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Introduction

The purpose of this course is to give third year Bachelor students or first year Master students
the foundations of theoretical astrophysics, with a broad overview of astrophysical fluid dy-
namics, radiative transfer, self-gravitating systems (in or out of equilibrium) and collisionless
systems. Throughout the course, we will use a methodology that is based on the kinetic theory
of an ensemble of particles, these particles being either atoms and molecules, photons, or even
stars. This common framework will be very useful for future PhD students in astronomy and
astrophysics, aiming at studying stellar structure, star formation and the interstellar medium,
galaxy formation and cosmology.

It is strongly required that students attending this course already have a basic knowledge
of quantum mechanics and electrodynamics, as well as some basics in fluid mechanics and
thermodynamics. Some familiarity with tensor calculus is also required. During this course,
we will try to derive self-consistently all the equations, with a minimal reference to a priori
knowledge in physics. The level of mathematics required is typical of a bachelor in Mathematics
or Physics, not more than that. This course has been designed based on other popular text
books, of which we give the list below.

• The Physics of Astrophysics. Volume I: Radiation, Frank H. Shu

• The Physics of Astrophysics. Volume II: Gas Dynamics, Frank H. Shu

• Physics of shock waves and high-temperature hydrodynamic phenomena, Ya. Zel’dovich
and Yu. Raiser

• Foundations of Radiation Hydrodynamics, Dimitri Mihalas and Barbara Weibel Mihalas

• Radiative Processes in Astrophysics, George Rybicki and Alan Lightman

• Galactic Dynamics, Second Edition, James Binney and Scott Tremaine

Reading these books is not required, but could be useful in case one wants to dive deeper into
one of the topics presented here. This course will be divided into 3 main parts, each associated
with one particular type of fluid or particles:

1. astrophysics of gases and fluids (chapters 1 and 2)

2. astrophysics of radiation (chapter 3)

3. astrophysics of collisionless fluids (chapter 4)

The first part, sometimes referred to as astrophysical fluid dynamics, will cover the basics
of the microscopic description of a gas. We will describe the kinetic theory of gases, trying to
present the main equation, namely the Boltzmann equation, and many of its properties. We
will spend some time computing the moments of the Boltzmann equation (the very meaning
of moment will become clear in the relevant sections), which will serve as the foundations of



the Euler equations for fluids. A very important aspect of the Euler equations is their validity
range, and the notion of Local Thermodynamical Equilibrium (LTE). We will then derive self-
consistently a first-order approximation of the full Boltzmann equation, leading to a consistent
derivation of fluid viscosity and heat flux. We will then focus on astrophysical applications,
trying to derive analytically equilibrium solutions of the Euler equations in presence of gravity
or rotation, leading to important astrophysical results to describe the internal structure of stars
or accretion discs. One guiding principle of this course will be to analyse the stability of these
equilibrium solutions, checking indeed that these solutions do exist in nature. This will lead us
to the description of waves and shocks in fluids, as well as famous hydrodynamical instabilities.

The second part will be the realm of radiative processes. Here again, we will start at the
microscopic level, introducing the radiative transfer equation, and a few analytical solutions
describing many radiation flows. One key application will be to describe the interaction between
radiation and matter through absorption and emission processes. This will lead us to a more
macroscopic description of radiation, here again using the moments of the radiation field. We
will use some very basic concepts of quantum mechanics and electrodynamics to fully account
for all main astrophysical radiation fields.

The third and final part of the course will be dedicated to collisionless fluids. As opposed
to atoms and photons that interact a lot with one another, the particles of collisionless fluids
never suffer any binary collision. This is an extreme case, which is relevant for stars in massive
galaxies, or dark matter particles, possibly made of a new and exotic type of particle. Here
again, we will follow the same methodology, starting at the microscopic level, then deriving the
properties of the distribution of these collisionless particles, and ultimately defining the moments
of their distribution function.

As you will discover, a very similar methodology will be used throughout the course, where
radiation physics echoes with rarefied gas or even stellar dynamics. Many useful tools will be
introduced and used in detailed applications for astrophysics. Our objective would be ideally
that, after this course, you will be able to sustain a conversation with a professional astronomer
on a black board, about stars or galaxies, fully equipped with equations and concepts for the
future theoretical astrophysicists you will surely become.
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Chapter 1

Kinetic theory in a nutshell

1.1 Introduction

In this chapter, we will focus on a microscopic description of astrophysical gases, using a very
powerful methodology called kinetic theory. In most, if not all cases, we will consider atoms
and molecules to be point-like particles moving in space and interacting through collisions.
Describing these collisions as accurately as possible will be our main task. This will lead us to
one of the most famous equations in physics, namely the Boltzmann equation, which describes
the dynamics of the particle distribution function. The concept of distribution functions has
been introduced in your previous mathematics lectures, and is absolutely central to this course.
A particular distribution function is the Maxwell-Boltzmann equilibrium solution, which is the
valid solution when the microscopic state of the gas is at the so-called local thermodynamical
equilibrium (LTE). This particular but also very common limiting case will lead us to the self-
consistent derivation of the Euler equations, the mathematical description of fluid dynamics at
the macroscopic level. This transition from microscopic to macroscopic is another key aspect of
this course, which is performed using the velocity moments. But under certain conditions, the
microscopic state of the gas cannot be considered to be at LTE. We will show that one can still
describe the fluid using the Euler equations, but adding as first order corrections viscosity and
thermal conduction.

1.2 Particle distribution function

1.2.1 Definition

The number of particles in phase space (x,u) ∈ R6 is described by the particle distribution
function f(x,u, t). With d3x d3u a volume element in phase space, dN = f(x,u, t) d3x d3u
gives the number of particles with positions contained in the infinitesimal volume [x, x+ dx]×
[y, y + dy] × [z, z + dz] and velocities contained in the infinitesimal volume in [ux, ux + dux] ×
[uy, uy + duy] × [uz, uz + duz] at a time t. Integrating over the entire phase space, the total
number of particles in the system is

Ntot =

∫
R3

∫
R3

f d3x d3u (1.1)

Here f is the number density distribution function. Alternatively, one could describe the system
using the mass density DF fm where dM = fmd3x d3u. f and fm are proportional: fm = mf ,
where m is the particle mass. The total mass in the system is simply

Mtot =

∫
R3

∫
R3

fm d3x d3u = Ntotm (1.2)

1
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Another alternative formulation is to use the probability density DF fp, which expresses the
probability of being inside a phase space element fp(x,v, t). This DF is normalised to 1:

1 =

∫
R3

∫
R3

fp d3x d3u (1.3)

One can recover the number density DF by multiplying with the total number of particles:

f = Ntot fp(x,u, t) (1.4)

1.2.2 Moments of the particle DF

Other quantities can be derived by taken in the moments of the particle distribution function.
By integrating out the velocity dependence, one gets the zeroth order moment, or the number
density

n(x, t) =

∫
R3

f(x,u, t) d3u (1.5)

One can also define the mass density

ρ(x, t) = mn(x, t) (1.6)

The first order moment, the fluid momentum m(x, t), is defined as

m(x, t) =

∫
R3

mf(x,u, t) u d3u (1.7)

and is used to define the fluid bulk or macroscopic velocity v(x, t) as

m(x, t) = ρ(x, t) v(x, t) (1.8)

At each position and time, an important new variable can also be defined as the microscopic
relative velocity

w = u− v(x, t) (1.9)

also known as thermal velocity. In general, arbitrary moments can be defined as

Q(x, t) =

∫
R3

q(u, t) f(x,u, t) d3u (1.10)

with q a function of the particle velocity. A fundamentally important quantity can finally be
defined as the second order moment of the distribution function, this is the fluid total energy:

E(x, t) =

∫
R3

1

2
mu2 f(x,u, t) d3u (1.11)

Using the thermal velocity and the relation u2 = w2 + 2 w ·v + v2, one obtains immediately the
relation

E(x, t) =
1

2
ρ σ2

3D +
1

2
ρ v2 (1.12)

where we used the following property of the thermal velocity∫
R3

f(x,u, t) w d3u = 0 (1.13)
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x0 x

u0

u

Figure 1.1: A volume element moving along a trajectory in phase space

and we introduced the one dimensional, component-wise microscopic velocity dispersion

n(x, t)σ2
i (x, t) =

∫
R3

f(x,u, t)w2
i d3u (1.14)

and the total or three dimensional velocity dispersion as

σ2
3D(x, t) = σ2

x + σ2
y + σ2

z (1.15)

We can now interpret Equation 1.12 as the sum of the fluid thermal energy, which is the kinetic
energy associated to microscopic relative motions and the bulk kinetic energy, which is the
kinetic energy associated to the bulk, average macroscopic flow.

1.3 Boltzmann equation

Elementary mechanics states that a trajectory in phase space is defined to first order by

x = x0 + u0 dt (1.16)

u = u0 + a(x0, t0) dt (1.17)

where the position x and the velocity u are independent variables. Assume a phase space volume
element d6V0 = d3x0 d3u0 travels along a trajectory to new a position in phase space (figure
1.1). The new volume element d6V = d3x d3u is related to d6V0 through the Jacobian of the
coordinate transformation:

|J| =
∣∣∣∣ 1 dt(
∂a
∂x

)
dt 1

∣∣∣∣ = 1−
(
∂a

∂x

)
dt2 (1.18)

Using d6V = |J|d6V0, we deduce

d6V − d6V0

dt
' −d6V0

(
∂a

∂x

)
dt −→ 0 when dt→ 0 (1.19)

In other words, we have
D

Dt

(
d6V

)
= 0 (1.20)
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Figure 1.2: Schematic representation of a binary collision

This means the volume element is conserved or d6V = d6V0. This result is known as Liouville’s
theorem. If particles cannot be created or destroyed, the particle distribution function is also
conserved since

dN0 = f0 d3x0 d3u0 (1.21)

dN = f d3x d3u (1.22)

leads to
f(x(t0 + dt),u(t0 + dt), t0 + dt) = f(x0,u0, t0) (1.23)

This implies that the total time derivative of f is also zero, which can be expressed, using partial
derivatives and the chain rule, as

Df

Dt
=
∂f

∂x
· ẋ +

∂f

∂u
· u̇ +

∂f

∂t
= 0 (1.24)

This equation gives the time evolution of the particle distribution function and is also called the
Vlasov equation. One can rewrite this as

∂f

∂t
+ u · ∂f

∂x
+ a · ∂f

∂u
= 0 (1.25)

Note that this is a partial diffential equation in 6-dimensional phase space.

So far, we have not taken into account any collisions. Binary collisions can add or remove
particles from a phase space element. The change in particle numbers is expressed by the
collision term (

Df

Dt

)
coll

=

(
Df

Dt

)
in

−
(
Df

Dt

)
out

(1.26)

Finally, we get the Boltzmann equation

∂f

∂t
+ u · ∂f

∂x
+ a · ∂f

∂u
=

(
Df

Dt

)
coll

(1.27)
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1.3.1 Binary collisions

A collision featuring two particles (Fig. 1.2) obeys microscopic conservation laws, which are the
conservation of mass, momentum and energy

M = m1 +m2 = m′1 +m′2 (1.28)

MV = m1u1 +m2u2 = m1u
′
1 +m2u

′
2 (1.29)

E =
1

2
m1u

2
1 +

1

2
m2u

2
2 =

1

2
m1u

′2
1 +

1

2
m2u

′2
2 (1.30)

when we evaluate the particle properties before and after the collision, but far enough from the
impact point so that the potential energy of the interaction can be ignored. We also consider
only elastic collisions for which the mass of the particles before and after the collision remain
unchanged so that m′1 = m1 and m′2 = m2. At the impact point itself, different kinds of potential
energy come into play. For elastic collisions however, the description of these is unimportant
and the collision itself can be viewed as a black box. Note that we introduced the velocity of the
centre of mass V and the total mass of the system M . We can also define the relative velocities
of the particles (not to be confused with the fluid bulk velocity defined earlier)

v = u1 − u2 (1.31)

and the reduced mass
m̃ =

m1m2

m1 +m2
(1.32)

Quite naturally one defines equivalent sets of variable by noticing that

u1 = V +
m2

m1 +m2
v (1.33)

u2 = V − m1

m1 +m2
v (1.34)

The determinant of the Jacobian matrix of this transformation determines the change in the
volume elements

|J| =
∣∣∣∣1 m2

m1+m2

1 − m1
m1+m2

∣∣∣∣ = 1 (1.35)

The consequence is that the volume elements between the two sets of variables (v,V) and
(u1,u2) are equal.

d3V d3v = d3u1d3u2 (1.36)

This relation is also valid for (u′1,u
′
2) and (v′,V). Using these new variables, the conservation

of the total energy can also be written as

E =
1

2
MV 2 +

1

2
m̃v2 =

1

2
MV 2 +

1

2
m̃v′2 (1.37)

resulting in ||v|| = ||v′|| or in short v = v′. This is a fundamental result of the theory of binary
collisions: the magnitude of the relative velocity does not change before and after the collision,
only the direction of the relative velocity will change. In other words, the transformation between
v and v′ is a rotation, which also preserves the volume element, so that d3v = d3v′. Combined
with the previous relations, one finally gets

d3u′1d3u′2 = d3u1d3u2, (1.38)

a result that will prove very usefull later.
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Figure 1.3: Definition of the impact parameter

1.3.2 Cross section and collision rate

Now, we want to compute the collision rates for both outgoing and incoming collisions. We will
start with outgoing collisions. We consider as targets all particle of type 1 with mass m1 and
velocity u1 and as collision partners all particle of type 2 with mass m2 and velocity u2. We
will use the new variables M , V and m̃, v and put ourselves in the frame of the centre of mass,
so that only the relative velocities v and v′ matter.

Each particle of type 1 will be bombarded by particles of type 2 with impact parameter b,
relative velocity v and collision plane angle φ. The incoming relative velocity is assumed to be
aligned with the z axis in Figure 1.3. At infinity, before the collision, particles of type 2 will
come from the left, at a constant relative speed. As soon as they come close enough to their
target particle of type 1, they will start to “feel” the interaction with the other particle.

Typical interactions we consider here are atomic or molecular interactions, that are modelled
using Coulomb forces or a simple bouncing sphere model. A key property of these interactions
is that the interparticular force depends only on the relative distance between the two particles.
As a consequence, as you learned from classical mechanics, the angular momentum is conserved
and the orbits of the two particles will remain in the same plane, called the collision plane. This
plane is defined by the collision plane angle φ, which remains constant during the collision so
that φ′ = φ.

For a given impact parameter b, the outcome of the collision is a particle of type 2 which is
deflected by the interaction with a deflection angle θ, so that after the collision, the particle is
leaving to the right at constant speed v′ = v along this deflection angle and to infinity.

For a given time step dt during the interaction, we count how many particles of type 2 we
have flowing passed the target particle of type 1. For this, we will use the previously defined
distribution function,

dN2 = f2 dV d3u2 (1.39)

where the volume element we need to consider is the cylinder swept by the collision partners
during the time step and in the surface defined by two infintesimally close impact parameters b
and b+ db and collision planes φ and φ+ dφ,

dV = bdbdφ v dt (1.40)

The total number of collisions is then obtained by multiplying by the number of targets in the
phase space volume element,

dNout = dN2f1d3xd3u1 = f1f2v bdbdφ d3u1 d3u2 d3x dt (1.41)

To obtain the final collision rate, we need to integrate this infinitesimal contribution over all
possible impact parameter, over all possible collisional planes and all possible type 2 particle
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velocities, dividing by the phase-space volume element for particle type 1 and by the time step,(
Df

Dt

)
out

=
dNout

d3x d3u1 dt
=

∫ +∞

0

∫ 2π

0

∫
R3

f1f2v bdbdφ d3u2 (1.42)

For the sake of simplicity, a new variable is introduced, called the collision cross section, and is
defined so that bdb = σ sin θ dθ, or equivalently

σ(u1,u2) =
b

sin θ

(
∂b

∂θ

)
(1.43)

The cross section has the units of a surface, and can be computed directly from the relation
connecting the deflection angle θ to the impact parameter b for a given type of interaction. The
cross section can be interpreted as an effective area for the target particles of type 1 as seen
from the collision partners of type 2. Using this new variable and combining the deflection angle
θ to the collision plane angle φ, one finally obtains(

Df

Dt

)
out

=

∫
4π

∫
R3

f1f2σv dΩ d3u2 (1.44)

where the solid angle Ω is classically defined as dΩ = sin θ dθ dφ, but has nothing to do with
the spherical coordinates. It is a compact notation that describes the geometry of the collisions.

In astrophysics, we use usually two different cross-sections: the first one, called “hard sphere”
cross-section, assumes that particles are like billard balls. This is the regime relevant for molec-
ular or neutral atomic gases, for which particles do not “feel” each other unless their respective
electronic clouds interact with each other. It is possible, using pure geometric arguments, to
compute the cross-section in this simplified case (left for the reader as an exercise)

σ = r2
0 (1.45)

where r0 is the radius of the sphere. In this molecular regime, one usually consider for this
constant cross section the value σ0 ' 10−15cm2. The second important regime in astrophysics
is for an ionised gas, made of electrons and protons mostly. These conditions are usually called
a plasma. Charged particles can interact at long distances through the Coulomb interaction. In
this case, it is also possible to compute the cross section (also left to the reader as an exercise)
and one obtains the famous Rutherford formula

σ =

(
e2

m̃v2

)2
1(

sin θ
2

)4 (1.46)

where e is the electron charge, m̃ the reduced mass, v the relative velocity and θ the deflection
angle. One can see that the cross-section diverges for very small deflection angles. This limit
corresponds to particles with very large impact parameters, whose contribution to the collision
integral diverges. The usual approach is to ignore particles with impact parameters larger
than the Debye length, beyond which the effective charge of the plasma is zero and Coulomg
interactions vanish. We will come back to this point later in the course.

