,0,) has k compo-
nents. For 1 < j < k, define the j® moment

a; = a,(0) = Ey(X7) = / ¥ dFy(z) (10.2)

and the j** sample moment

e
a; = > X (10.3)
=1

Definition 10.3 The method of moments estimator @\n
15 defined to be the value of 0 such that

a0, = a
042(9”) = 622
ar(@,) = Q. (10.4)

Formula (10.4) defines a system of k equations with & un-
knowns.
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Example 10.4 Let X3, ..., X, ~ Bernoulli(p). Then oy = E,(X) =
panday =n~t Y | X;. By equating these we get the estimator

SO
pnzﬁzl:Xi. ]
1=

Example 10.5 Let X1, ..., X,, ~ Normal(u,0?). Then, a; = Ep(X,) =
Recall that V(X) = p and ay = Ep(X?) = Vy(X1) + (Eg(X1))? = 02 + p?. We need
E(X?) — (E(X))%. to solve the equations
Hence, E(X?) =

X E(X))2. ~ 1
V(X) + (B(XY)) = lyx
=1
1 n
~2 | ~2 = X2
o+ u n; i

This is a system of 2 equations with 2 unknowns. The solution

18
no= X,
1 & —
~2 2
= — X;— X, 1
g nZ( )

Theorem 10.6 Let §n denote the method of moments estimator.
Under the the conditions given in the appendiz, the following
statements hold:

1. The estimate @\n exists with probability tending to 1.
2. The estimate 1s consistent: @LL 0.
3. The estimate is asymptotically Normal:

Vn(@, — 6) ~ N(0,%)

where
Y = gEy(YYT)g",

Y = (X, X% ..., X", g=(g1,...,9) and g; = do; ' (0)/00.
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The last statement in the Theorem above can be used to find
standard errors and confidence intervals. However, there is an
easier way: the bootstrap. We defer discussion of this until the
end of the chapter.

10.3 Maximum Likelihood

The most common method for estimating parameters in a
parametric model is the maximum likelihood method. Let
Xi,..., X, be up with PDF f(z;0).

Definition 10.7 The likelihood function is defined by

n

£a(0) = [ [ 1(X3:0). (10.5)

=1

The log-likelihood function is defined by ¢,,(6) = log L,,(0).

The likelihood function is just the joint density of the data,
except that we treat it is a function of the parameter 6.
Thus £, : © — [0,00). The likelihood function is not a density
function: in general, it is not true that £, (f) integrates to 1.

Definition 10.8 The maximum likelihood estimator

MLE , denoted by é\n, 15 the value of 6 that maximizes
L, ().

The maximum of ¢,,(#) occurs at the same place as the max-
imum of £, (f), so maximizing the log-likelihood leads to the
same answer as maximizing the likelihood. Often, it is easier to
work with the log-likelihood.

Remark 10.9 If we multiply L£,(0) by any positive constant ¢ (not
depending on 6) then this will not change the MLE . Hence, we
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FIGURE 10.1. Likelihood function for Bernoulli with n = 20 and
Z?Zl X; =12. The MLE is p, = 12/20 = 0.6.

shall often be sloppy about dropping constants in the likelihood

function.

Example 10.10 Suppose that X1, ..., X, ~ Bernoulli(p). The prob-
ability function is f(x;p) = p*(1 — p)*=° for x = 0,1. The un-
known parameter is p. Then,

Ln(p) = H f(Xis p) = pri(l —p)' N =p¥(1 —p)»°

where S =Y. X;. Hence,

ln(p) = Slogp+ (n — S5)log(1 — p).

Take the derivative of £,(p), set it equal to 0 to find that the
MLE i$ D, = S/n. See Figure 10.1. B

Example 10.11 Let Xi,...,X,, ~ N(u,0?). The parameter is
6 = (u,0) and the likelihood function is (ignoring some con-
stants)

L(pu,0) = H % exp {_T;(Xi - M)2}

)
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= o "exp {_Ti? Z(Xz - M)2}

7

-n n52 ”(Y—N)Z
= 0eXp T S (P YT o5

where X = n~1 Y, X; is the sample mean and S*> = n=1 Y, (X;—
X)2. The last equality above follows from the fact that Y, (X; —
1)? = nS%+n(X — p)? which can be verified by writing >, (X; —
p)? =3,(Xi— X +X —p)? and then ezpanding the square. The
log-likelihood s

2 X — 2
l(p,0) = —nlogo — ns._ 2 :

207 207
Solving the equations
ol(p, o) 0l(p, o)
———= =0 d =0
ou an B0

we conclude that i = X and & = S. It can be verified that these
are indeed global maxima of the likelthood. W

Example 10.12 (A Hard Example.) Here is the example that con-
fuses everyone. Let Xy, ..., X, ~ Unif(0,0). Recall that
L0<z<6

ﬂm®={0

0 otherwise.

Consider a fized value of 6. Suppose 6 < X; for some i. Then,
f(Xi;0) =0 and hence L,,(8) =1, f(X;;0) = 0. It follows that
Ln(0) = 0 if any X; > 0. Therefore, L,(0) = 0 if 0 < X
where X,y = max{Xy,...,X,}. Now consider any 0 > X,).
For every X; we then have that f(X;;0) = 1/0 so that L,,(0) =
IL f(Xi;6) = 07" In conclusion,

_ [ 3" 0> X
En(g) - { 00 0 < X(n).

See Figure 10.2. Now L,,(0) is strictly decreasing over the inter-
Op = X A

val [X (), 00). Hence,
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FIGURE 10.2. Likelihood function for Uniform (0,0). The
vertical lines show the observed data. The first three
plots show f(z;0) for three different values of 6. When
0 < X(,) = max{Xy,...,X,}, as in the first plot, f(X(,);#) =0
and hence £,(0) = [[i-, f(X;;0) = 0. Otherwise f(X;;60) = 1/0
for each ¢ and hence £, (0) =[]\, f(X;;60) = (1/6)". The last plot
shows the likelihood function.
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10.4 Properties of Maximum Likelihood
Estimators.

Under certain conditions on the model, the maximum likeli-
hood estimator @\n possesses many properties that make it an ap-
pealing choice of estimator. The main properties of the MLE are:

(1) It is consistent: 0, 0, where 6, denotes the true value
of the parameter 0,

(2) It is equivariant: if 0, is the MLE of 6 then g(é\n) is the
MLE of ¢(0);

(3) It is asymptotically Normal: \/n(f —6,)/s¢ ~ N(0,1)
where seé can be computed analytically;

(4) It is asymptotically optimal or efficient: roughly, this
means that among all well behaved estimators, the MLE has the
smallest variance, at least for large samples.

(5) The mle is approximately the Bayes estimator. (To be
explained later.)

We will spend some time explaining what these properties
mean and why they are good things. In sufficiently complicated
problems, these properties will no longer hold and the MLE will
no longer be a good estimator. For now we focus on the simpler
situations where the MLE works well. The properties we discuss
only hold if the model satisfies certain regularity conditions.
These are essentially smoothness conditions on f(z;#). Unless
otherwise stated, we shall tacitly assume that these con-
ditions hold.

10.5 Consistency of Maximum Likelihood
Estimators.

Consistency means that the MLE converges in probability to
the true value. To proceed, we need a definition. If f and g are



This is not a dis-
tance in the formal
sense.
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PDF ’s, define the Kullback-Leibler distance between f and

g to be
g) = /f(a:) log (%) dx. (10.6)

It can be shown that D(f,¢g) > 0 and D(f, f) = 0. For any
0, € © write D(#,v) to mean D(f(x; 0), f(x; ¥)). We will
assume that 6 # ¢ implies that D(#,v) > 0.

Let 6, denote the true value of . Maximizing /,,(6) is equiv-
alent to maximizing

f(X; 0)
Zlo F(X0 0 )
By the law of large numbers, M, () converges to
f(Xi;9)> _ (f( ))
EQ* <10g f(Xz, 9*) - / f ) f( *)dx

- ( ") s o

= ,0).

Hence, M, (0) ~ —D(0,, #) which is maximized at 6, since —D(0,, 0,) =
0 and —D(6,,0,) < 0 for 6 # 0,. Hence, we expect that the max-
imizer will tend to #,. To prove this formally, we need more than
Mn(e)i) — D(0,,0). We need this convergence to be uniform
over f. We also have to make sure that the function D(6,,6) is

well behaved. Here are the formal details.
Theorem 10.13 Let 6, denote the true value of 8. Define
-l
f(X5; 9
and M(0) = —D(0,0). Suppose that

sup | M, (6) — M(6)]—=0 (10.7)
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and that, for every e > 0,

sup M(0) < M(6,). (10.8)
0:10—0.|>€

Let @\n denote the mle. Then @\ni) 0,.

PROOF. See appendix. B

10.6 Equivariance of the MLE

Theorem 10.14 Let 7 = g(0) be a one-to-one function of 0. Let
0, be the MLE of 0. Then T,, = ¢(6,) is the MLE of T.

PROOF. Let h = g~! denote the inverse of g. Then 6, = h(Tn)-
For any 7, L(t) = [, f(zi;; h(7)) = [, f(2i;0) = L(#) where

~

6 = h(7). Hence, for ana 7, L, (1) = L(§) < L(#) = L,(7). A

Example 10.15 Let X;,..., X, ~ N(0,1). The mle for 6 is 0, =
X,. Let T =¢’. Then, the mle forT isT=¢’ =e*. W

10.7 Asymptotic Normality

-~

It turns out that #, is approximately Normal and we can
compute its variance analytically. To explore this, we first need
a few definitions.
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Definition 10.16 The score function is defined to be
s(X;0) = %é)”). (10.9)
The Fisher information s defined to be
L) = Vi (ism;m)
i=1
= ZV(; (X;:0)) (10.10)
For n = 1 we will sometimes write I(f) instead of I;(0).

It can be shown that Ey(s(X;0)) = 0. It then follows that
Vo(s(X;0)) = Eg(s*(X;0)). In fact a further simplification of
I,,(9) is given in the next result.

Theorem 10.17 I,,(8) = nI(#) and

o) — - TRELE0)

_ —/<W>ﬂx; 0)dz. (10.11)
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Theorem 10.18 (Asymptotic Normality of the MLE .) Under apprd
priate reqularity conditions, the following hold:

1. Let se = +/1/1,(0). Then,

(5"5%9) ~ N(0,1). (10.12)

2. Let € = \/1/1,(6,). Then,

(é\n B 9)

se

~ N(0,1). (10.13)

The proof is in the appendix. The first statement says that
0, ~ N(#,se) where the standard error of 0, is se = V1/1,(0).
The second statement says that this is still true even if we re-
place the standard error by its estimated standard error s€ =

1/1,,(6,,).

Informally, the theorem says that the distribution of the MLE can
be approximated with N (6, 5¢°). From this fact we can construct
an (asymptotic) confidence interval.

Theorem 10.19 Let
On = (é\n — Za/2 S/é, é\n + a2 S/é)
Then, Py(0 € C},)) = 1 — a as n — oo.

PROOF. Let Z denote a standard normal random variable.
Then,

-~

Pyl eC,) = Py <9n — Zq25€ <0 < @\n + Za/gs€>

0, —0
= Py <_Za/2 < ~ < Za/2)

se
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— P(—2420<Z < 2qp2)=1—cx. B

For a = .05, z4/2 = 1.96 = 2, so:

~

0, + 2se

is an approximate 95 per cent confidence interval.

(10.14)

When you read an opinion poll in the newspaper, you often
see a statement like: the poll is accurate to within one point,
95 per cent of the time. They are simply giving a 95 per cent
confidence interval of the form @\n + 2se.

Example 10.20 Let X, ..., X, ~ Bernoulli(p). The MLE is p,, =
> Xi/n and f(xz;p) = p*(1 —p)'=7, log f(x;p) = zlogp+ (1 —
z)log(1—p), s(X;p) = (v/p)— (1—2)/(1—p), and —s'(X;p) =
(z/p*) + (1 —2)/(1 —p)?. Thus,

p , (I—p) 1

I(p) = Ep(_SI(X;p)) = P + (1 _ p)g = p(l _p)‘

e__ 1 1 :{ﬁ(l—ﬁ)}m_
VI.(pn)  /nI(Pn) n

An approzimate 95 per cent confidence interval is

—~ A~ 1/2
5 i2{19(1—19)}/
’ CASIE 2/ Gh

n

Compare this with the Hoeffding interval. B

Example 10.21 Let Xi,..., X, ~ N(0,0?) where o* is known.
The score function is s(X;0) = (X — 0)/0? and §'(X;0) =
—1/0? so that I,(0) = 1/02. The MLE is 0, = X,,. According
to Theorem 10.18, X,, ~ N(0,0%/n). In fact, in this case, the
distribution is exact. B




10.8 Optimality 159

Example 10.22 Let Xi,..., X, ~ Poisson(\). Then A\, = Xy
and some calculations show that I;(A\) =1/, so

Therefore, an approximate 1 — a confidence interval for X\ is
A & Zajo\/ An/n. B

10.8 Optimality

Suppose that Xi,..., X, ~ N(f,0%). The MLE is b, = X,.
Another reasonable estimator is the sample median #,. The

MLE satisfies
Vn(, —0) ~ N(0,0?%).

It can be proved that the median satisfies
(B, — 0) ~ N (0,023) .

This means that the median converges to the right value but
has a larger variance than the MLE .
More generally, consider two estimators 7;, and U,, and sup-

pose that
Vn(T, — 6) ~ N(0,t%)

and that
\/ﬁ(Un —6) ~ N(0, u2).

We define the asymptotic relative efficiency of U to T by ARE(U,T) =

#2/u2. In the Normal example, ARE(6,,0,) = 2/7 = .63. The
interpretation is that if you use the median, you are only using
about 63 per cent of the available data.

Theorem 10.23 If @\n s the MLE and gn 15 any other estimator
then

The result is ac-
tually more subtle
than this but we
needn’t worry about
the details.
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ARE(6,,0,) < 1.

Thus, the MLE has the smallest (asymptotic) variance and we
say that MLE is efficient or asymptotically optimal.

This result is predicated upon the assumed model being cor-
rect. If the model is wrong, the MLE may no longer be optimal.
We will discuss optimality in more generality when we discuss
decision theory.

10.9 The Delta Method.

Let 7 = g(0) where ¢ is a smooth function. The maximum

~

likelihood estimator of 7 is 7 = ¢(#). Now we address the fol-
lowing question: what is the distribution of 77

entiable and ¢'(0) # 0 then

Vil =7 N0,

se (7)

where T, = g(@\n) and

Hence, if

C = (?n 202 (7). T+ Zayps (?n))

then Po(T € C) = 1 —a as n — o0.

Theorem 10.24 (The Delta Method) If 7 = g(0) where g is differ-

Example 10.25 Let X1,...,X,, ~ Bernoulli(p) and let ) = g(p) =
log(p/(1—p)). The Fisher information function is I(p) = 1/(p(1—
p)) so the standard error of the MLE P, isse = {pn(1 — Pp)/n}">.
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The MLE of 1 is 1 = logp/(1—p). Since, ¢'(p) = 1/(p/(1—p)),
according to the delta method
se (¢Yn) = |g'(Pn)[s€ (Pn) = —F———=-
V npn(l - pn)
An approximate 95 per cent confidence interval is
~ 2
wn + T =" =
V npn(l - pn)

Example 10.26 Let Xi,...,X, ~ N(u,0?). Suppose that p is
known, o is unknown and that we want to estimate v = logo.
The log-likelihood is (o) = —nlogo — 55 Y, (x; — p)?. Differ-
entiate and set equal to 0 and conclude that
8_{Zk&—uVF”
n

To get the standard error we need the Fisher information. First,

log f(X;0) = —logo — 7()(2;2”)2
with second derivative
13X —p)?
o? ot
and hence . 252 )
o=-mta=r

Hence, & = 6,/v2n. Let ¢ = g(o) = log(c). Then, 1, =
loga,. Since, g’ =1/0,

-~

s (¢n) =

ol 1
V2n V2n

and an approximate 95 per cent confidence interval is zl)\n +

2/vV2n. B

SHE
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10.10 Multiparameter Models

These ideas can directly be extended to models with several
parameters. Let 0 = (01,...,0;) and let 6 = (0y,...,60;) be the
MLE . Let £, =3""  log f(X;; 0),

2 2
Hjj:%—ég and ij:%.
Define the Fisher Information Matrix by
Eo(H11) Eo(Hiz) --- Eg(Hyg)
1) = — | PoUT) ol o Bolih) (10.18)
Ee(ﬁm) ]Ee(ﬁkQ) Eo(Hkk)

Let J,(0) = I,,'(6) be the inverse of I,,.
Theorem 10.27 Under appropriate reqularity conditions,

V(@ = 60) ~ N(0, J,).
Also, if@\j is the j™ component of 5, then

0; —0;
M ~ N(0,1)
sej
where s/éi = J,(j,7) is the j* diagonal element of J,,. The ap-

proximate covariance ofé\j and Oy, is Cov(@\j, @\k) ~ J, (4, k).

There is also a multiparameter delta method. Let 7 = ¢(fy, ..., 0x)
be a function and let
99
001
Vg = :
99
00,

be the gradient of g.
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Theorem 10.28 (Multiparameter delta method) Suppose that
Vg evaluated at 0 is not 0. Let T = g(6). Then

% ~> N(0,1)
where
2 (7) = (V)" Tu(Vy),
Jp = Jn(é\n) and Vg is Vg evaluated at 0 = 0.
Example 10.29 Let X,

(10.19)

Xyn ~ N(p,0%). Let 7 = g(p,0) =
o/u. In homework question 8 you will show that

&£ 0
In(/uao—): |:ab 2_n :| :

Hence,

_ 1o 0
Jn:[nl(,u,a):E{ 0 0_2:|'
2

10.11 The Parametric Bootstrap

For parametric models, standard errors and confidence in-
tervals may also be estimated using the bootstrap. There is

only one change. In the nonparametric bootstrap, we sampled
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X7,..., X from the empirical distribution ﬁn In the paramet-
ric bootstrap we sample instead from f(x; /9\,1) Here, é\n could
be the MLE or the method of moments estimator.

Example 10.30 Consider ezample 10.29. To get to bootstrap stan-
dard error, simulate X,,...,X* ~ N(u,0?), compute i* =
n 'Y XF and 6% =ty (X — %)% Then compute TF =
g(u*,0*) = 0*/u*. Repeating this B times yields bootstrap repli-
cations

Tiy e s Th

and the estimated standard error is

B ~ ~\9
- " (=T
o \/zbl(Bb ?

The bootstrap is much easier than the delta method. On the
other hand, the delta method has the advantage that it gives a
closed form expression for the standard error.

10.12 Technical Appendix

10.12.1 Proofs

PROOF OF THEOREM 10.13. Since 6, maximizes M, (0), we

-~

have M, (6,) > M,(0,). Hence,

-~

M(6,) — M(6,) M (0,) — M(6,,) + M(8,) — M,(6,)

~

< M,(0) — M(8,) + M(6,) — M,(6,)
< Sl;p |M,,(0) — M(0)| + M(6x) — M, (0,)
L0

where the last line follows from (10.7). It follows that, for any
0 >0,
P (M(é;) < M(0,) - 5) 0.
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Pick any € > 0. By (10.8), there exists 6 > 0 such that [#—0,| > €
implies that M (0) < M(6,) — J. Hence,

P[0, — 0,] > ¢) <P (M(é;) < M(0,) - 5) 0. W

Next we want to prove Theorem 10.18. First we need a Lemma.
Lemma 10.31 The score function satisfies

Ey [s(X;0)] = 0.

PROOF. Note that 1 = [ f(z;6)dz. Differentiate both sides
of this equation to conclude that

0 = ag/fxﬁdx—/ag (x;0)d

o dlog f(z;0)
= [ s /Tf(x,e)dx

— /s(w;ﬁ)f(x;@)d:r:Egs(X;H). |

PROOF OF THEOREM 10.18. Let ¢(0) = log £(#). Then,
0="0(8)~ C(0) + (6 — 0)0"(6).

Rearrange the above equation to get § — 0 = —0'(6)/¢"(9) or, in
other words,

~ Z='(0) TOP
g v\
Vil =9) —L¢m(6) — BOTTOM'

Let Y; = 0log f(X;;0)/06. Recall that E(Y;) = 0 from the pre-
vious Lemma and also V(Y;) = I(6). Hence,

TOP =n ' "V, =/nY =v/n(Y = 0) ~ W ~ N(0,1)
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by the central limit theorem. Let A; = —0*log f(X;;0)/06°.
Then E(A;) = I(f) and

BOTTOM = 425 1(6)

by the law of large numbers. Apply Theorem 6.5 part (e), to
conclude that

ﬁ(@-e)w%ézv@,%).

Assuming that () is a continuous function of 6, it follows that
1(6,)-25 1(6). Now

—— = /al'?8,) (6, - )

~ N 1/2

The first terms tends in distribution to N(0,1). The second term
tends in probability to 1. The result follows from Theorem 6.5
part (e). H

OUTLINE OF PROOF OF THEOREM 10.24. Write,

7= g(0) ~ g(0) + (0 — 0)g'(0) =7+ (0 — 0)g'(0).

Thus, R
V(T — 1) = /n(0 — 0)4'(9)
and hence
nl(0)(7T—171) _ m ~
7 0) R 1(0)(0 —0).

Theorem 10.18 tells us that the right hand side tends in distri-
bution to a N(0,1). Hence,

/nl(0)(T—7) "
g'(9) N




10.12 Technical Appendix 167

or, in other words,

where

2~ _ (9'(0))°
s () = 10y
The result remains true if we substitute 8 for 0 by Theorem 6.5
part (e).

10.12.2  Sufficiency

A statistic is a function 7'(X™) of the data. A sufficient statis-
tic is a statistic that contains all the information in the data.
To make this more formal, we need some defintions.

Definition 10.32 Write 2™ < y" if f(a™;0) = ¢ f(y™;0)
for some constant ¢ that might depend on z™ and y™ but
not 0. A statistic T (x™) is sufficient if T'(2™) <> T'(y")
implies that ™ <> y™.

Notice that if ™ <> y” then the likelihood function based on
2™ has the same shape as the likelihood function based on y".
Roughly speaking, a statistic is sufficient if we can calculate the
likelihood function knowing only 7'(X™).