1.3.3 Collision integral

In order to derive the Boltzmann equation, we need to compute the collision rate also for
incoming collisions. These collisions can be described as a transition in velocity space from
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particles labelled with “prime” before the collisions and labelled without “prime” after the
collisions. We can therefore directly obtain the number of incoming collisions as

dNin = f ′1f
′
2σ
′v′ dΩ′ d3u′1 d3u′2 d3x dt (1.47)

We already know from the previous section that the magnitude of the relative velocity is constant
v′ = v and that d3u′1 d3u′2 = d3u1 d3u2. Moreover, the reverse collisions we consider here have the
same cross section and the same geometry dΩ′ = dΩ as the direct collisions we have considered
in the previous section. This reversibility is a key property of Hamiltonian systems with a central
force F (r) and can be expressed as σ′ = σ(u′1,u

′
2) = σ(u1,u2) = σ. Another property of such

collisions is the invariance when switching particle 1 and 2, so that σ(u1,u2) = σ(u2,u1). We
thus can rewrite the number of incoming collisions as

dNin = f ′1f
′
2σv dΩ d3u1 d3u2 d3x dt (1.48)

Dividing by the phase-space volume element d3x d3u1 and the time step dt, and integrating over
all possible velocities and solid angles, we obtain(

Df

Dt

)
in

=

∫
4π

∫
R3

f ′1f
′
2σv dΩ d3u2 (1.49)

We can add this incoming collision rate to the outgoing one in the right-hand side of the Boltz-
mann equation and obtain its final form

∂f1

∂t
+ u1 ·

∂f1

∂x
+ a · ∂f1

∂u1
=

∫
4π

∫
R3

(
f ′1f
′
2 − f1f2

)
σv dΩ d3u2 (1.50)

Traditionally, the index 1 is dropped from all variables in the left-hand side of the Boltzmann
equation, but we keep it here for sake of clarity. The right-hand side is called the collision
integral. The microscopic physics is fully encoded in the actual form of the cross section and
determines the magnitude of the collision integral. The Boltzmann equation is a rather complex
integro-differential equation, but once we know f(x,u1, t) everywhere in phase-space, we can
compute, for each collision partner u2 and for each solid angle Ω, the primed velocities u′1
and u′2 using the adopted collision geometry and the microscopic conservation laws. Using
f ′1 = f(x,u′1, t) and f ′2 = f(x,u′2, t), we can compute the collision integral, a rather daunting
task, and update f at the next time step.

1.3.4 Collision invariants

We have already used moments of the DF to introduce macroscopic quantities such as the
mass density ρ(x, t), the bulk fluid velocity v(x, t) and the fluid total energy E(x, t). In the
next sections, we will go one step further and take the moments of the Boltzmann equation
itself, deriving macroscopic conservation laws describing the dynamics of the macroscopic fluid
variables. Note that this will require to perform the rather scary exercise of taking the moments
of the collision integral itself. But, as we will see now, under certain conditions, this turns out
to be surprisingly simple.

We define our generalized moment using the following macroscopic quantity

I(x, t) =

∫
R3

∫
4π

∫
R3

Q(u1)(f ′1f
′
2 − f1f2)σv dΩ d3u2 d3u1 (1.51)

The function Q(u1) is for now an arbitrary function of the particle velocity and defines the type
of moment we would like to compute. Note that this is a triple integral, and variable u1, u2,
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Ω are all dummy integration variables. We will now switch the indice 1 and 2 in the previous
expression. As we discussed in the previous section, the collision properties are unchanged under
this rather trivial transformation. So we have

I(x, t) =

∫
R3

∫
4π

∫
R3

Q(u2)(f ′2f
′
1 − f2f1)σv dΩ d3u1 d3u2 (1.52)

=
1

2

∫
R3

∫
4π

∫
R3

[Q(u1) +Q(u2)] (f ′1f
′
2 − f1f2)σv dΩ d3u1 d3u2 (1.53)

where we use in the second equality the clever trick that if two expressions are equal, they are
also equal to their average. In this new expression, we now switch the prime and the non-prime
velocity variables, to obtain

I(x, t) =
1

2

∫
R3

∫
4π

∫
R3

[
Q(u′1) +Q(u′2)

]
(f1f2 − f ′1f ′2)σ′v′ dΩ′ d3u′1 d3u′2 (1.54)

=
1

2

∫
R3

∫
4π

∫
R3

[
−Q(u′1)−Q(u′2)

]
(f ′1f

′
2 − f1f2)σv dΩ d3u1 d3u2 (1.55)

where we derived the second line using the reversibility of the collisions and the conservation
laws leading to v′ = v and d3u′1d3u′2 = d3u1d3u2. We also put a minus sign in the square bracket
to recover the classical collision integral form. Using the same trick as before, namely adding
the two (equal) expressions and dividing by two, we finally obtain the fundamental result

I(x, t) =
1

4

∫
R3

∫
4π

∫
R3

[
Q(u1) +Q(u2)−Q(u′1)−Q(u′2)

]
(f ′1f

′
2 − f1f2)σv dΩ d3u1 d3u2

(1.56)
The still unspecified quantity Q is said to be a collision invariant if it satifies the following
conservation law

Q(u1) +Q(u2) = Q(u′1) +Q(u′2). (1.57)

In this case, according to the previous derivation, its moment vanishes identically so that
I(x, t) = 0 everywhere. Why is this result so powerful? We already know three collisional
invariants from the microscopic conservation laws for the mass Q(u1) = m1, the momentum
Q(u1) = m1u1 and the kinetic energy Q(u1) = 1

2m1u
2
1. This will allow us to take the cor-

responding moments for the Boltzmann equation and the right-hand side, associated to the
particularly scary collision integral, will vanish. We will only have to deal with the left-hand
side, namely to take the moments of the Vlasov equation, a much simpler task that will occupy
us in a future chapter.
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1.4 Local Thermodynamical Equilibrium

In this section, we will discuss a particular case of the Boltzmann equation, for which the collision
integral vanishes exactly. This case is of particular importance, as it will lead us to the derivation
of the Euler equations and the theoretical foundation of astrophysical fluid dynamics. We will
use for the first time in this course the notion of equilibrium solution. The collision integral
is the difference between two terms: a source of incoming particles and a sink of outgoing
particles. Under the proper conditions (we will derive the exact requirement later), both the
source and the sink terms can be very large, much larger than all the terms in the left-hand
side of the Boltzmann equation. In this case, the system will naturally evolve to a state where
the two collision terms exactly cancel each other, leading to the notion of detailed balance and
more fundamentally to thermodynamical equilibrium. There is a solution to these equilibrium
conditions, called the Maxwell-Boltzmann DF and usually noted f0.

1.4.1 Maxwell-Boltzmann distribution

The derivation of the Maxwell-Boltzmann equilibrium DF is the result of requiring detailed
balance of incoming and outgoing collisions in each phase-space element. This is a very strong
condition: one could imagine that the collision term vanishes in a global, weaker sense, after per-
forming the integral over velocity space. Detailed balance leads to the equilibrium DF f0(x,v, t)

which satisfies
(
Df
Dt

)
coll
≡ 0 in a strong sense, namely that(

Df

Dt

)
coll

=

∫
4π

∫
R3

(f ′1f
′
2 − f1f2)︸ ︷︷ ︸
≡0

σv dΩ d3u2 (1.58)

so the integrand vanishes everywhere in velocity space, at a given spatial location. This de-
tailed balance of incoming and outgoing collisions defines what is called local thermodynamic
equilibrium (LTE). We can reformulate this condition as

f1f2 = f ′1f
′
2 (1.59)

or ln f1 + ln f2 = ln f ′1 + ln f ′2 (1.60)

We see that detailed balance implies that ln f0 is a collision invariant, in addition to the micro-
scopic conservation laws we have already introduced.

m1 +m2 = m′1 +m′2 (1.61)

m1u1 +m2u2 = m1u
′
1 +m2u

′
2 (1.62)

1

2
m1u

2
1 +

1

2
m2u

2
2 =

1

2
m1u

′2
1 +

1

2
m2u

′2
2 (1.63)

We have also seen that these three conservation laws are enough, together with the cross section
σ, to fully specify the properties of the collisions. We cannot have a fourth collision invariant
that brings in new information to the phase-space transform induced by collisions. The only
possibility is that this fourth invariant is a linear combination of the previous three, so that

ln f0 = αm+ β
1

2
mu2 + γ ·mu (1.64)

where α(x, t) and β(x, t) are scalar quantities that depend on space and time and γ(x, t) is
a vector quantity that depends also on space and time. These quantities are considered as
constant in velocity space for a fixed spatial location, but they are allowed to vary in physical
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space. They are macroscopic properties of the fluid, and can be related to the moments of the
Maxwell-Boltzmann DF as follows ∫

R3

f0(u) d3u = n(x, t) (1.65)∫
R3

f0(u) u d3u = n(x, t) v(x, t) (1.66)∫
R3

f0(u) (u− v)2 d3u = n(x, t)σ2
3D(x, t) (1.67)

One key property is that this DF is isotropic in velocity space: it depends only on u2 = u2
x +

u2
y + u2

z so that no direction is preferred. As a consequence, the velocity dispersion satisfies

σ2
x = σ2

y = σ2
z = σ2

1D =
1

3
σ2

3D (1.68)

so we can drop the subscripts and use only σ(x, t) for the 1D velocity dispersion. Inverting the
previous three moments (left to the reader as an exercise), one obtains the following closed form
for the Maxwell-Boltzmann DF

f0(x,u, t) =
n(x, t)(

2πσ(x, t)2
)3/2 exp

(
−1

2

(
u− v(x, t)

)2
σ(x, t)2

)
(1.69)

It is quite convenient to introduce the one-dimensional Gaussian distribution, with zero mean
and variance σ

G(w) =
1√

2πσ2
exp

(
− w2

2σ2

)
(1.70)

and define the three-dimensional Maxwell-Boltzmann distribution as the product of three Gaus-
sian

f0(x,u, t) = n(x, t)G(ux − vx)G(uy − vy)G(uz − vz) (1.71)

The arguments of the Gaussian function have been defined earlier: these are the components of
the thermal velocity w = u − v. The one-dimensional Gaussian distribution has the following
usefull properties ∫ +∞

−∞
G(w) dw = 1 and

∫ +∞

−∞
wG(w) dw = 0, (1.72)∫ +∞

−∞
w2G(w) dw = σ2,

∫ +∞

−∞
w3G(w) dw = 0 and

∫ +∞

−∞
w4G(w) dw = 3σ4 (1.73)

We will see later that the second-order moment of the Maxwell-Boltzmann DF can be identified
to the pressure of an ideal gas, for which we have

P = nkBT = ρ σ2 (1.74)

As a consequence, we obtain

σ(x, t) =

√
kBT (x, t)

m
. (1.75)

The velocity dispersion is thus directly related to the gas temperature. The temperature is the
traditional quantity introduced in statistical mechanics to define thermodynamical equilibrium.
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1.4.2 Boltzmann’s H theorem

In the previous section, we have seen that a sufficient condition for thermodynamical equilibrium
is that the DF is equal to the Maxwell-Boltzmann distribution. But it is not clear yet whether any
system initially out of equilibrium will indeed necessarily relax towards the Maxwell-Boltzmann
DF. This important result is the conclusion of the famous Boltzmann’s H theorem. In order to
simplify the discussion, we consider a uniform medium without any external acceleration. In
this case, we can drop all x dependent variables in the Boltzmann equation, which now contains
only the partial time derivative in the left-hand side and the collision integral in the right-hand
side.

∂f

∂t
=

∫
R3

∫
4π

(f ′1f
′
2 − f1f2)σv dΩ d3u2 (1.76)

We now introduce a new moment of the DF, the quantity

H(t) =

∫
R3

f(u, t) ln
(
f(u, t)

)
d3u (1.77)

where f is the out-of-equilibrium DF. This quantity is the opposite of the entropy defined in
statistical mechanics. Taking the time derivative, one obtains

∂H

∂t
=

∫
R3

[
∂f

∂t
ln f +

∂f

∂t

]
d3u =

∫
R3

[ln f + 1]
∂f

∂t
d3u (1.78)

We can now replace the time derivative by the collision integral and obtain a very familiar form

∂H

∂t
=

∫
R3

∫
R3

∫
4π

[ln f1 + 1] (f ′1f
′
2 − f1f2)σv dΩ d3u1 d3u2 (1.79)

=
1

4

∫
R3

∫
R3

∫
4π

[ln f1 + ln f2 − ln f ′1 − ln f ′2] (f ′1f
′
2 − f1f2)σv dΩ d3u1 d3u2 (1.80)

where we apply the results of Section 1.3.4 to derive the second line. We finally rearrange the
integral into

∂H

∂t
= −1

4

∫
R3

∫
R3

∫
4π

[ln f ′1f
′
2 − ln f1f2] (f ′1f

′
2 − f1f2)σv dΩ d3u1 d3u2 (1.81)

The logarithm being a growing function of its argument, if X > Y (resp. X < Y ), one has
lnX > lnY (resp. lnX < lnY ), so that (lnX − lnY )(X − Y ) is always a positive quantity. As
a consequence, the time derivative of H is always negative and H will necessarily decrease with
time. For a system with finite volume or finite mass, the function will quickly reach a minimum
value for which the time derivative is zero and the DF is equal to the Maxwell-Boltzmann one.

This theorem has profound consequences for the physics of gases: it introduces the notion
of dissipation as a fundamental property of fluid dynamics. It also leads to a paradox: why
do microscopic collisions with purely reversible equation of motions (Hamiltonian systems) lead
to a macroscopic dissipative system? One interpretation (among many others) is based on
molecular chaos: even Hamiltonian systems are unpredictive on sufficiently long time scales and
are consistent with a dissipative, irreversible evolution.

1.4.3 Collision time and mean free path

A legitimate question follows: how much time does the system need to reach equilibrium? In
kinetic theory, many different time scales can be computed to estimate this relaxation time:
the stopping time corresponds to the time required for a particle to loose its initial kinetic
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energy through collisions, the deflection time corresponds to the time required for a particle
to be deflected by 90◦ from its initial trajectory, etc. These different times are all slightly
different estimates of what is usually refer to as the collision time. For sake of simplicity, we
will compute it using the rate of outgoing collisions, namely the negative term in the collision
integral, assuming that the DF is the Maxwell-Boltzmann one and the collision cross section is
for “hard sphere” particles, typical for a molecular or neutral atomic gas.

We define the collision rate as the following zeroth-order moment of the collision integral

Cout =

∫
R3

∫
R3

∫
4π
f1f2 σv d3u1 d3u2 dΩ (1.82)

where f1 = f0(u1), f2 = f0(u2) and σ = r2
0 for hard spheres. We can easily perform the

integration over the solid angle ∫
4π
σdΩ = 4πr2

0 (1.83)

and we are left with a double integral over velocity space

Cout = 4πr2
0

∫
R3

∫
R3

f0(u1)f0(u2) v d3u1 d3u2 (1.84)

Changing variables from (u1,u2) to (V,v), we get (left to the reader as an exercise)

Cout = 8 r2
0 n

2

(
m

kBT

)3 ∫ +∞

0
e
− 1

2
MV 2

kBT V 2dV

∫ +∞

0
e
− 1

2
m̃v2

kBT v3dv (1.85)

which can be finally integrated as

Cout = n2 4
√
πr2

0

√
kBT

m
(1.86)

In this derivation, we see that the collision rate is proportional to the square of the fluid density,
to the cross section and to the particle velocity dispersion. In the general case, one usually
prefers the notation

Cout = n2 〈σv〉 (1.87)

where the angle brackets denote the average over velocity space. For a constant cross section
σ0, one can quickly derive the approximate formula

Cout ' n2σ0

√
kBT

m
(1.88)

which is reasonably accurate for hard spheres. For Coulomb interactions, however, computing
the collision rate is much more challenging. We present here only an approximate derivation.
The idea is to compute an estimate of the cross section as the square of the typical impact
parameter. For a Coulomb interaction, the typical impact parameter can be estimated by
considering marginally bound orbits, for which (using for the reduced mass the mass of the
electron)

e2

b
' 1

2
mev

2 (1.89)

which gives for the cross section (dropping all dimensionless numbers that are close to unity)

σ ' πb2 '
(

e2

mev2

)2

=

(
e2

kBT

)2

(1.90)
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In the last formula, we replace the relative velocity by the velocity dispersion of electrons, which
gives us an average cross section that we identified with σ0 in the previous formulae, resulting
in the following approximation for the collision rate in the Coulomb case

Cout ' n2 e4

(kBT )2

√
kBT

me
(1.91)

One last important ingredient is missing, namely the fact that the Coulomb cross section is
diverging for very large impact parameter. This results in a significant increase of the effective
cross section, encoded in what is called the Coulomb logarithm. It is equal to the logarithm of
the ratio of the maximum impact parameter, taken equal to the Debye length, and the minimum
impact parameter, usually equal to the 90◦ deflection angle impact parameter. In short, we have

lnΛ = ln
bmax

bmin
(1.92)

and the final (surprisingly accurate) formula for the Coulomb interaction collision rate is

Cout ' n2 e4

(kBT )2

√
kBT

m
lnΛ (1.93)

Because of its logarithmic dependence, the Coulomb logarithm takes values lnΛ ' 10 to 30 for
a wide range of astrophysical conditions. The best strategy is to assume it is constant with
lnΛ = 20.

In order to derive the collision time scale, one just divides the particle density by the collision
rate

τcoll =
n

Cout
=

1

n 〈σv〉
(1.94)

One can also define the mean free path as the typical distance a particle will travel within one
collision time. Since the typical particle velocity is given by the thermal velocity, one obtains

λcoll =

√
kBT

m
τcoll (1.95)

For hard spheres, one sees that the mean free path depends only on the inverse of the density,
and not on temperature. For ionized plasma’s, on the other hand, it depends also on the square
of the temperature.

1.4.4 Validity of LTE approximations

Equipped with these notions of mean free path and relaxation time, we can now go back to the
Boltzmann equation

∂f1

∂t
+ u · ∂f1

∂x
+ a(x) · ∂f1

∂u
=

∫
R3

∫
4π

[f ′1f
′
2 − f1f2]σv d3u2 dΩ (1.96)

If the right-hand side dominates over the left-hand side, collisions will quickly drive the DF
towards the Maxwell-Boltzmann one, validating the LTE approximation. On the other-hand, if
the left-hand side dominates, then the LTE approximation won’t be valid anymore and the DF
will deviate strongly from f0. Most of the important terms in the Vlasov equation are spatial
gradients of f . If one assume that f ' f0, at least initially, we can estimate the magnitude of
the gradient terms (left to the reader as an exercise) using the following length scales

1

hn
=
|∇n|
n

or
1

hT
=
|∇T |
T

(1.97)
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and compare them the mean free path as an estimate of the magnitude of the collision integral.
The Maxwell-Boltzmann DF, or the LTE approximation are therefore valid if the typical length
scale over which the macroscopic variables vary are much larger than the mean free path or

min(hn, hT , hv)� λcoll (1.98)

It is now your responsibility to check a posteriori, after you have found a solution of the fluid
equations for your favorite astrophysical objects, that this solution satisfies the validity criterion
for LTE. If not, then you cannot use the fluid equation in the LTE regime, and you have to use
more complex equations that we will derive in the next section.

1.5 Moments of the Boltzmann equation and the fluid equations

In this section, we will derive the fluid equations, which are the mactoscopic version of the
microscopic conservation laws. The key property we will use, is the fact that moments of the
collision integral vanish if we use collision invariants. This property is true for any DF, even far
from LTE. On the other hand, when the system is close to LTE, the fluid equations simplify
even more and we obtain the famous Euler equations. Of course, these are valid only if LTE
conditions are met, as explained in the previous section.

1.5.1 General case for non-LTE conditions

We now take the moments of the entire Boltzmann equation, by performing the integral over
velocity space∫

R3

Q(u1)

(
∂f1

∂t
+ u · ∂f1

∂x
+ a(x) · ∂f1

∂u

)
d3u1 =

∫
R3

Q(u1)

(
Df

Dt

)
coll

d3u1 (1.99)

We have demonstrated earlier that if we use for Q any of m, mux, muy, muz or 1
2mu

2, in
other words any of the microscopic conservation laws, the right-hand side with the collision
integral vanishes everywhere. So we just have to take the moments of the left-hand side, namely
the Vlasov equation. This is what we will do now, using each microscopic conservation law in
sequence.

Mass conservation

This is the simplest of the 3 fluid equations. Multiplying by the particle mass m, we obtain 3
terms ∫

R3

m
∂f

∂t
d3u+

∫
R3

mu · ∂f
∂x

d3u+

∫
R3

ma(x) · ∂f
∂u

d3u = 0 (1.100)

(1) (2) (3)

In order to compute these 3 terms, the key argument is that x, u and t are three independent
variables. Let’s work out each term seperatly. For term (1), we can take the time derivative
outside of the integral and recover immediately the zeroth-order moment of the DF

∂

∂t

∫
R3

mfd3u =
∂

∂t
ρ(x, t) (1.101)

The second term (2) requires to introduce a famous vector calculus relation

∇ · (fu) = f∇ · u + u · ∇f (1.102)
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where we have noted ∇ the operator ∂
∂x . Because u and x are independant variables, ∇ · u = 0

in this relation. Term (2) can then be simplified as

∇ ·
∫
R3

mufd3u = ∇ · (ρv) (1.103)

where we recognize in the right-hand side the first-order moment of the DF, namely the macro-
scopic momentum. The third term is more involving. We first need to decompose the dot
product into three additional terms

ma(x) ·
∫
R3

∂f

∂u
d3u = max

∫
R3

∂f

∂ux
d3u+may

∫
R3

∂f

∂uy
d3u+maz

∫
R3

∂f

∂uz
d3u (1.104)

Let’s deal with the first one. For this, we introduce the one-dimensional distribution function as

F (ux) =

∫
R2

f duyduz for which we have

∫ +∞

−∞

∂F

∂ux
dux =

∫
R3

∂f

∂ux
d3u (1.105)

We see that this function can be directly integrated so that

max

∫
R3

∂f

∂ux
d3u = max [F (+∞)− F (−∞)] = 0 (1.106)

since F → 0 when ux → ±∞, a required property for distribution function. The same trick can
be used for each direction. The final result is the equation for mass conservation, the first of our
macroscopic fluid equations.

∂

∂t
ρ+∇ · (ρv) = 0 (1.107)

Momentum conservation

We now use for our moment’s calculation the quantity Q = mux. We will drop the index x later
when it will become clearer. The integration over the Boltzmann equation now becomes∫

R3

mux
∂f

∂t
d3u+

∫
R3

mux u · ∇fd3u+

∫
R3

mux a(x) · ∂f
∂u

d3u = 0 (1.108)

(1) (2) (3)

with again three main terms to integrate. The first term (1) is again quite easy because time
and velocity commute.

(1) =
∂

∂t

∫
R3

muxfd3u =
∂

∂t
(ρ vx) (1.109)

The third term can be decomposed in three more terms by developing the dot product

(3) = max

∫
R3

ux
∂f

∂ux
d3u+may

∫
R3

ux
∂f

∂uy
d3u+maz

∫
R3

ux
∂f

∂uz
d3u (1.110)

(3a) (3b) (3c)

The last two terms vanish exactly. One can define, almost like before, but not quite

H(uy) =

∫
R2

uxfduxduz (1.111)

so that the second term (3b) can be written as

(3b) = may

∫ +∞

−∞

∂H

∂uy
duy = may [H(+∞)−H(−∞)] = 0 (1.112)
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The same result applies to the third term (3c). The term (3a), on the other hand, does not
vanish. We define, now exactly like before

F (ux) =

∫
R2

fduyduz (1.113)

so that the third term (3) comes only from (3a) that can be integrated by parts

(3) = ax

∫ +∞

−∞
mux

∂F

∂ux
dux = ax

(
[muxF (ux)]+∞−∞ −

∫ +∞

−∞
mF (ux)dux

)
= −ρax (1.114)

The function F inside the brackets is evaluated at infinity, but since it is a distribution function,
it converges to zero at infinity faster than ux, so that the bracket vanishes. The remaining
integral with a minus sign is just equal to −ρ.

Let’s now focus on the second term, labeled (2) above. We use the vector calculus relation

∇ · (fuxu) = ux (u · ∇f) + f∇ · (uxu) (1.115)

The rightmost term vanishes because u and x are independent variables. For the same reason,
we can take the ∇ operator outside of the integral.

(2) = ∇ ·
(∫

R3

muxufd3u

)
= ∇ ·

(∫
R3

muiujfd3u

)
(1.116)

where we switch to Einstein’s notations for the velocity coordinates. We now split the velocity
into ui = vi + wi and develop the product as

(2) = ∇ ·
(∫

R3

m (vivj + viwj + vjwi + wiwj)fd3u

)
(1.117)

The first of these 4 terms is the easiest to compute, as vivj is a constant in velocity space, so
that

∇ ·
(
vivj

∫
R3

mfd3u

)
= ∇ · (ρ vivj) (1.118)

The second and third terms both vanish, because the thermal velocity integrates to zero

∇ ·
(
vi

∫
R3

mwjfd3u

)
= ∇ ·

(
vj

∫
R3

mwifd3u

)
= 0 (1.119)

The last term, on the other end, does not lead to any known macroscopic quantity. We therefore
define the pressure tensor as the 3x3 matrix

Pij =

∫
R3

mwiwjf d3u (1.120)

so the final form of the second term of the first-order moment of the Boltzmann equation writes
in tensor form

(2) = ∇ · (ρv ⊗ v + P) (1.121)

Putting everything together, we get the macroscopic, fluid equation for momentum conservation

∂

∂t
(ρv) +∇ · (ρv ⊗ v + P) = ρa (1.122)

We cannot say much about this pressure tensor. Only by knowing the exact form of f can we
compute this moment. We can only notice that its trace is familiar, because

Tr P = ρσ2
x + ρσ2

y + ρσ2
z = ρσ2

3D (1.123)
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Energy conservation

Here we multiply the Boltzmann equation by Q = 1
2mu

2. We will not derive the third con-
servation law, the conservation of total energy. This is left to the reader as exercise. We just
summarize the main results. We have already defined the total energy

E =
1

2
ρv2 + e (1.124)

where we define e as the internal energy. This is the kinetic energy associated with random,
thermal motions.

e =

∫
1

2
mw2f d3u =

1

2
Tr(P) (1.125)

The derivation of the energy conservation equation follows the same methodology as the previous
conservation laws. Familiar macroscopic quantities will emerge, like the pressure tensor. We
will have to introduce a new macroscopic vector, defined as the heat flux

Q =

∫
R3

m
1

2
w2wf d3u (1.126)

The final form of the macroscopic energy conservation equation reads

∂E

∂t
+∇ · (E v + P · v + Q) = ρa · u (1.127)

In summary, we have derived these three macroscopic conservation laws

∂

∂t
ρ+∇ · (ρv) = 0 (1.128)

∂

∂t
(ρv) +∇(ρv ⊗ v + P) = ρa (1.129)

∂E

∂t
+∇ · (E v + P · v + Q) = ρa · v (1.130)

which are also known as the general fluid equations. These equations are valid for any underlying
DF f . In practice, however, they are not really useful, as the form of P and Q remains unknown,
unless we know the exact form of f , which requires to solve the Boltzmann equation. So we are
back to square one. We will find explicit forms for these high-order moments in two limiting
cases: the LTE regime and the Chapman-Enskog perturbation theory.

1.5.2 Euler equations for LTE conditions

When the fluid is at LTE, the DF takes a very specific form, namely the Maxwell-Boltzmann
distribution

f0(x,u, t) = n

(
m

2πkBT

)3/2

e
− 1

2
mw2

kBT (1.131)

This distribution is an even function of w. As a consequence, if multiply by an odd function of
w, its integral will vanish. This leads to a great simplification because

Pij = 0 for i 6= j and Q = 0 (1.132)

The pressure tensor is the only non-vanishing high-order moment, and it is diagonal. Because
the Maxwell-Boltzmann distribution is also isotropic, we have

σ2
x = σ2

y = σ2
z = σ2 =

kBT

m
(1.133)
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So the pressure tensor is now proportional to the identity matrix, with

P = P I (1.134)

and P = ρσ2 is the scalar pressure. We obtain in this LTE limit the so-called Euler equations

∂

∂t
ρ+∇ · (ρv) = 0 (1.135)

∂

∂t
(ρv) +∇ · (ρv ⊗ v + P I) = ρa (1.136)

∂E

∂t
+∇ · ((E + P ) v) = ρa · v (1.137)

Note that the momentum flux related to the scalar pressure can also be transformed in the
pressure gradient using the relation

∇ · (P I) = ∇P (1.138)

In the LTE case, we can also relate the internal energy to the gas pressure using e = 1
2Tr P, so

that

e =
3

2
P (1.139)

This last relation is also known as the ideal gas equation of state (noted in short the ideal
gas EoS). Following up on the analogy with an ideal gas, we recall the relation connecting the
velocity dispersion to the gas temperature, namely

P = ρσ2 = nkBT (1.140)

Interestingly enough, the Euler equations, presented here in their Eulerian form, are a closed
system. Indeed, if one knows at time t, the mass, momentum and total energy densities, then,
one can substract to the total energy the fluid kinetic energy and deduce the fluid internal energy.
Using the ideal gas equation of state, one then knows the scalar pressure, so one can compute
the time derivatives to update the conservative variables (ρ, ρv, E). There is therefore no need
to use any microscopic properties, everything is specified at the macroscopic level. Let’s stress
again that this is valid only if LTE conditions are met, namely that all macroscopic variables
scale lengths are much larger than the collision mean free path.

1.5.3 Euler equations in Lagrangian form

So far we have looked at the problem from an Eulerian perspective, meaning the observer is
static and watches how the fluid move with respect to his/her reference frame. We will now
look in the Lagrangian perspective, where the observer moves together with the fluid. The
Lagrangian derivative, also known as comoving derivative, is given by

D

Dt
=

∂

∂t
+ v · ∇ (1.141)

The Euler equations can now be rewritten in Lagrangian form.

Mass conservation

Starting from the mass conservation equation in Eulerian form

∂ρ

∂t
+∇ · (ρv) = 0 (1.142)
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and using the now famous vector relation

∇ · (ρv) = ρ∇ · v + v · ∇ρ (1.143)

we find the mass conservation equation in Lagrangian form

1

ρ

Dρ

Dt
= −∇ · v (1.144)

Momentum conservation

Using the Eulerian mass and momentum conservation laws, together with the definition of the
Lagrangian derivative, it is possible to derive the Euler equation in Lagrangian form. We start
with the momentum conservation equation for component vx as

∂

∂t
(ρvx) +∇ · (ρvxv) +

∂P

∂x
= ρax (1.145)

By developing all time and space derivatives, one obtains the following form (left as an exercise)(
∂ρ

∂t
+ ρ∇ · v + v · ∇ρ

)
vx + ρ

(
∂vx
∂t

+ v · ∇vx
)

= ρax −
∂P

∂x
(1.146)

The first parenthesis on the left-hand side is nothing else but the mass conservation equation in
Eulerian form, so it is equal to zero. The second parenthesis is the Lagrange derivative of vx.
The same applies for each component of the momentum, so we get in the end

ρ
Dv

Dt
= −∇P + ρa (1.147)

Note that this equation can be obtained directly by applying Newton’s second law, adding the
pressure forces to the external acceleration as minus the pressure gradient. This is clearly the
easiest way to remember it.

Energy conservation

A useful trick is to visualize a Lagrangian fluid element as a small volume of fluid containing a
constant mass. If we label this volume V and its mass M , the fluid density is just

ρ =
M

V
(1.148)

The conservation of mass can be written as

1

M

DM

Dt
=

1

V

DV

Dt
+

1

ρ

Dρ

Dt
= 0 (1.149)

For a unit mass, V is called the specific volume, or the volume per unit mass. Using the mass
conservation equation in Lagrangian form, we deduce

1

V

DV

Dt
= ∇ · v (1.150)

which states that the rate of change of the volume is given by the divergence of the velocity
field, a very useful interpretation.
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Now we define the total internal energy (in units of [erg]) in our fluid element as

E = eV = Mε (1.151)

where e is the internal energy density defined earlier, or the internal energy per unit volume (in
units of [erg cm−3]), and ε is the specific internal energy, or the internal energy per unit mass (in
units of [erg g−1]). We now use the first law of thermodynamics that states that dE = −PdV ,
or in Lagrangian form

DE

Dt
= M

Dε

Dt
= −P DV

Dt
(1.152)

Using the rate of change of the volume derived above, we finally get

ρ
Dε

Dt
= −P ∇ · v (1.153)

This is the energy equation in Lagrangian form. Note that we could have obtained the same
result, starting with the energy equation in Eulerian form, then using both mass and momentum
conservation, together with the definition of the Lagrange derivative, at the expense of relatively
tedious calculations (left to the reader as exercise). The current approach, based on the first
law of thermodynamics, is much easier to remember and strictly equivalent.
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1.6 Chapman-Enskog theory

We have derived in the previous section the Euler equations, which are the fluid equations in
the limiting case of LTE. The Chapman-Enskog theory will allow us to also derive a complete
set of fluid equations, which are valid slightly outside LTE conditions. We will introduce fluid
viscosity and heat conduction, two physical processes associated to the concept of dissipation.
The Chapman-Enskog derivation is also a perturbative technique, used in many other domains
of physics. The derivation we give here is a simplified version of the original Chapman-Enskog
theory, a very rigorous perturbative approach of kinetic theory.

1.6.1 First-order Chapman-Enskog expansion of the DF

When we are not in LTE, the DF is not of Maxwell-Boltzmann form anymore. In the general
case, we need to solve the full Boltzmann equation, which is, in most cases, untractable. We can
however follow a perturbative approach, assuming that the fluid is reasonably close to LTE, and
the general DF f is the Maxwell-Boltzmann DF f0 plus a small additive perturbation ∆f � f0

f = f0 +∆f (1.154)

Starting with the full Boltzmann equation (without acceleration for sake of simplicity), we
write

∂f

∂t
+ u · ∇f = C(f) (1.155)

where the functional C(f) encodes the collision term as

C(f) =

(
Df

Dt

)
in

−
(
Df

Dt

)
out

=

∫
R3

∫
4π

(f ′1f
′
2 − f1f2)σv dΩ d3u2 (1.156)

We now Taylor expand the collision term to first order, as

C(f) ' C(f0) +
∂C
∂f
∆f (1.157)

By definition, we have C(f0) = 0. The partial derivative is however horribly complex and outside
the scope of this course. We use here a very simple approximation, for which we assume that

C(f) ' −α(x, t)∆f = α (f0 − f) (1.158)

where α is just a function of position and time. We now determine α by computing the outgoing
collision rate as ∫

R3

α f d3u1 = αn = n2 〈σv〉 =
n

τcoll
(1.159)

so that

α =
1

τcoll
(1.160)

The Boltzmann equation can thus be written in the collision time approximation as

∂f

∂t
+ u · ∇f = −∆f

τcoll
(1.161)

We now use the main trick of the Chapman-Enskog expansion, which is to match terms of the
same order and neglect terms of higher-order. Injecting f = f0 +∆f in the previous equation,
we neglect all ∆f terms in the left-hand side. In the right-hand side, however, the ∆f term is
divided by τcoll, which is also a very small quantity. Since the quotient of two small quantities
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can be large, we have to keep the right-hand side as it is, and obtain the first-order expansion
of the Boltzmann equation

∂f0

∂t
+ u · ∇f0 = −∆f

τcoll
(1.162)

The problem is now for us to find a usefull expression for ∆f . Replacing the microscopic velocity
by the sum of the bulk velocity and the thermal velocity u = v+w, we can rewrite the previous
equation as

∂f0

∂t
+ v · ∇f0 + w · ∇f0 = −∆f

τcoll
(1.163)

or
Df0

Dt
+ w · ∇f0 = −∆f

τcoll
(1.164)

We now use the explicit form of the Maxwell-Boltzmann distribution

f0 =
ρ/m

(2πσ2)3/2
exp

(
−1

2

(u− v)2

σ2

)
(1.165)

but re-written in the following convenient form

ln f0 = ln ρ− 3 lnσ − 1

2

(u− v)2

σ2
+ constants (1.166)

Recall that the velocity disperion is related to the temperature by σ =
√

kBT
m . We can now take

the logarithmic derivative of f0 and obtain

f ′0
f0

=
ρ′

ρ
+ (

w2

σ2
− 3)

σ′

σ
+

w · v′

σ2
(1.167)

where f ′ denotes either the Lagrange derivative Df
Dt or the gradient ∇f .

Using P = ρσ2 and e = 3
2ρσ

2 = ρε, we can also rewrite the Euler equations in Lagrangian
form in a more appropriate way:

1

ρ

Dρ

Dt
= −∇ · v (1.168)

Dv

Dt
= −∇P

ρ
= −σ2∇ρ

ρ
− 2σ∇σ (1.169)

ρ
Dε

Dt
= −P ∇ · v or

1

σ

Dσ

Dt
= −1

3
∇ · v (1.170)

Using these relations we get for the Lagrange time derivative

1

f0

Df0

Dt
=

[
−∇ · v − 1

3
∇ · v (

w2

σ2
− 3) + w ·

(
−∇ρ

ρ
− 2
∇σ
σ

)]
(1.171)

and for the second term featuring the gradient of f0, we get

1

f0
w · ∇f0 =

[
w · ∇ρ

ρ
+ w · (w

2

σ2
− 3)
∇σ
σ

+
w · (∇v)w

σ2

]
(1.172)

where we introduce in the third term the velocity gradient tensor

G = ∇v =
∂vi
∂xj

(1.173)
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Finally, combining the time derivative and the gradient, we obtain for the perturbation an
explicit form

∆f

f0
= −τcoll

[
(
w2

σ2
− 5)

w · ∇σ
σ

− 1

3
(∇ · v)

w2

σ2
+

w · (∇v)w

σ2

]
(1.174)

It is interesting to note that this expression is a polynomial of degree 3 in w, and depends only
on the gradient of σ (or T ) and v. More importantly for what follows, the temperature gradients
are combined with a polynomial of degree 3, while the velocity gradients are combined with a
polynomial of degree 2 in w.