Example 10.33 Let Xi,...,X, ~ Bernoulli(p). Then L(p) =
p*(1 —p)"=° where S =", X; so S is sufficient. W

Example 10.34 Let X1,..., X, ~ N(u,0) and let T = (X, 8S).
Then,

f(Xn;M,U) = Hf(qua U)

- H 1 eXP{—%‘QZ(Xi—M)Q}

i027r

_ L\ fon9 ) (X —p)?
N o\ 21 P 202 P 202
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The last expression depends on the data only through T and
therefore, T = (X, S) is a sufficient statistic. Note that U =
(17X, S) is also a sufficient statistic. If I tell you the value of U
then you can easily figure out T and then compute the likelihood.
Sufficient statistics are far from unique. Consider the following
statistics for the N(u,0?) model:

(X" = (X4,...,X,)
L") = (X,9)
Ty(X") = X

T,(X") = (X,8,X;).

The first statistic is just the whole data set. This is sufficient.
The second is also sufficient as we proved above. The third is not
sufficient: you can’t compute L(u,o) if I only tell you X. The
fourth statistic Ty is sufficient. The statistics T, and Ty are suffi-
cient but they contain redundant information. Intuitively, there
is a sense in which Ty is a “more concise” sufficient statistic
than either Tv or Ty. We can express this formally by noting
that Ty s a function of Ty and similarly, Ty is a function of Ty.
For example, Ty = g(Ty) where g(ay,as,a3) = (a1, as). B

Definition 10.35 A statistic T is minimally sufficient if
(1) it is sufficient and (ii) it is a function of every other
sufficient statistic.

Theorem 10.36 T is minimal sufficient if T'(x™) = T(y™) if and
only if " < y".

A statistic induces a partition on the set if outcomes. We can
think of sufficiency in terms of these partitions.
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Example 10.37 Let X, Xy, X3 ~ Bernoulli(§). Let V = Xj,
T=>,X; and U = (T,X,). Here is the set of outcomes and
the statistics:

X, XL, |V T U

0 0 |0 0 (0,0
0 1 |0 1 (10)
10 |1 1 (11)
11 |1 2 (21)

The partitions induced by these statistics are:

Voo— {(0,0),(0, 1)}, {(1,0),(1, 1)}
T — {(0,0} {(0,1),(1,0)}, {(1,1)}
v — {(0,0}, {(0,1)}, {(1,0)}, {(1,1)}.

Then V' 1s not sufficient but T and U are sufficient. T is min-
imal sufficient; U is not minimal since if 2™ = (1,0,1) and
y" = (0,1,1), then o™ <> y™ yet U(z") # U(y™). The statistic
W = 17T generates the same partition as T. It is also minimal
sufficient. W

’

Example 10.38 For a N(p,0?) model, T = (X, S) is a minimally
sufficient statistic. For the Bernoulli model, T = Y. X, is a
minimally sufficient statistic. For the Poisson model, T' =Y. X
is a minimally sufficient statistic. Check that T = (D, X;, X1)
s sufficient but not minimal sufficient. Check that T = Xy s
not sufficient. B

I did not give the usual definition of sufficiency. The usual
definition is this: 7" is sufficient if the distribution of X" given
T(X™) =t does not depend on .

Example 10.39 Two coin flips. Let X = (X1, X2) ~ Bernoulli(p).
Then T = X1 + X, is sufficient. To see this, we need the dis-
tribution of (X1, Xs) given T = t. Since T can take 3 possible
values, there are 3 conditional distributions to check. They are:
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(i) the distribution of (X1, X3) given T = 0:
P(X;=0,X =0t =0) =1, P(X, = 0, X, = 1|t = 0) = 0,
P(X,=1,X =0t=0)=0,P(X, = 1, X, = 1|t = 0) = 0
(1) the distribution of (X1, Xs) given T = 1:

1
P(X1:0,X2:0|t:1):0,P(X1:0,X2:1|t:1):§,

1

P(X1 - 1,X2 :0|t: ].) == §,P(X1 == ]_,XQ == 1|t: 1) :0
(1i1) the distribution of (X1, Xs) given T = 2:

P(X1 :O,XQ :0|t: 2) :O,P(Xl :0,X2 == 1|t:2) :0,
None of these depend on the parameter p. Thus, the distribution
of X1, Xo|T does not depend on 0 so T is sufficient. B
Theorem 10.40 (Factorization Theorem) 7T is sufficient if and
only if there are functions g(t,0) and h(zx) such that f(z";0) =
g(t(z"), 0)h(z").

Example 10.41 Return to the two coin flips. Let t = x1 + x5.
Then

flz1,m030) = f(x1;0)f (22;0)
= eml(l — 0)1*51319@(1 . 0)17:1;2
= g(ta e)h(xlaxZ)

where g(t,0) = 0'(1 — 0)*7" and h(zy,z2) = 1. Therefore, T =
Xy + Xy is sufficient. W

Now we discuss an implication of sufficiency in point estima-
tion. Let @ be an estimator of §. The Rao-Blackwell theorem says
that an estimator should only depend on the sufficient statistic,
otherwise it can be improved. Let R(8,8) = Eq[(6 — 0)?] denote
the MSE of the estimator.
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Theorem 10.42 (Rao-Blackwell) Let 6 be an estimator and
let T be a sufficient statistic. Define a new estimator by

0 = E0|T).

Then, for every 6, R(0, 5) < R(6, @\)

Example 10.43 Consider flipping a coin twice. Let h= Xy. This
is a well defined (and unbiased) estimator. But it is not a func-
tion of the sufficient statistic T = Xy + Xy. However, note
that 0 = E(X,|T) = (X1 + X3)/2. By the Rao-Blackwell Theo-
rem, 0 has MSE at least as small as 0 = Xi. The same applies
with n coin flips. Again define = X1 and T =), X;. Then
0 =E(X,|T) =n" >: Xi has improved MSE .

10.12.3 FExponential Families

Most of the parametric models we have studied so far are spe-
cial cases of a general class of models called exponential families.
We say that {f(x;0;0 € ©} is a one-parameter exponential
family if there are functions n(6), B(6), T(x) and h(z) such
that

Flx;0) = h(z)e"OTE-BO),
It is easy to see that 7'(X) is sufficient. We call 7" the natural

sufficient statistic.
Example 10.44 Let X ~ Poisson(f). Then

gre? 1
. _ _ = _xlogf—0
f([l), 9) - ZL" - ZL‘!e

and hence, this is an exponential family with n(8) = log6, B(0) =
0, T(zx) =z, h(z) =1/z!. A

Example 10.45 Let X ~ Bin(n,0). Then

Fa:0) = (Z) 0 (1—9)"® = (Z) exp {xlog <1;f9> +nlog(l — 9)} .



172 10. Parametric Inference

In this case,

and

We can rewrite an exponential family as
fa;m) = hw)et =40

where 1 = 7(f) is called the natural parameter and

A(n) = log/h(x)e"T(’“)dx.

For example a Poisson can be written as f(x;n) = €7 ¢ /x!
where the natural parameter is n = log .

Let X1, ..., X, beiid from a exponential family. Then f(z™;0)
is an exponential family:

f(a:", 0) _ hn(ajn)hn(ajn)en(ﬂ)Tn(wn)an(ﬂ)

where h,(z") = [, h(x;), To(2™) = >, T(x;) and B,(f) =
nB(#). This implies that ). T'(X;) is sufficient.
Example 10.46 Let X1, ..., X, ~ Uniform(0,6). Then

Fa0) = 5T < )

where I is 1 if the term inside the brackets is true and 0 other-

wise, and vy = max{zy, ..., o5}, ThusT(X™) = mazx{Xy,..., X}

is sufficient. But since T(X™) # Y. T(X,), this cannot be an ex-
ponential family. A
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Theorem 10.47 Let X have density in an exponential family.
Then,
E(T'(X)) = A'(n), V(T'(X)) = A"(n).

If @ = (0y,...,0k) is a vector, then we say that f(x;#) has
exponential family form if

f(z;0) exp{an (9)}

Again, T' = (11, ...,T}) is sufficient and n iid samples also has
exponential form Wlth sufficient statistic (), 77 (X;), ..., >_; Te(X

Example 10.48 Consider the normal family with @ = (p, o). Now,

2 2
L0\ H x L[ 2
f(z;0) = exp{;x— %7 3 (; + log(2mo ))}

1

ﬁ, TQ(.’L‘) = .’172

m2(0) = —

I 2
B(9) = 552 + log(2mc?) |, h(z) =1.
Hence, with n iid samples, (>, X;, >, X?) is sufficient. B
As before we can write an exponential family as
flx3m) = h(z) exp {T (x)n — A(n) }

where A(n) = [ h(z ©dz. Tt can be shown that

where the first expression is the vector of partial derivatives and
the second is the matrix of second derivatives.

i)
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10.13 Exercises

1. Let Xq,..., X, ~ Gamma(c, ). Find the method of mo-
ments estimator for o and f3.

2. Let Xj,...,X,, ~ Uniform(a,b) where a and b are un-
known parameters and a < b.

(a) Find the method of moments estimators for a and b.
(b) Find the MLE @ and b.
(¢) Let 7 = [xdF(z). Find the MLE of 7.

(d) Let 7 be the MLE from (1bc). Let 7 be the nonpara-
metric plug-in estimator of 7 = [ 2dF(z). Suppose that
a=1,b=3and n = 10. Find the MSE of 7 by simulation.
Find the MSE of 7 analytically. Compare.

3. Let Xy,...,X,, ~ N(u,0?). Let 7 be the .95 percentile,
ie. P(X < 7) = .95.

(a) Find the MLE of 7.

(b) Find an expression for an approximate 1—« confidence
interval for 7.

(c) Suppose the data are:

3.23 -2.50 1.88 -0.68 4.43 0.17
1.03 -0.07 -0.01 0.76 1.76 3.18
0.33 -0.31 0.30 -0.61 1.52 5.43
1.54 2.28 0.42 2.33 -1.03 4.00
0.39

Find the mle 7. Find the standard error using the delta
method. Find the standard error using the parametric
bootstrap.
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4. Let Xq,...,X, ~ Uniform(0,#). Show that the MLE is
consistent. Hint: Let ¥ = max{X\,..., X,,}.. For any ¢,
PY <¢) =P(X; <Xy <¢,..X, <c) =PX; <
)P(X; < ¢)..P(X, < ¢).

5. Let Xj,..., X, ~ Poisson(A). Find the method of mo-
ments estimator, the maximum likelihood estimator and
the Fisher information I(\).

6. Let Xy,..., X;, ~ N(6,1). Define

Y;:{l if X;>0

0 if X; <0.

Let ¢ = P(Y; = 1).
(a) Find the maximum likelihood estimate b of 1.

(b) Find an approximate 95 per cent confidence interval
for 1.

(¢) Define ¢ = (1/n) >, Y. Show that ¢ is a consistent
estimator of .

(d) Compute the asymptotic relative efficiency of b to 1.
Hint: Use the delta method to get the standard error of the
MLE . Then compute the standard error (i.e. the standard
deviation) of ©.

(e) Suppose that the data are not really normal. Show that
1 is not consistent. What, if anything, does i) converge to?

7. (Comparing two treatments.) n; people are given treat-
ment 1 and ny people are given treatment 2. Let X; be
the number of people on treatment 1 who respond fa-
vorably to the treatment and let X, be the number of
people on treatment 2 who respond favorably. Assume
that X; ~ Binomial(ni,p;) Xo ~ Binomial(ns, ps). Let

Y = p1 — pa.
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(a
(b
(

¢) Use the multiparameter delta method to find the asymp-

) Find the MLE for .
)

Find the Fisher information matrix I(Py, ps).

totic standard error of 12)\

(d) Suppose that ny = ny = 200, X; = 160 and X, = 148.
Find {b\ Find an approximate 90 percent confidence inter-
val for 1) using (i) the delta method and (ii) the parametric
bootstrap.

Find the Fisher information matrix for Example 10.29.

Let X7, ..., X;, Normal(y,1). Let 8 = e* and let ) = X
be the mle. Create a data set (using g = 5) consisting of
n=100 observations.

(a) Use the delta method to get sé and 95 percent confi-
dence interval for #. Use the parametric bootstrap to get
seé and 95 percent confidence interval for §. Use the non-
parametric bootstrap to get se and 95 percent confidence
interval for §. Compare your answers.

(b) Plot a histogram of the bootstrap replications for the
parametric and nonparametric bootstraps. These are esti-
mates of the distribution of #. The delta method also gives

an approximation to this distribution namely, Normal(@\, se?).

Compare these to the true sampling distribution of 0 (whihc
you can get by simulation). Which approximation, para-
metric bootstrap, bootstrap, or delta method is closer to
the true distribution?

Let X1, ..., X,, Unif(0,0). The MLE is § = X(,) = max{X}, ...

Generate a data set of size 50 with 0 = 1.

(a) Find the distribution of § analytically. Compare the
true distribution of # to the histograms from the paramet-
ric and nonparametric bootstraps.

7XTL}
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(b) This is a case where the nonparametric bootstrap
does very poorly. Show that, for the parametric bootstrap
]P’(@* = 9) = 0 but for the nonparametric bootstrap ]P’(@* =
f) ~ .632. Hint: show that, P(6* = 8) =1 — (1 — (1/n))"
then take the limit as n gets large. What is the implication
of this?
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11
Hypothesis Testing and p-values

Suppose we want to know if a certain chemical causes cancer.
We take some rats and randomly divide them into two groups.
We expose one group to the chemical and then we compare
the cancer rate in the two groups. Consider the following two
h ypotheses:

The Null Hypothesis: The cancer rate is the same
in the two groups

The Alternative Hypothesis: The cancer rate is
not the same in the two groups.

If the exposed group has a much higher rate of cancer than the
unexposed group then we will reject the null hypothesis and
conclude that the evidence favors the alternative hypothesis;
in other words we will conclude that there is evidence that the
chemical causes cancer. This is an example of hypothesis testing.

More formally, suppose that we partition the parameter space
© into two disjoint sets ©y and ©; and that we wish to test

Hy: 00, versus H,:0¢c0O,. (11.1)
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We call Hy the null hypothesis and H; the alternative hy-
pothesis.

Let X be a random variable and let X be the range of X. We
test a hypothesis by finding an appropriate subset of outcomes
R C X called the rejection region. If X € R we reject the
null hypothesis, otherwise, we do not reject the null hypothesis:

X eR = reject Hy
X ¢ R = retain (do not reject) Hy

Usually the rejection region R is of the form

R:{x: T(x)>c}

where 1" is a test statistic and c is a critical value. The prob-
lem in hypothesis testing is to find an appropriate test statistic
T and an appropriate cutoff value c.

Warning! There is a tendency to use hypthesis testing meth-
ods even when they are not appropriate. Often, estimation and
confidence intervals are better tools. Use hypothesis testing only
when you want to test a well defined hypothesis.

Hypothesis testing is like a legal trial. We asume someone is
innocent unless the evidence strongly suggests that he is guilty.
Similarly, we retain Hj unless there is strong evidence to reject
Hy. There are two types of errors when can make. Rejecting H
when Hj is true is called a type I error. Rejecting H; when
H, is true is called a type II error. The possible outcomes for
hypothesis testing are summarized in the Table below:
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Retain Null  Reject Null
Hy true | / type I error
H, true | type I error +/

Summary of outcomes of hypothesis testing.

Definition 11.1 The power function of a test with rejection re-
gion R is defined by

B(0) = Py(X € R). (11.2)
The size of a test is defined to be

a = sup 5(6). (11.3)
0€Og

A test is said to have level « if its size is less than or equal to
a.

A hypothesis of the form 6§ = 6, is called a simple hypoth-
esis. A hypothesis of the form 6 > 6, or § < 6, is called a
composite hypothesis. A test of the form

Hy:0=10, versus H;:0+# 06,
is called a two-sided test. A test of the form
Hy:0<6, versus H;:0 >0,

or
Hy:0>60, versus H;:0 <86,

is called a one-sided test. The most common tests are two-
sided.
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Example 11.2 Let Xy,..., X,, ~ N(u,0) where o is known. We
want to test Hy : pp < 0 versus Hy : p > 0. Hence, ©y = (—00, 0]
and ©1 = (0,00). Consider the test:

reject Hy if T'> ¢

where T = X. The rejection region is R = {a:” : T(a™) > c}.
Let Z denote a standard normal random variable. The power
function is

) = Pu(X>e)

— 1_@<M>_

This function is increasing in . Hence

size = sup 5(0) = 5(0) = 1 - @ (V).

To get a size « test, set this equal to a and solve for ¢ to get
c® (1 - a)
VI

So we reject when X > o®~1(1—a)/\/n. Equivalently, we reject
when

CcC =

7\/5()( —0) > z,. N
o
Finding most powerful tests is hard and, in many cases, most
powerful tests don’t even exist. Instead of searching for most
powerful tests, we’ll just consider three widely used tests: the
Wald test, the x? test and the permutation test. A fourth test,
the likelihood ratio test, is dicussed in the appendix.
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Let 0 be a scalar parameter, let 0 be an estimate of 6 and let

seé be the estimated standard error of 9\

Definition 11.3 The Wald Test
Consider testing

Hy:0=10, versus H;:0#6,.
Assume that 0 is asymptotically Normal:

VAO—00) o),

where

The size o Wald test is: reject Hy when |W| > 2y

Theorem 11.4 Asymptotically, the Wald test has size «, that is,

Py, (|Z| > Za/g) —

as n — Q.

ProoOF. Under 6 = 0, (5— 6p)/se ~» N(0,1). Hence, the

probability of rejecting when the null 8 = 6, is true is

0—0
Po, (|W| > za/2) = Py, <| & o > Za/2>

— P(IN(0,1)] > za/2)
= «o N

Remark 11.5 Most texts define the Wald test slightly differently.
They use the standard error computed at 0 = 0y rather then at

the estimated value @\ Both versions are valid.

The test is named
after Abraham Wald
(1902-1950), who
was a very influen-
tial  mathematical
statistician.
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Let us consider the power of the Wald test when the null
hypothesis is false.

Theorem 11.6 Suppose the true value of 0 is 0, # 0y. The power
B(0x) — the probability of correctly rejecting the null hypothesis
— is given (approzimately) by

0y — 0, 6y — 0,
1-9 ( 0 — + Za/Z) + o < 0 = — Za/2> . (11.4)
se se

Recall that seé tends to 0 as the sample size increases. Inspect-
ing (11.4) closely we note that: (i) the power is large if 6, is far
from 6y and (ii) the power is large if the sample size is large.

Example 11.7 (Comparing Two Prediction Algorithms) We test a
prediction algorithm on a test set of size m and we test a second
prediction algorithm on a second test set of size n. Let X be
the number of incorrect predictions for algorithm 1 and let Y
be the number of incorrect predictions for algorithm 2. Then
X ~ Binomial(m, p;) and Y ~ Binomial(n, py). To test the null
hypothesis that p1 = py write

Hy:6=0 wversus H;:0#0

where 6 = p; — pa. The MLE is 5 = D1 — P2 with estimated
standard error

R D1(1 — D Do (1 — D
se:\/pl( P1)+P2( p2)

m n

The size o Wald test is to reject Hy when |W| > zq/o where

_ 6—0 _ P — D2
se \/1’51(17171) 4 B2(1-P2)

m n

The power of this test will be largest when py is far from py and
when the sample sizes are large.
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What if we used the same test set to test both algorithms?
The two samples are no longer independent. Instead we use the
following strategy. Let X; = 1 if algorithm 1 is correct on test
case © and X; = 0 otherwise. Let Y; = 1 if algorithm 2 is correct

on test case 1 Y; = 0 otherwise. A typical data set will look
something like this:

TestCase | X; Y, D, =X,-Y;
1 1 0 1
2 1 1 0
3 1 1 0
4 0 1 -1
5 0 0 0
n 0 1 -1

Let

Then 6 = D = n~ 32" D; and $(3) = S/\/n where S =
n 3" (D;— D). To test Hy : § = 0 versus Hy : 6 # 0 we use
W = g/s/é and reject Hy if |W| > zq/2. This is called o paired
comparison. H

Example 11.8 (Comparing Two Means.) Let Xi,..., X, and Y1, ...

be two independent samples from populations with means pu, and
lo, respectively. Let’s test the null hypothesis that py = ps.
Write this as Hy : 6 = 0 versus Hy : § # 0 where 0 = puy — pus.
Recall that the nonparametric plug-in estimate of 6 s 5=X-Y
with estimated standard error
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where s2 and s% are the sample variances. The size a Wald test
rejects Hy when |W| > 242 where

5—0 X -—

|l

Example 11.9 (Comparing Two Medians.) Consider the previous
example again but let us test whether the medians of the two
distributions are the same. Thus, Hy : 6 = 0 versus Hy : 0 #
0 where 6 = vy — vy where vy and vy are the medians. The
nonparametric plug-in estimate of § is 5 = vy, — Uy where Uy and
Uy are the sample medians. The estimated standard error s& of
§ can be obtained from the bootstrap. The Wald test statistic is
W=04/s.H

There is a relationship between the Wald test and the 1 — «
asymptotic confidence interval § £ s€ 2, /s.

Theorem 11.10 The size o Wald test rejects Hy : 0 = 0y versus
Hy : 0 # 0y if and only if 6y ¢ C where

C = (0 —$ zaja, O+ 20)2)-

Thus, testing the hypothesis is equivalent to checking whether
the null value is in the confidence interval.

11.2  p-values

Reporting “reject Hy” or “retain H,” is not very informative.
Instead, we could ask, for every «, whether the test rejects at
that level. Generally, if the test rejects at level « it will also
reject at level o > a. Hence, there is a smallest o at which the
test rejects and we call this number the p-value.
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Definition 11.11 Suppose that for every a € (0, 1) we have
a size « test with rejection region R,. Then,

p-value = inf{a : T(X") e Ra}.

That is, the p-value is the smallest level at which we can
reject Hy.

Informally, the p-value is a measure of the evidence against
Hy: the smaller the p-value, the stronger the evidence against
Hy. Typically, researchers use the following evidence scale:

p-value  evidence

< .01 very strong evidence againt H)
.01 - .05 strong evidence againt H

.05 - .10 weak evidence againt H,

> .1 little or no evidence againt H)

Warning! A large p-value is not strong evidence in favor of
Hy. A large p-value can occur for two reasons: (i) Hy is true or
(ii) Hy is false but the test has low power.

But do not confuse the p-value with P(Hy|Data). The p- We discuss quanti-

value is not the probability that the null hypothesis is ties like P(Hy|Data)
true. in the chapter on

The following result explains how to compute the p-value. Bayesian inference.

Theorem 11.12 Suppose that the size a test is of the form
reject Hy if and only if T(X"™) > c,.

Then,

p-value = sup Py(T'(X") > T'(z")).
0€Og

In words, the p-value is the probability (under Hy) of observing
a value of the test statistic as or more extreme than what was
actually observed.
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For a Wald test, W has an aproximate N(0,1) distribution
under H,. Hence, the p-value is

p-value ~ ]P’(|Z| > |w|) - zp(z < —|w|) - 2@(2 < —|w|)
(11.5)
where Z ~ N(0,1) and w = (6 — ) /se is the observed value of
the test statistic.
Here is an important property of p-values.

Theorem 11.13 If the test statistic has a continuous distribu-
tion, then under Hy : 0 = 6y, the p-value has a Uniform (0,1)
distribution.

If the p-value is less than .05 then people often report that
“the result is statistically significant at the 5 per cent level.”
This just means that the null would be rejected if we used a size
a = 0.05 test. In general, the size a test rejects if and only if
p-value < a.

Example 11.14 Recall the cholesterol data from Ezample 8.11.
To test of the means ard different we compute
5-0  X-Y _ 2162-1953

W=——= = = 3.78.
se s2 | s} 5% 4 2.42

To compute the p-value, let Z ~ N(0, 1) denote a standard Nor-
mal random variable. Then,

p-value = P(|Z| > 3.78) = 2P(Z < —3.78) = .0002

which s very strong evidence against the null hypothesis. To
test if the medians are different, let Uy and Uy denote the sample
medians. Then,

D -7, 2125-194

W = — =24
se 7.7
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where the standard error 7.7 was found using the boostrap. The
p-value is

p-value = P(|Z| > 24) = 2P(Z < —2.4) = .02
which is strong evidence against the null hypothesis. B

Warning! A result might be statistically significant and yet
the size of the effect might be small. In such a case we have a
result that is statistically significant but not practically signifi-
cant. It is wise to report a confidence interval as well.

11.3 The x? distribution

Let Zy,...,Z; be independent, standard normals. Let V' =
S°F | Z2. Then we say that V has a x? distribution with & de-
grees of freedom, written V' ~ x2. The probability density of V'

is
pk/D—1 /2

1) = g
for v > 0. It can be shown that E(V) = k and V(k) = 2k. We

define the upper a quantile xj , = F~'(1 — o) where F is the
cDF . That is, P(x} > x;,.) = a.

11.4 Pearson’s x? Test For Multinomial Data

Pearson’s x? test is used for multinomial data. Recall that
X = (Xy,..., X)) has a multinomial distribution if

n

PG T % p)z( )p"fl---pi’“
I .

s

n n!
T1...% xi!-ag!

The MLE of p is p = (p1,...,0k) = (Xi/n, ..., Xg/n).

where
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Let (po1,---,pox) be some fixed set of probabilities and sup-
pose we want to test

Hy : (pl,---;pk) = (pm; . --;pOk) versus H; : (pb . --,pk) 7A (pm,---;p()k)-

Pearson’s y? statistic is

T — Z ”p()g

np()]

2

Mpr

7j=1
where O; = X is the observed data and E; = E(Xj) = npy, is
the expected value of X; under Hy.

Theorem 11.15 Under Hy, T ~ x2_,. Hence the test: reject Hy
if T > Xi_1 o has asymptotic level a. The p-value is P(xj > t)
where t is the observed value of the test statistic.

Example 11.16 (Mendel's peas.) Mendel bred peas with round yel-
low seeds and wrinkled green seeds. There are four types of progeny:
round yellow, wrinkled yellow, round green and (4) wrinkled
green. The number of each type is multinomial with probability
(p1, P2, p3, pa). His theory of inheritance predicts that

(9 3 3 1)\ _
P=\16"16"16"16) — 2"

In n = 556 trials he observed X = (315,101,108, 32). Since,
npio = 312.75, npyy = np3p = 104.25 and npyy = 34.75, the test
statistic 1s

, (315 —312.75)> (101 — 104.25)> (108 — 104.25)> (32 — 34.75)?

312.75 * 104.25 * 104.25 * 34.75
The a = .05 value for a X3 is 7.815. Since 0.47 is not larger
than 7.815 we do not reject the null. The p-value is

p-value = P(x3 > .47) = .07

which s only moderate evidence againt Hy. Hence, the data do
not contradict Mendel’s theory. Interestingly, there is some con-
troversey about whether Mendel’s results are “too good.” R

= 0.47.
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11.5 The Permutation Test

The permutation test is a nonparametric method for test-
ing whether two distribution are the same. This test is “exact”
meaning that it is not based on large sample theory approxima-
tions. Suppose that Xi,...,X,, ~ Fx and Y7,...,Y, ~ Fy are
two independent samples and Hj is the hypothesis that the two
samples are identically distributed. This is the type of hypothe-
sis we would consider when testing whether a treatment differs
from a placebo. More precisely we are testing

HQlFX:Fy versus HliFX%Fy.
Let T'(z1, ..., %m, Y1, --,Yn) be some test statistic, for example,
T(X1, ..o, Xy Yoo Vo) = [Xon — V.

Let N = m + n and consider forming all N! permutations of
the data X, ..., X,,,Y1,...,Y,. For each permutation, compute
the test statistic 7. Denote these values by T7,...,Ty;. Under
the null hypothesis, each of these values is equally likely. The
distribution P, that puts mass 1/N! on each Tj is called the
permutation distribution of 7. Let t,,5 be the observed value

of the test statistic. Assuming we reject when 7' is large, the p- -

value is

N!

1
p-value = Py(T > tops) = N Z I(T; > tops)-
=

Example 11.17 Here is a toy example to make the idea clear.
Suppose the data are: (X1, Xo,Y1) = (1,9,3). Let T(X4, X5, Y1) =
|X — Y| = 2. The permutations are:

Under the null hy-
pothesis, given the
ordered data values,
X, ., XY, Y,
is uniformly  dis-
tributed over the
N! permutations of
the data.



192 11. Hypothesis Testing and p-values

permutation value of T probability

(1,9,3) 2 1/6

(9.1,3) 2 1/6

(1,,9) 7 1/6

(3.1,9) 7 1/6

(3,9,1) 5 1/6

(9.3,1) 5 1/6
The p-value is P(T' >2)=4/6. B

Usually, it is not practical to evaluate all N! permutations.
We can approximate the p-value by sampling randomly from
the set of permutations. The fraction of times T; > t,, among
these samples approximates the p-value.

Algorithm for Permutation Test

1. Compute the observed value of the test statistic tops =
T( Xy, o, X, Y1,...,Y,).

2. Randomly permute the data. Compute the statistic again
using the permuted data.

3. Repeat the previous step B times and let T},...,Tp de-
note the resulting values.

4. The approximate p-value is

1 B
ZI (T; > tos)-
]:1

Example 11.18 DNA microarrays allow researchers to measure
the expression levels of thousands of genes. The data are the lev-
els of messenger RNA (mRNA) of each gene, which is thought
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to provide a measure how much protein that gene produces.
Roughly, the larger the number, the more active the gene. The
table below, reproduced from Efron, et. al. (JASA, 2001, p. 1160)
shows the expression levels for genes from two types of liver can-
cer cells. There are 2,638 genes in this experiment but here we
show just the first two. The data are log-ratios of the intensity
levels of two different color dyes used on the arrays.

Type I Type II
Patient 1 2 3 4 5 6 7 8 9 10
Gene 1 230.0 -1,350 -1,580.0 -400 -760| 970 110  -50 -190 -200

Gene 2 470.0 -850 -8 280 120 | 390 -1730 -1360

Let’s test whether the median level of gene 1 is different be-
tween the two groups. Let vy denote the median level of gene 1
of Type I and let vy denote the median level of gene 1 of Type I1.
The absolute difference of sample medians is T = |, —v,| = 710.
Now we estimate the permutation distribution by simulation and
we find that the estimated p-value is .045. Thus, if we use a
a = .05 level of significance, we would say that there is evidence
to reject the null hypothesis of no difference. B

In large samples, the permutation test usually gives similar
results to a test that is based on large sample theory. The per-
mutation test is thus most useful for small samples.

11.6 Multiple Testing

In some situations we may conduct many hypothesis tests. In
example 11.18, there were actually 2,638 genes. If we tested for a
difference for each gene, we would be conducting 2,638 separate
hypothesis tests. Suppose each test is conducted at level a. For
any one test, the chance of a false rejection of the null is «.
But the chance of at least one false rejection is much higher.

-8 -330
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This is the multiple testing problem. The problem comes up

in many data mining situations where one may end up testing

thousands or even millions of hypotheses. There are many ways

to deal with this problem. Here we discuss two methods.
Consider m hypothesis tests:

HOZ' versus Hli; izl,...,m

and let Py, ..., P, denote m p-values for these tests.

The Bonferroni Method

Given p-values P, ..., Py, reject null hypothesis Hy; if P; < a/m.

Theorem 11.19 Using the Bonferroni method, the probability of
falsely rejecting any null hypotheses is less than or equal to a.

PROOF. Let R be the event that at least one null hypotheses
is falsely rejected. Let R; be the event that the i*" null hypoth-
esis is falsely rejected. Recall that if A,,..., Ax are events then
P(Ur, A) < 38 P(A;). Hence,

P(R) :IP’(LMJRi> giP(Ri) :Z%:a

=1

from Theorem 11.13. &

Example 11.20 In the gene example, using o = .05, we have
that .05/2638 = .00001895375. Hence, for any gene with p-value
less than .00001895375, we declare that there is a significant
difference.

The Bonferroni method is very conservative because it is try-
ing to make it unlikely that you would make even one false
rejection. Sometimes, a more reasonable idea is to control the
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false discovery rate (FDR) which is defined as the mean of the
number of false rejections divided by the number of rejections.

Suppose we reject all null hypotheses whose p-values fall be-
low some threshold. Let mg be the number of null hypotheses
are true and m; = m — myg null hypotheses are false. The tests
can be categorize in a 2 X 2 as in the following table.

Hy Not Rejected H, Rejected Total

Hj True U |4 my
H, False T S my
Total m—R R m

Define the False Discovery Proportion (FDP)

V/R if R>0

FDP:{O if R=0.

The FDP is the proportion of rejections that are incorrect. Next
define FDR = E(FDP).

The Benjamini-Hochberg (BH) Method

1. Let Py < --- < Py denote the ordered p-values.

2. Define

0 = e , and R= rnax{i Py < éi} (11.6)

Cnm

where (), is defined to be 1 if the p-values are independent
and C,, = > (1/i) otherwise.

3. Let t = Pg); we call ¢ the BH rejection threshold.

4. Rejects all null hypotheses Hy; for which P; < t.
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Theorem 11.21 (Benjamini and Hochberg) If the procedure
above 1s applied, then regardless of how many nulls are true
and regardless of the distribution of the p-values when the null
hypthesis is false,

FDR = E(FDP) < %a <a

Example 11.22 Figure 11.1 shows 7 ordered p-values plotted as
vertical lines. If we tested at level o without doing any corec-
tion for mutiple testing, we would reject all hypotheses whose
p-values are less than «. In this case, the 5 hypotheses corre-
sponding to the 5 smallest p-values are rejected. The Bonferroni
method rejects all hypotheses whose p-values are less than a/m.
In this example, this leads to no rejections. The BH threshold
corresponds to the last p-value that falls under the line with slope
a. This leads to three hypotheses being rejected in this case. B

SUMMARY. The Bonferonni method controls the probability
of a single false rejection. This is very strict and leads to low
power when there are many tests. The FDR method controls the
fraction of false discoveries which is a more reasonable criterion
when there are many tests.

11.7 Technical Appendix

11.7.1 The Neyman-Pearson Lemma

In the special case of a simple null Hy : § = #; and a simple
alternative H; : 6 = 0; we can say precisely what the most
powerful test is.

Theorem 11.23 (Neyman-Pearson.) Suppose we test Hy : 0 =
0y versus Hy : 8 = 0,. Let

T = L(61) _ H?:l f(w5;00)
L(0o) Tl f(@is o)
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a / a
p-values /
t
v /
- ) T
0 reject don’t reject

threshold

FIGURE 11.1. Schematic illustration of Benjamini-Hochberg pro-
cedure. All hypotheses corresponding to the last undercrossing are
rejected.
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Suppose we reject Hy when T > k. If we choose k so that
Py, (T > k) = « then this test is the most powerful, size «
test. That s among all tests with size o, this test maximizes the

power B(6;).

11.7.2 Power of the Wald Test

PROOF OF THEOREM 11.6.
Let Z ~ N(0,1). Then,

Power = [(6,)
Py, (Reject Hp)
= Py, ( )

0—60
— ]P’g* <| 0| > Za/g)
Se
0 — 6 -0
= ]P’g* < > Za/2> —|—]P’9* ( - 0 < —Za/g)
Se se

= Py, <§> 0o + se Za/g) + Py, (§< Oy — se Za/g)

-0, 0,—0, -0, 0,—0,
= P&( = OA +Za/2>+]P)0< < 0/\

se se
R P<Z>905e0 +za/2> ]P’( < —za/2>

0y — 0, 9*
R (O Y (=

11.7.3 The t-test

To test Hy : pt = pp where g is the mean, we can use the Wald
test. When the data are assumed to be Normal and the sample
size is small, it is common instead to use the t-test. A random
variable T has a t-distribution with k degrees of freedom if it has

- Za/2>
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density

e
S I

When the degrees of freedom k — oo, this tends to a Normal
distribution. When k£ =1 it reduces to a Cauchy.

Let Xi,...,X, ~ N(u,0?%) where 6 = (u,0?) are both un-
known. Suppose we want to test u = o versus pu # . Let

\/E(Xn - NO)

T —
Sn

where S? is the sample variance. For large samples T' ~ N(0, 1)
under Hy. The exact distribution of 7" under H, is ¢,,_;. Hence
if we reject when |T'| > ¢, _1 /2 then we get a sizea test.

11.7.4 The Likelihood Ratio Test

Let 0 = (0y,...,04,0441,-..,0,) and suppose that O consists

of all parameter values 6 such that (041,...,6;) = (6og+1,---,00,)-

Definition 11.24 Define the likelihood ratio statistic

by
0 0
A =2log (SUP‘%—@E()) = 2log E(A)
SuPyee, L£(0) L(6)
where 0 is the MLE and 50 18 the MLE when 0 is restricted

to lie in ©y. The likelihood ratio test is: reject H
when N(x™) > X7_, o

For example, if @ = (01, 65, 05, 0,) and we want to test the null
hypothesis that 3 = 6, = 0 then the limiting distribution has
4 — 2 = 2 degrees of freedom.
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Theorem 11.25 Under H,,
2log \(x™) KN Xo—y

Hence, asymptotically, the LR test is level .

11.8 Bibliographic Remarks

The most complete book on testing is (1986). See also Casella
and Berger (1990, Chapter 8). The FDR method is due to Ben-
jamini and Hochberg (1995).

11.9 Exercises

1. Prove Theorem 11.13.

2. Prove Theorem 11.10.

3. Let X1, ..., X;;, ~ Uniform(0, #) and let Y = max{X;, ..., X, }.
We want to test
Hy:0=1/2 versus Hy : 0 > 1/2.

The Wald test is not appropriate since Y does not converge
to a Normal. Suppose we decide to test this hypothesis by
rejecting Hy when Y > c.

(a) Find the power function.
(b) What choice of ¢ will make the size of the test .057

(c) In a sample of size n = 20 with Y=0.48 what is the
p-value? What conclusion about Hy would you make?

(d) In a sample of size n = 20 with Y=0.52 what is the
p-value? What conclusion about Hy would you make?

4. There is a theory that people can postpone their death
until after an important event. To test the theory, Phillips
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and King (1988) collected data on deaths around the Jew-
ish holiday Passover. Of 1919 deaths, 922 died the week
before the holiday and 997 died the week after. Think
of this as a binomial and test the null hypothesis that
6 = 1/2. Report and interpret the p-value. Also construct
a confidence interval for 6.

Reference:
Phillips, D.P. and King, E.W. (1988).
Death takes a holiday: Mortality surrounding major social

occasions.
The Lancet, 2, 728-732.

5. In 1861, 10 essays appeared in the New Orleans Daily
Crescent. They were signed “Quintus Curtuis Snodgrass”
and some people suspected they were actually written by
Mark Twain. To investigate this, we will consider the pro-
portion of three letter words found in an author’s work.
From eight Twain essays we have:

225 .262 .217 .240 .230 .229 .235 .217

From 10 Snodgrass essays we have:

209 .205 .196 .210 .202 .207 .224 .223 .220 .201
(source: Rice xxxx)

(a) Perform a Wald test for equality of the means. Use
the nonparametric plug-in estimator. Report the p-value
and a 95 per cent confidence interval for the difference of
means. What do you conclude?

(b) Now use a permutation test to avoid the use of large
sample methods. What is your conclusion?

6. Let Xy,..., X, ~ N(0,1). Consider testing

Hy:0 =0 versus 0§ = 1.
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Let the rejection region be R = {z" : T'(z") > ¢} where
T(@")=n"1>" X,
(a) Find ¢ so that the test has size a.
(b) Find the power under Hy, i.e. find 3(1).
(c)

7. Let 0 be the MLE of a parameter 6 and let s8 = {nI(§)}~"/2
where (#) is the Fisher information. Consider testing

Show that 3(1) — 1 as n — oc.

Hy : 0 =0, versus 0 # 0.

Consider the Wald test with rejection region R = {a" :
|Z| > za/2} where Z = (6 — 6y)/5¢. Let 6, > 6, be some
alternative. Show that 5(6,) — 1.

8. Here are the number of elderly Jewish and Chinese women
who died just before and after the Chinese Harvest Moon

Festival.
Week | Chinese Jewish
-2 55 141
-1 33 145
1 70 139
2 49 161

Compare the two mortality patterns.

9. A randomized, double-blind experiment was conducted to
assess the effectiveness of several drugs for reducing post-
operative nausea. The data are as follows.

Number of Patients | Incidence of Nausea
Placebo 80 45
Chlorpromazine 75 26
Dimenhydrinate 85 52
Pentobarbital (100 mg) 67 35
Pentobarbital (150 mg) 85 37
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(source: )

(a) Test each drug versus the placebo at the 5 per cent
level. Also, report the estimated odds-ratios. Summarize
your findings.

(b) Use the Bonferoni and the FDR method to adjust for
multiple testing.

Let X4,..., X, ~ Poisson(]).

(a) Let A\p > 0. Find the size o Wald test for

Hy: A=)y versus H;:\# ).

(b) (Computer Experiment.) Let Ay = 1, n = 20 and o =
.05. Simulate Xi,..., X, ~ Poisson()g) and perform the
Wald test. Repeat many times and count how often you
reject the null. How close is the type I error rate to .057
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Bayesian Inference

12.1 The Bay esianPhilosophy

The statistical theory and methods that we have discussed
so far are known as frequentist (or classical) inference. The
frequentist point of view is based on the following postulates:

(F1) Probability refers to limiting relative frequencies. Proba-
bilities are objective properties of the real world.

(F2) P arametersare fixed, (usually unknown) constants. Be-
cause they are not fluctuating, no probability statements can
be made about parameters.

(F'3) Statistical procedures should be designed to have well de-
fined long run frequency properties. F or example, a 95 per cent
confidence in terval should trap the true valueof the parameter
with limiting frequency at least 95per cent.

There is another approach to inference called Bay esian in-
ference. The Bay esian approach is based on the following pos-
tulates:
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(B1) Probability describes degree of belief, not limiting fre-
quency. As such, we can make probability statements about lots
of things, not just data which are subject to random variation.
For example, I might say that ‘the probability that Albert Ein-
stein drank a cup of tea on August 1 1948” is .35. This does not
refer to any limiting frequency. It reflects my strength of belief
that the proposition is true.

(B2) We can make probability statements about parameters,
even though they are fixed constants.

(B3) We make inferences about a parameter 6, by producing
a probability distribution for 6. Inferences, such as point esti-
mates and interval estimates may then be extracted from this
distribution.

Bayesian inference is a controversial approach because it in-
herently embraces a subjective notion of probability. In general,
Bayesian methods provide no guarantees on long run perfor-
mance. The field of Statistics puts more emphasis on frequentist
methods although Bayesian methods certainly have a presence.
Certain data mining and machine learning communuties seem to
embrace Bayesian methods very strongly. Let’s put aside philo-
sophical arguments for now and see how Bayesian inference is
done. We'll conclude this chapter with some discussion on the
strengths and weaknesses of each approach.

12.2 The Bayesian Method

Bayesian inference is usually carried out in the following way.

1. We choose a probability density f(#) — called the prior
distribution — that expresses our degrees of beliefs about
a parameter 6 before we see any data.
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2. We choose a statistical model f(x|@) that reflects our be-

liefs about = given #. Notice that we now write this as
f(x]0) instead of f(x;0).

3. After observing data Xi,...,X,, we update our beliefs
and form the posterior distribution f(#|Xy,...,X,).

To see how the third step is carried out, first, suppose that 6 is
discrete and that there is a single, discrete observation X. We
should use a capital letter now to denote the parameter since
we are treating it like a random variable so let © denote the
parameter. Now, in this discrete setting,

P(X=2,0=0) P(X =1|0=0)P© =0)

PO=0|X =2x)= =
( X =a) P(X =) S, P(X =2/0 =0)P(© =0)
which you may recognize from earlier in the course as Bayes’
theorem. The version for continuous variables is obtained by
using density functions:
f(x]0)f(0)
f(O)z) = ) (12.1)
[ f(x]0)f(0)do

If we have n 1ID observations Xj,...,X,, we replace f(z|f)
with f(z1,...,2,]0) = [, f(2;]0). Let us write X™ to mean
(X1,...,X,) and 2" to mean (xy,...,x,). Then

F(0)z"™) = f(z"0)f(0) _ L, (0)f(0)
[ fa|0)f(0)do [ L,(0)f(0)do

o Ln(0) f(6).