1.6.2 First-order expansion in the pressure tensor

Since P and Q are linear in f , we can write them as

Pij = P δij +∆Pij (1.175)

Qi = 0 +∆Qi (1.176)

where the LTE contribution is an isotropic scalar pressure for the pressure tensor and zero for
the heat flux, so that their first-order correction can be computed as

∆Pij =

∫
R3

mwiwj ∆f d3w (1.177)

∆Qi =

∫
R3

m
w2

2
wi∆f d3w (1.178)

At this point, it is more convenient to write ∆f using explicit index summations

∆f

f0
= −τcoll

(w2

σ2
− 5

)∑
i

wi
σ

∂σ

∂xi
+
∑
i

w2
i

σ2

(
∂vi
∂xi
− 1

3
(∇ · v)

)
+
∑
i

∑
j 6=i

wiwj
σ2

∂vi
∂xj

 (1.179)

We now compute the pressure tensor components, starting with the off-diagonal terms with
i 6= j. Since f0 is an even function of w, all the terms in the integral that are odd in at least one
component of w are zero. This leaves us with only two surviving terms in the integral of ∆f

∆Pij =

∫
R3

mwiwj ∆f d3w (1.180)

= −τcoll

(
∂vi
∂xj

+
∂vj
∂xi

)∫
R3

m
w2
i w

2
j

σ2
f0 d3w for i 6= j (1.181)

Using
∫
mw2

iw
2
jf0 d3w = ρσ4, we get

∆Pij = −ρ τcoll σ
2

(
∂vi
∂xj

+
∂vj
∂xi

)
for i 6= j (1.182)

The diagonal terms are more complicated, so we only focus on Pxx as an example that can be
immediately generalized to Pyy and Pzz

∆Pxx =

∫
R3

mw2
x∆f d3w (1.183)
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Because now we are dealing with a second-order moment, we have more surviving terms in the
integral

∆Pxx = −τcoll

(
∂vx
∂x
− 1

3
(∇ · v)

)∫
R3

m
w4
x

σ2
f0 d3w (1.184)

−τcoll

(
∂vy
∂y
− 1

3
(∇ · v)

)∫
R3

m
w2
xw

2
y

σ2
f0 d3w

−τcoll

(
∂vz
∂z
− 1

3
(∇ · v)

)∫
R3

m
w2
xw

2
z

σ2
f0 d3w

We easily compute the remaining moments with
∫
w4
xG(wx) dwx = 3σ4,

∫
w2
xG(wx) dwx = σ2,

etc. After some simplifications, we get

∆Pii = −ρ τcoll σ
2

(
2
∂vi
∂xi
− 2

3
(∇ · v)

)
(1.185)

Combining the results for diagonal and off-diagonal terms, we obtain the following compact
tensor form for the pressure tensor

P = P I− µ
(
G + GT − 2

3
(∇ · v)I

)
(1.186)

where µ is the viscosity coefficient, that the Chapman-Enskog theory predicts to be

µ = ρ τcollσ
2 (1.187)

We will discuss how this coefficient depends on the macroscopic flow variables in the next section.
A very important conclusion we would like to make here is the following: based on the first-order
expansion we just performed, we are able to obtain self-consistently the additional term to the
Euler equation traditionally called viscosity. The Chapman-Enskog theory provides a framework
to derive the shape of the viscous tensor, based on the velocity gradient tensor, as well as the
exact value of the viscosity coefficient.

1.6.3 First-order expansion in the heat flux

An analoguous calculation can be done for the heat flux, which is defined as

∆Qi =

∫
R3

m
w2

2
wi∆f d3w (1.188)

All velocity gradient terms vanish because we are dealing now with a third-order moment. We
will derive only the heat flux for the x-component, with an obvious generalisation for the other
two components. Using the previous equation on ∆f , we see that the only non-vanishing term
is

∆Qx = −τcoll
1

σ

∂σ

∂x

∫
R3

m
w2

2
w2
x

(
w2

σ2
− 5

)
f0 d3w (1.189)

Developing w2 = w2
x + w2

y + w2
z and using

∫
w6
xG(wx) dwx = 15σ6,

∫
w4
xG(wx) dwx = 3σ4,∫

w2
xG(wx) dwx = σ2, etc, we find∫

R3

m
w2

2
w2
x

(
w2

σ2
− 5

)
f0 d3w = 10ρσ4 (1.190)
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Finally, replacing the gradient of the velocity dispersion by the gradient of the temperature,
using σ2 = kBT

m ,

2
1

σ

∂σ

∂x
=

1

T

∂T

∂x
(1.191)

we obtain the final form of the heat flux vector

Q = −κ∇T (1.192)

where we introduce the heat conduction coefficient κ, which, according to the Chapman-Enskog
theory, takes the value

κ = 5ρ τcollσ
4 1

T
(1.193)

As for viscosity, the Chapman-Enskog theory allows us to derive self-consistently an additional
energy flux to add to the energy equation. This new flux, encoding non-LTE effects, is pro-
portional to the gradient of the temperature. This is a classical mechanism using routinely in
thermal engineering models, known as Fourier’s law. As a bonus, the Chapman-Enskog theory
also gave us the exact value of the conduction coefficient κ.

1.6.4 Non-LTE modifications of the Euler equations

Now that we know the explicit form for the pressure tensor and the heat flux, we can close the
general fluid equations using the follwing system of conservation laws

∂ρ

∂t
+∇ · (ρv) = 0 (1.194)

∂

∂t
(ρv) +∇ · (ρv ⊗ v + P I) = ∇ · (µS) + ρg (1.195)

∂E

∂t
+∇ · [(E + P ) v] = ∇ · (µSv) +∇ · (κ∇T ) + ρv · g (1.196)

where we introduced a new tensor called the rate of strain tensor, defined as

Sij =
∂vi
∂xj

+
∂vj
∂xi
− 2

3
(∇ · v) δij (1.197)

Note that S is symetric and Tr(S) = 0, so that purely rotating, expanding or compressing flows
have no viscosity. Only shear flows produce enough strain to trigger viscosity. This is of course
only true for pure Maxwell-Boltzmann gases. In case the particles have internal degrees of
freedom, these conclusions do not apply and new terms will appear in these equations. Using
standard vector and tensor calculus, one can also write the energy equation in Lagrangian form,

ρ
Dε

Dt
= −P∇ · v + µ(S : ∇v) +∇ · (κ∇T ) (1.198)

The operator : stands for the contraction of the two tensors. Interestingly, this term is called the
dissipation function and noted Φ. After some algebra, it is relatively straightforward to show
that

Φ = µ(S : ∇v) = 2µ
∑
i,j

[
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
− 1

3
(∇ · v)δij

]2

(1.199)

a quantity that is clearly always positive. This fact is particularly important because it demon-
strates that these non-LTE terms are truly dissipative, or in other words, they always lead to
an increase of the entropy, in agreement with Boltzmann H theorem.
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1.6.5 Non-LTE effects as diffusion processes

We will now use a simple example to highlight the fact that heat conduction and viscosity can
be seen as diffusion processes, diffusion of energy for the former and diffusion of momentum for
the latter. We consider the case of a uniform density medium ρ = ρ0 at rest v = 0. In this case,
the total energy is just the internal energy

E = e =
3

2
nkBT =

3

2
ρσ2 (1.200)

and the energy equation simplified to

∂e

∂t
=

3

2
nkB

∂T

∂t
= ∇ · (κ∇T ) (1.201)

From this, obtain a simple PDE on the gas temperature with

∂T

∂t
= ∇ · (ν∇T ) (1.202)

an equation also known as the heat transfer equation, with diffusion coefficient

ν =
κ

3
2nkB

(1.203)

Diffusion processes are quite common in physics and can all be modelled using the heat transfer
equation. A typical and very useful rule of thumb is that the diffusion coefficient, just based on
dimensional argument, must be ν = V L where V is a typical velocity and L a typical length
scale associated to the diffusion process. In our case, we have no choice than choosing for the
velocity the thermal velocity dispersion σ and for the length scale the mean-free path λcoll.

ν = σλcoll = σ2τcoll (1.204)

Injecting this in the relation connecting ν and κ, we immediately find

κ =
3

2
nkBσ

2τcoll =
3

2
ρσ4 1

T
τcoll (1.205)

which is almost exactly the same formula we obtained using Chapman-Enskog theory. This is a
much easier derivation of the heat conduction coefficient.

We can use the same trick for the viscosity coefficient. We consider the simple case of
a stationary flow in a pipe, where the x-velocity depends only on the y coordinate, and the
y-velocity is zero. In this case, because the velocity divergence is zero, the density remains
constant. Gravity balances the vertical pressure gradient, and the horizontal pressure gradient
vanishes. The momentum conservation equation simplifies to

ρ
∂vx
∂t

=
∂

∂y

(
µ
∂vx
∂y

)
−→ ∂vx

∂t
=

∂

∂y

(
ν
∂vx
∂y

)
(1.206)

which is again the heat transfer equation with this time as diffusion coefficient ν = µ/ρ. Using
the same trick as before, we can set ν = σλcoll = σ2τcoll, and obtain directly the equation for
the viscosity coefficient

µ = ρσ2τcoll (1.207)

which is exactly the same equation than the one we derived using Chapman-Enskog theory, but
recovered almost immediately.
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1.6.6 Application to astrophysical gases

We can now compute the viscosity and conduction coefficients for typical cases found in as-
trophysics, namely neutral and molecular gases described by a constant cross section σ0 '
10−15 cm2 and ionized gases described by the Coulomb interaction. For the hard sphere case,
one has

1

τcoll
= nσ0

√
kBT

m
(1.208)

so that the conduction coefficient writes

κ = nkB

(
kBT

m

)
τcoll =

kB
σ0

√
kBT

m
(1.209)

We see that it does not depend on gas density but only on the square root of the gas temperature.
We also see that the conduction coefficient is smaller for larger particle masses. The viscosity
coefficient, equivalently, can be computed in the hard sphere case as

µ = ρ

(
kBT

m

)
τcoll =

m

σ0

√
kBT

m
(1.210)

Similarly, µ does not depend on gas density but on the square root of the temperature. On the
other hand, the viscosity is now larger for larger particle masses.

We can also describe the case of a fully ionized plasma where we have positively charged
protons and negatively charged free electrons. The other distinction between electons and pro-
tons is their mass, which is mp = 1.66 × 10−24 g for protons and me ' mp/1836 for electrons.
When the system is at (or close to) LTE, the velocity dispersion will therefore be much larger
for electrons than for protons

kBT

me
� kBT

mp
(1.211)

We have already seen that we can compute the electrons and protons cross sections as

σ0 '
e4

(kBT )2 lnΛ (1.212)

The collision rate is proportional to the product of the cross-section with the thermal velocity
dispersion. As a result, the collision rates will always be dominated by collisions with electrons,
and one can in most cases neglect collisions with ions or other atoms and molecules.

On the other hand, when one combines these various quantities to compute the electrons
and protons viscosity coefficients, we observe that the largest is the one for protons

µp =
m3
p

e4 lnΛ

(
kBT

mp

)5/2

(1.213)

while the largest conduction coefficient is the one for electrons

κe =
m2
e

e4 lnΛ
kB

(
kBT

me

)5/2

(1.214)

This is why in ionized gases we refer only to the electronic conduction and to the ionic viscosity.
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1.7 Generalized kinetic theory

In this section, we will present a generalisation of kinetic theory to the case of relativistic and/or
degenerate gases. This has important applications for the rest of the course, in particular to the
internal structure of stellar objects and the stability of hydrostatic polytropes. This section also
sets the scene for a more general formulation of kinetic theory based on general Hamiltonian
dynamical systems, that will also prove usefull to describe collisionless fluids.

1.7.1 Lagrangian and Hamiltonian mechanics

In Lagrangian mechanics, we use an arbitrary coordinate system q(t) to represent the particle
positions, with which one can define an arbitrary Lagrangian as

L(q, q̇, t) (1.215)

Given this Lagrangian, the trajectories of the particles are found using the least action principle,
minimizing the action given by

S =

∫ t1

t0

Ldt (1.216)

This minimization leads to the famous Euler-Lagrange equations defining the trajectories as

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= 0 (1.217)

Defining the generalized momentum vector p as

p =
∂L
∂q̇

(q, q̇, t) (1.218)

we can re-write the equation for the trajectories as

ṗ =
∂L
∂q

(q, q̇, t) (1.219)

In conclusion, for Lagrangian mechanics, we describe the trajectory using (q(t),p(t)), our new
phase-space coordinates. We can invert the definition of the momentum to compute q̇, the
Lagrangian value at time t and its spatial derivative. We can finally compute the new coordinate
of the particle in phase-space at time t+∆t.

We can also use a strictly equivalent formulation, defining a new quantity called the Hamil-
tonian

H(q,p, t) ≡ p · q̇− L(q, q̇, t) (1.220)

Differentiating H, and using the definition of p and its time derivative, we get

dH = q̇ · dp + p · dq̇− ∂L
∂q
· dq− ∂L

∂q̇
· dq̇− ∂L

∂t
dt = q̇ · dp− ṗ · dq− ∂L

∂t
dt (1.221)

Identifying the partial derivatives of the Hamiltonian, we finally get Hamilton’s equations that
describe the trajectory in the framework of Hamiltonian mechanics.

q̇ =
∂H

∂p
(1.222)

ṗ = −∂H
∂q

(1.223)
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This gives a more explicit formulation to obtain the trajectory in phase-space, as we do not
need to invert the Lagrangian. Recall however that both formulations are strictly equivalent.
To describe a physical system, we can either give the Lagrangian, and deduce the correspond-
ing Hamiltonian, or set the Hamiltonian and compute the corresponding Lagrangian. Which
formulation is the more convenient depends on the exact nature of each problem.

For a particular case, however, the Hamiltonian formulation appears more natural. This is
for Lagrangian (or Hamiltonian) functions that do not depend explicitly on time.

∂H

∂t
= −∂L

∂t
= 0 (1.224)

In this case, we have H(q,p), and using the chain rule, we get

dH

dt
=
∂H

∂q
· q̇ +

∂H

∂p
· ṗ = −ṗ · q̇ + q̇ · ṗ = 0 (1.225)

H is therefore a constant of motion along the particle’s trajectory. This lead to a natural choice
for the Hamiltonian, namely the total energy of the particle. In many cases, it can be written
as

H(q,p) = K(p) + V (q) (1.226)

where K is the kinetic energy and V is the potential energy for the external force. We will come
back to this formulation later to describe relativistic particles.

1.7.2 Relativistic particles

Relativistic dynamics is based on the Lorentz transformation to change coordinates in space-
time from the rest frame where the velocity of the particle is zero, to some other arbitrary frame
with relative velocity v. The particle 4-momentum, defined as

P =
(
P 0, P 1, P 2, P 3

)
= (E/c, px, py, pz) (1.227)

is a frame-independent quantity, so that its norm in Minkovski space is conserved through a
Lorentz transformation

− E2

c2
+ p2

x + p2
y + p2

z = −m2c2 (1.228)

where the right-hand side is the norm of the 4-momentum in the rest frame. This results in the
definition of the energy of a relativistic particle as

E2 = p2c2 +m2c4 (1.229)

For elastic collisions, the particle rest mass will remain constant and one can define the Hamil-
tonian as

H = K(p) + V (q) (1.230)

where K is the relativistic kinetic energy defined as

K =
√
p2c2 +m2c4 −mc2 (1.231)

Hamilton’s equation become in this case

v = q̇ =
∂K

∂p
=

pc2

E
=

p

γm
(1.232)

ṗ = −∂V
∂q

(1.233)
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where we introduced the Lorentz boost factor, defined as

γ =
E

mc2
=

1√
1− v2

c2

(1.234)

We can recover two interesting limiting cases: the non-relativistic case for which γ ' 1, v � c
and p � mc, and the ultra-relativistic case for which γ � 1, v ' c and p � mc. The kinetic
energy for each case writes

non-relativistic: K = mc2

√
1 +

p2

m2c2
−mc2 ' p2

2m
(1.235)

ultra-relativistic: K =
√
p2c2 +m2c4 −mc2 ' pc (1.236)

Hamilton’s equation becomes quite simple in these two limiting cases, with

non-relativistic: v =
∂K

∂p
=

p

m
(1.237)

ultra-relativistic: v =
∂K

∂p
= cn (1.238)

where in the second case, n = p/p is the unit vector pointing in the direction of the 3-momentum.
Before we address the question of generalizing Boltzmann equation, we need to discuss the

issue of frame invariance. In physics, it is important to derive equations independent of the
frame of reference. In a Galilean framework, this property is known as the Galilean invariance
of the fluid equations. In the relativistic framework, this is not so easy, as time, space and
3-momentum are all affected differently by the Lorentz transformation.

The most important property of the Lorentz transformation we use here is the fact that a
pure spatial volume element d3x at fixed time will get modified by the Lorentz transform defined
by velocity v and its corresponding Lorentz boost γ by

d3x′ = γd3x (1.239)

The 3-momentum is also affected by the Lorentz transform so that

d3p′

E′
=

d3p

E
(1.240)

This is a frame invariant quantity. These two properties are left to the reader as an exercise.
Interestingly, if we use the Lorentz transform to the comoving frame of the particle, we have E =
γmc2 and the product of the two d3xd3p = d3x0d3p0, where index 0 refers to the comoving frame.
The corresponding phase-space element can therefore be considered also as frame-invariant, a
property we will use immediately in the next section.