(12.2)
In the right hand side of the last equation, we threw away the
denominator [ £, (0)f(8)df which is a constant that does not
depend on #; we call this quantity the normalizing constant.
We can summarize all this by writing:

“posterior is proportional to likelihood times prior.”  (12.3)

You might wonder, doesn’t it cause a problem to throw away
the constant [ L£,(0)f(#)dd? The answer is that we can always
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recover the constant is since we know that [ f(f|z")df = 1.
Hence, we often omit the constant until we really need it.
What do we do with the posterior? First, we can get a point
estimate by summarizing the center of the posterior. Typically,
we use the mean or mode of the posterior. The posterior mean

a3 _ wy g ) OLa(0)f(9)
Hn—/ﬁf(9|x 0 =

We can also obtain a Bayesian interval estimate. Define a and b
by [© f(0la™)d0 = [ f(#]2")d0 = /2. Let C = (a,b). Then

1S

(12.4)

b
PO € C|z") :/ f(@z")do =1 — «

so C' is a 1 — « posterior interval.

Example 12.1 Let X;,..., X, ~ Bernoulli(p). Suppose we take
the uniform distribution f(p) =1 as a prior. By Bayes’ theorem
the posterior has the form

f(pla™) o< f(p)Lon(p) = p* (1 —p)"~° = pH 71 (1 = p)n sttt

where s = . x; is the number of heads. Recall that random
variable has a Beta distribution with parameters o and [ if its
density is

_ ['(a+ B) o1
INCYINGE)

We see that the posterior for p is a Beta distribution with pa-

rameters s+ 1 and n — s + 1. That is,

fps a, B) (1-p)f

I'(n+2)
s+ 1)I'(n—s+1)

fpla™) = pUTITH (L — p)lnms =t

We write this as

plz™ ~ Beta(s +1,n — s + 1).
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Notice that we have figured out the normalizing constant without
actually doing the integral [ L, (p)f(p)dp. The mean of a Beta
(e, B) is af (v + ) so the Bayes estimator is

s+1
n+2

D=
It is instructive to rewrite the estimator as

where p = s/n is the mle, p = 1/2 is the prior mean and A\, =
n/(n+2) 1. A 95 per cent posterior interval can be obtained
by numerically finding a and b such that fab f(p|z™) dp = .95.

Suppose that instead of a uniform prior, we use the prior p ~
Beta(a, 8). If you repeat the calculations above, you will see that
plz™ ~ Beta(a + s, +n — s). The flat prior is just the special
case with o = 8 = 1. The posterior mean s

_ a+s _< n >A+< a—i—ﬁ)
P=avprn \axB+n)P " \ax5+n)P
where py = a/(a+ () is the prior mean. B

In the previous example, the prior was a Beta distribution
and the posterior was a Beta distribution. When the prior and
the posterior are in the same family, we say that the prior is
conjugate.

Example 12.2 Let Xy,..., X, ~ N(0,0%). For simplicity, let us
assume that o is known. Suppose we take as a prior @ ~ N(a,b?).
In problem 1 in the homework, it ws shown that the posterior for
0 is

0|X" ~ N(a,b?) (12.5)

where
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where . X X X
T M S atp
and se = o/\/n is the standard error of the mle X. This is
another example of a conjugate prior. Note that w — 1 and
T/se — 1 as n — 0o. So, for large n, the posterior is approx-
imately N(é\, se?). The same is true if n is fized but b — oo,
which corresponds to letting the prior become very flat.
Continuing with this example, let is find C' = (¢, d) such that
Pr(@ € C|X™) = .95. We can do this by choosing ¢ such that
Pr(f < ¢|X™) =.025 and Pr( > d|X™) = .025. So, we want to

find ¢ such that

w =

6—0 -0
PO < cX™) = P< < ‘X”)

T T
— P<Z< d) — 025.
T

Now, we know that P(Z < —1.96) = .025. So

|

Cc —

= —1.96

-
implying that ¢ = 0 —1.967. By similar arguments, d = 6+ 1.96.
So a 95 per cent Bayesian interval is 0 + 1.96 7. Since 6 ~ )
and T = se, the 95 per cent Bayesian interval is approximated
by 0 + 1.96 se which is the frequentist confidence interval. B

12.3 Functions of Parameters

How do we make inferences about a function 7 = ¢(#)? Re-
member in Chapter 3 we solved the following problem: given
the density fx for X, find the density for Y = g(X). We now
simply apply the same reasoning. The posterior CDF for 7 is

H(r|a") = P(g(6) < 7) = / F(01z)do
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where A = {6 : ¢(0) < 7}. The posterior density is h(7]z") =

H'(r|z").

Example 12.3 Let X,..., X, ~ Bernoulli(p) and f(p) = 1 so
that p|X™ ~ Beta(s + 1,n — s+ 1) with s = > x;. Let ¢ =
log(p/(1—p)). Then

x”)

Hl) = P <o) =P (g (25) <o
61/] n
v |” )
e¥/(1+e?)
= [ sk

¥ ¥

I'(n+2 " /(tet) .

= n +2) / p’(1=p)" *dp
s+ 1)I'(n—s+1)

= P(Pg
1

and

h(la") = H'(y]a")

i (HE)(?(”—)SH)(1?@1&)5(1;«#)”_5 %
i (Hz)(?(j‘i)sﬂ)<1i¢ew>s<1je¢>ns<1+lew>2
ks 1
)

_ ['(n+2) e \° n-st2
T+ DT(n—s+1) \1+e¥ 1+e¥

forveR N

12.4 Simulation

The posterior can often be approximated by simulation. Sup-
pose we draw 61, ..., 05 ~ p(f|xz™). Then a histogram of 0y, ..., 0p
approximates the posterior density p(f|z™). An approximation
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to the posterior mean 6,, = E(#|z") is B~ Zle 6;. The poste-
rior 1 — « interval can be approximated by (04/2,61_a/2) Where
fa/2 is the a/2 sample quantile of 0y,...,05.

Once we have a sample 0y, ..., 0p from f(0|z"), let 7, = g(6;).
Then 71,...,7p is a sample from f(7|z™). This avoids the need
to do any analytical calculations. Simulation is discussed in more
detail later in the book.

Example 12.4 Consider again Erample 12.3. We can approxi-
mate the posterior for 1 without doing any calculus. Here are
the steps:

1. Draw Py, ..., Pg ~ Beta(s+ 1,n — s+ 1).

2. Let ip; = log(P;/(1—P;)) fori=1,...,B.

Now i, ..., are D draws from h(¢|z™). A histogram of
these values provides an estimate of h(1]z"). B

12.5 Large Sample Properties of Bayes’
Procedures.

In the Bernoulli and Normal examples we saw that the pos-
terior mean was close to the MLE . This is true in greater gen-
erality.

Theorem 12.5 Under appropriate regulamty conditions, we have
that the posterior is approximately N(9 se ) where Gn 15 the
MLE and s€ = 1/\/n1(0n). Hence, 0, ~ 0,. Also, if C = (@\n -
Za)2S€ é\n—i-za/gs/é) is the asymptotic frequentist 1 —a confidence
interval, then C,, is also an approximate 1—a Bayesian posterior

nterval:

P@ e CIX") = 1-a.
There is also a Bayesian delta method. Let 7 = ¢(6). Then
TIX" &~ N(7, 5¢°)
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~

where 7 = ¢(f) and se = se |¢'(6)].

12.6 Flat Priors, Improper Priors and
“Noninformative” Priors.

A big question in Bayesian inference is: where do you get
the prior f(#)? One school of thought, called “subjectivism”
says that the prior should reflect our subjective opinion about
f before the data are collected. This may be possible in some
cases but seems impractical in complicated problems especially
if there are many parameters. An alternative is to try to define
some sort of “noninformative prior.” An obvious candidate for
a noninformative prior is to use a “flat” prior f(f) o constant.

In the Bernoulli example, taking f(p) = 1 leads to p|X" ~
Beta(s + 1,n — s+ 1) as we saw earlier which seemed very rea-
sonable. But unfettered use of flat priors raises some questions.

IMPROPER PRIORS. Consider the N(6,1) example. Suppose
we adopt a flat prior f(6) o ¢ where ¢ > 0 is a constant. Note
that [ f(0)df = oo so this is not a real probability density
in the usual sense. We call such a prior an improper prior.
Nonetheless, we can still carry out Bayes’ theorem and compute
the posterior density f(0) o< L£,(0)f(0) x L,(f). In the nor-
mal example, this gives §]X™ ~ N(X,0%/n) and the resulting
point and interval estimators agree exactly with their frequen-
tist counterparts. In general, improper priors are not a problem
as long as the resulting posterior is a well defined probability
distribution.

FLAT PRIORS ARE NOT INVARIANT. Go back to the Bernoulli
example and consider using the flat prior f(p) = 1. Recall that
a flat prior presumably represents our lack of information about
p before the experiment. Now let ¢ = log(p/(1 — p)). This is a
transformation and we can compute the resulting distribution
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for . It turns out that

e?
(1+e¥)?

But one could argue that if we are ignorant about p then we are

fo:(d’) =

also ignorant about v so shouldn’t we use a flat prior for ¢)? This
contradicts the prior fy (1)) for ¢ that is implied by using a flat
prior for p. In short, the notion of a flat prior is not well-defined
because a flat prior on a parameter does not imply a flat prior
on a transformed version of the parameter. Flat priors are not
transformation invariant.

JEFFREYS’ PRIOR. Jeffreys came up with a “rule” for cre-
ating priors. The rule is: take f(f) oc I(#)'/? where () is the
Fisher information function. This rule turns out to be transfor-
mation invariant. There are various reasons for thinking that
this prior might be a useful prior but we will not go into details
here.

Example 12.6 Consider the Bernoulli (p). Recall that
1
I(p) = ——.
) p(1—p)
Jeffrey’s rule says to use the prior

f(p) \/@ = p—1/2(1 _p)—1/2.

This is a Beta (1/2,1/2) density. This is very close to a uniform
density.

In a multiparameter problem, the Jeffreys’ prior is defined to
be f(0) < /detI(#) where det(A) denotes the determinant of

a matrix A.

12.7 Multiparameter Problems



12.7 Multiparameter Problems 215

In principle, multiparameter problems are handled the same
way. Suppose that 8 = (04, ...,0,). The posterior density is still
given by

p(0]z") o< L,(0)f(0).
The question now arises of how to extract inferences about one
parameter. The key is find the marginal posterior density for
the parameter of interest. Suppose we want to make inferences
about ;. The marginal posterior for 6, is

£(6,)2™) :/---/f(&l,---,9p|x”)d92...d0p.

In practice, it might not be feasible to do this integral. Simula-
tion can help. Draw randomly from the posterior:

6L,..., 07 ~ F(0]a")

where the superscripts index the different draws. Each 67 is a
vector 07 = (¢, ..., 67). Now collect together the first compo-
nent of each draw:

ol,... 08,

These are a sample from f(60;|2™) and we have avoided doing
any integrals.

Example 12.7 (Comparing two binomials.) Suppose we have ny con-
trol patients and no treatment patients and that X, control pa-
tients survive while Xo treatment patients survive. We want to
estimate T = g(p1,p2) = p2 — p1- Then,

X ~ Binomial(ny,p;) and X, ~ Binomial(ng, ps).

Suppose we take f(p1,p2) = 1. The posterior is

ny1—r1,,2

f(P1,p2|$1,l‘2) (8 P:-fl(l - Pl) Y2 (1 _p2)

n2—r2

Notice that (p1,pe) live on a rectangle (a square, actually) and
that

f(Pr,p2|w1, 22) = f(p1]21) f(p2l|22)
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where

n2—r2

f(prlzy) ocpi* (1 —pi)™ ™" and  f(p2|22) o< p3(1 — p2)
which tmplies that p; and ps are independent under the pos-
terior. Also, p1|lx; ~ Beta(z; + 1,n1 — 1 + 1) and polzy ~
Beta(zy+1, ng—x9+1). If we simulate Py 4, ..., Py g ~ Beta(x,+
L,ng—x1+1) and Py, ..., Py ~ Beta(ze+1,ny— 29+ 1) then
=Dy, — Py, b=1,...,B, is a sample from f(7|xy,x2). B

12.8 Strengths and Weaknesses of Bayesian
Inference

Bayesian inference is appealing when prior information is avail-
able since Bayes’ theorem is a natural way to combine prior in-
formation with data. Some people find Bayesian inference psy-
chologically appealing because it allows us to make probability
statements about parameters. In contrast, frequentist inference
provides confidence sets C),, which trap the parameter 95 per
cent of the time, but we cannot say that P(6 € C,|X") is .95.
In the frequentist approach we can make probability statements
about C), not #. However, psychological appeal is not really an
argument for using one type of inference over another.

In parametric models, with large samples, Bayesian and fre-
quentist methods give approximately the same inferences. In
general, they need not agree. Consider the following example.

Example 12.8 Let X ~ N(0,1) and suppose we use the prior
0 ~ N(0,72). From (12.5), the posterior is

>:N(ca:,c)

where ¢ = 72/(2 + 1). A 1 — « per cent posterior interval is
C = (a,b) where

a=ct—\Czap and b= cx+/czo.

T 1

Oz ~N|—
| <1+T% 1+ 4
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Thus, P(6 € C|X) =1 — a. We can now ask, from a frequntist
perspective, what is the coverage of C, that is, how often will
this interval contain the true value? The answer is

Pola <0 <b) = Py(cX — zq42v/c <O < cX + 24/2V/)

_ p, <0—za/2\/5—00 X _f< 9+za/2\/5—09>
c

Cc

Cc Cc

_ p, <9(1 —¢) — Zaj2\/C <7< 0(1 — ¢) + zaj20/c

c C

where Z ~ N(0,1). Figure 12.1 shows the coverage as a function
of 0 for T =1 and o = .05. Unless the true value of 8 is close to
0, the coverage can be very small. Thus, upon repeated use, the
Bayesian 95 per cent interval might contain the true value with
frequency near 0! In contrast, a confidence interval has coverage
95 per cent coverage no matter what the true value of 0 is. B

What should we conclude from all this? The important thing
is to understand that frequentist and Bayesian methods are an-
swering different questions. To combine prior beliefs with data
in a principled way, use bayesian inference. To construct proce-
dures with guaranteed long run performance, such as confidence
intervals, use frequentist methods. It is worth remarking that it
is possible to develop nonparametric Bayesian methods similar
to plug-in estimation and the bootstrap. be forewarned, how-
ever, that the frequency properties of nonparametric Bayesian
methods can sometimes be quite poor.

12.9 Appendix

Proof of Theorem 12.5.
It can be shown that the effect of the prior diminishes as
n increases so that f(0|X") o« L,(0)f(0) ~ L,(0). Hence,

_ % <9(1 —c)+ Za/2\/5> _ & (9(1 —€) — Zap2/C

)
)
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FIGURE 12.1. Frequentist coverage of 95 per cent Bayesian posterior
interval as a function of the true value 6. The dotted line marks the
95 per cent level.
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log £(0]X") ~ £(9). Now, £(0) ~ (B) + (0 — 0)¢'(B) + [(0 —

0)%/2]0"(0) = €(0) + [(0 — 0)*/2]¢" () since ¢'(#) = 0. Exponen-
tiating, we get approximately that

F(O1X™) x exp {—3 e _29)2}

2 o}

-~

where 02 = — —1/0"(0,,). So the posterior of § is approximately
Normal with mean # and variance o2. Let ¢; = log f(X;|6), then

0,7 = _gﬂ(é\n) = Z _égl(é\n)

and hence o, ~ se(f). B

12.10 Bibliographic Remarks

Some references on Bayesian inference include Carlin and
Louis (1996), Gelman, Carlin, Stern and Rubin (1995), Lee
(1997), Robert (1994) and Schervish (1995). See Cox (1997), Di-
aconis and Freedman (1996), Freedman (2001), Barron, Schervish
and Wasserman (1999), Ghosal, Ghosh and van der Vaart (2001),
Shen and Wasserman (2001) and Zhao (2001) for discussions of
some of the technicalities of nonparametric Bayesian inference.

12.11 Exercises

1. Verify (12.5).

2. Let Xy, ..., X;, Normal(yu, 1). (a) Simulate a data set (using
p = 5) consisting of n=100 observations.

(b) Take f(x) =1 and find the posterior density. Plot the
density.
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(c) Simulate 1000 draws from the posterior. Plot a his-
togram of the simulated values and compare the histogram
to the answer in (b).

(d) Let § = e*. Find the posterior density for # analytically
and by simulation.

(e) Find a 95 per cent posterior interval for 6.

(f) Find a 95 per cent confidence interval for 6.

Let X, ..., X,, Uniform(0,6). Let f(#) o 1/6. Find the
posterior density.

Suppose that 50 people are given a placebo and 50 are
given a new treatment. 30 placebo patients show improve-
ment while 40 treated patients show improvement. Let
T = po — p1 Where ps is the probability of improving under
treatment and p; is the probability of improving under
placebo.

(a) Find the mle of 7. Find the standard error and 90 per
cent confidence interval using the delta method.

(b) Find the standard error and 90 per cent confidence
interval using the parametric bootstrap.

(c) Use the prior f(pi,p2) = 1. Use simulation to find the
posterior mean and posterior 90 per cent interval for 7.

(d) Let
oo ((725) + (75)

be the log-odds ratio. Note that ¢» = 0 if p; = ps. Find
the MLE of 1. Use the delta method to find a 90 per cent
confidence interval for .

(e) Use simulation to find the posterior mean and posterior
90 per cent interval for .
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5. Consider the Bernoulli(p) observations
0101000000
Plot the posterior for p using these priors: Beta(1/2,1/2),
Beta(1,1), Beta(10,10), Beta(100,100).

6. Let Xy,..., X, ~ Poisson(A).

(a) Let A\ ~ Gamma(a, ) be the prior. Show that the
posterior is also a Gamma. Find the posterior mean.

(b) Find the Jeffreys’ prior. Find the posterior.
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13
Statistical Decision Theory

13.1 Preliminaries

We have considered several point estimators such as the max-
imum likelihood estimator, the method of moments estimator
and the posterior mean. In fact, there are many other ways to
generate estimators. How do we choose among them? The an-
swer is found in decision theory which is a formal theory for
comparing statistical procedures.

Consider a parameter # which lives in a parameter space ©.
Let @ be an estimator of 6. In the language of decision theory, a
estimator is sometimes called a decision rule and the possible
values of the decision rule are called actions.

We shall measure the discrepancy between € and ) using a
loss function L(#, 5) Formally, L maps © x © into R. Here

This is page 227
Printer: Opaque this
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are some examples of loss functions:

~

L(6,0) = (0 — 0)? squared error loss,
L(#,60)= 10— 46| absolute error loss,
=0—-0p L, loss,

=0if0=0and1if 0§ #* 8  zero-one loss,

= [log (%) f(z; 0)dz  Kullback-Leibler loss.

/\/\:/\A
S DD
) YY)
— ===

Bear in mind in what follows that an estimator 5 is a function
of the data. To emphasize this point, sometimes we will write 6

as 6(X). To assess an estimator, we evaluate the average loss or
risk.

Definition 13.1 The risk of an estimator 0 is

R(60.5) = £ (L(0.5)) = / L(0,0(x)) f (x: 0)dz.

When the loss function is squared error, the risk is just the
MSE (mean squared error):

A ~ ~

R(6,0) = Eo(f — 0)> = MSE = V,(8) + bias 2(d).

In the rest of the chapter, if we do not state what loss func-
tion we are using, assume the loss function is squared
error.

13.2 Comparing Risk Functions

To compare two estimators we can compare their risk func-
tions. However, this does not provide a clear answer as to which
estimator is better. Consider the following examples.

Example 13.2 Let X ~ N(6,1) and assume we are using squared
error loss. Consider two estimators: 1 = X and 60, = 3. The
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HR
=
—
B
>
[
~—

O f T - 1 f 0
0 1 2 3 4 5

FIGURE 13.1. Comparing two risk functions. Neither dominates the
other at all values of 4.

risk functions are R(H,@\l) = Ey(X —0)> =1 and R(H,@\g) =
Eq(3 — 0)2 = (3 — 0)2. Notice that, if 2 < 0 < 4 then R(0,05) <
R(0,8,) otherwise R(6,0,) < R(0,0,). Neither estimator uni-
formly dominates the other; see Figure 13.1. Obuviously 52 1S a
ridiculous estimator but it serves to illustrate the point that it
18 not obvious how to compare two risk functions. W

Example 13.3 Let Xi,..., X, ~ Bernoulli(p). Consider squared
error loss and let py = X. Since this has 0 bias, we have that

~ - p(l—p
Rip,n) = v(x) = L2
Another estimator is
. Y+a
=07 B+n

where Y =37 | X; and « and B are positive constants. This is
the posterior mean using a Beta (a, ) prior. Now,

R(p,p2) = V,(p2) + (bias,(52))”

B Y +a Y+a ?
- V’“(oz+ﬂ+n>+(]Ep<oz+/3+n)_p)
7wﬂ—p)_+<7m+a )2

(@+B8+n)? \a+B+n 7
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FIGURE 13.2. Risk functions for p; and p3 in Example 13.3.

Now let « = 8 = /n/4. (In Example 13.13 we will explain this
choice.) The resulting estimator is

. Y +/n/4

and risk function is

R(p,p2) = m

The risk functions are plotted in figure 13.2. As we can see,
neither estimator uniformly dominates the other.

These examples highlight the need to be able to compare risk
functions. To do so, we need a one-number summary of the risk
function. Two such summaries are the maximum risk and the
Bayes risk.
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Definition 13.4 The maximum risk is

~

R(6) = sup R(0,0) (13.1)
[
and the Bayes risk s
r(r,8) = / R0, 8)r(0)d0 (13.2)

where 7(0) is a prior for 0.

Example 13.5 Consider again the two estimators in Fxample 15.5.

We have

o p(1-p) 1
R(pr) = 0121?5}(1 n  4n

and

R(p>) = max n

n
p 4n+n)?2  4(n++/n)?

Based on mazimum risk, Dy is a better estimator since R(ps) <
R(py). However, when n is large, R(py) has smaller risk except

for a small region in the parameter space near p = 1/2. Thus,
many people prefer py to Do. This illustrates that one-number
summoaries like marimum risk are imperfect. Now consider the
Bayes risk. For illustration, let us take w(p) = 1. Then

r(m, p1) :/R(paﬁl)dp:/p(lT_p)dp: %

and
n

7‘(%52) = /R(p,ﬁz)dp = m

Forn > 20, r(m,p2) > r(m,p1) which suggests that py is a better
estimator. This might seem intuitively reasonable but this an-
swer depends on the choice of prior. The advtantage of using
maximum risk, despite its problems, is that it does not require
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one to choose a prior. In high-dimensional, complex problems,
choosing a defensible prior can be extremely difficult. B

These two summaries of the risk function suggest two dif-
ferent methods for devising estimators: choosing 0 to minimize
the maximum risk leads to minimax estimators; choosing f to
minimize the Bayes risk leads to Bayes estimators.

Definition 13.6 A decision rule that minimizes the Bayes
risk is called a Bayes rule. Formally, 0 is a Byes rule
for prior m if

~ ~

R(6,0) = inf r(r, 0) (13.3)
0

where the infimum is over all estimators 0.

Definition 13.7 An estimator that minimizes the maxi-
mum risk is called a minimax rule. Formally, 0 s min-
imaz if

~ ~

R(#,6) = inf sup R(6, 6) (13.4)
g o

where the infimum is over all estimators 0.

13.3 Bayes Estimators

Let 7 be a prior. From Bayes’ theorem, the posterior density
is
fz]0)m(0) _ f(x|6)m(6)
m@) ] f(alf)r(6)dd

where m(z) = [ f(z,0)d§ = [ f(z|0)n(0)df is the marginal
distribution of X. Define the posterior risk of an estimator

fOlz) = (13.5)
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f(z) by
r(f|z) = / L(0,6(z))f(0)z)do. (13.6)

~

Theorem 13.8 The Bayes risk r(m,0) satisfies

~

r(m,B) = / r(@l2)m(z) d.
Let 5(3:) be the value of 0 that minimizes r(g\x) Then 0 is the
Bayes estimator.

PROOF. We can rewrite the Bayes risk as follows:
r(r,0) = / R(6,0)7(0)df = / ( / L(6,6(z)) f(x\@)dm)w(&)d@
_ / / L(0,8(2)) f (z, 0)dzdd = / / L(6, 8(2)) £ (0]2)m () dzdo
_ / ( / L(6,8(x)) f(9|x)d9>m(x) dz = / r(0lz)m(z) da.

If we choose 8(z) to be the value of § that minimizes r(f]z) then
we will minimize the integrand at every x and thus minimize the

integral [ r(8)z)m(z)dz. B

Now we can find an explicit formula for the Bayes estimator
for some specific loss functions.

~ ~

Theorem 13.9 If L(0,0) = (0 — )? then the Bayes estimator is
iz = /0f(0|a:)d0 _E(0X = 1). (13.7)

If L(0,0) = |0 — 8] then the Bayes estimator is the median of

the posterior f(0|x). If L(0,0) is zero-one loss, then the Bayes
estimator is the mode of the posterior f(0|z).

ProoF. We will prove the theorem for squared error loss. The
Bayes rule 0(z) minimizes r(f|z) = [(0—0(x))?f(0|z)d6. Taking
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the derivative of 7"(5|3:) with respect to @\(x) and setting it equal
to 0 yields the equation 2 [(§ — 6(z)) f(f|z)df = 0. Solving for

~

O(z) we get 13.7. R

Example 13.10 Let Xi,..., X, ~ N(u,0?) where o? is known.
Suppose we use a N(a,b?) prior for u. The Bayes estimator with
respect to squared error loss is the posterior mean, which is

Q(XI’...’XR):WX+62+£G. -

13.4 Minimax Rules

The problem of finding minimax rules is complicated and we
cannot attempt a complete coverage of that theory here but
we will mention a few key results. The main message to take
away from this section is: Bayes estimators with a constant risk
function are minimax.

Theorem 13.11 Let O™ be the Bayes rule for some prior w:

r(m,0") = inf r(m, 6). (13.8)
9
Suppose that
R(6,07) < r(m,07) for all 6. (13.9)

Then 07 is minimaz and 7 is called a least favorable prior.

PROOF. Suppose that g™ is not minimax. Then there is an-
other rule 6 such that sup, R(6,6,) < supy R(6,67). Since the
average of a function is always less than or equal to its maxi-
mum, we have that r(r, 50) < sup, R(6, 50). Hence,

~

r(r,80) < sup R(8,0y) < sup R(6,67) < r(m,67)
9 9
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which contradicts (13.8). B

Theorem 13.12 Suppose that 0 is the Bayes rule with re-
spect to some prior w. Suppose further that § has constant
risk: R(6, 0) = ¢ for some c. Then 8 is minimaxz.

PROOF. The Bayes risk is r(r, 0) = [ R(0,0)r(0)d0 = ¢ and
hence R(6,8) < r(w,8) for all §. Now apply the previous theo-
rem. Wl

Example 13.13 Consider the Bernoulli model with squared error
loss. In example 13.3 we showed that the estimator

(Xn) Zz lnﬁ—;_r

has a constant risk function. This estimator is the posterior
mean, and hence the Bayes rule, for the prior Beta(a, 8) with
a=[f= \/m Hence, by the previous theorem, this estimator
18 munimaz. W

Example 13.14 Consider again the Bernoulli but with loss func-
tion

~_(p—Dp)?
L(p,p) = — <
2 p(1—p)
Let v
(X" =p=—.
p(X")=p -
The risk is

) =F (1(71(31—_172));) - p(ll—p) <p(1n—P)> - %

which, as a function of p, is constant. It can be shown that, for
this loss function, p(X™) is the Bayes estimator under the prior
7(p) = 1. Hence, p is minimaz. B



“Well-behaved”
means that the level
sets must be convex
and symmetric
about the origin.
The result holds up
to sets of measure
0.

Typically, the
squared bias is order
O(n™%) while the
variance is of order

O(n™).
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A natural question to ask is: what is the minimax estimator
for a Normal model?

Theorem 13.15 Let X, ..., X, ~ N(0,1) and let § = X. Then
0 is minimax with respect to any well-behaved loss function. It
1s the only estimator with this property.

If the parameter space is restricted, the theorem above does
not apply as the next example shows.

Example 13.16 Suppose that X ~ N(0,1) and that 0 is known
to lie in the interval [—m, m| where 0 < m < 1. The unique,
minimaz estimator under squared error loss is

(X) = mtanh(mX)

where tanh(z) = (e —e~?)/(e* + €7%). It can be shown that this
is the Bayes rule with respect to the prior that puts mass 1/2 at
m and mass 1/2 at —m. Moreover, it can be shown that the risk

~ ~

is not constant but it does satisfy R(0,0) < r(m,0) for all 0; see

-~

Figure 13.3. Hence, Theorem 13.11 implies that 6 is minimaz.
[ |

13.5 Maximum Likelihood, Minimax and Bayes

For parametric models that satisfy weak regularity conditions,
the maximum likelihood estimator is approximately minimax.
Consider squared error loss which is squared bias plus variance.
In parametric models with large samples, it can be shown that
the variance term dominates the bias so the risk of the MLE §
roughly equals the variance:

R(6,8) = Vy(8) + bias? ~ Vy(B).

As we saw in the Chapter on parametric models, the variance
of the MLE is approximately




13.5 Maximum Likelihood, Minimax and Bayes 237
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r T 1
-o0.5 0.0 0.5

FIGURE 13.3. Risk functions for constrained Normal with m=.5.
The two short lines show the least favorable prior which puts its
mass at two points.

where I(6) is the Fisher information. Hence,

nR(0,0) ~ 0} (13.10)

For any other estimator €', it can be shown that for large n,
R(6,0") > R(6,0). More precisely,
limlimsup sup nR(¢,6) > L (13.11)
e—0 n—00 |9_9/‘<€ ’ - I(Q)

This says that, in a local, large sample sense, the MLE is min-
imax. It can also be shown that the MLE is approximately the
Bayes rule.

In summary, in parametric models with large samples, the
MLE is approximately minimax and Bayes. There is a caveat:
these results break down when the number of parameters is
large as the next example shows.

Example 13.17 (Many Normal means) Let Y; ~ N(0;,0%/n), i =
1,...,n. Let Y = (Y1,...,Y,) denote the data and let 6 =



The many Normal
means problem s
more general than
it looks. Many
nonparametric  es-
timation  problems
are mathematically
equivalent to this
model.
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0,) denote the unknown parameters. Assume that

292<c}

for some ¢ > 0. In this model, there are as many parameters
as observations. The MLE is 0 = YV = (Y1,...,Y,). Under the
loss function L(H,g) = Z?:l(@ — 6;)%, the risk of the MLE is
R(6, 5) = 2. It can be shown that the minimaz risk is approzi-
mately o2 /(0?+c?) and one can find an estimator 0 that achieves
this risk. Since 02 /(02 + ¢2) < 02, we see that 0 has smaller risk
than the MLE . In practice, the difference between the risks can
be substantial. This shows that mazimum likelihood is not an

96(9”5{91,...,

optimal estimator in high dimensional problems.

13.6 Admissibility

Minimax estimator and Bayes estimator are “good estimator”
in the sense that they have small risk. Sometimes it is also useful
to characterize bad estimator.

Definition 13.18 An estimator 0 is inadmissible if there
exists another rule ' such that

R(6,8) for all & and
0.7

R(#,0) for at least one 6.

Example 13.19 Let X ~ N(0,1) and consider estimating 6 with
squared error loss. Let g(X) = 3. We will show that 0 is ad-
missible. Suppose not. Then there exists a diﬁerent rule 0 with
smaller risk. In particular, R(3,0) < R(3, 6) = 0. Hence, 0 =
R(3,0) = f(O'( ) — 3)2f(x; 3)dx. Thus, 0'(z) = 3. So there is
no rule that beats 0. Even though 0 is admissible it is clearly a
bad decision rule. B
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A prior density has full support if for every 6 and every
e>0, [ n(6)dd > 0.

Theorem 13.20 (Bayes rules are admissible.) Suppose that
© C R and that R(0, 0) s a continuous function of 0 for every
0. Let 7 be a prior density with full support and let O™ be the
Bayes’ rule. If the Bayes risk is finite then 07 is admissible.

PROOF. Suppose 0™ is inadmissible. Then there exists a better
rule § such that R(6,0) < R(0,0) for all # and R(6,,0) <
R(65,07) for some 6. Let v = R(6,07) — R(6o,0) > 0. Since R
is continuous, there is an € > 0 such that R(6), 5”)—R(0, é\) > v/2
for all 6 € (6y — €,6y + €). Now,

r(m,07) — r(m,8) = / R(6,67)w(0)d6 — / R(6,0)7(6)d6
_ / [R(6.67) — R(0,5)] n(6)d0

> / e [R(0.5) — R(0.5)] w(6)a0

0—€

v o+e€
> v / (6)d6
2 Jy

0—€

> 0.

Hence, r(m, 0”) > r(m, @\) This implies that 8™ does not minimize
r(m, 0) which contradicts the fact that 6™ is the Bayes rule. W

Theorem 13.21 Let X,..., X, ~ N(u,0?). Under squared er-
ror loss, X is admissible.

The proof of the last theorem is quite technical and is omitted
but the idea is as follows. The posterior mean is admissible for
any strictly positive prior. Take the prior to be N(a, b?). When
b? is very large, the posterior mean is approximately equal to
X.
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How are minimaxity and admissibility linked? In general, a
rule may be one, both or neither. But here are some facts linking
admissibility and minimaxity.

Theorem 13.22 Suppose that 0 has constant risk and is admis-
sible. Then it is minimaz.

PROOF. The risk is R(6,0) = c¢ for some c. If § were not
minimax then there exists a rule 6’ such that

~

R(6,8) < sup R(0,8) < sup R(6,0) = c.
[4 [

This would imply that 0 is inadmissible. W
Now we can prove a restricted version of Theorem 13.15 for
squared error loss.

Theorem 13.23 Let X,..., X, ~ N(0,1). Then, under squared
error loss, = X is minimaz.

PRrROOF. According to Theorem 13.21, f is admissible. The
risk of # is 1/n which is constant. The result follows from The-
orem 13.22. &

Although minimax rules are not guaranteed to be admissi-
ble they are “close to admissible.” Say that 9 is strongly in-
admissible if there exists a rule # and an ¢ > 0 such that
R(6,8") < R(6,0) — € for all 6.

Theorem 13.24 If§ 18 minimax then it is not strongly inadmais-
sible.

13.7 Stein’s Paradox

Suppose that X ~ N(6,1) and consider estimating 6 with
squared error loss. From the previous section we know that
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@\(X ) = X is admissible. Now consider estimating two, unre-
lated quantities @ = (01, 6,) and suppose that X; ~ N(6;,1) and
X, ~ N(6,,1) independently, with loss L(6, §) = Z?Zl(ﬁj—lﬁ\j)?.
Not surprisingly, @\(X ) = X is again admissible where X =
(X1, X2). Now consider the generalization to k£ normal means.
Let 0 = (64,...,60k), X = (X4,..., X)) with X; ~ N(6;,1) (in-
dependent) and loss L(4, 5) =Y (8, - 5])2 Stein astounded

7=1
everyone when he proved that, if £ > 3, then #(X) = X is inad-
missible. It can be shown that the following estimator, known

as the James-Stein estimator, has smaller risk:

fs(X) = (1 — %)U{ (13.12)

where (z)* = max{z,0}. This estimator shrinks the X;’s to-
wards 0. The message is that, when estimating many param-
eters, there is great value in “shrinking” the estimates. This
observation plays an important role in modern nonparametric
function estimation.

13.8 Bibliographic Remarks

It is difficult to find books that cover modern decision the-
ory in great detail. Aspects of decision theory can be found in
Casella and Berger (2002), Berger (1985), Ferguson (1967) and
Lehmann and Casella (1998).

13.9 Exercises

1. In each of the following models, find (i) the Bayes risk and
the Bayes estimator, using squared error loss.

(a) X ~ Binomial(n, p), p ~ Beta(q, ).
(b) X ~ Poisson()), A ~ Gamma(c, 3).

(¢) X ~ N(6,0?) where 02 is known and 0 ~ N(a, b?).
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. Let X1,...,X, ~ N(f,0%) and suppose we estimate 6

~

with loss function L(f,6) = (8 — §)?/o?. Show that X is
admissible and minimax.

. Let © = {6;,...,6;} be a finite parameter space. Prove

that the posterior mode is the Bayes estimator under zero-
one loss.

(Casella and Berger.) Let X;,..., X, be a sample from a
distribution with variance o2. Consider estimators of the
form bS? where S? is the sample variance. Let the loss
function for estimating o2 be

=2 =2
L(0%,5%) = 0—2 —1—1log <U ) .
o

o?
Find the optimal value of b that minimizes the risk for all

o?.

(Berliner, 1983). Let X ~ Binomial(n, p) and suppose the

loss function is
5 2
L7 = (1-2)
b

where 0 < p < 1. Consider the estimator p(X) = 0. This
estimator falls outside the parameter space (0,1) but we
will allow this. Show that p(X) = 0 is the unique, minimax
rule.

(Computer Experiment.) Compare the risk of the mle and
the James-Stein estimator (13.12) by simulation. Try var-
ious values of n and various vectors #. Summarize your
results.
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14

Linear Regression

Regression is a method for studying the relationship be-
tween a response variable Y and a covariates X. The co-
variate is also called a predictor variable or a feature. Later,
we will generalize and allow for more than one covariate. The
data are of the form

(leaXl)a ey (YnaXn)

One way to summarize the relationship between X and Y is
through the regression function

o) =EYIX =2) = [yflody.  (41)

Most of this chapter is concerned with estimating the regression
function.
14.1 Simple Linear Regression

The simplest version of regression is when X; is simple (a
scalar not a vector) and r(z) is assumed to be linear:

r(z) = o + fiz.

Printer: Opaque this

The term “regres-
sion” is due to
Sir Francis Galton
(1822-1911)  who
noticed that tall
and short men tend
to have sons with
heights closer to the
mean. He called this
“regression towards
the mean.”
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This model is called the the simple linear regression model.
Let € — Y; - (BU + Ble) Then,
E(ei| Xi) = E(Y; — (8o + 51.X0)[Xi) = E(Yi|Xy) — (Bo + 51.X5)
= 7(X;) = (Bo + £1Xe)
= (Bo+5iXi) — (Bo + Bi1Xi)
= 0.
Let 02(z) = V(&|X = ). We will make the further simplifying
assumption that o%(z) = o2 does not depend on x. We can thus
write the linear regression model as follows.

Definition 14.1 The Linear Regresion Model

Yi=00+ 5Xi+e (14.2)
where E(¢;|X;) = 0 and V(| X;) = o2,

Example 14.2 Figure 14.1 shows a plot of Log surface tempera-
ture (Y) versus Log light intensity (X) for some nearby stars.
Also on the plot is an estimated linear regression line which will
be explained shortly.

The unknown parameters in the model are the intercept Sy
and the slope 3; and the variance o2. Let 3, and 3, denote
estimates of 3y and ;. The fitted line is defined to be

P(x) = Bo + Bra. (14.3)
The predicted values or fitted values are ¥; = 7(X;) and the
residuals are defined to be

G=v;-Ti=vi— (B +5xX:). (14.4)

The residual sums of squares or Rss is defined by

n

RSS =) &

=1
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FIGURE 14.1. Data on stars in nearby stars.
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The quantity rRSS measures how well the fitted line fits the data.

Definition 14.3 The least squares estimates are the val-

ues By and By that minimize RSS =Y . €.

Theorem 14.4 The least squares estimates are given by

D i (X — X)) (Vi — V)

fl ) i (=X (145)
By = Y,—BiXn. (14.6)

An unbiased estimate of o2 is

n

5% = <n i 2) Z?Q (14.7)

=1

Example 14.5 Consider the star data from Example 1.2. The
least squares estimates are By = 3.58 and 1 = 0.166. The fitted
line 7(x) = 3.58 + 0.166x is shown in Figure 14.1. B

Example 14.6 (The 2001 Presidential Election.) Figure 14.2 shows
the plot of votes for Buchanan (Y) versus votes for Bush (X)
in Florida. The least squares estimates (omitting Palm Beach
County) and the standard errors are

Bo = 66.0991 $&(By) = 17.2926
Bi = 00.0035 $&(B,) = 0.0002.

The fitted line is
Buchanon = 66.0991 + .0035 Bush.

(We will see later how the standard errors were computed.) Fig-
ure 14.2 also shows the residuals. The inferences from linear
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regression are most accurate when the residuals behave like ran-
dom normal numbers. Based on the residual plot, this is not the
case in this example. If we repeat the analysis replacing votes
with log(votes) we get

By = —2.3208 (B3, =.3529
By = 0.730300 s&(53;) = 0.0358.

This gives the fit
log(Buchanon) = —2.3298 + .7303 log(Bush).

The residuals look much healthier. Later, we shall address two
interesting questions: (1) how do we see if Palm Beach County
has a statistically plausible outcome? (2) how do we do this prob-
lem nonparametrically? B

14.2 Least Squares and Maximum Likelihood

Suppose we add the assumption that €;|X; ~ N(0,0?), that
is,
Y| X ~ N(pi, 07)
where p; = [y + $1X;. The likelihood function is

n

[[rxy) = fo i) frix (Vi X5)

=1
= HfX ><l_[fY|X Yl Xo)
= Ll X £2

where £ =[], fx(X;) and

Ly = H Frix (Vi X5). (14.8)
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FIGURE 14.2. Voting Data for Election 2000.
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The term £, does not involve the parameters 3y and ;. We shall
focus on the second term Lo which is called the conditional
likelihood, given by

" 1
Lo = L(Po, B1,0) = Z_l_Ilflflx(Yz‘|Xi) o 0" exp {—T‘Z zz:(Yi - Ni)2} :

The conditional log-likelihood is

n

1 2
Ubo, B1,0) = —nlogo — - ;(y — (fo+ X)) . (149)

To find the MLE of (fy, /1) we maximize ([, 51, 0). From (14.9)
we see that maximizing the likelihood is the same as minimizing

2
the RSS >, (Yi —(Bo +51Xi)) . Therefore, we have shown the
following.

Theorem 14.7 Under the assumption of Normality, the least squares
estimator is also the mazximum likelihood estimator.

We can also maximize ¢(5y, 51, 0) over o yielding the MLE

1
P=-) ¢ (14.10)

n

This estimator is similar to, but not identical to, the unbiased
estimator. Common practice is to use the unbiased estimator
(14.7).

14.3 Properties of the Least Squares Estimators

We now record the standard errors and limiting distribution
of the least squares estimator. In regression problems, we usu-
ally focus on the properties of the estimators conditional on
X" = (Xy,...,X,). Thus, we state the means and variances as
conditional means and variances.
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Theorem 14.8 Let BT = (B\O, BI)T denote the least squares
estimators. Then,

B = ()
V(BIX") = “22 (%Z?_IXZ _17”>(14.11)

where s% =n~' 30 (X; — X,)%

The estimated standard errors of Bo and 31 are obtained by
taking the square roots of the corresponding diagonal terms of
V(8]X™) and inserting the estimate & for o. Thus,

~ ol noX?
2B = SXU\/E Zlﬁ i (14.12)
s (B) = o (14.13)

Sx \/ﬁ

We should really write these as s& (3| X™) and sé (8,|X™) but
we will use the shorter notation sé (/5y) and s€ (53;).

Theorem 14.9 Under appropriate conditions we have:
1. (Consistency): B\UL By and §1i> Bi.

2. (Asymptotic Normality):

-~

5/0\ _Aﬁo ~» N(0,1) and B/I\ _,\51 ~ N(0,1).
s (o) se (1)

3. Approrimate 1 — « confidence intervals for By and 31 are
Bot zaj258 (Bo) and B+ 24058 (B1).  (14.14)

The Wald test statistic for testing Hy : 1 = 0 versus Hy :
B # 0 is: reject Hy if W > 242 where W = By /se (51).
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Example 14.10 For the election data, on the log scale, a 95 per
cent confidence interval is 7303 + 2(.0358) = (.66,.80). The
fact that the interval excludes 0 The Wald statistics for testing
Hy : 81 =0 versus Hy : 51 # 0 is W = |.7303—0|/.0358 = 20.40
with a p-value of P(|Z| > 20.40) ~ 0. This is strong evidence
that that the true slope is not 0. W

14.4 Prediction

Suppose we have estimated a regression model 7(x) = Bo + 31
from data (X1,Y7),..., (X, Ys). We observe the value X = z,
of the covariate for a new subject and we want to predict their
outcome Y,. An estimate of Y, is

Y. =B+ B X.. (14.15)

Using the formula for the variance of the sum of two random
variables,

V(Y.) = V(Bo + Biz) = V(Bo) + 22V(By) + 22.Cov(By, ).