1.7.3 Generalized Boltzmann equation

Since our definition of phase-space has changed, we need to re-define the particle distribution
function as

dN = f(q,p, t) d3q d3p (1.241)

where dV = d3q d3p is our new frame-invariant phase-space volume element and dN is the
number of particle in this volume element. Since the particle number is frame-independent, we
conclude that the DF is also a frame-invariant scalar. We will prove a generalized version of
Liouville’s theorem (which was introduced in the beginning of this chapter) using the following
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coordinate transformation associated to the trajectory of all particles within an initial phase-
space volume element dV0 = d3q0 d3p0, over a small time step ∆t.

q = q0 +
∂H

∂p
(q0,p0)∆t (1.242)

p = p0 −
∂H

∂q
(q0,p0)∆t (1.243)

The new volume element can be computed using dV = det(J) dV0, where J is the Jacobian
matrix of the coordinate transformation, shown here for the one-dimensional case for simplicity

J =

[
1 + ∂2H

∂p∂q∆t
∂2H
∂p2 ∆t

−∂2H
∂q2 ∆t 1− ∂2H

∂q∂p∆t

]
(1.244)

We see that

det(J) = 1 +

(
∂2H

∂q2

∂2H

∂p2
−
(
∂2H

∂q∂p

)2
)
∆t2 (1.245)

so that the phase-space volume element remains constant in time. This property holds true
for any Hamiltonian system. We also see that this is reminiscent of the Heisenberg uncertainty
principle in quantum mechanics, as we have

d3q d3p = dV0 = constant (1.246)

while the uncertainty principle states that

∆qx∆px ≥
~
2
' h (1.247)

where ∆qx and ∆px are the one-dimensional standard deviations in the position and in the
momentum and ~ is the reduced Planck’s constant and h is the Planck constant. They don’t
have the same meaning at all. Liouville’s theorem means that if a cloud of particles shrinks
in position space, it has to expand in velocity space and vice-versa. Heisenberg uncertainty
principle means that if one knows the position of a quantum particle with great accuracy, then
one cannot know the momentum of the same particle very precisely, and vice-versa. On the
other hand, the uncertainty principle introduces the interesting notion that there is a minimum
phase-space volume element given by

δVmin = h3 (1.248)

within which quantum effects will become important. We will come back to this point later.
Using Liouville’s theorem and the conservation of the particle number (in absence of colli-

sions), we conclude that f is also constant in time. Using the chain rule and Hamilton’s equation,
we obtain Boltzmann equation in the general case as

∂f

∂t
+ q̇ · ∂f

∂q
+ ṗ · ∂f

∂p
=
∂f

∂t
+
∂H

∂p
· ∂f
∂q
− ∂H

∂q
· ∂f
∂p

=

(
Df

Dt

)
coll

(1.249)

We finally get the compact form

∂f

∂t
− {H, f} =

(
Df

Dt

)
coll

(1.250)

where we define the Poisson’s brackets of two scalars A and B as

{A,B} =
∂A

∂q
· ∂B
∂p
− ∂A

∂p
· ∂B
∂q

(1.251)

This form of Boltzmann’s equation has many similarities with Schrödinger’s equation in quantum
mechanics, but this will take us too far away from our topic.
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1.7.4 Generalized moments

We can define a frame-invariant first-order moment of the DF, using the relativistic 4-momentum
P = (P 0, P 1, P 2, P 3) and integrating over the frame-invariant momentum-space volume element
d3p/E. We obtain the fluid particle 4-flow N = (N0, N1, N2, N3) for which

N i =

∫
R3

P if
1

γm
d3p (1.252)

Note that γm appears in the denominator instead of E = γmc2 to ensure proper units for the
particle 4-flow vector. Since P 0 = E/c = γmc, we get

N0 =

∫
R3

cf d3p = n(x, t)c (1.253)

where we recognize the particle number density. Using for the velocity p = γmv, we also get

N1 = Nx =

∫
R3

vxf d3p (1.254)

which is the particle flux in the x-direction.
We can also define a second-order moment of the DF using the tensor product of the 4-

momentum and integrating again over momentum space. We obtain the energy-momentum
tensor T as

T =

∫
R3

P⊗Pf
1

γm
d3p (1.255)

The first component of the tensor we compute is

T 00 =

∫
R3

E2

c2
f

1

γm
d3p =

∫
R3

Ef d3p (1.256)

where we used E = γmc2. We recognize here again the fluid energy density that can be
decomposed into the fluid internal energy density and the fluid rest mass energy density as

T 00 =

∫
R3

Kf d3p+ ρ(x, t)c2 = e(x, t) + ρ(x, t)c2 (1.257)

For sake of simplicity, we assume we are in the fluid comoving frame, so that there is no bulk
kinetic energy. The space-time component of the tensor write (for x only)

T 0x = T x0 =

∫
R3

E

c
pxf

1

γm
d3p = c

∫
R3

pxf d3p (1.258)

where we see the fluid x-momentum density. Finally, the space-space components are just

T ij = Pij =

∫
R3

pipjf
1

γm
d3p =

∫
R3

vipjf d3p (1.259)

for which we used pi = γmvi. This is the momentum flux, also known as the pressure tensor (or
stress tensor). We can always define a scalar pressure (even if the DF is not Maxwell-Boltzmann)
as

P =
1

3
Tr P =

1

3

∫
R3

v · pf d3p =
1

3

∫
R3

p2c2

E
f d3p (1.260)

We can study our two limiting case, namely non-relativistic (NR) or ultra-relativistic (UR). For
the non-relativistic case, one has

non-relativistic: p = mv, e =

∫
R3

p2

2m
f d3p, P =

1

3

∫
R3

p2

m
f d3p =

2

3
e (1.261)
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For the ultra-relativistic case, one has

ultra-relativistic: v = cn, e =

∫
R3

pcf d3p, P =
1

3

∫
R3

pcf d3p =
1

3
e (1.262)

In conclusion, if the DF is an even function of p, the pressure tensor will be isotropic and
proportional to the scalar pressure. In this case, the fluid is considered to be an ideal gas, with
γ = 5/3 for the non-relativistic case (we knew that already) and γ = 4/3 for the ultra-relativistic
case.

Using these new definitions, and in the absence of external forces, we can easily derive the
moments of the Boltzmann equation. We obtain the relativistic fluid equations, which can be
written in a compact form using the 4-position vector in space-time X = (ct, x, y, z). First,
multiplying the Boltzmann equation by P 0, and integrating over the momentum-space volume-
element d3p/γm we get the conservation of the particle number density as

∂Nα

∂Xα
= 0 (1.263)

Finally, multiplying it by (P 0)2 and P i, we get the conservation of energy and momentum as

∂Tαβ

∂Xα
= 0 (1.264)

1.7.5 Quantum effects

As we have already discussed, quantum mechanics is governed by the Heisenberg uncertainty
principle, which states that position qx and momentum px cannot be known together with an
accuracy better than

4qx4px ' h (1.265)

where h is the Planck constant. This introduces a natural fixed size for the quantum cell in
phase-space

δVmin = 4q34p3 = h3 (1.266)

We define now the occupation number as the number of particles per phase-space quantum cell

N = f(x,p, t)h3 (1.267)

The occupation number is a very important quantity in quantum mechanics, because it allows
to define the two types of particles we are dealing with in nature, namely bosons and fermions.
Fermions obey Pauli’s exclusion principle: once a quantum cell is fully occupied by one fermion,
no other fermion can join. Fermions are not social particles, they prefer to live alone. Bosons
are the opposite, they are very social: not only do they accept to share their quantum cell with
others, but they prefer to go into occupied cells.

Using kinetic theory, it is possible to encode this behavior using a correction factor to the
collision integral. The outgoing collision rate, for example, must now be multiplied by the Bose
enhancement factor 1 +N ′ for bosons, or by the Fermi suppression factor 1−N ′ for fermions.
Note that this quantum correction factors have to be applied to the phase-space volume element
of the products of the collision, namely the prime particles. This gives us for bosons(

Df

Dt

)
out

=

∫
R3

∫
4π
f1f2(1 +N ′1)(1 +N ′2)σv d3p2 dΩ (1.268)

and for fermions (
Df

Dt

)
out

=

∫
R3

∫
4π
f1f2(1−N ′1)(1−N ′2)σv d3p2 dΩ (1.269)
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The fact that the probability to get a collision from our current volume element to another
volume element depends on the occupation number of this other volume element is a mind-
blowing property of the quantum world. For photons, the Bose enhancement factor is often
referred to as induced emission and is at the origin of the laser effect. Adding the incoming
collisions, the collision integral now becomes(

Df

Dt

)
coll

=

∫
R3

∫
Ω

[
f ′1f
′
2(1±N1)(1±N2)− f1f2(1±N ′1)(1±N ′2)

]
σv d3p2 dΩ (1.270)

where the ± symbol is referring either to bosons (+) or to fermions (−). We see that now
detailed balance, as a sufficient condition for LTE, writes

f ′1f
′
2

(1±N ′1)(1±N ′2)
=

f1f2

(1±N1)(1±N2)
(1.271)

In other words, recalling that N = fh3, the quantity

ln
N

1±N
(1.272)

is now the new collision invariant. Since we have already 5 collision invariants, the 4-momentum
components plus the rest mass, this new invariant has to be a linear combination of the others.
We then get, using classical notations

ln
N

1±N
= α+ βE =

µ− E
kBT

(1.273)

where we assume here that we are in the comoving frame of the fluid so that there is no
dependance on the fluid velocity. The two remaining momentum-independent quantities are
kBT , the temperature and µ, called the chemical potential. Solving for N results in the Fermi-
Dirac distribution function

f =
g

h3

1

e(E−µ)/kBT + 1
for fermions, (1.274)

and in the Bose-Einstein distribution function

f =
g

h3

1

e(E−µ)/kBT − 1
for bosons. (1.275)

Note that we multiplied the DF by an extra factor g, which is the degeneracy of the state
associated to the corresponding energy. For example, electrons can have two different spins
(s = 1/2 or s = −1/2). In this case, they can occupy the same quantum cell, so that g = 2.
Photons, on the other end, are bosons, so that the quantum cell can be filled up with no
limitation, but they nevertheless have two spin values (s = 1 or s = −1), so that g = 2 for
photons, too.

These new distribution functions are the equivalent of the Maxwell-Boltzmann one, but for
non-classical particles. We defer the description of photons (our bosons in this course) to the
chapter about radiation. We know describe in more details fermions, and how quantum effects
can affect the fluid equation of state.

1.7.6 Degenerate gases

For a system of fermions at LTE, the distribution function is given by the Fermi-Dirac distribu-
tion, which, in the comoving frame of the fluid, is just

f =
g

h3

1

e(E−µ)/kBT + 1
(1.276)
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where the relativistic energy is E =
√
p2c2 +m2c4 = K +mc2. Defining the Fermi energy as

KF = µ−mc2 (1.277)

one can rewrite the DF as

f =
g

h3

1

e(K−KF )/kBT + 1
(1.278)

We see that the Fermi energy marks the transition around N = 0.5. For lower kinetic energies
K < KF , the quantum cells are almost completely occupied and N ' 1, while at larger kinetic
energies, N � 1, and the quantum cells are almost completely free. We will consider three
different regimes, the non-degenerate case, for which N � 1 everywhere is phase-space, the
partly degenerate case, for which N ' 1 at low energies but N < 1 at higher energies, and
the fully degenerate case where N takes only two values, either 1 at low energies and 0 at high
energies.

Non-degenerate gases

We start with the non-degenerate case, which is defined by N � 1 everywhere in phase-space. In
particular, since the largest value for N is obtained at K = 0, the condition for non-degenerate
fluids can be written as exp−KF /kBT � 1. We can then neglect the +1 term in the Fermi-Dirac
distribution and approximate f by

f ' g

h3
exp

KF
kBT exp

− K
kBT (1.279)

For non-relativistic gases, for which K = p2/2m, we recognize the Maxwell-Boltzmann distribu-
tion function. Using the definition for the number density n, we have

n(q, t) =

∫
R3

fd3p ' g

h3
exp

KF
kBT

∫ +∞

0
exp

−p2
2mkBT 4πp2dp =

g

h3
exp

KF
kBT (2πmkBT )3/2 (1.280)

From this last equation, we deduce the value of the Fermi energy and re-write the condition for
non-degenerate gases as

exp
KF
kBT =

nh3

g (2πmkBT )3/2
< 1 (1.281)

For ultra-relativistic gases, for which K = pc, we get

n(q, t) =

∫
R3

fd3p ' g

h3
exp

KF
kBT

∫ +∞

0
exp

−pc
kBT 4πp2dp =

g

h3
exp

KF
kBT 8π (kBT/c)

3 (1.282)

and the conditions for being non-degenerate translates into

exp
KF
kBT =

nh3

g8π (kBT/c)
3 < 1 (1.283)

We see that in both cases, if the gas is too dense or too cold, it will become degenerate, as N
will approach 1 dangerously.

Degenerate gases

In this case, we have no other choice but to use the Fermi-Dirac distribution. The Fermi energy
can be determined using the number density as

n(q, t) =

∫
R3

fd3p =
g

h3

∫ +∞

0

1

exp
KF−K
kBT +1

4πp2dp (1.284)
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In the last equation, we see that kBT controls how fast the distribution transitions at K = KF

from N ' 1 to N ' 0. This leads us to define another regime for ultra-degenerate gases, for
which

kBT � KF (1.285)

In this case, we can approximate N as the Heaviside function. Defining the Fermi momentum

as KF = K(pf ) =
√
p2
F c

2 +m2c4 −mc2, we finally obtain

n =
g

h3

∫ pF

0
4πp2dp =

4πg

3h3
p3
F (1.286)

We can also compute easily the scalar pressure and the internal energy density from the previous
section as

P =
1

3

g

h3

∫ pF

0

p2c2

E
4πp2dp and e =

g

h3

∫ pF

0
K4πp2dp (1.287)

We now consider the limiting case of an ultra-degenerate and ultra-relativistic gas, for which
E ' K ' pc and

P ' 1

3

g

h3

∫ pF

0
pc4πp2dp =

πcg

3h3
p4
F =

πgch

3

(
3n

4πg

)4/3

= A
( ρ
m

)4/3
(1.288)

This is a so-called polytropic equation of state, for which the pressure depends only on the gas
density, and not on the temperature anymore. The constant A in this case is just

A =
ch

4

(
3

4πg

)1/3

(1.289)

The ultra-degenerate and non-relativistic case leads to a different result, because we have now
E ' mc2 and K ' p2/2m, so that

P ' 1

3

g

h3

∫ pF

0

p2

m
4πp2dp =

4πg

15mh3
p5
F =

4πgh2

15m

(
3n

4πg

)5/3

= B
( ρ
m

)5/3
(1.290)

which is a different polytrope with constant B given by

B =
h2

5m

(
3

4πg

)2/3

(1.291)

In conclusion, if the gas temperature kBT � mc2, we are in the non-relativistic regime. For
densities lower than the critical density

ncrit =
g

h3
(2πmkBT )3/2 (1.292)

the gas in non-degenerate, and we are in the Maxwell-Boltzmann regime and the pressure is
given by P = nkBT = 2

3e. For densities larger than the critical density, however, we enter the

regime of degenerate gases, for which P ∝ ρ5/3 independent on the temperature. If now we
consider temperature kBT � mc2, we enter the ultra-relativistic regime. For densities lower
than the critical density

ncrit =
g

h3
8π

(
kBT

c

)3

(1.293)

the gas pressure is P = nkBT = 1
3e. For larger densities, however, we enter the ultra-degenerate

regime for which P ∝ ρ4/3.



Chapter 2

Astrophysical fluid dynamics

After deriving the Euler equations from first principles using kinetic theory, and the non-LTE
source terms associated to viscosity and heat conduction, we are now in a position to use these
equations to describe astrophysical fluid flows. In this chapter, we will address first the dynamics
and the equilibrium of astrophysical systems, which can be either a galaxy, a star or a molecular
cloud. These systems can be studied as a single object, using integral forms of the Euler
equations. We can also describe their internal structure using various geometrical approximation,
namely adopting spherical or cylindrical coordinate systems. We will describe in particular
accretion flows within accretion disks and spherical Bondi stationary flows. The key question is:
are those equilibrium or stationary solutions stable? This leads to the notion of waves, either
propagating with a fixed amplitude (in other words stable) or propagating with an exponentially
growing amplitude (in other words unstable). Among different types of waves, we will pay
particular attention to shock waves, which play an important role in explosive astrophysical
events such as supernovae. We will also describe important hydrodynamical instabilities at work
in the interstellar medium or inside stars, leading to the theoretical description of astrophysical
turbulence.

2.1 Euler equations in integral form

In order to describe global properties of entire systems, we will derive and use integral forms for
the Euler equation. So far, we have the so-called Eulerian, conservative form

∂ρ

∂t
+∇ · (ρv) = 0 (2.1)

∂

∂t
(ρv) +∇ · (ρv ⊗ v + P I) = ρg (2.2)

∂E

∂t
+∇ · [(E + P ) v] = ρv · g (2.3)

where the gravitational acceleration is described by the vector g = −∇φ and the gravitational
potential φ is the solution of Poisson’s equation

∆φ = 4πGρ (2.4)

38
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We have also derived the Euler equations in Lagrangian form, using the Lagrange time derivative,
or the time derivative following the fluid motions.

Dρ

Dt
= −ρ∇ · v (2.5)

ρ
Dv

Dt
= −∇P + ρg (2.6)

ρ
Dε

Dt
= −P ∇ · v (2.7)

In what follows, we will derive a new, very useful form of the Euler equations, called integral
form.

2.1.1 Reynolds Transport Theorem

Before we embark into the derivation of these integral relations, we first need a little help from
a well-know theorem for fluid dynamics, namely Reynolds transport theorem. We define a
time-dependent scalar quantity I as the integral of an arbitrary fluid quantity α(x, t).

I =

∫
V (t)

α d3x (2.8)

where V (t) is the Lagrangian volume of the system. This volume is not fixed, as it moves and
deforms as the system evolves. We are interested in the time derivative of the integral quantity
I.

The main trick of Reynolds transport theorem is to introduce a colour function ψ(x), to
indicate whether a fluid element x is located inside or outside the volume V (t):

ψ(x) = 1 if x ∈ V (t) (2.9)

ψ(x) = 0 if x 6∈ V (t) (2.10)

This colour function can be seen as painting particles initially inside the volume V (t) in white
and those initially outside in black. We can express the integral over the volume as an integral
over the entire space.

I =

∫
V (t)

α d3x =

∫
R3

αψ d3x (2.11)

Since the integration bounds are now fixed, we can easily compute the time derivative of I as

İ(t) =

∫
R3

[
∂α

∂t
ψ + α

∂ψ

∂t

]
d3x =

∫
R3

[
ψ
∂α

∂t
− αv · ∇ψ

]
d3x (2.12)

where we used in the rightmost equation the property that the colour function does not change
if you move with the fluid. In other words, its Lagrange time derivative is zero.

Dψ

Dt
=
∂ψ

∂t
+ v · ∇ψ = 0 (2.13)

We now use the vector calculus relation ∇ · (αψv) = ψ∇ · (αv) + αv · ∇ψ and obtain

İ(t) =

∫
R3

(
ψ

[
∂α

∂t
+∇ · (αv)

]
−∇ · (αψv)

)
d3x (2.14)

In order to work out the second term in the integral, we use the divergence theorem∫
V0

∇ · v d3x =

∫
S0

v · n dS (2.15)
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applied to the vector αψv, using a fixed control volume much larger than V (t). This gives us∫
V0

∇ · (αψv) d3x =

∫
S0

αψv · n dS = 0 (2.16)

because ψ = 0 on the boundary of this larger control volume since the boundary is entirely
outside V (t). We now take the limit V0 → +∞ so that the integral over R3 also vanishes. We
thus obtain the final result of Reynolds transport theorem.

dI

dt
=

∫
V (t)

[
∂α

∂t
+∇ · (αv)

]
d3x (2.17)

2.1.2 Integral conservation laws

Remember that we derived fluid or macroscopic conservation laws by integrating over velocity
(or momentum) space the Boltzmann equation using 3 microscopic conservation laws. We now
derive system or integral conservation laws by integrating the Euler equations over the volume
of our system.