Theorem 14.8 gives the formulas for all the terms in this equa-
tion. The estimated standard error sé (1/}*) is the square root of
this variance, with o2 in place of o2?. However, the confidence
interval for Y, is not of the usual form i/}* + 24/2. The appendix
explains why. The correct form of the confidence interval is given
in the following Theorem. We call the interval a prediction in-

terval.



254 14. Linear Regression

Theorem 14.11 (Prediction Interval) Let

& = @*V)+75°
— 52 (Z?:l(Xi_{*)Z
n (X — X)?

An approzimate 1 — a predicition interval for Y, is

+ 1) . (14.16)

Y. + 2a)26n. (14.17)

Example 14.12 (Election Data Revisited.) On the log-scale, our lin-
ear regression gives the following prediction equation: log( Buchanon) =
—2.3298 + .7303log(Bush). In Palm Beach, Bush had 15295/
votes and Buchanan had 3467 votes. On the log scale this is
11.93789 and 8.151045. How likely is this outcome, assuming
our regression model is appropriate? Our prediction for log Buchanan
votes -2.3298 + 7303 (11.93789)=6.388441. Now 8.151045 is
bigger than 6.388441 but is is “significantly” bigger? Let us com-
pute a confidence interval. We find that é\n = .093775 and the ap-
proximate 95 per cent confidence interval is (6.200,6.578) which
clearly excludes 8.151. Indeed, 8.151 is nearly 20 standard er-
rors from Y, Going back to the vote scale by exponentiating, the
confidence interval is (493,717) compared to the actual number

of votes which is 3467. B

14.5 Multiple Regression

Now suppose we have k covariates Xi,..., X;. The data are
of the form

(}/IaXl)a R (Y;,aXz)a R (YnaXn)

where
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Here, X is the vector of k covariate values for the i*" observa-
tion. The linear regression model is

k
Y; = Zﬁinj + € (14.18)

j=1

fori =1,...,n, where E(¢;| X1, ..., Xs) = 0. Usually we want
to include an intercept in the model which we can do by setting
X, =1fore=1,...,n. At this point it will be more convenient
to express the model in matrix notation. The outcomes will be
denoted by

and the covariates will be denoted by

XH X12 R Xlk
X — AXt21 AXt22 . . AXt2k
an XnZ s Xnk

Each row is one observation; the columns correspond to the k
covariates. Thus, X is a (n x k) matrix. Let

b €1
b= : and €= :
Bk €n
Then we can write (14.18) as

Y =XB+e (14.19)

Theorem 14.13 Assuming that the (k x k) matriv XT X is in-
vertible, the least squares estimate is
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B=(X"X)"'XTy. (14.20)

The estimated regression function is
k ~
Pla) =Y Bz (14.21)
7j=1

The variance-covariance matrizc ofg 18
V(BIX") = o2(X"X)™.
Under appropriate conditions,
B~ N(B,o2(XTX)™).

An unbiased estimate of o2 is

5 = (n ! k) S
i=1

where € = XB\ —Y s the vector of residuals. An approxrimate
1 — « confidence interval for [5; is

B £ 20/9%8 (5)) (14.22)
where sé 2(B\j) is the j*® diagonal element of the matriz 72(XTX) 1.
Example 14.14 Crime data on 47 states in 1960 can be obtained
at http://lib.stat.cmu.edu/DASL/Stories/USCrime.html. If we

fit a linear regression of crime rate on 10 variables we get the

following:
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Covariate Least Estimated t value p-value

Squares Standard

Estimate Error
(Intercept) -589.59 167.59  -3.51 0.001 **
Age 1.04 0.45 2.33 0.025 *
Southern State 11.29 13.24 0.85 0.599
Education 1.18 0.68 1.7 0.093
Expenditures 0.96 0.25 3.86 0.000 ***
Labor 0.11 0.15 0.69 0.493
Number of Males 0.30 0.22 1.36 0.181
Population 0.09 0.14 0.65 0.518
Unemployment (14-24) -0.68 0.48 -1.4 0.165
Unemployment (25-39) 2.15 0.95  2.26 0.030 *
Wealth -0.08 0.09 -0.91 0.367

This table is typical of the output of a multiple regression pro-
gram. The “t-value” is the Wald test statistic for testing Hy :
Bj = 0 versus Hy : B; # 0. The asterisks denote “degree of
significance” with more asterisks being significant at a smaller
level. The example raises several important questions. In partic-
ular: (1) should we eliminate some variables from this model?
(2) should we interpret this relationships as causal? For exam-
ple, should we conclude that low crime prevention expenditures
cause high crime rates? We will address question (1) in the next
section. We will not address question (2) until a later Chapter.

14.6 Model Selection

Example 14.14 illustrates a problem that often arises in mul-
tiple regression. We may have data on many covariates but we
may not want to include all of them in the model. A smaller
model with fewer covariates has two advantages: it might give
better predictions than a big model and it is more parsimonious
(simpler). Generally, as you add more variables to a regression,
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the bias of the predictions decreases and the variance increases.
Too few covariates yields high bias; too many covariates yields
high variance. Good predictions result from achieving a good
balance between bias and variance.

In model selection there are two problems: (i) assigning a
“score” to each model which measures, in some sense, how good
the model is and (ii) searching through all the models to find
the model with the best score.

Let us first discuss the problem of scoring models. Let S C
{1,...,k} and let Xs = {X; : j € S} denote a subset of the
covariates. Let s denote the coefficients of the corresponding
set of covariates and let B\S denote the least squares estimate of
Bg. Also, let Xg denote the X matrix for this subset of covari-
ates and define 7s(x) to be the estimated regression function
from (14.21). The predicted valus from model S are denoted by
Y;(S) = 7g(X;). The prediction risk is defined to be

R(S) = YEH(S) - 1) (12.23

where Y;* denotes the value of a future observation of Y; at
covariate value X;. Our goal is to choose S to make R(S) small.
The training error is defined to be

R (S) =) _(¥i(S) - V7)~
i=1
This estimate is very biased and under-estimates R(.S).

Theorem 14.15 The training error is a downward biased esti-
mate of the prediction risk:

In fact,

bias (Rir(S)) = E(Ru(S)) —R(S) = —2 Y Cov(Y;,Y;). (14.24)

=1
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The reason for the bias is that the data are being used twice:
to estimate the parameters and to estimate the risk. When
we fit a complex model with many parameters, the covariance
Cov(i}i, Y;) will be large and the bias of the training error gets
worse. In summary, the training error is a poor estimate of risk.
Here are some better estimates.

Mallow’s (), statistic is defined by

R(S) = R:(S) +2|S[5* (14.25)

where |S| denotes the number of terms in S and 52 is the es-
timate of o obtained from the full model (with all covariates
in the model). This is simply the training error plus a bias cor-
rection. This estimate is named in honor of Colin Mallows who
invented it. The first term in (14.25) measures the fit of the
model while the second measure the complexity of the model.
Think of the C), statistic as:

lack of fit + complexity penalty.

Thus, finding a good model involves trading off fit and
complexity.

A related method for estimating risk is AIC (Akaike Infor-
mation Criterion). The idea is to choose S to maximize

ls— 15| (14.26)

where fg is the log-likelihood of the model evaluated at the
MLE . This can be thought of “goodness of fit” minus “com-
plexity.” In linear regression with Normal errors, maximizing
AIC is equivalent to minimizing Mallow’s C),; see exercise 8.
Yet another method for estimating risk is leave-one-out
cross-validation. In this case, the risk estimator is

n

Rev(S) =) (Vi = ¥3)?

=1

(14.27)

Some texts use a

slightly different
definition of AIC
which involves
multiplying the
definition here by

2 or -2. This has
no effect on which
model is selected.
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where )/}(,)) is the prediction for Y; obtained by fitting the model
with Y; omitted. It can be shown that

Rev(S)=Y" (%) (14.28)

i=1
where Uj;(S) is the i'" diagonal element of the matrix
U(S) = Xg(X£ Xg) *XE. (14.29)

Thus, one need not actually drop each observation and re-fit
the model. A generalization is k-fold cross-validation. Here
we divide the data into k£ groups; often people take k = 10. We
omit one group of data and fit the models to the remaining data.
We use the fitted model to predict the data in the group that
was omitted. We then estimate the risk by > .(Y; — Y;)? where
the sum is over the the data points in the omitted group. This
process is repeated for each of the k£ groups and the resulting
risk estimates are averaged.

For linear regression, Mallows C, and cross-validation often
yield essentially the same results so one might as well use Mal-
lows’ method. In some of the more complex problems we will
discuss later, cross-validation will be more useful.

Another scoring method is BIC (Bayesian information crite-
rion). Here we choose a model to maximize

BIC(S) = rss (S) + 2|S[5°. (14.30)

The BIC score has a Bayesian interpretation. Let S = {Si,..., S}
denote a set of models. Suppose we assign the prior P(S;) = 1/m
over the models. Also, assume we put a smooth prior on the pa-
rameters within each model. It can be shown that the posterior
probability for a model is approximately,

eBIC(S;)
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Hence, choosing the model with highest BIC is like choosing the
model with highest posterior probability. The BIC score also has
an information-theoretic interpretation in terms of something
called minimum description length. The BIC score is identical
to Mallows (), except that it puts a more severe penalty for
complexity. It thus leads one to choose a smaller model than
the other methods.

Now let us turn to the problem of model search. If there are k
covariates then there are 2¥ possible models. We need to search
through all these models, assign a score to each one, and choose
the model with the best score. If k is not too large we can do
a complete search over all the models. When £ is large, this is
infeasible. In that case we need to search over a subset of all
the models. Two common methods are forward and back-
ward stepwise regression. In forward stepwise regression, we
start with no covariates in the model. We then add the one vari-
able that leads to the best score. We continue adding variables
one at a time until the score does not improve. Backwards step-
wise regression is the same except that we start with the biggest
model and drop one variable at a time. Both are greedy searches;
nether is guaranteed to find the model with the best score. An-
other popular method is to do random searching through the
set of all models. However, there is no reason to expect this to
be superior to a deterministic search.

Example 14.16 We apply backwards stepwise regression to the
crime data using AIC. The following was obtained from the pro-
gram R. This program uses minus our version of AIC. Hence,
we are seeking the smallest possible AIC. This is the same is
minimizing Mallows C,.
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The full model (which includes all covariates) has AIC= 310.37.
The AIC scores, in ascending order, for deleting one variable are
as follows:

variable H Pop Labor South Wealth Males Ul FEduc. U2 Age FEzpend

AIC H 308 309 309 309 310 310 312 314 315 324

For example, if we dropped Pop from the model and kept the
other terms, then the AIC score would be 308. Based on this in-
formation we drop “population” from the model and the current
AIC score is 308. Now we consider dropping a variable from the
current model. The AIC scores are:

variable H South  Labor Wealth Males Ul Education U2 Age FEzpend
AIC H 308 308 308 309 309 310 313 313 329

We then drop “Southern” from the model. This process is con-
tinued until there is no gain in AIC by dropping any variables.

In the end, we are left with the following model:
Crime = 1.2 Age + .75 Education + .87 Expenditure + .34 Males — .86 Ul + 2.31 U2.

Warning! This does not yet address the question of which vari-
ables are causes of crime.

14.7 The Lasso

There is an easier model search method although it addresses
a slightly different question. The method, due to Tibshirani, is
called the Lasso. In this section we assume that the covari-
ates have all been rescaled to have the same variance. This
puts each covariate on the same scale. Consider estimating [ =
(B1, -, Bk) by minimizing the loss function

n

D_ (V=¥ )15 (14.31)

=1
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where A > 0. The idea is to minimize the sums of squares but
we include a penalty that gets large if any of the 3}s are large.
The solution 3 = (31, o ,B\k) can be found numerically and
will depend on the choice of A. It can be shown that some of
the gj’s will be 0. We interpret this is meaning that the ;% is
omitted from the model. Hence, we are doing estimation and
model selection simultaneously. We need to choose a value of
A. We can do this by estimating the prediction risk R()\) as
a function of A and choosing A to minimze the estimated risk.
For example, we can estimate the risk using leave-one-out cross-
validation.

Example 14.17 Returning to the crime data, Figure 14.3 shows
the results of the lasso. The first plot shows the leave-one-out
cross-validation score as a function of \. The minimum occurs
at A = .7. The second plot shows the estimated coefficients as a
function of A. You can see how some estimated parameters are
zero until A gets larger. At A = .7, all the B\j are non-zero so the
Lasso chooses the full model.

14.8 Technical Appendix

Why is the predicition interval of a different form than the
other confidence intervals we have seen? The reason is that the
quantity we want to estimate, Y, is not a fixed parameter, it
is a random variable. To understand this point better, let § =
Bo+ /X, and let & = By + B1.X.. Thus, Y, = @ while Y, = 0 + .
Now, 6 ~ N (6, se2) where

se? = V() = V(By + Biz.).

Note that V(8) is the same as V(Y,). Now, 8 + 21/ Var(d) is a
95 per cent confidence interval for 6§ = 3y + (;x, using the usual
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FIGURE 14.3. The Lasso applied to the crime data.
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argument for a confidence interval. It is not a valid confidence
interval for Y,. To see why, let’s compute the probability that

Y, +24/V(Y,) contains Y. Let s = 1/ Var(Y,). Then,

~ ~ Y Y,
PY,—-2s<Y,<Y,+2s) = P|[-2< <2>

_ pf a0 <2)

i)
(even-v(05) <)
_ 1P><—2<N<01+ )<2>

%+ .95.
The problem is that the quantity of interest Y, is equal

:]P’—2<

Q

to a parameter  plus a random variable. We can fix this
by defining

In practice, we substitute o for o and we denote the resulting
quantity by &,. Now consider the interval Y, 4+ 2&,. Then,

P(Y, -2, <Y, <Y.+2,) = ]P’( 2 < <2>

Q
=~

Q
=
/\/T\/‘\
)
A
2
=)
V)
_|_
Q
)
~—
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= P(-2< N(0,1) < 2) =.95.

Of course, a 1 — « interval is given by Y, + za/zé\n.
14.9 Exercises

1.

2.

Prove Theorem 14.4.

Prove the formulas for the standard errors in Theorem
14.8. You should regard the X;’s as fixed constants.

Consider the regression through the origin model:

Find the least squares estimate for 5. Find the standard
error of the estimate. Find conditions that guarantee that
the estimate is consistent.

Prove equation (14.24).

. In the simple linear regression model, construct a Wald

test for Hy : By = 175, versus Hy : 5y # 170,.

Get the passenger car mileage data from
http://lib.stat.cmu.edu/DASL/Datafiles/carmpgdat.html

(a) Fit a simple linear regression model to predict MPG
(miles per gallon) from HP (horsepower). Summarize your
analysis including a plot of the data with the fitted line.

(b) Repeat the analysis but use log(MPG) as the response.
Compare the analyses.

. Get the passenger car mileage data from

http://lib.stat.cmu.edu/DASL/Datafiles/carmpgdat.html

(a) Fit a multiple linear regression model to predict MPG
(miles per gallon) from HP (horsepower). Summarize your
analysis.
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(b) Use Mallow C), to select a best sub-model. To search
trhough the models try (i) all possible models, (ii) for-
ward stepwise, (iii) backward stepwise. Summarize your
findings.

(c) Repeat (b) but use BIC. Compare the results.

(d) Now use the Lasso and compare the results.

. Assume that the errors are Normal. Show that the model
with highest AIC (equation (14.26)) is the model with the
lowest Mallows C), statistic.

. In this question we will take a closer look at the AIC
method. Let Xy,..., X, be iid observations. Consider two
models M, and M ;. Under M, the data are assumed to
be N(0,1) while under M, the data are assumed to be
N(6,1) for some unknown # € R:

MU: Xl;---aXn ~ N(O,l)
Ml: Xl;---aXn ~ N(G,l), 96R

This is just another way to view the hypothesis testing
problem: Hy : @ = 0 versus H; : 0 # 0. Let ¢,(6) be
the log-likelihood function. The AIC score for a model is
the log-likelihood at the mle minus the number of param-
eters. (Some people multiply this score by 2 but that is
irrelevant.) Thus, the AIC score for M is AIC, = ¢,(0)
and the AIC score for M, is AIC, = Zn(g) — 1. Suppose
we choose the model with the highest AIC score. Let J,
denote the selected model:

" 1 if AIC, > AIC,.

(a) Suppose that M, is the true model, i.e. § = 0. Find

lim P (J, = 0).

n—o0
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Now compute lim,, ,o, P (., = 0) when 6 # 0.

(b) The fact that lim, ,, P (J, =0) # 1 when 6 = 0 is
why some people say that AIC “overfits.” But this is not
quite true as we shall now see. Let ¢y(x) denote a Normal
density function with mean # and variance 1. Define

- o) if J, =0
Jalw) = { ds(x) if J, = 1.

If 6 = 0, show that D(¢y, f,) = 0 as n — oo where

D(f,g) = /f(x) log (%) dx

is the Kullback-Leibler distance. Show also that D (¢, J/”;) LN
0if & # 0. Hence, AIC consistently estimates the true den-
sity even if it “overshoots” the correct model.

REMARK: If you are feeling ambitious, repeat this anal-
ysis for BIC which is the log-likelihood minus (p/2) logn
where p is the number of parameters and n is sample size.
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15
Multivariate Models

In this chapter we revisit the Multinomial model and the mul-
tivariate Normal, as we will need them in future chapters.

Let us first review some notation from linear algebra. Re-
call that if  and y are vectors then z'y = Zj zjy;. If Ais a
matrix then det(A) denotes the determinant of A, AT denotes
the transpose of A and A~ denotes the the inverse of A (if the
inverse exists). The trace of a square matrix A — denoted by
tr(A) — is the sum of its diagonal elements. The trace satis-
fies tr(AB) = tr(BA) and tr(A) + tr(B). Also, tr(a) = a if a
is a scalar (i.e. a real number). A matrix is positive definite if
zTYx > 0 for all non-zero vectors z. If a matrix ¥ is symmet-
ric and positive definite, there exists a matrix /2 — called the
square root of ¥ — with the following properties:

1. £Y2 is symmetric;
2.5 = X212,
3. X125 712 = w712512 = [ where ©7Y2 = (21/2)71,

This is page 269
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15.1 Random Vectors

Multivariate models involve a random vector X of the form

Xy
X = :
X
The mean of a random vector X is defined by
21 E(Xy)
p=1 : |= : : (15.1)
2% E(Xy)
The covariance matrix ¥ is defined to be
V(Xl) COV(Xl,Xg) COV(Xl,Xk)
S V(X) _ ‘COV(XQ, Xl) V(XQ) .. .COV(XQ, Xk:)
COV(Xk,Xl) COV(Xk,XQ) V(Xk)

(15.2)
This is also called the variance matrix or the variance-covariance
matrix.
Theorem 15.1 Let a be a vector of length k and let X be a ran-
dom wector of the same length with mean p and variance X.
Then E(a’X) = a’'p and V(a*' X) = aTSa. If A is a matriz
with k columns then BE(AX) = Ap and V(AX) = AL AT,

Now suppose we have a random sample of n vectors:

X X2 Xin
Xo1 Xoo Xon

1, R -l (15.3)
Xkl XkQ an

The sample mean X is a vector defined by
X,

X = :
X
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N~ _ -1 n . .
where X; = n~' 3%, Xj;. The sample variance matrix, also
called the covariance matrix or the variance-covariance matrix,

is
S11 S12 0 Sik
8 S ) 8
g ' 12 .22 ' '21; (15‘4)
S1k S2k - Skk
where
1 < — —
Sab = m : I(Xaj — Xa)(ij — Xb)
]:

It follows that E(X) = x. and E(S) = X.

15.2 Estimating the Correlation

Consider n data points from a bivariate distribution:

X1t X2 o Xin
Xor )\ X2 )7 7T\ Xy, )7
Recall that the correlation between X; and X5 is

o= E((Xl _,Ull)(XZ_/LQ)). (155)

0102

The sample correlation (the plug-in estimator) is

PX X)Xy — X
S159

We can construct a confidence interval for p by applying the
delta method as usual. However, it turns out that we get a more
accurate confidence interval by first constructing a confidence
interval for a function @ = f(p) and then applying the inverse
function f~!. The method, due to Fisher, is as follows. Define

f(r)= %(log(l +7r) —log(l — r))
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akd let @ = f(p). The inverse of r is

Now do the following steps:

Approximate Confidence Interval for The Correlation

1. Compute

7= () = 5 (1oa(1 +7) ~ log(1 - )).

2. Compute the approximate standard error of 0 which can

be shown to be 1

2(0) = —

3. An approximate 1 — a confidence interval for 0 = f(p) is

s Zapp A 2y
,b)=16— 0+ .
(,9) < vn—3 \/n—3)

4. Apply the inverse transformation f~'(z) to get a confi-

dence interval for p:

62(1_1 62b_1
<e2“+1’ 62”—1—1)'

15.3 Multinomial

Let us now review the Multinomial distribution. Consider
drawing a ball from an urn which has balls with £ different

colors labeled color 1, color 2, ... | color k. Let p = (p1,...,pk)
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where p; > 0 and Z?lej =1 and suppose that p; is the prob-
ability of drawing a ball of color j. Draw n times (independent
draws with replacement) and let X = (X;,..., X;) where X is
the number of times that color j appeared. Hence, n = Ele X;.
We say that X has a Multinomial (n,p) distribution. The prob-
ability function is

. f— n x]‘.-. wk
f(z; p) (xl___xk)pl Pr

n n!
Ti...Tk oyl

Theorem 15.2 Let X ~ Multinomial(n,p). Then the marginal
distribution of X; is X; ~ Binomial(n,p;). The mean and vari-

where

ance of X are

np1
E(X) =
npg
and
np1(1 - p1) —npip2 v —Np1Pk
V(X) _ —712'71292 npg(l'— p2) ) ) —m?zpk
—NP1Pk —npapr - npp(l — pi)

Proor. That X; ~ Binomial(n,p;) follows easily. Hence,
E(X;) = np; and V(X;) = np;(1 —p;). To compute Cov(X;, X;)
we proceed as follows. Notice that X;+X; ~ Binomial(n, p;+p,)
and so V(X;+ X;) = n(p; +p;)(1 —p; —p;). On the other hand,

V(X; +X;) = V(X;)+ V(X;) + 2Cov(X;, X)
= np;(1 —p;) +np;(1 —p;) + 2Cov(X;, Xj;).

Equating this last expression with n(p; +p;)(1 —p; —p;) implies
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Theorem 15.3 The mazimum likelihood estimator of p is

~ X1
y41 -

. _ " X
~ X
P 0

PRrROOF. The log-likelihood (ignoring the constant) is

k
lp) =) X;logp;.
7=1

When we maximize ¢ we have to be careful since we must enforce
the constraint that Z]. p; = 1. We use the method of Lagrange
multipliers and instead maximize

k
Ap) = ZX]- logp; + )\(ij — 1)
Jj=1 J
Now
04 _ 4y
apj pPj

Setting 8;3411(5'7) = 0 yields p; = —X;/A. Since >, p; = 1 we see
that A = —n and hence p; = X, /n as claimed. B
Next we would like to know the variability of the MLE . We
can either compute the variance matrix of p directly or we can
approximate the variability of the mle by computing the Fisher
information matrix. These two approaches give the same answer
in this case. The direct approach is easy: V(p) = V(X/n) =
n~2V(X) and so
pi(l —p1) —P1D2 T —P1Pk
V() = % p:1p2 pa(1 : p2) | p:Zpk

—D1DPk —popk - Pe(1 — k)
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15.4 Multivariate Normal

Let us recall how the multivariate Normal distribution is de-
fined. To begin, let

Z

7= :

Z,

where Zy,...,Z, ~ N(0,1) are independent. The density of Z
is

1 1A, 1 1
f(z) = ) exp{—§ Zz]} = o) exp{_§sz}.

(15.7)
The variance matrix of 7 is the identity matrix I. We write
Z ~ N(0,I) where it is understood that 0 denotes a vector of
k zeroes. We say that Z has a standard multivariate Normal

distribution.
More generally, a vector X has a multivariate Normal distri-
bution, denoted by X ~ N(u,X), if its density is

1 1
e e | -0 e )
(15.8)
where det () denotes the determinant of a matrix, p is a vector
of length k£ and ¥ is a k£ x k symmetric, positive definite matrix.
Then E(X) = p and V(X) = X. Setting 1 = 0 and ¥ = I gives
back the standard Normal.

[l p, %) =

Theorem 15.4 The following properties hold:
1. If Z ~ N(0,1) and X = p+ 227 then X ~ N(u, X).
2. If X ~ N(p, %), then S7Y2(X — p) ~ N(0,1).

3. If X ~ N(u,X) a is a vector of the same length as X,
then a’ X ~ N(a" p, a”>a).
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4. Let
V= (X - p)'SHX - p).

Then V ~ x3.
Suppose we partition a random Normal vector X into two

parts X = (X,, X;) We can similarly partition the the mean
i = (fta, ttp) and the variance

Eaa Eab
Y= .
( Yo Db )
Theorem 15.5 Let X ~ N(u,Y). Then:
(1) The marginal distribition of X, is Xq ~ N(fia, Xaq)-
(2) The conditional distribition of Xy, given X, = x, is
Xb|Xa = Tq ™~ N(/L(l‘a), E(l‘a))

where

1(wa) = i+ LaXey (Ta — fa) (15.9)
E(IL‘G) = Ebb - Ebazgg,lzab- (1510)

Theorem 15.6 Given a random sample of size n from a N(u,X),
the log-likelihood is (up to a constant not depending on p or X)
s given by

U, X) = _g(Y_ WIS Y X - ) — gtr(E’IS) - g log det(S).

The MLE is

_ - 1
i=X and S= <" )s. (15.11)
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15.5 Appendix

Proof of Theorem 15.6. Denote the i*" random vector by X°.
The log-likelihood is

((p, ) = Zf(Xi; 10,%) = —%" log(27r)—g logdet(Z)—% > (X (X ).

i

Now,

Z(Xi —p)'ETNX ) = Z[(Xi X))+ (X =] - X) + (X = p)]

= Z (X = X)"SHX = X)] +n(X —p)"'S7H (X = p)
since Y. (X? — X)X~1(X — pu) = 0. Also, notice that (X* —
IS (X — ) is a scalar, so

DX =) = o (X )T (X )]

= Ztr [N = (X = )]
= |37 (X - (X )"
= ntr [E_IS]

and the conclusion follows.
15.6 Exercises

1. Prove Theorem 15.1.

2. Find the Fisher information matrix for the MLE of a Multi-
nomial.

3. Prove Theorem 15.5.

4. (Computer Experiment. Write a function to generate nsim
observations from a Multinomial(n, p) distribution.
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5. (Computer Experiment. Write a function to generate nsim

observations from a Multivariate normal with given mean
i and covariance matrix X.

. (Computer Experiment. Generate 1000 random vectors from

a N(u,Y) distribution where

(2) - (21)

Plot the simulation as a scatterplot. Find the distribution
of X5|X; = x1 using theorem 15.5. In particular, what is
the formula for E(X,|X; = x,)? Plot E(X3|X; = 1) on
your scatterplot. Find the correlation p between X; and
X5. Compare this with the sample correlations from your
simulation. Find a 95 per cent confidence interval for p.
Estimate the covariance matrix X.

Generate 100 random vectors from a multivariate Normal
with mean (0,2)” and variance

(+7)

Find a 95 per cent confidence interval for the correlation
p. What is the true value of p?
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16

Inference about Independence

In this chapter we address the following questions:
(1) How do we test if two random variables are independent?
(2) How do we estimate the strength of dependence between two
random variables?

When Y and Z are not independent, we say that they are
dependent or associated or related. If Y and Z are associ-

Printer: Opaque this

Recall that we write

ated, it does not imply that ¥ causes Z or that Z causes Y. If Y 11 Z to mean that
Y does cause Z then changing Y will change the distribution of Y and Z are inde-

Z, otherwise it will not change the distribution of Z.

For example, quitting smoking Y will reduce your probabil-
ity of heart disease Z. In this case Y does cause Z. As another
example, owning a TV Y is associated with having a lower in-
cidence of starvation Z. This is because if you own a TV you
are less likely to live in an impoverished nation. But giving a
starving person will not cause them to stop being hungry. In
this case, Y and Z are associated but the relationship is not
causal.

pendent.



280 16. Inference about Independence

We defer detailed discussion of the important question of cau-
sation until a later chapter.

16.1 Two Binary Variables

Suppose that Y and Z are both binary. Consider a data set
(Y1, Z1), ..., (Yn, Z,). Represent the data as a two-by-two table:

Y=0 Y=1
XUO XUI XO-
XIO Xll X1~
X.() X.1 n=X.

NN
I

I
=)

where the X;; represent counts:

X;; = number of observations for which ¥ =7 and Z = j.

The dotted subscripts denote sums. For example, X;. = Zj Xij.
This is a convention we use throughout the remainder of the
book. Denote the corresponding probabilities by:

Y=0 Y=1
Z =0 Poo Po1 Po.
Z =1 P1o P11 P1.
Po P 1

where p;; = P(Z = i,Y = j). Let X = (Xgo, Xo1, X10, X11)
denote the vector of counts. Then X ~ Multinomial(n, p) where
» = (Poo, Po1, P10, P11)- It is now convenient to introduce two new
parameters.
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Definition 16.1 The odds ratio is defined to be

Wb = poopn. (16.1)
Po1P1o

The log odds ratio is defined to be

v = log(4h). (16.2)

Theorem 16.2 The following statements are equivalent:

1.ynuz.
2. ¢ =1.
3. v=0.

4. Fori,j € {0,1},

Now consider testing
Hy: YIHZ versus H;: Y IIZ.

First we consider the likelihood ratio test. Under H;, X ~
Multinomial(n, p) and the MLE is p = X/n. Under Hy, we again
have that X ~ Multinomial(n,p) but p is subject to the con-
straint

pij = pipj, J=0,L
This leads to the following test.

Theorem 16.3 (Likelihood Ratio Test for Independence in a 2-by-2 table)

Let L
X”X

i=0 j=0

Under Hy, T ~ x3. Thus, an approzimate level o test is
obtained by rejecting Hy then T > X%,a'
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Another popular test for independence is Pearson’s x? test.

Theorem 16.4 (Pearson’s x” test for Independence in a 2-by-2 table)

Let Lo
(Xij — Eij)?
U= — = 16.5
=0 7=0
where
> X,:X.j.

Under Hy, U ~ x?. Thus, an approzimate level o test is
obtained by rejecting Hy then U > X%,a'

Here is the intuition for the Pearson test. Under Hy, p;; =
Pi.p.j, so the maximum likelihood estimator of p;; under Hj is
XX
pz] —pz-p-] - non .
Thus, the expected number of observations in the (i,j) cell is
X X

E;i = npi; = .
J J n

The statistic U compares the observed and expected counts.

Example 16.5 The following data from Johnson and Johnson
(1972) relate tonsillectomy and Hodgkins disease. (The data are
actually from a case-control study; we postpone discussion of
this point until the next section.)

Hodgkins Disease No Disease
Tonsillectomy 90 165 255
No Tonsillectomy | 84 307 391
Total 17/ 472 646

We would like to know if tonsillectomy is related to Hodgkins
disease. The likelihood ratio statistic is T = 14.75 and the p-
value is P(x? > 14.75) = .0001. The x? statistic is U = 14.96
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and the p-value is P(x? > 14.96) = .0001. We reject the null
hypothesis of independence and conclude that tonsillectomy is
associated with Hodgkins disease. This does not mean that ton-
sillectomies cause Hodgkins disease. Suppose, for example, that
doctors gave tonsillectomies to the most seriosuly ill patients.
Then the assocation between tonsillectomies and Hodgkins dis-
ease may be due to the fact that those with tonsillectomies were
the most ill patients and hence more likely to have a serious
disease.

We can also estimate the strength of dependence by estimat-
ing the odds ratio ¢ and the log-odds ratio .

Theorem 16.6 The MLE ’s of 1 and vy are

~  XooX11 L ~
= , = log. 16.6
XX, gy (16.6)

The asymptotic stanrad errors (computed from the delta method)

are

s’é(A)—\/1+1+1+1 (16.7)
v X()() X()l XIO Xll ‘
se(v) = yse(). (16.8)

Remark 16.7 For small sample sizes, 12)\ and 5 can have a very

large variance. In this case, we often use the modified estimator
(Xor +3) (X0 +3) |

Yet another test for indepdnence is the Wald test for v = 0

given by W = (7 —0)/sé (7). A 1 — « confidence interval for 7 is

7 £ 24/25€ (7). A 1 —« confidence interval for ¢ can be obtained

in two ways. First, we could use ¢ £ z,/25€ (). Second, since

1 = e7 we could use

exp {7 % zq25€ () } . (16.10)

This second method is usually more accurate.
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Example 16.8 In the previous example,
=" 199

and
7 = log(1.99) = .69.

So tonsillectomy patients were twice as likely to have Hodgkins
disease. The standard error of 7 is

1+1+1 1—18
90 84 165 307

The Wald statistic is W = .69/.18 = 3.84 whose p-value is
P(|Z] > 3.84) = .0001, the same as the other tests. A 95 per
cent confidence interval for v is ¥ £ 2(.18) = (.33,1.05). A 95
per cent confidence interval for ¢ is (e3* e%) = (1.39, 2.86).

16.2 Interpreting The Odds Ratios

Suppose event A as probability P(A). The odds of A are defined

as

odds(A) = %.

It follows that
odds(A)

PA) = T odds(A)°
Let E be the event that someone is exposed to something
(smoking, radiation, etc) and let D be the event that they get
a disease. The odds of getting the disease given that you are
exposed are

odds(D| E) = %

and the odds of getting the disease given that you are not ex-
posed are

odds(D|E®) = %
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The odds ratio is defined to be

_ odds(DI|E)
V= odds(D|E¢)’

If » = 1 then disease probability is the same for exposed and un-
exposed. This implies that these events are independent. Recall
that the log-odds ratio is defined as v = log(v). Independence
corresponds to v = 0.
Consider this table of probabilities:

D¢ D
E° | poo  po1 | po.
E 1 pw pu|p1
po pa|l

Denote the data by
D¢ D
E¢ XOO X01 Xo.

Xo Xi | X.
Now
P(D|E) = —21 — and P(D|E°) = —22L
Pio + P Poo + Dot
and so
odds(D|E) = 2% and  odds(D|E°) = 2%
P1o Poo
and therefore,
_ P11Poo
Po1P1o

To estimate the parameters, we have to first consider how the
data were collected. There are three methods.

MULTINOMIAL SAMPLING. We draw a sample from the pop-
ulation and, for each person, record their exposure and disease
status. In this case, X = (X0, Xo1, X10, X11) ~ Multinomial(n, p).
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We then estimate the probabilities in the table by p;; = X;;/n
and
TZ: P11Doo _ X11Xo0
Poibio Xor X0
PROSPECTIVE SAMPLING. (COHORT SAMPLING). We get
some exposed and unexposed people and count the number with

disease in each group. Thus,

Xo1 ~ Binomial(X,., P(D|E"))
Xy1 ~ Binomial(X., P(D|E)).

We should really write zy. and x;. instead of X,. and X;. since
in this case, these are fixed not random but for notational sim-
plicity I’ll keep using capital letters. We can estimate P(D|E)
and P(D|E*) but we cannot estimate all the probabilities in the
table. Still, we can estimate ¢ since ¢ is a function of P(D|E)
and P(D|E®). Now

X
P(DIE) = 3
and %
¢ 01
P(D|E®) = K
Thus,
TZ)\ _ X711 X00
Xo1 X0

just as before.

CASE-CONTROL (RETROSPECTIVE) SAMPLING. Here we get
some diseased and non-diseased people and we observe how
many are exposed. This is much more efficient if the disease
is rare. Hence,

X9 ~ Binomial(X.y, P(E|D"))
Xy1 ~ Binomial(X.,, P(E|D)).

From these data we can estimate P(E|D) and P(E|D°). Sur-
prisingly, we can also still estimate ). To understand why, note



16.2 Interpreting The Odds Ratios 287

that
P(E|D) = —P% _ 1_P(E|D) = —2% _ odds(E|D) = 2.
Po1 + P11 Po1 + P11 Po1
By a similar argument,
odds(E|D) = 212,
Poo
Hence,
OddS(E|D) _ P11Poo _
OddS(E|DC) Po1P1o
From the data, we form the following estimates:
3 X1 3 Xor — X —5 X1o
P(E|D)=—, 1-P(FE|D) = —, odds(FE|D) = —, odds(E|D) = —
(EID) = 3, 1=P(EID) = 3, 0dds(E|D) = T, 0dds(B|D) = 2
Therefore,
b= XooX11
X1 X10

So in all three data collection methods, the estimate of 1 turns
out to be the same.

It is tempting to try to estimate P(D|E) — P(D|E®). In a
case-control design, this quantity is not estimable. To see this,
we apply Bayes’ theorem to get
P(EID)P(D)  P(E*|D)P(D)

P(E) P(E*)

P(D|E) — P(D|E) =

Because of the way we obtained the data, P(D) is not estimable
from the data. However, we can estimate £ = P(D|E)/P(D|E°),
which is called the relative risk, under the rare disease as-
sumption.

Theorem 16.9 Let ¢ = P(D|E)/P(D|E*). Then
Y

——1

§
as P(D) — 0.
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Thus, under the rare disease assumption, the relative risk is
approximately the same as the odds ratio and, as we have seen,
we can estimate the ods ratio.

In a randomized experiment, we can interpret a strong associ-
ation, that is ¢» # 1, as a causal relationship. In an observational
(non-randomized) study, the association can be due to other
unobserved confounding variables. We’ll discuss causation in
more detail later.

16.3 Two Discrete Variables

Now suppose that Y € {1,...,I} and Z € {1,...,J} are two
discrete variables. The data can be represented as an I —by — .J
table of counts:

V=1 Y=2 Y=j -+ V=]

Z =1 Xll X12 e le e XIJ Xl-

Z=1| Xi Xio Xij Xig | Xi

Z:[ X[1 X[2 X[j X]J X[.
X1 Xg X] XJ n

Consider testing Hy : Y I Z versus H, : Y 1 7.
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Theorem 16.10 Let

I J

X X.
T=2) "3 Xylog <X,~.jX.j>‘ (16.11)

i=1 j=1

The limiting distribution of T under the null hypothesis
of independence is x* where v = (I —1)(J —1). Pearson’s
x? test statistic is

(ni; — Ey)?
U= —_— 16.12
=1 j=1

Asymptotically, under Hy, U has a x2 distribution where

v=(-1)(J-1).

Example 16.11 These data are from a study by Hancock et al
(1979). Patients with Hodkins disease are classified by their re-
sponse to treatment and by histological type.

Type | Positive Response Partial Response No Response

LP 74 18 12 104
NS | 68 16 12 96
MC | 154 54 58 260
LD | 18 10 44 72

The x? test statistic is 75.89 with 2 x 3 = 6 degrees of freedom.
The p-value is P(x2 > 75.89) ~ 0. The likelihood ratio test
statistic is 68.30 with 2 X 3 = 6 degrees of freedom. The p-value
is P(x& > 68.30) ~ 0. Thus there is strong evidence that reponse
to treatment and histological type are associated.

There are a variety of ways to quantify the strength of depen-
dence between two discrete variables Y and Z. Most of them
are not very intuitive. The one we shall use is not standard but
is more interpretable.
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We define

6(Y, Z) = Igan |]P)Y,Z(Y € A,Z € B) —]Py(Y € A) —]Pz(Z € B)|

(16.13)
where the maximum is over all pairs of events A and B.

Theorem 16.12 Properties of §:
1.0<6(Y,2) < 1.
2.8Y,Z)=0if and only if Y I1 Z.

3. The following identity holds:

pij — pi.p.j‘. (16.14)

4. The MLE of § is

5(X,Y):%ZZ

Bis — ﬁi.ﬁ.j‘ (16.15)

where

Pij = y Pi-=
n

The interpretation of 0 is this: if one person makes probability
statements assuming independence and another person makes
probability statements without assuming independence, their
probability statements may differ by as much as . Here is a
suggested scale for interpreting 9:

0<d<.01 negligible association

.01 <0 < .05 non-negligible association
.05 < § < .10 substantial association
0> .10 very strong association

A confidence interval for  can be obtained by bootstrapping.
The steps for bootstrapping are:
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AN
Y

1. Draw X* ~ Multinomial(n, p)

Sk

2. Compute pj;, pf., P
3. Compute §*.

4. Repeat.

Now we use any of the methods we learned earlier for construct-
ing bootstrap confidence intervals. However, we should not use
a Wald interval in this case. The reason is that if Y II Z then
0 = 0 and we are on the boundary of the parameter space. In
this case, the Wald method is not valid.

Example 16.13 Returning to Example 16.11 we find that = .11.
Using a pivotal bootstrap with 10,000 bootstrap samples, a 95
per cent confidence interval for 6 is (.09,.22). Our conclusion
15 that the association between histological type and response is
substantial.

16.4 Two Continuous Variables

Now suppose that Y and Z are both continuous. If we assume
that the joint distribution of Y and Z is bivariate Normal, then
we mesure the dependence between Y and Z by means of the
correaltion coefficient p. Tests, estimates and confidence inter-
vals for p in the Normal case are given in the previous chapter.
If we do not assume Normality then we need a nonparametric
method for assessing dependence.
Recall that the correaltion is

p= E((X1 — p1) (X — Mz))_

A nonparametric estimator of p is the plug-in estimator which
is

> (X — X1) (X — Xo)
VI (X0 = )20 (X — X2

5=
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which is just the sample correlation. A confidence interval can be
constructed using the bootstrap. A test for p = 0 can be based
on the Wald test using the bootstrap to estimate the standard
error.

The plug-in approach is useful for large samples. For small
samples, we measure the correlation using the Spearman rank
correaltion coefficient pg. We simply replace the data by their
ranks — ranking each variable separately — then we compute the
correaltion coefficient of the ranks. To test the null hypothesis
that pg = 0 we need the distribution of pg under the null hy-
pothesis. This can be obtained easily by simulation. We fix the
ranks of the first variable as 1,2, ..., n. The ranks of the second
variable are chosen at random from the set of n! possible order-
ings. Then we compute the correlation. This is repeated many
times and the resulting distribution Py is the null distribution of
ps. The p-value for the test is Py(|R| > |ps|) where R is drawn
from the null distribution P.

Example 16.14 The following data (Snedecor and Cochran, 1980,
p. 191) are systolic blood pressure X, and are diastolic blood
pressure Xo in millimeters:

Xy | 100 105 110 110 120 120 125 130 130 150 170 195
Xo| 65 65 75 70 78 80 75 82 80 90 95 90

The sample correlation is p = .88. The bootstrap standard
error is .046 and the Wald test statistic is .88/.046 = 19.23.
The p-value is near 0 giving strong evidence that the correlation
s not 0. The 95 per cent pivotal bootstrap confidence interval is
(.78,.94). Because the sample size is small, consider Spearman’s
rank correlation. In ranking the data, we will use average ranks
if there are ties. So if the third and fourth lowest numbers are
the same, they each get rank 3.5. The ranks of the data are:
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Xy 1 2 85 35 55 55 7 85 8.5 10 11
Xo | 1.5 1.5 4.5 3 6 7.5 4.5 9 75 10.5 12

The rank correlation is ps = .94 and the p-value for testing the
null hypothesis that there is no correaltion is Po(|R| > .94) = 0
which is was obtained by simulation.

16.5 One Continuous Variable and One Discrete

Suppose that Y € {1,...,1} is discrete and Z is continuous.
Let Fi(z) = P(Z < z|Y = i) denote the CDF of Z conditional
onY =u.

Theorem 16.15 When Y € {1,...,I} is discrete and Z is con-
tinuous, then Y I1 Z if and only if Fy = --- = F7.

It follows from the previous theorem that to test for indepen-
dence, we need to test

Hy:F,=---=F; versus H;:not Hy.

For simplicity, we consider the case where I = 2. To test the
null hypothesis that Fy = F; we will use the two sample
Kolmogorov-Smirnov test. Let n; denote the nimber of ob-
servations for which Y; = 1 and let ny denote the nimber of
observations for which Y; = 2. Let

n =1
and
~ 1 <
Fy(z) = o > I(Zi < 2)I(Y; =2)

denote the empirical distribution function of Z given Y = 1 and
Y = 2 respectively. Define the test statistic

D = sup |ﬁ1($) - ﬁQ(x”

12
10.5



The data here are
an approximate re-
creation using the
information in the
article.
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Theorem 16.16 Let
H(t)=1-2) (1) ™",

Jj=1

Under the null hypthesis that Fy = F3,

lim P < M p< t) = H(t).