The total mass of the system is given by the sum of the mass of all its fluid elements

M =

∫
V (t)

ρ d3x (2.18)

Using the Reynolds transport theorem, we can now easily find the rate of change of the total
mass as

dM

dt
=

∫
V (t)

[
∂ρ

∂t
+∇ · (ρv)

]
d3x = 0 (2.19)

Indeed, the quantity between brackets is nothing else than the continuity equation, which is
zero, hence Ṁ = 0. The mass of the system defined by V (t) is therefore a constant. The key
point here is that the volume V (t) is the Lagrangian volume that moves and deforms together
with the system. This reasoning is different from taking the integral over a fixed volume V0

independent of the system. In this case

M0 =

∫
V0

ρd3x (2.20)

and

Ṁ0 =

∫
V0

∂ρ

∂t
d3x = −

∫
V0

∇ · (ρv) d3x = −
∫
S0

ρv · n dS (2.21)

which expressed the total mass flux in/out of the volume.
We can also define the total momentum of the system as

P =

∫
V (t)

ρv dV = MV (2.22)

where we exploit the fact that the mass is a constant and we introduced the system velocity V.
Taking the time derivative of the total momentum and applying Reynolds transport theorem,
we get

M
dV

dt
=

∫
V (t)

[
∂

∂t
(ρv) +∇ · (ρv ⊗ v)

]
dV =

∫
V (t)

ρgdV −
∫
V (t)
∇ · (P I) dV (2.23)
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Defining the mean system gravity as

MG =

∫
V (t)

ρg dV (2.24)

and using the divergence theorem applied to the isotropic pressure tensor∫
V (t)
∇ · (P I) dV =

∫
S(t)

Pn dS (2.25)

we get the system momentum conservation equation

M
dV

dt
= MG−

∫
S(t)

Pn dS (2.26)

We see that we can describe the trajectory of the system as a whole very much like a single
particle of mass M , velocity V and gravity G, with an additional drag force due to the pressure
field applied to the surface of the system.

2.1.3 Specific variables

A special and very useful case of the Reynolds transport theorem can be derived, when α can
be expressed as the product of the density and what is called a specific variable: α = ρβ. If α
represents a physical quantity per unit volume, β represents the same quantity per unit mass.
For example, the specific internal energy ε, defined as e = ρε, has units of [erg/g], while e, the
internal energy, has units of [erg/cm3]. As usual, the integral form is written as

I(t) =

∫
V (t)

ρβ dV (2.27)

Using Reynolds transport theorem, we write its time derivative as

İ(t) =

∫
V (t)

[
∂

∂t
(ρβ) +∇ · (ρβv)

]
dV (2.28)

=

∫
V (t)

[
β
∂ρ

∂t
+ ρ

∂β

∂t
+ β∇ · (ρv) + ρv · ∇β

]
dV (2.29)

Using the continuity equation and the definition of the Lagrange time derivative, we obtain the
fundamental relation

d

dt

∫
V (t)

ρβ dV =

∫
V (t)

ρ
Dβ

Dt
dV (2.30)

We call this equation the second form of Reynolds transport theorem. We can for example define
the system centre of mass coordinates as the vector X

MX =

∫
V (t)

ρx dV (2.31)

Using the second form of Reynolds transport theorem, we get

M
d

dt
X =

∫
V (t)

ρ
Dx

Dt
dV =

∫
V (t)

ρv dV = MV (2.32)
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We see that the centre of mass velocity is equal to the system velocity defined earlier. The
position of the centre of mass is therefore the coordinate of this virtual particle that we use to
describe the system as a whole.

We can also define the specific volume as v = 1/ρ, the volume per unit mass. The total
volume is trivially computed as

V (t) =

∫
V (t)

1 dV =

∫
V (t)

ρv dV (2.33)

According to the second form of Reynolds transport theorem, the rate of change of the volume
of the system is now simply

dV

dt
=

∫
V (t)

ρ
Dv

Dt
dV =

∫
V (t)

1

v

Dv

Dt
dV (2.34)

We can also use the first form of Reynolds transport theorem with α = 1 and get immediately

dV

dt
=

d

dt

∫
V (t)

1 dV =

∫
V (t)
∇ · v dV (2.35)

Identifying the terms under the integral, we deduce that the rate of change of the specific volume
is given be

1

v

Dv

Dt
= ∇ · v (2.36)

a relation that proved handy in the first chapter, when we applied the first law of thermodynamics
to the Euler equations in Lagrangian form.

2.2 Virial Theorem

The virial theorem is probably the most famous theorem in theoretical astrophysics. The idea
is to derive an expression for the time evolution of the scalar moment of inertia of the system
of interest. The moment of inertia tensor is defined as

Iij(t) =

∫
V (t)

ρ xixj dV (2.37)

Taking the trace of the tensor, we can define the scalar moment of inertia as

I(t) =

∫
V (t)

ρ |x|2 dV where |x|2 = x2 + y2 + z2 (2.38)

We can also compute the global expansion or contraction rate of the system using the time
derivative of the scalar moment of inertia, using the second form of Reynolds theorem

İ(t) =
dI

dt
=

∫
V (t)

2ρx
Dx

Dt
dV = 2

∫
V (t)

ρx · v dV (2.39)

where we used for the last step the definition of the Lagrange time derivative as

Dx

Dt
=
∂x

∂t
+ (v · ∇) x = v (2.40)

Let’s assume the system is contracting, which corresponds to İ < 0. The second-order time
derivative will tell us whether the system will keep on contracting at a faster and faster rate
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Ï < 0, or if it will eventually stop contracting and even expand later Ï > 0. In the former case,
we say that the system is collapsing. Using again Reynolds theorem, we have

1

2
Ï(t) =

1

2

d2I

d2t
=

∫
V (t)

[
ρ v2 + ρx · Dv

Dt

]
dV (2.41)

We can simplify this by using the Euler equation in Lagrangian form ρDv
Dt = −∇P + ρg, where

g is the gravitational acceleration

1

2
Ï(t) =

∫
V (t)

ρv2 dV +

∫
V (t)

ρx · g dV −
∫
V (t)

x · ∇P dV (2.42)

(1) (2) (3) (2.43)

The first term is exactly twice the kinetic energy of the system

(1) = 2K =

∫
V (t)

ρv2 dV (2.44)

The second term is called the virial of the system. It comes from Latin vis that means force.

(2) = V ≡
∫
V (t)

ρx · g dV (2.45)

Note that this is in general not equal to the gravitational potential of the system, as the gravity
can also come from an external objects. The third term is related to the scalar thermal pressure.
Using the vector relation ∇ · (Px) = x · ∇P + P∇ · x, it can be decomposed into

(3) = −
∫
V (t)

x · ∇P dV = −
∫
S(t)

P x · n dS +

∫
V (t)

3P dV = T − S (2.46)

where we used the trick ∇ · x = 3. We can decompose this term into two contributions: first,
the thermal contribution written as

T ≡
∫
V (t)

3P dV (2.47)

and the surface term

S ≡
∫
S(t)

P x · n dS (2.48)

This gives us the final form of the virial theorem as 1
2 Ï = 2K + V + T − S, or

1

2
Ï(t) =

∫
V (t)

ρv2 dV +

∫
V (t)

ρx · g dV + 3

∫
V (t)

P dV −
∫
S(t)

P x · n dS (2.49)

For a non-relativistic Maxwell-Boltzmann gas, we have e = 3
2P , so that the pressure can be

replaced by the internal energy using 2E = T and the kinetic energy is now the sum of the
bulk kinetic energy and the thermal kinetic energy we can write the virial theorem in a compact
form, quite easy to remember,

1

2
Ï = 2(K + E) + V − S (2.50)

This is a powerful theorem that directly gives us information about the stability of a system.
When Ï < 0, the system is collapsing; when Ï > 0 it is expanding. When Ï = 0, the terms
balance each other and the system is in equilibrium.
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Analyzing each term, we see that since the kinetic energy (bulk + internal) is always positive,
it will always drive the system towards expansion. The virial is often negative, since g points
towards the main source of gravity, which, for an isolated system, is usually the center of mass.
But V can also be positive, if tidal forces from an external object are also present. The surface
term comes with a negative sign, driving the system towards contraction. This term corresponds
to the pressure of the external environment onto the boundary of the system. If the external
pressure is small compared to the internal pressure, which is usually the case for stars, we can
ignore the surface term and set S = 0.

2.3 Euler equations in different coordinate systems

Often the system exhibits some form of symmetry. Many astrophysical objects are spheres or
disks. To describe these, it is more convenient to express the Euler equations in cylindrical or
spherical coordinates.

2.3.1 Euler equations in cylindrical coordinates

The relation between the cartesian coordinates (x, y, z) and the corresponding cylindrical
coordinates (r, θ, z) is

x = r cos θ (2.51)

y = r sin θ (2.52)

z = z (2.53)

with r =
√
x2 + y2. The Jacobian matrix of this coordinate transform is

J =

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

 (2.54)

We deduce that the new volume element writes

dx dy dz = |det (J)|dr dθ dz = r dr dθ dz (2.55)

We can find the associated orthonormal basis (er, eθ, ez), so that

r = rer + zez (2.56)

using also the Jacobian matrix and renormalizing each column

er ∝
∂r

∂r
, eθ ∝

∂r

∂θ
, ez ∝

∂r

∂z
(2.57)
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We find the relation between the new basis and the old one as

er = cos θ ex + sin θ ey (2.58)

eθ = − sin θ ex + cos θ ey (2.59)

ez = ez (2.60)

We can also compute the derivatives of the new basis elements with respect to the new variables.
The only non-zero derivatives are

∂er
∂θ

= eθ,
∂eθ
∂θ

= −er (2.61)

We can now compute the differential form dr which represents a small variation of the position
vector r. Using the chain rule, we have

dr = dr er + r der + dz ez = dr er + r dθ eθ + dz ez (2.62)

The frame invariant definition of the gradient of a scalar function f(r, θ, z) is

df = ∇f · dr (2.63)

We can also compute it using the chain rule as

df =
∂f

∂r
dr +

∂f

∂θ
dθ +

∂f

∂z
dz (2.64)

Identifying the terms in the two relations, we get for the gradient vector of f in cylindrical
coordinates

∇f =

(
∂f

∂r
,
1

r

∂f

∂θ
,
∂f

∂z

)T

(2.65)

or in vector form

∇f = er
∂f

∂r
+ eθ

1

r

∂f

∂θ
+ ez

∂f

∂z
(2.66)

The divergence of a vector can be computed using the frame invariant notation ∇ · v, taking
literally the scalar product of the gradient operator and the vector v = vrer + vθeθ + vzez.

∇ · v =

(
er
∂

∂r
+ eθ

1

r

∂

∂θ
+ ez

∂

∂z

)
· (vrer + vθeθ + vzez) (2.67)

The only non-trivial terms are

∂

∂θ
(vrer) =

∂vr
∂θ

er + vreθ (2.68)

∂

∂θ
(vθeθ) =

∂vθ
∂θ

eθ − vθer (2.69)

Using the fact that we have an orthonormal basis, we finally get

∇ · v =
∂vr
∂r

+
vr
r

+
1

r

∂vθ
∂θ

+
∂vz
∂z

(2.70)

Using the same trick, we can also compute the Lagrange derivative of a scalar f in a frame
invariant way as usual

Df

Dt
=
∂f

∂t
+ v · ∇f (2.71)
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and take the scalar product between v and the gradient operator in cylindrical coordinate to
obtain

Df

Dt
=
∂f

∂t
+ vr

∂f

∂r
+
vθ
r

∂f

∂θ
+ vz

∂f

∂z
(2.72)

The Lagrange derivative of the velocity field (or any vector field for that matter) is written in a
coordinate system invariant was as

Dv

Dt
=
∂v

∂t
+ (v · ∇) v (2.73)

We have already written the operator v · ∇ in cylindrical coordinates,

(v · ∇) = vr
∂

∂r
+
vθ
r

∂

∂θ
+ vz

∂

∂z
(2.74)

We apply it now to a vector field

(v · ∇) (vrer + vθeθ + vzez) (2.75)

which gives us the Lagrange derivative of the coordinates that remains parallel to the basis
vector, but also of the basis vectors er and eθ, which project to the other dimension

Dv

Dt
=
Dvr
Dt

er +
Dvθ
Dt

eθ +
Dvz
Dt

ez +
vθvr
r

eθ −
v2
θ

r
er (2.76)

Using the frame invariant, Lagrangian form of the momentum conservation equation

Dv

Dt
= −1

ρ
∇P −∇φ (2.77)

where we write the gravitational acceleration as g = −∇φ, we can now write the Euler equations
in cylindrical coordinates

Dvr
Dt

=
v2
θ

r
− 1

ρ

∂P

∂r
− ∂φ

∂r
(2.78)

Dvθ
Dt

= −vrvθ
r
− 1

ρ

1

r

∂P

∂θ
− 1

r

∂φ

∂θ
(2.79)

Dvz
Dt

= −1

ρ

∂P

∂z
− ∂φ

∂z
(2.80)

where the geometrical terms have been placed on the right-hand side, together with the pressure
gradient and the gravitational acceleration, and are called the centrifugal acceleration. The
mass and energy conservation equations are usually expressed in conservative form using the
expression of the divergence operator in cylindrical coordinates

∂ρ

∂t
+∇ · (ρv) = 0 (2.81)

∂E

∂t
+∇ · [(E + P )v] = ρg · x (2.82)

We can also expressed the stress tensor in cylindrical coordinates using the matrix, components
form as

S =

Srr Srθ Srz
Sθr Sθθ Sθz
Szr Szθ Szz

 (2.83)
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but also using a tensorial basis as

S =
∑
i

∑
j

Sijei ⊗ ej (2.84)

Index i stands for line number i of the matrix, while index j stands for column number j. The
velocity gradient tensor writes in Cartesian coordinates

G =
∑
i

∑
j

∂vi
∂xj

ei ⊗ ej = v ⊗∇ (2.85)

where the last form is conveniently independent of the coordinate system. The∇ operator stands
on the right of the tensor product ⊗, because the column number indicates which variables the
derivative is taken from. The transpose of the gradient tensor is just

GT = ∇⊗ v (2.86)

In cylindrical coordinates, we have

G = (vrer + vθeθ + vzeu)⊗
(
∂(.)

∂r
er +

1

r

∂(.)

∂θ
eθ +

∂(.)

∂z
ez

)
(2.87)

Here again, we have to take the θ-derivative of the product vrer as

vrer ⊗
1

r

∂(.)

∂θ
eθ =

1

r

∂(vrer)

∂θ
⊗ eθ =

1

r

∂vr
∂θ

er ⊗ eθ +
vr
r

eθ ⊗ eθ (2.88)

and the θ-derivative of the product vθeθ as

vθeθ ⊗
1

r

∂(.)

∂θ
eθ =

1

r

∂(vθeθ)

∂θ
⊗ eθ =

1

r

∂vθ
∂θ

eθ ⊗ eθ −
vθ
r

er ⊗ eθ (2.89)

so that the velocity gradient tensor writes

G =

∂vr∂r 1
r
∂vr
∂θ −

vθ
r

∂vr
∂z

∂vθ
∂r

1
r
∂vθ
∂θ + vr

r
∂vθ
∂z

∂vz
∂r

1
r
∂vz
∂θ

∂vz
∂z

 (2.90)

Finally, the stress tensor, which is given by the coordinate-independent form,

S = G + GT − 2

3
(∇ · v) I (2.91)

can be written in cylindrical coordinates as

S =

2∂vr∂r −
2
3 (∇ · v) ∂vθ

∂r + 1
r
∂vr
∂θ −

vθ
r

∂vz
∂r + ∂vr

∂z
∂vθ
∂r + 1

r
∂vr
∂θ −

vθ
r 2

(
1
r
∂vθ
∂θ + vr

r

)
− 2

3 (∇ · v) ∂vθ
∂z + 1

r
∂vz
∂θ

∂vz
∂r + ∂vr

∂z
∂vθ
∂z + 1

r
∂vz
∂θ 2∂vz∂z −

2
3 (∇ · v)

 (2.92)

To compute the viscous stress, we need to take the divergence of the stress tensor using the
frame invariant form ∇ · S, which writes, using the ∇ operator and the tensorial basis as

∇ · S =
[
er

∂
∂r + eθ

1
r
∂
∂θ + ez

∂
∂z

]
·

 Srrer ⊗ er + Srθer ⊗ eθ + Srzer ⊗ ez
+Sθreθ ⊗ er + Sθθeθ ⊗ eθ + Sθzeθ ⊗ ez
+Szrez ⊗ er + Szθez ⊗ eθ + Szzez ⊗ ez

 (2.93)
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For this, we need to take the derivative of the product of three terms such as, for example

1

r

∂

∂θ
(Sθθeθ ⊗ eθ) =

1

r

∂Sθθ
∂θ

eθ ⊗ eθ −
Sθθ
r

er ⊗ eθ −
Sθθ
r

eθ ⊗ er (2.94)

and then take the scalar product with eθ using

eθ · (eθ ⊗ eθ) = (eθ · eθ) eθ = eθ (2.95)

eθ · (er ⊗ eθ) = (eθ · er) eθ = 0 (2.96)

eθ · (eθ ⊗ er) = (eθ · eθ) er = er (2.97)

We finally obtain the divergence of the tensor in cylindrical coordinates as

∇ · S =

∂Srr∂r + ∂Szr
∂z + 1

r
∂Sθr
∂θ + Srr

r −
Sθθ
r

∂Srθ
∂r + ∂Szθ

∂z + 1
r
∂Sθθ
∂θ + Srθ

r + Sθr
r

∂Srz
∂r + ∂Szz

∂z + 1
r
∂Sθz
∂θ

 (2.98)

2.3.2 Euler equations in spherical coordinates

The spherical coordinate system is defined by the transform between (x, y, z) and (r, θ, φ)

x = r sin θ cosφ (2.99)

y = r sin θ sinφ (2.100)

z = r cos θ (2.101)

The Jacobian matrix is easily written as

J =

sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0

 (2.102)

Its determinant allows us to compute the new volume element

dx dy dz = r2 sin θ dr dθ dφ (2.103)

and renormalizing its columns gives us the new orthonormal basis vectors as

er = (sin θ cosφ, sin θ sinφ, cos θ)T (2.104)

eθ = (cos θ cosφ, cos θ sinφ,− sin θ)T (2.105)

eφ = (− sinφ, cosφ, 0)T (2.106)
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We need to know how the derivatives of the basis vectors project in the new basis. The only
non-zero terms are

∂er
∂θ

= eθ and
∂eθ
∂θ

= −er (2.107)

∂er
∂φ

= sin θeφ and
∂eθ
∂φ

= cos θeφ and
∂eφ
∂φ

= − sin θer − cos θeθ (2.108)

With all this information, we let the reader derive, as an exercise, all terms of the Euler equation
in spherical coordinates.

2.4 Spherical systems in equilibrium

In most cases, we are interested in finding solutions for which the system is in equilibrium. Most
things we observe in nature are in some form of equilibrium. Systems that are out of equilibrium
evolve fast and are more difficult to see. In this section, we are interested into static equilibrium
states, for which all time derivatives vanish ∂

∂t(variables) = 0 and the velocity is also zero
everywhere. We will see later examples of stationary solutions, for which all time derivatives
vanish but the velocity field does not, like for example rotating or accretion flows.

2.4.1 Uniform spheres

One of the simplest systems imaginable is a spherical gas cloud of radius R with a uniform
density, collapsing under its own gravity and possibly finding an equilibrium state. To find such
equilibrium conditions, we write the virial theorem as

1

2
Ï = 2K + T + V − S (2.109)

Assuming static equilibrium for our system (v = 0)

K =

∫
V

1

2
ρv2dV = 0 (2.110)

The thermal term can be also simplified as

T =

∫
V

3PdV = 3P

(
4π

3
R3

)
(2.111)

and the surface term is simply

S =

∫
S
Pext(Rer · er)dS = Pext

(
4πR3

)
(2.112)

where we use the fact that the outward pointing normal vector n = er and we define Pext as the
external pressure acting on the surface of the sphere.

Gravity of a uniform sphere

To find the virial V , we first have to compute the gravitational acceleration g inside the uniform
sphere. The gravitational potential obeys the Poisson equation

4φ = 4πGρ with g = −∇φ (2.113)
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We consider a sphere of radius r < R. Integrating over its volume, we get on one hand∫
V
4φ dV = 4πG

∫
V
ρdV = 4πGM(< r) (2.114)

where M(< r) is the enclosed mass. For a uniform density sphere, the enclose mass is just

M(< r) =

∫ r

0
ρ4πr2 dr = ρ

4π

3
r3 (2.115)

On the other hand, using the vector calculus relation 4φ = ∇ · (∇φ) = −∇ · g, we apply the
divergence theorem on the same sphere of radius r < R∫

V
4φ dV = −

∫
V
∇ · g dV = −

∫
S

g · n dS = −gr4πr2 (2.116)

Combining these equations gives us the gravitational acceleration

gr = −GM(< r)

r2
= −4π

3
Gρr (2.117)

The virial of the uniform sphere now becomes

V =

∫
V
ρg · x dV = −ρ

∫ R

0
grr4πr

2dr = −4π

3
Gρ24π

R5

5
(2.118)

Virial equilibrium condition

This results into the equilibrium condition

1

2
Ï = 3P

4

3
πR3 − 4π

3
Gρ24π

R5

5
− Pext4πR

3 = 0 (2.119)

We see that the surface term, if the external pressure is equal to the internal one, balances
out exactly the thermal term, leaving the system with no other choice that collapsing under its
own gravity. The radius will start shrinking, and very quickly, the internal pressure will rise
significantly above the external one, so we can safely assume Pext = 0 in the previous equation.
The final equilibrium condition can be written as

P =
4π

15
Gρ2R2 (2.120)

If we consider now a non-relativistic, non-degenerate Maxwell-Boltzmann gas, the pressure is
given by

P = ρ
kBT

m
(2.121)

where T is the uniform temperature of the sphere. This lead to the virial condition on the gas
temperature as

kBT

m
=

1

5

GM

R
(2.122)

where we use the definition of the total mass as

M = ρ
4π

3
R3 (2.123)

The problem here is that we need to know the temperature to determine the size of the star,
at fixed mass. Therefore, we need to solve in parallel for the energy equation, with possibly
additional heating and cooling processes within the star.
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Degenerate stars

Degenerate stars are however much simpler, as the pressure depends only on density. We can
therefore use the equation of state we have derived in the previous section as

P = A
( ρ
m

)Γ
= A

(
M

m4π
3 R

3

)Γ
(2.124)

where Γ = 5
3 in the non-relativistic case and Γ = 4

3 in the ultra-relativistic one. We plug this
into the virial relation to obtain

A

(
M

m4π
3 R

3

)Γ−2

=
4π

15
Gm2R2 (2.125)

or, after some manipulations

M =
4π

3
m

(
4πGm2

15A

) 1
Γ−2

R
3Γ−4
Γ−2 (2.126)

In the non-relativistic case, we obtain a possible equilibrium configuration if the system follows
the proper mass-radius relation M ∝ R−3 or strikingly MV =constant. In other words, for
a given mass, there is always a radius that the star can reach (by contracting or expanding)
that corresponds to an equilibrium solution. In the ultra-relativistic case, however, we see that
the power law vanishes and the only equilibrium solution is for a single mass. Plugging in the
constant A we derived in the last chapter for the ultra-relativistic, ultra-degenerate case, we get
the Chandrasekhar mass

Meq =
4π

3m2

(
15hc

16πG

) 3
2
(

3

4πg

) 1
2

' 1.5 M� (2.127)

which depends only on fundamental constants. We used for m twice the proton mass mp =
1.66× 10−24g to account for elements heavier than helium and the degeneracy parameter g = 2.
A more accurate computation gives Meq ' 1.4 M�, quite close to the present derivation.

Turbulent molecular clouds

We now consider very different objects than white dwarfs or neutrons stars: molecular clouds in
the interstellar medium. We simplify their description assuming they are spherical and uniform.
We also use the observational fact that they are turbulent. We will define turbulence rigorously
in the following chapters, but for the time being, we consider that the kinetic energy term K 6= 0
because of macroscopic random motions within the cloud. We write the kinetic term as

K =

∫
V

1

2
ρv2 dV =

1

2
M(σ2

x + σ2
y + σ2

z) =
3

2
Mσ2

1D (2.128)

where σx is the velocity dispersion of the turbulence in the x-direction. The last equation
assumes that the turbulence is isotropic so that each direction sees the same dispersion, noted
σ1D. Note that the 1D turbulence is precisely what is measured during astronomical observations,
as absorption or emission lines give access to line of sight broadening due to turbulence. The
observed turbulence in the interstellar medium is supersonic. This means that σ1D � a, where
a is the isothermal sound speed, related to the isothermal temperature of the ISM by

a =

√
kBT0

m
(2.129)
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Since T0 ' 10 K in the ISM, and the Hydrogen molecule mass is m = 2mp, we have a '
0.2 km/sec. The measured velocity dispersion in molecular cloud is much higher with σ1D '
1− 5 km/sec. In the virial analysis, we can therefore safely ignore the thermal term, and define

αvir = −2K

V
=

5Rσ2
1D

GM
(2.130)

If αvir < 1, the cloud is collapsing, while for αvir > 1, it is expanding. Equilibrium is obtained
for αvir = 1. Observed molecular clouds have αvir ' 1 − 3, which seems to indicate that they
are slightly super-virial. The fact that we do not see any cloud with αvir < 1 is consistent with
the idea that they are unstable, so they collapse quickly. We do see however many clouds with
αvir > 1. They are probably slowly expanding, or we have to take into account the surface term
S that may stabilize them.

2.4.2 Hydrostatic equation for spherical systems

When the system is in static equilibrium, the velocity is zero everywhere. As a consequence,
gravity and pressure forces must balance each other exactly. The system is said to be in hy-
drostatic equilibrium. Such solutions are found using the Euler and the Poisson equations. We
assume here again that we have a strict spherical symmetry, but this time, the system is not
uniform but has an internal structure. We are seeking for a solution in one dimension, that
depends only on the radial coordinate, so that

ρ = ρ(r) , P = P (r) , φ = φ(r) (2.131)

Because v = 0, the mass and the energy conservation equations are automatically satisfied and
all centrifugal terms are zero. The momentum conservation equation, written in Lagrangian
form, becomes

Dvr
Dt

= 0 = −1

ρ

∂P

∂r
− ∂φ

∂r
(2.132)

Using the Poisson equation in spherical coordinates, we have

4φ =
1

r2

∂

∂r

(
r2∂φ

∂r

)
= 4πGρ (2.133)

This leads to a system of two equations that describe our hydrostatic equilibrium

1

ρ

∂P

∂r
= −∂φ

∂r
(2.134)

1

r2

∂

∂r

(
r2∂φ

∂r

)
= 4πGρ (2.135)

To be able to solve this system of three unknown variables with only two equations, we need an
equation of state for the pressure.

Lane-Emden equation for polytropes

We will study here the internal structure of stellar polytropes. We use the following general
form for our polytropic EoS

P = P0

(
ρ

ρ0

)Γ
(2.136)
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where P0 and ρ0 will be defined later. Replacing the gradient of the potential in the Poisson
equation by the gradient of the pressure, we obtain

1

r2

∂

∂r

(
r2

ρ

∂P

∂r

)
= −4πGρ (2.137)

Now plugging in the EoS, we obtain the following hydrostatic equation

1

r2

∂

∂r

(
r2Γ

P

ρ2

∂ρ

∂r

)
= −4πGρ (2.138)

This equation is central to the study of stellar interiors. We will now perform a change of
variable to obtain a dimensionless equation. Introduction x and θ as

x =
r

r0
, ρ = ρ0θ

n , P = P0θ
n+1 (2.139)

where the parameter n is defined as

Γ = 1 +
1

n
(2.140)

and r0, the Lane-Emden radius, is given by

r2
0 =

n+ 1

4πG

P0

ρ2
0

(2.141)

Using these new variables, we get the following second-order, non-linear ordinary differential
equation (ODE) called the Lane-Emden equation

1

x2

∂

∂x

(
x2 ∂θ

∂x

)
= −θn (2.142)

In the general case, for any value of n, this equation has to be solved numerically, with boundary
conditions

θ(0) = 1 and θ(0)′ = 0 (2.143)

These solutions corresponds to a central density equal to ρ0. The other variable P0 is the
corresponding polytropic pressure, computed as

P0 = A
(ρ0

m

)Γ
(2.144)

The Lane-Emden radius is then fully specified. An interesting limiting case is n = 5, for which
the analytical solution is (left to the reader as an exercise)

θ(x) =

(
1 +

x2

3

)−1/2

and ρ(x) =

(
1 +

x2

3

)−5/2

(2.145)

This solution is typical of hydrostatic polytropes, with a central, constant density core of size
rcore =

√
3r0, surrounded by an envelope with a very steep power law density profile ρ ∝ r−5.
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Bonnor-Ebert sphere for an isothermal gas

We now consider the special case of molecular clouds in the interstellar medium. We have seen
that these objects are dominated by turbulence. In the densest regions of the clouds, where
turbulence dissipates, local collapse is possible and molecular cores are forming. These cores
are very difficult to observe because they are completely obscured by dust. Nevertheless, they
appear as quasi-hydrostatic structures and are likely to be the sites of star formation. They are
stellar nurseries.

The thermal state of the interstellar medium is governed by cooling and heating processes.
We will see in the chapter on radiation processes how to compute these extra terms that appear
in the energy equation, written here in Lagrangian form.

ρ
Dε

Dt
= −P∇ · v + nΓ0 − n2Λ(T ) (2.146)

Γ0 is called the heating function and depends on the local radiation field, assumed to be constant
at a given location in the Galaxy. Λ is the cooling function and depends on the temperature.
The heating rate is proportional to the gas density because it features collision between photons
and atoms, while the cooling rate scales as the square of the density because it is due to inelastic
collisions between two atoms or two molecules. In the ISM, especially at higher density, both
terms can dominates over the pdV term and the gas is in thermal equilibrium, defined by

Λ(T ) =
Γ0

n
→ T = Teq(ρ) (2.147)

We see that the temperature is fixed by a thermostat, and the gas pressure (or its equation of
state) becomes independent on temperature as

P = ρ
kBTeq(ρ)

m
(2.148)

At densities larger than 100 H/cc, inside molecular clouds, we have Teq ' 10 K and the gas
becomes isothermal.

In this case, for sake of simplicity, we define the pressure by

P = ρa2 where a =

√
kBT0

m
(2.149)

where a is called the isothermal sound speed. The name will become clearer in the next sections.
In this case, the hydrostatic equation becomes

a2 1

ρ

∂ρ

∂r
= −∂φ

∂r
(2.150)

and we can inject this simple form for the gradient of the potential in Poisson equation

a2

r2

∂

∂r

(
r2 1

ρ

∂ρ

∂r

)
= −4πGρ (2.151)

We now perform a change of variables, using

x =
r

r0
and θ = ln

ρ

ρ0
(2.152)

to obtain the Lane-Emden equation for isothermal spheres, which is

1

x2

∂

∂x

(
x2 ∂θ

∂x

)
= −eθ (2.153)
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ρ0 is the central density of the isothermal core, and the Bonnor-Ebert radius r0 is given by

r0 =
a√

4πGρ0
(2.154)

We will see in the next sections that this is also the Jeans length calculated at the central
core density. The previous ODE has to be solved numerically, with the non-singular boundary
conditions

θ(0) = 1 and θ′(0) = 0 (2.155)

The solution is called the Bonnor-Ebert sphere and is parametrized by the central density ρ0.

Singular isothermal sphere

Another solution of the same equation can be found if one allows the density profile to be singular
at the origin. We use the following ansatz for the solution

ρ = Ar−α so that
1

ρ

∂ρ

∂r
= −α

r
(2.156)

Injecting this into the Poisson equation, we get

a2

r2

∂

∂r

(
r2α

r

)
= α

a2

r2
= 4πGAr−α (2.157)

The only viable solution is for α = 2 and 2πGA = a2 This gives the singular isothermal sphere
(SIS) solution as

ρ(r) =
a2

2πGr2
(2.158)

The previous Bonnor-Ebert solutions all converge to the SIS solution at large radii. The SIS is
therefore a good model to describe dense molecular cores, far from their centers. It depends on
only one parameter, the isothermal sound speed a, while the Bonnor-Ebert sphere also depends
on the adopted central density. Note that both models, the Bonnor-Ebert sphere and the SIS,
must be truncated at some maximum radius, usually where the density profile reaches the mean
density of the parent molecular cloud. The model is then called a truncated Bonnor-Ebert or
singular isothermal sphere.
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2.5 Accretion disks

In this section, we study accretion disks. Because of angular momentum conservation, many
astrophysical objects settle into a centrifugally supported disk after an initial phase of collapse.
Popular disks in astrophysics are galactic disks, circumstellar protoplanetary disks and disks
around black holes. Their physical properties are very different but they share the common
notion of being in a centrifugal equilibrium. Disks are usually considered to be axisymmetric.
They are invariant under a rotation around their rotation axis. The natural coordinate system
is therefore the cylindrical coordinate system. Moreover, in this section, we consider disks that
are not self-gravitating. Self gravitating disks will be one of the main topics of the last chapter
of this course. Galactic disks, for example, are self-gravitating. Circumstellar disks or disks
around black holes, on the other hand, are dominated by the gravity of their central object,
considered as a point mass at the origin of the coordinate system, so that we have

g = grer + gzez with gz = −GM∗
R3

z and gr = −GM∗
R3

r (2.159)

We have introduced the spherical radius R, related to our cylindrical space coordinates as
R2 = r2 + z2. Because of axisymmetry, we consider that the disk density profile depends only
on r and z. Moreover, we assume that the vertical velocity is zero, so that we have vertical
hydrostatic equilibrium vz = 0. The radial and tangential velocities are however non-zero, as
we allow for rotation and inflow of matter towards the central object. We finally assume that
vr(r) and vθ(r) depends only on the radial coordinate, not on z. This is called a laminar disk.

Using the previously derived Euler equations in cylindrical coordinates, we can write the
mass conservation equation as

∂ρ

∂t
+

1

r

∂

∂r
(rρvr) = 0 (2.160)

where we used the fact that all partial derivatives with respect to θ are zero and that vz = 0.
We introduce the surface density, a fundamental quantity when describing disks and defined as

Σ(r) =

∫ +∞

−∞
ρ(r, z) dz (2.161)

Integrating the mass conservation equation over z,∫
∂ρ

∂t
dz +

∫
1

r

∂

∂r
(rρvr) dz = 0 (2.162)

and using the fact that t, r and z are independent, we obtain a new form of the mass conservation
equation

∂Σ

∂t
+

1

r

∂

∂r
(rΣvr) = 0 (2.163)

The total disk mass can be obtained by integrating the surface density over the entire disk as

Mdisk =

∫ +∞

0

∫ 2π

0
Σ(r) r dr dθ =

∫ +∞

0
Σ(r)2πrdr (2.164)

where we have exploited the axisymmetry of the disk and integrated out the polar angle θ. We
can also define the mass accretion rate as the net flux though a circle of radius r towards the
star as

Ṁ(r) = Σ 2πrvr (2.165)
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We see that in order to have accretion of matter onto the star, the radial velocity cannot be
zero, it has to be negative. We also see from the mass conservation equation that a stationary
solution with ∂Σ

∂t = 0 implies Ṁ = constant, and the constant has to be also negative.
The momentum conservation equation in cylindrical coordinates writes in the radial direction

as

ρ

[
∂vr
∂t

+ vr
∂vr
∂r
−
v2
θ

r

]
= −∂P

∂r
− ρGM?

R3
r (2.166)

We again integrate the equation in the z-direction and use the fact that vr and vθ are independant
of z. We also assume the disk is thin, so we have R2 = r2 + z2 ' r2.

Σ

[
∂vr
∂t

+ vr
∂vr
∂r
−
v2
θ

r

]
= −∂Π

∂r
−ΣGM∗

r2
(2.167)

The equation of state of the gas is considered as locally isothermal, so that

P = ρa2(r) and Π = Σa2(r) (2.168)

The gas temperature is determined by the thermal balance between various heating and cooling
processes in the disk, and will be determined elsewhere. The only assumption is that the gas
temperature depends on the radial coordinate only. The tangential momentum conservation
equation writes similarly as

ρ

[
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθvr
r

]
= 0 (2.169)

Indeed, we have no pressure gradients in the θ-direction and the gravity is purely radial.

Σ

[
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθvr
r

]
= 0 (2.170)

We conclude that we have coupled three differential equations with three unknown variables Σ,
vr and vθ that we can solve, knowing some initial conditions and proper boundary conditions.