It follows from the theorem that an approximate level a test
is obtained by rejecting Hy when

ning

D>H'(1-a).
ny + No

16.6 Bibliographic Remarks

Johnson, S.K. and Johnson, R.E. (1972). New England Journal
of Medicine. 287. 1122-1125.
Hancock, B.W. (1979). Clinical Oncology, 5, 283-297.

16.7 Exercises

1. Prove Theorem 16.2.
2. Prove Theorem 16.3.
3. Prove Theorem 16.9.
4. Prove equation (16.14).

5. The New York Times (January 8, 2003, page A12) re-
ported the following data on death sentencing and race,
from a study in Maryland:

Death Sentence No Death Sentence
Black Victim 14 641
White Victim 62 594
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Analyze the data using the tools from this Chapter. In-
terpret the results. Explain why, based only on this infor-
mation, you can’t make causal conclusions. (The authors
of the study did use much more information in their full
report. )

. Analyze the data on the variables Age and Financial Sta-

tus from:
http://lib.stat.cmu.edu/DASL/Datafiles/montanadat.html

. Estimate the correlation between temperature and lati-

tude using the data from
http://lib.stat.cmu.edu/DASL/Datafiles/USTemperatures.html
Use the correlation coefficient and the Spearman rank cor-
realtion. Provide estimates, tests and confidence intervals.

. Test whether calcium intake and drop in blood pressure

are associated. Use the data in

http://lib.stat.cmu.edu/DASL/Datafiles/Calcium.html
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17

Undirected Graphs and Conditional
Independence

Graphical models are a class of multivariate statistical models
that are useful for representing independence relations. They are
also useful develop parsimonious models for multivariate data.

To see why parsimonious models are useful in the multivariate
setting, consider the problem of estimating the joint distribu-
tion of several discrete random variables. Two binary variables
Y; and Y; can be represented as a two-by-two table which corre-
sponds to a multinomial with four categories. Similarly, k£ binary
variables Y7, ...,Y} correspond to a multinomial with N = 2*
categories. When k is even moderately large, N = 2* will be
huge. It can be shown in that case that the MLE is a poor es-
timator. The reason is that the data are sparse: there are not
enough data to estimate so many parameters. Graphical mod-
els often require fewer parameters and may lead to estimators
with smaller risk. There are two main types of graphical models:
undirected and directed. Here, we introduce undirected graphs.
We’ll discuss directed graphs later.

This is page 297
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17.1 Conditional Independence

Underlying graphical models is the concept of conditional inde-
pendence.

Definition 17.1 Let X, Y and Z be discrete random vari-
ables. We say that X and Y are conditionally inde-
pendent given 7, written X 1Y | Z, if

PX =z,Y=y|lZ=2)=P(X =z|Z =2)PY =y|Z =2)
(17.1)
forallz,y,z. If X, Y and Z are continuous random vari-
ables, we say that X and Y are conditionally independent
given 7 if

fX,Y\z(l",y|Z) = fX\Z(l"|Z)fY\Z(y|Z)-

for all x, y and z.

Intuitively, this means that, once you know Z, Y provides no
extra information about X.

The conditional independence relation satisfies some basic
properties.

Theorem 17.2 The following implications hold:

XY |Z = YIX|Z

XY |Z and U=h(X) = UILY |Z
XY |Z and U=h(X) = XY |(Z,U)
XY |Z and XUW|(V,Z) = XUW,Y)|Z

XIUY|Z and X1 Z|Y = XI(V,2).

The last property requires the assumption that all events have
positive probability; the first four do not.
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FIGURE 17.1. A graph with vertices V' = {X,Y, Z}. The edge set is
B ={(X,Y),(Y,2)}.

17.2 Undirected Graphs

An undirected graph G = (V, E) has a finite set V' of ver-
tices (or nodes) and a set E of edges (or arcs) consisting of
pairs of vertices. The vertices correspond to random variables
X,Y, Z, ... and edges are written as unordered pairs. For exam-
ple, (X,Y) € E means that X and Y are joined by an edge.

An example of a graph is in Figure 17.1.

Two vertices are adjacent, written X ~ Y| if there is an edge
between them. In Figure 17.1, X and Y are adjacent but X and
Z are not adjacent. A sequence Xj,..., X, is called a path if
X;_1 ~ X; for each i. In Figure 17.1, X, Y, Z is a path. A graph
is complete if there is an edge between every pair of vertices.
A subset U C V of vertices together with their edges is called a
subgraph.

If A, B and C' are three distinct subsets if V', we say that C'
separates A and B if every path from a variable in A to a
variable in B intersects a variable in C. In Figure 17.2 {Y, W}
and {Z} are separated by {X}. Also, W and Z are separated
by {X,Y}.



300 17. Undirected Graphs and Conditional Independence
W X

FIGURE 17.2. {Y,W} and {Z} are separated by {X}. Also, W and
Z are separated by {X,Y}.

FIGURE 17.3. X 11 Z|Y.

17.3 Probability and Graphs

Let V' be a set of random variables with distribution P. Con-
struct a graph with one vertex for each random variable in V.
Suppose we omit the edge between a pair of variables if they are
independent given the rest of the variables:

no edge between X and ¥ <= X IIY]|rest

where “rest” refers to all the other variables besides X and Y.
This type of graph is called a pairwise Markov graph. Some
examples are shown in Figures 17.3, 17.4 17.6 and 17.5.

The graph encodes a set of pairwise conditional independence
relations. These relations imply other conditional independence
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FIGURE 17.4. No implied independence relations.

FIGURE 17.5. X 1 Z|{Y,W} and Y U W |{X, Z}.

X Y A w

FIGURE 17.6. Pairwise independence implies that X II Z|{Y, W}.
But is X 11 Z|Y?
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relations. How can we figure out what they are? Fortunately, we
can read these other conditional independence relations directly
from the graph as well, as is explained in the next theorem.

Theorem 17.3 Let G = (V, E) be a pairwise Markov graph for
a distribution P. Let A, B and C' be distinct subsets of V' such
that C separates A and B. Then A1l B|C.

Remark 17.4 If A and B are not connected (i.e. there is no path
from A to B) then we may regard A and B as being separated
by the empty set. Then Theorem 17.3 implies that A1l B.

The independence condition in Theorem 17.3 is called the
global Markov property. We thus see that the pairwise and
global Markov properties are equivalent. Let us state this more
precisely. Given a graph G, let Mp,i(G) be the set of distri-
butions which satisfy the pairwise Markov property: thus P €
M,i:(G) if, under P, X IT Y|rest if and only if there is no edge
between X and Y. Let Mopai(G) be the set of distributions
which satisfy the global Markov property: thus P € M, (G) if,
under P, ATl B|C' if and only if C separates A and B.

Theorem 17.5 Let G be a graph. Then, Mpir(G) = Mgiobai (G).

This theorem allows us to construct graphs using the simpler
pairwise property and then we can deduce other independence
relations using the global Markov property. Think how hard this
would be to do algebraically. Returning to 17.6, we now see that
XIOZ|Y and Y IW|Z.

Example 17.6 Figure 17.7 implies that X 1Y, X 11 Z and X 11
v, 2).

Example 17.7 Figure 17.8 implies that X U W|(Y, Z) and X 11
Zly.
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FIGURE 17.7. XTIY, X 11 Z and X 11 (Y, Z).

Z

FIGURE 17.8. X T W|(Y, Z) and X 11 Z|Y.

303
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17.4 Fitting Graphs to Data

Given a data set, how do we find a graphical model that fits
the data. Some authors have devoted whole books to this sub-
ject. We will only treat the discrete case and we will consider a
method based on log-linear models which are the subject of
the next chapter.

17.5 Bibliographic Remarks

Thorough treatments of undirected graphs can be found in Whit-
taker (1990) and Lauritzen (1996). Some of the exercises below
are adapted from Whittaker (1990).

17.6 Exercises

1. Consider random variables (X7, X5, X3). In each of the
following cases, draw a graph that has the given indepen-
dence relations.

(a) X1 HX3 | XZ-
(b) X1 HX2 | X3 and X1 HX3 | XZ-

(C) X1HX2|X3 and X1HX3|X2 and XZHX3|X1.

2. Consider random variables (X, X5, X3, X;). In each of the
following cases, draw a graph that has the given indepen-
dence relations.

(a) X1 HX3 | XQ,X4 and X1 HX4 | XQ,Xg and XQHX4 |
X, Xs.
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X, X, X,
[ ]
X3
FIGURE 17.9.
X, X, X; X,
® ® & ®

FIGURE 17.10.

(b) X1 HXQ | Xg,X4 and X1HX3 | XQ,X4 and XZHXg |
Xy, X,

(C) X1 HX3 | XQ,X4 and XQ HX4 | Xl,Xg.

. A conditional independence between a pair of variables is
minimal if it is not possible to use the Separation The-
orem to eliminate any variable from the conditioning set,
i.e. from the right hand side of the bar (Whittaker 1990).
Write down the minimal conditional independencies from:
(a) Figure 17.9; (b) Figure 17.10; (c¢) Figure 17.11; (d)
Figure 17.12.

. Here are breast cancer data on diagnostic center (X;),
nuclear grade (X3), and survival (X3):
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Xs ¢ ? o

Xy ® ¢ X,

FIGURE 17.11.

X2 X3

Xy Xs X

FIGURE 17.12.
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Xy malignant malignant benign  benign

X3 died survived died survived
X; Boston 35 59 47 112
Glamorgan 42 77 26 76

(a) Treat this as a multinomial and find the maximum
likelihood estimator.

(b) If someone has a tumour classified as benign at the
Glamorgan clinic, what is the estimated probability that
they will die? Find the standard error for this estimate.

(c) Test the following hypotheses:
XIHX2|X3 versus X1 MX2|X3

XIHX3|X2 versus X1 MX3|X2
XQHX3|X1 versus X2 MX3|X1

Based on the results of your tests, draw and interpret the
resulting graph.
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18
Loglinear Models

In this chapter we study loglinear models which are useful for
modelling multivariate discrete data. There is a strong connec-
tion between loglinear models and undirected graphs. Parts of
this Chapter draw on the material in Whittaker (1990).

18.1 The Loglinear Model

Let X = (Xi,...,X;») be a random vector with probability
function

f@)=P(X =2)=P(X,=21,..., X; = Tpn)

where = (x1,...,%y). Let 7; be the number of values that
X, takes. Without loss of generality, we can assume that X; €
{0,1,...,r;—1}. Suppose now that we have n such random vec-
tors. We can think of the data as a sample from a Multinomial
with N =r; X ry X --- X r,, categories. The data can be repre-
sented as counts in a ry Xy X - - - X1y, table. Let p = (p1,...,pN)
denote the multinomial parameter.

This is page 309
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Let S = {1,...,m}. Given a vector z = (z1,...,%,,) and a
subset A C S, let x4 = (x; : j € A). For example, if A = {1, 3}
then x4 = (xq, x3).

Theorem 18.1 The joint probability function f(x) of a single

random vector X = (X1,...,X,,) can be written as
log f(z) = > ta(x) (18.1)
Acs

where the sum is over all subsets A of S = {1,...,m} and the
Y’s satisfy the following conditions:

1. py(x) is a constant;

2. For every A C S, Ya(x) is only a function of x4 and not
the rest of the ’s.

3. Ifi € A and x; =0, then Ya(x) = 0.

The formula in equation (18.1) is called the log-linear ex-
pansion of f. Note that this is the probability function for a
single draw. Each ¢4 (z) will depend on some unknown parame-
ters Sa4. Let f = (84 : A C S) be the set of all these parameters.
We will write f(z) = f(z; 5) when we want to estimate the de-
pendence on the unknown parameters /.

In terms of the multinomial, the parameter space is

N
P:{p:(plaapN) pJZ(), ijzl}
j=1

This is an N — 1 dimensional space. In the log-linear represen-
ation, the parameter space is

O ={B=(,....0x): B=Bp)peP}

where 3(p) is the set of 5 values associated with p. The set © is
a N — 1 dimensinal surface in RY. We can always go back and
forth betwee the two parameterizations we can write § = [(p)

and p = p(f).
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Example 18.2 Let X ~ Bernoulli(p) where 0 < p < 1. We can
write the probability mass function for X as

fl@)=p"(1—p)'" " =pipy™"

forx =0,1, where py =p and py =1 — p. Hence,

log f(x) = ty(x) + 1 ()

where

Yo(r) = log(p2)
di(z) = wlog (12).

D2

Notice that 1pg(x) is a constant (as a function of x) and Y, (x) =
0 when x = 0. Thus the three conditions of the Theorem hold.
The loglinear parameters are

Bo = log(pz), B = log (&> .
b2

The original, multinomial parameter space is P = {(p1,p2) :
p; > 0,p1 + p2 = 1}. The log-linear parameter space is

O = {(507B1) e R?: hoth + ePo — 1‘}

Given (p1, p2) we can solve for (5o, f1). Conversely, given (o, £1)
we can solve for (py,p2). M

Example 18.3 Let X = (X;, Xy) where X; € {0,1} and X, €
{0,1,2}. The joint distribution of n such random vectors is a
multinomial with 6 categories. The multinomial parameters can
be written as a 2-by-3 table as follows:

multinomial To 0 1 2

0 Poo  Poi  Po2
1 P10 P11 P12
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The n data vectors can be summarized as counts:

data To 0 1 2
z 0 Coo Con Cpo
1 Cio Ci Cho

For x = (1, x9), the log-linear expansion takes the form

log f(x) = p(x) + 1(z) + Yo () + Y12(2)

where

Yo(z) = logpoo

Yi(z) = x1log <@>

Poo
Ya(w) = I(z2=1)log <@> 4 I(ws = 2)log (@)
Poo Poo
ia(x) = I(xy =1,29 =1)log <M> + I(z1 =1,29 = 2) log <p12p00> ‘
Po1P1o DoaP1o

Convince yourself that the three conditions on the ¢’s of the
theorem are satisfied. The six parameters of this model are:

Ppoo Ppoo

Br=log (22) f =log (222) g = log (2222).

Ppo2p10

p1 = log poo B2 = log (m) p3 = log (’ﬂ> .

The next Theorem gives an easy way to check for conditional
independence in a loglinear model.

Theorem 18.4 Let (X, Xy, X.) be a partition of a vectors (X1, ..., Xp).
Then X, 11 X | X, if and only if all the i-terms in the log-linear
expansion that have at least one coordinate in b and one coordi-

nate in c are 0.

To prove this Theorem, we will use the following Lemma
whose proof follows easily from the definition of conditional in-
dependence.
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Lemma 18.5 A partition (X,, Xy, X.) satisfies X1 X | X, if and
only if f(xq, xp, x.) = g(xa, Tp) h(T4, x.) for some functions g and
h

PROOF. (Theorem 18.4.) Suppose that ¢, is 0 whenever ¢ has
coordinates in b and c. Hence, ¢, is 0if t ¢ aJbort ¢ aJc.
Therefore

log f() = Y wu(z)+ Y tulx) =D ().
tCalJb tCalJc tCa

Exponentiating, we see that the joint density is of the form
g(xq, xp)h(24, x.). By Lemma 18.5, X}, IT X.|X,. The converse
follows by reversing the argument. l

18.2 Graphical Log-Linear Models

A log-linear model is graphical if missing terms correspond
only to conditional independence constraints.

Definition 18.6 Let log f(x) = Y , g % a(x) be a log-linear
model. Then f is graphical if all 1)-terms are non-zero
except for any pair of coordinates not in the edge set for
some graph G. In other words, Ya(x) = 0 if and only if
{i,j} C A and (i,7) is not an edge.

Here is way to think about the definition above:

If you can add a term to the model and the graph does
not change, then the model is not graphical.

Example 18.7 Consider the graph in Figure 18.1.
The graphical log-linear model that corresponds to this graph
I8
log f(z) = v+ 1(x) + o(x) + Y3(z) + Pa(x) + ¢5()
+ Pra(m) + o3(x) + o5 (1) + 3a(x) + V35(x) + a5 () + o35 () + V345 ().
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X5 Xy

X1 Xo X3

FIGURE 18.1. Graph for Example 18.7.

Let’s see why this model is graphical. The edge (1,5) is missing
in the graph. Hence any term containing that pair of indices is
omitted from the model. For example,

1/)157 ¢1257 ¢1357 ¢1457 ¢12357 1/)12457 1/)13457 ¢12345

are all omitted. Similarly, the edge (2,4) is missing and hence

¢24, '@/)1247 '@/)2347 '@/)2457 1/)1234, ¢1245, 7?2345» '4/)12345

are all omitted. There are other missing edges as well. You can
check that the model omits all the corresponding 1 terms. Now
consider the model

log f(z) = o) +v1(2) + tho(x) + Y3(x) + Ya(z) + 5(2)
+ Y1a(w) + 23(x) + a5 () + 3a(x) + P35(2) + Yus ().

This is the same model except that the three way interactions
were removed. If we draw a graph for this model, we will get the
same graph. For example, no ¢ terms contain (1,5) so we omit
the edge between Xy and Xs5. But this is not graphical since it has
extra terms omitted. The independencies and graphs for the two
models are the same but the latter model has other constraints
besides conditional independence constraints. This is not a bad
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thing. It just means that if we are only concerned about presence
or absence of conditional independences, then we need not con-
sider such a model. The presence of the three-way interaction
o35 means that the strength of association between X5 and X3
varies as a function of X5. Its absence indicates that this is not
so. A

18.3 Hierarchical Log-Linear Models

There is a set of log-linear models that is larger than the set of
graphical models and that are used quite a bit. These are the
hierarchical log-linear models.

Definition 18.8 A log-linear model is hierarchical if v, =
0 and a C t implies that ¢, = 0.

Lemma 18.9 A graphical model is hierarchical but the reverse
need not be true.

Example 18.10 Let

log f(x) = vg(x) + P1(x) + Yo () + Y3(x) + V12(x) + Y13().

The model is hierarchical; its graph is given in Figure 18.2. The
model is graphical because all terms involving (1,3) are omitted.
It 1s also hierarchical. W

Example 18.11 Let

log f () = vg(z)+1h1 (2)+tha(2)+103(2) +1h12(2) +eh13(2) + 1oz ().

The model is hierarchical. It is not graphical. The graph corre-
sponding to this model is complete; see Figure 18.3. It is not
graphical because 1p193(x) = 0 which does not correspond to any
pairwise conditional independence. B
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X1 Xo X3

FIGURE 18.2. Graph for Example 18.10.

X

FIGURE 18.3. The graph is complete. The model is hierarchical but
not graphical.
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Xy X X3

FIGURE 18.4. The model for this graph is not hierarchical.
Example 18.12 Let
log f(z) = ¥o(z) + ¥3(2) + r12(z).

The graph corresponding s in Figure 18.4. This model is not
hierarchical since Yy = 0 but 1)1 is not. Since it 1s not hierar-
chical, it 1s not graphical either. B

18.4 Model Generators

Hierarchical models can be written succinctly using genera-
tors. This is most easily explained by example. Suppose that
X = (X1, Xy, X3). Then, M = 1.2 + 1.3 stands for

log f = vy + 1 + o + 3 + 12 + i3,

The formula M = 1.2+ 1.3 says: “include 115 and ¢13.” We have
to also include the lower order terms or it won’t be hierarchical.
The generator M = 1.2.3 is the saturated model

log f =g + 1 + P2 + Y3 + P12 + P13 + o3 + Pras3.

The saturated models corresponds to fitting an unconstrained
multinomial. Consider M = 1+ 2 + 3 which means

log f = g + 11 + 1Py + 3.
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1.2

1 —!— 2
1 / \ 2
\,/
FIGURE 18.5. The lattice with two variables.

This is the mutual independence model. Finally, consider M =
1.2 which has log-linear expansion

log f = vy + 1 + 2 + 1a.

This model makes X3|Xs = 29, X; = 7 a uniform distribution.

18.5 Lattices

Hierarchical models can be organized into something called a
lattice. This is the set of all hierarchical models partially or-
dered by inclusion. The set of all hierarchical models for two
variables can be illustrated as in Figure 18.5.

M = 1.2 is the saturated model, M = 1 + 2 is the indepen-
dence model, M = 1 is independence plus X3|X; is uniform,
M = 2 is independence plus X;|X5 is uniform, M = 0 is the
uniform distribution.

The lattice of trivariate models is shown in figure 18.6.

18.6 Fitting Log-Linear Models to Data

Let 3 denote all the parameters in a log-linear model M. The
loglikelihood for (3 is

Up) = > _xilogpi(8)



18.6 Fitting Log-Linear Models to Data

saturated
(graphical)
two-way
graphical 1.2+ 1.3
graphical 1.2+ 3

mutual independence

(graphical)
conditional uniform 1.2
independence 142
1
uniform

1.2.3

1.2+ 13+ 23

1.2 +23

1.3+ 2

1+2+3

1.3

1+3

319

1.3 +23

23+1

2.3

2+3

FIGURE 18.6. The lattice of models for three variables.
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where the sum is over the cells and p(3) denotes the cell proba-
bilities corresponding to . The MLE B generally has to be found
numerically. The model with all possible 1-terms is called the
saturated model. We can also fit any sub-model which cor-
responds to setting some subset of ¢ terms to 0.

Definition 18.13 For any submodel M, define the deviance
dev(M) by

dev(M) = 2(lsqy — lrr)
where Zsat 18 the log-likelihood of the saturated model eval-

uated at the MLE and ZM 15 the log-likelthood of the model
M evaluated at its MLE .

Theorem 18.14 The deviance is the likelihood ratio test statistic
for

Hj : the model is M versus Hj : the model is not M.

Under Hy, dev(M) LN X2 with v degrees of freedom equal to the
difference in the number of parameters between the saturated
model and M.

One way to find a good model is to use the deviance to test
every sub-model. Every model that is not rejected by this test is
then considered a plausible model. However, this is not a good
strategy for two reasons. First, we will end up doing many tests
which means that there is ample opportunity for making Type I
and Type II errors. Second, we will end up using models where
we failed to reject Hy. But we might fail to reject Hy due to low
power. The result is that we end up with a bad model just due
to low power.

There are many model searching strategies. A common ap-
proach is to use some form of penalized likelihood. One version
of penalized is 