2.5.1 Centrifugal equilibrium solution

We are looking for stationary solutions with all ∂
∂t = 0. We are also imposing vr = 0 which

correspond to a rotating disk with zero accretion rate. The mass conservation equation and
the tangential momentum equation are both trivially satisfied. We get however in the radial
direction the following constraint

v2
θ

r
− GM∗

r2
=

1

Σ

∂Π

∂r
(2.171)

The first term on the left-hand side of the equations is the centrifugal force. The second term is
the gravity of the central object, while the right-hand side is the pressure gradient. We define
a cold disk if a(r) � vθ so we can neglect the pressure gradient. In this case, centrifugal forces
balance exactly gravity and we obtain a Keplerian disk. In this case, the tangential speed is
given by

vθ '
√
GM∗
r
≡ vK (2.172)

where the latter is called the Keplerian velocity. It is convenient to define to orbital frequency
as

Ω =
vθ
r

(2.173)

so that the orbital period writes

Torb =
2π

Ω
(2.174)
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2.5.2 Viscous disks

Observed accretion disks, around protostars or around black holes, appear very luminous. It
means that there must be a energy dissipation mechanism for which heat is created and radiated
away towards an observer. What we have learned so far is that centrifugally supported disks
feature differential rotation. It means that adjacent rings of gas rotates at different velocities,
imposed by the Keplerian motions, which lead to strong shear. We know from the last chapter
that strong shear creates strong viscous stresses. In our case, this lead to a viscous force trying
to restore a situation without shear. We expect therefore a tangential force to be present. As
a consequence, by slowing down adjacent rings, we will create radial motions and a non-zero
accretion rate. It is this model of viscous disks that we now want to explore.

We assume vr 6= 0 but vr � vθ (2.175)

Recall that the shear tensor is defined by

S = G + GT − 2

3
(∇ · v) I (2.176)

Neglecting all terms depending on vr, we find

S =

 0 r ∂Ω∂r 0

r ∂Ω∂r 0 0
0 0 0

 (2.177)

We see that solid body rotation, defined as Ω = constant, does not trigger viscous stresses. On
the other hand, differential rotation, for which Ω is strongly varying with radius, does lead to
strong shear flows. The viscous force has only a component in the tangential direction that
writes

(∇ · S)θ =
∂Srθ
∂r

+ 2
Srθ
r

=
1

r2

∂

∂r

(
r2Srθ

)
(2.178)

Multiplying S by the viscosity coefficient µ, we obtain the momentum conservation equation in
the tangential direction

ρ

(
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθvr
r

)
=

1

r2

∂

∂r

(
µr3∂Ω

∂r

)
(2.179)

We introduce the diffusion coefficient ν(r) = µ/ρ and assume for simplicity that it is only
a function of r. We then integrate the previous equation along the z-axis and introduce the
specific angular momentum l = rvθ. We finally obtain the angular momentum conservation
equation

Σ

(
∂

∂t
(rvθ) + vr

∂

∂r
(rvθ)

)
=

1

r

∂

∂r

(
νΣr3∂Ω

∂r

)
(2.180)

where we used the following trick that allowed us to absorb the centrifugal term

vr

[
∂vθ
∂r

+
vθ
r

]
=
vr
r

∂

∂r
(rvθ) (2.181)

This equation nicely expresses the fact that viscosity transports angular momentum. Without
viscosity, angular momentum is strictly conserved. Viscosity acts as a (non-trivial) diffusion
operator, which will transport angular momentum outside, while mass will be transported inside,
towards the central star.
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2.5.3 Stationary viscous disk solution

As usual, we look for solutions for which all ∂
∂t = 0, but this time we allow for vr 6= 0 owing to

the viscous stresses. The angular momentum conservation equation can be written as

Σvr
∂

∂r
(rvθ) =

1

r

∂

∂r

(
νΣr3∂Ω

∂r

)
(2.182)

Now, consider our quasi-Keplerian disk model for which

vθ '
√
GM∗
r
∝ r−1/2 and Ω '

√
GM∗
r3
∝ r−3/2 (2.183)

Injecting these dependencies in the angular momentum conservation equation, we find the radial
velocity as

vr = − 3

Σr1/2

∂

∂r
(νΣr1/2) (2.184)

and the corresponding accretion rate as

Ṁ = −6πr1/2 ∂

∂r
(νΣr1/2) (2.185)

As already discussed, if we want the solution to be stationary, then the accretion rate has to be
constant. We can easily integrate the previous differential equation and find a solution for the
disk surface density as

Σ = − Ṁ

3πν

(
1−

√
r0

r

)
(2.186)

where r0 is the radius where Σ = 0 and the solution is valid only for r > r0. Note that r0 is
also the radius at which vr → −∞. The only physical solution would be to put this singularity
at the exact location of the star, namely r0 = 0. This leads to the final solution

Σ(r) = − Ṁ

3πν(r)
(2.187)

The solution for the gas surface density depends therefore directly on the inverse of the diffusion
coefficient. Assuming that ν is a constant, we can integrate this constant surface density solution
and connect the accretion rate to the total disk mass as

Ṁ = −3ν
Mdisk

r2
disk

(2.188)

Let’s now consider typical values for observed protoplanetary disks

Mdisk = 10−2M� and rdisk = 10 AU (2.189)

Let’s assume that we have a relatively thin disk (see the next section) with a thickness of 1 AU.
The mean gas density in the disk will thus be around n ' 1013 H/cc. Using the typical hard-
sphere cross section of 10−15 cm2, we get for the mean free path λcoll ' 1 m. With a gas
temperature of 300 K corresponding to a sound speed of 1 km/s, we get

ν ' 107cm2 s−1 and Ṁ ' −10−15M�/yr (2.190)

It is possible to compute the luminosity of the accretion disk, assuming balance between viscous
dissipation and radiative cooling (left to the reader as an exercise). We can infer from the
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observed luminosity (in the infrared band) the accretion rate around protostars. We usually
observe Ṁ between 10−7M�/yr and 10−6M�/yr, eight to nine orders of magnitude larger than
our naive estimate based on molecular viscosity. The same is true for accretion disks around black
holes, with very large observed luminosity in the ultraviolet, far larger than what is predicted
with ions viscosity.

How do we reconcile the theory of viscous disks with observations? One possible explanation
is turbulence. Accretion disks are probably not laminar, as assumed here, but turbulent. We
will describe the theory of turbulent flows in the next sections. The main conclusion will be
that the effects of turbulence can be modelled as an effective viscous stress, called the turbulent
stress (or the Reynolds stress), with an effective diffusion coefficient

νT = `TσT (2.191)

where `T is the size of the largest eddies in the disk at any given radius, and σT is the velocity
dispersion of the turbulent eddies. Depending on the exact nature of the turbulence, the size of
the eddies is considered to be a fraction of the disk scale height and their velocity dispersion a
fraction of the sound speed. These fractions are encoded in the so-called α-disk model with a
turbulent viscosity diffusion coefficient written as

νT = αH(r)a(r) where α ' 1% (2.192)

Using H ' 1 AU and a ' 1 km/s, we get

νT ' 1016 cm2s−1 and Ṁ ' −10−6M�/yr (2.193)

in much better agreement with observations. We now know that accretion disks around black
holes are indeed turbulent. The turbulence is maintained by the magnetic field through a process
called magneto-rotational instability. Since the ALMA observatory has been in operation, we
also know that protostellar disks are not turbulent. So the α-disk model seems to be wrong
in this case. The origin of the accretion in proto-planetary disk is therefore still an unsolved
mystery.

2.5.4 Vertical equilibrium

One last aspect of accretion disks that we have not discussed yet is their vertical structure. In
the previous sections, we have assumed that the vertical velocity is zero. This is only possible if
the fluid satisfies the vertical hydrostatic equilibrium written as

∂P

∂z
= −ρGM

R3
z (2.194)

with R2 = r2 + z2. In the thin Keplerian disk approximation z � r and we get

1

ρ

∂ρ

∂z
= −GM

r3a2
z = −Ω

2

a2
z (2.195)

Using our equation of state P = ρa2(r), we can integrate the equation and obtain the vertical
density profile has

ρ = ρ0 exp

(
−Ω

2

a2

z2

2

)
= ρ0 exp

(
− z2

2H2

)
(2.196)

where ρ0 is the midplane density and the disk scale height H is given by

H(r) =
a(r)

Ω(r)
(2.197)
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We see that if the disk is cold, then it is also thin. Integrating the Gaussian profile vertically,
we find Σ =

√
2πρ0H so that the vertical density profile is fully determined by

ρ(r, z) =
Σ(r)√

2πH(r)2
exp

(
− z2

2H(r)2

)
(2.198)

Since we now know the disk scale height, we can also compute the turbulent diffusion coefficient
as

νT = α
a(r)2

Ω(r)
(2.199)

Interestingly enough, for a strictly isothermal disk a(r) = a0 constant, this leads to the following
disk surface density profile for the viscous, stationary and quasi-Keplerian solution

Σ(r) = −Ṁ
√
GM∗

3παa2
0

r−3/2 (2.200)

Note the power law−3/2 which compares almost perfectly with the Minimum Mass Solar Nebula,
the disk model one would infer by looking at the mass distribution of planets in our present day
solar system.

2.6 Spherical Bondi accretion flow

We now discuss a very famous stationary solution in astrophysics, namely the Bondi accretion
model. It describes how gas can be accreted from a uniform background to a point mass, either a
star or a black hole. The background fluid is at rest, so that the problem is perfectly spherically
symmetric. This is however a non-static configuration, as the fluid is allowed to flow towards
the central object. Stationary solutions are quite common in fluid dynamics. Famous examples
are Poiseuille flow, which describes a laminar viscous fluid flowing through a pipe, Couette flow,
flow past a cylinder, isentropic noozle flow, etc. These flows are all stationary and their main
properties are driven by a famous theorem, called Bernoulli theorem. We will first derive the
two different forms of this theorem, before we embark in the description of the Bondi flow.

2.6.1 First Bernoulli theorem

As always, in order to simplify the theoretical description of the fluid, we are looking for a
conserved quantity that we can exploit in our calculation. For stationary flows, this quantity is
the enthalpy. We define the specific enthalpy using the usual thermodynamics definition

h = ε+
P

ρ
(2.201)

We will now show that this quantity, together with the kinetic and potential energy, is conserved
in a certain sense in a stationary flow. We first re-write the Euler equations in Lagrangian form
as

ρ
Dv

Dt
= −∇P − ρ∇φ (2.202)

Dρ

Dt
= −ρ∇ · v (2.203)

Dε

Dt
= −P

ρ
∇ · v (2.204)
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We want to compute the time evolution of the total specific enthalpy defined as

H = h+
v2

2
+ φ (2.205)

We first take the Lagrange derivative of the specific kinetic energy

D

Dt

(
v2

2

)
= v · Dv

Dt
= −v

ρ
· ∇P − v · ∇φ (2.206)

We then compute the Lagrange derivative of the potential

Dφ

Dt
=
∂φ

∂t
+ v · ∇φ (2.207)

and finally, we compute the Lagrange derivative of the enthalpy, which is slightly more involved
as

Dh

Dt
= −P

ρ
∇v +

1

ρ

DP

Dt
− P

ρ2

Dρ

Dt
(2.208)

We now use the mass conservation equation and the Lagrange derivative of the pressure

DP

Dt
=
∂P

∂t
+ v · ∇P (2.209)

Summing up all these equations leads to the first Bernoulli theorem

D

Dt

(
v2

2
+ φ+ h

)
=
∂φ

∂t
+

1

ρ

∂P

∂t
(2.210)

We immediately see that for a stationary flow, the right-hand side vanishes and the Lagrange
derivative is zero. For a stationary flow, the trajectories of the fluid elements are called stream-
lines. The first Bernoulli theorem tells us that the total specific enthalpy is constant along
streamlines. A very important precision here: each streamline will have a different constant.
This constant is called the Bernoulli constant. This theorem is very general: no assumption
on the flow properties (except stationarity) or on the equation of state have been made. But
it is not so powerful, in the sense that we have now a family of streamlines, each one of them
with a different Bernoulli constant, determined by the boundary conditions. We now discuss the
second Bernoulli theorem, a much more powerful result, with however an important restriction.

2.6.2 Second Bernoulli theorem

The second Bernoulli theorem is entirely built on a rather complex vector calculus identity. We
start from the Euler equation in Lagrangian form

Dv

Dt
=
∂v

∂t
+ (v · ∇)v = −1

ρ
∇P −∇φ (2.211)

and we use the following vector identity

(v · ∇)v = ∇
(
v2

2

)
− v × ω (2.212)

Here we introduced the vorticity of the flow, namely the curl of the velocity field

ω = ∇× v (2.213)
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We also introduce another new quantity Π defined as

dΠ =
1

ρ
dP (2.214)

This quantity is defined for incompressible flows, for which ρ is constant and thus Π = P/ρ or
for polytropes where P = P (ρ) and we can integrate the previous form. For general equation
of states, however, this quantity can be tricky to compute, and additional conditions have to be
set, such as the uniformity of the entropy for example. We assume here that the fluid properties
are such that this quantity can be computed. We finally obtain the second Bernoulli theorem
as

∂v

∂t
+∇

(
v2

2
+ φ+Π

)
= v × ω (2.215)

We will see in the next sections that we can derive a new equation called the vorticity equation
which, for the incompressible or polytropic fluids we consider here can be written as

∂ω

∂t
+∇× (ω × v) = ν∆ω (2.216)

We see that, if we wait long enough for the flow to become stationary and if there are no source
of vorticity in the system, the fluid vorticity will decay due to viscous processes and ultimately
vanishes. We deduce from the second Bernoulli theorem that, for a stationary and curl-free flow
for which ω = 0 everywhere, we have

v2

2
+ φ+Π uniform everywhere. (2.217)

This is a very powerfull result, but it comes with a prize: We can only apply it to polytropic
fluids and curl-free conditions, which are not always satisfies in the Universe.

2.6.3 Bondi solution

We now move to the specific problem at hand, namely a spherical stationary flow towards a point
mass. Before deriving the exact solution, we would like to explore a very simple model that can
be used to quickly derive the main quantity that defines the accretion flow: the accretion rate.
For this, we consider our star or black hole as a static point mass sitting at the origin of our
spherical coordinate system. We now consider particles moving towards the star, with velocity
v and impact parameter b. Using a simple binding energy argument, we can separate between
bound particles that will be accreted by the star and unbound particles that will be deflected but
will survive the encounter and leave the scene by computing the zero binding energy condition
as

1

2
mv2 −mGM∗

b
= 0 (2.218)

This defines the Bondi radius as the dividing line between bound and unbound particles

rB =
2GM∗
v2

(2.219)

We now compute the accretion rate of particles with velocity v using the collision cylinder that
we used in kinetic theory and pick for the cross section a disk of radius equal to the Bondi radius

Ṁacc = ρπr2
Bv = 4πρ

(GM∗)
2

v3
(2.220)
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This accretion rate is only for particles of velocity v. We now need to compute the accretion
rate for all possible particle velocities following a Maxwell-Boltzmann distribution. For this, we

brute forcely replace v by a, the microscopic velocity dispersion a =
√

kBT
m , and obtain

Ṁacc = 4πρ
G2M2

∗
a3

(2.221)

This very rough derivation is very approximate, but it contains most of the physics of the
problem. This is the one I encourage you to remember. As we will see now, it is also surprisingly
close to the exact solution.

Let’s now define more precisely the problem we would like to solve. We assume that the
fluid is at rest at infinity, with a uniform density and pressure. We also assume that the gas is
isothermal, so that P = ρa2.

At r → +∞, we have ρ→ ρ∞, P → P∞ = ρ∞a
2, and v → 0. (2.222)

We are looking for a spherically symmetric solution with the two following unknown variables
ρ(r) and v(r). For the latter, we dropped the index r as this is the only non-zero velocity
component. The mass conservation equation in spherical coordinates writes in this case

∂ρ

∂t
+

1

r2

∂

∂r

(
r2ρv

)
= 0 (2.223)

For a stationary solution, we thus have a constant accretion rate, defined as the total flux though
a sphere of radius r as

Ṁ = 4πr2ρv (2.224)

Since our fluid is isothermal (a special case of a polytrope) and since we consider that after
some time the vorticity vanishes, owing to viscous dissipation, we can apply the second Bernoulli
theorem and write

v2

2
− GM∗

r
+Π = constant (2.225)

We compute Π using the definition

Π =

∫ r

+∞

dP

ρ
= a2

∫ r

+∞

dρ

ρ
= a2 ln

ρ(r)

ρ∞
(2.226)

We can now evaluate the Bernoulli constant at r → +∞ and find the final form of Bernoulli
theorem

v2

2
− GM∗

r
+ a2 ln

ρ

ρ∞
= 0 (2.227)

As usual, we define the following dimensionless variables

r̃ =
r

rB
, ṽ =

v(r)

a
, ρ̃ =

ρ(r)

ρ∞
and λ =

Ṁ(r)

ṀB

(2.228)

If we choose for the Bondi radius and the Bondi accretion rate the following definitions

rB =
GM∗
a2

and ṀB = 4πr2
bρ∞a (2.229)

then our two equations become dimensionless, with the mass flux being

λ = r̃2ρ̃ṽ (2.230)
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Figure 2.1: Velocity profiles for the isothermal Bondi solution with various λ. The black line corresponds
to the critical value λ = λcrit ' 1.12. Red lines corresponds to λ < λcrit and blue lines for
λ > λcrit.

and Bernoulli equation being
ṽ2

2
− 1

r̃
+ ln ρ̃ = 0 (2.231)

Using the first equation, we can express ρ̃ as a function of the velocity and λ, and inject the
expression in the second equation. We obtain a family of implicit solutions for v(r) parametrised
by λ (see Figure 2.1). Only the black curves corresponds to a physical solution. We have two
such solutions: the one with v → 0 as r → +∞ corresponds to the Bondi accretion solution,
while the other one, with v → 0 as r → 0 corresponds to the Parker wind solution, of interest to
describe stellar winds. These two solutions correspond to a critical accretion rate λ, for which
the flow becomes supersonic at a critical radius, called the sonic radius.

To find the sonic radius, we differentiate the mass flux equation to get

2
dr̃

r̃
+

dρ̃

ρ̃
+

dṽ

ṽ
= 0 (2.232)

and the Bernoulli equation to get

ṽ dṽ +
dr̃

r̃2
+

dρ̃

ρ̃
= 0 (2.233)

Combining the two equations, we can substract out the density and obtain the relation(
ṽ − 1

ṽ

)
dṽ =

(
2

r̃
− 1

r̃2

)
dr̃ (2.234)

which gives us the spatial derivative of the velocity field as

∂ṽ

∂r̃
=

2/r̃ − 1/r̃2

ṽ − 1/ṽ
(2.235)
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We see that the velocity derivative will always be singular at ṽ = 1, which corresponds to the
velocity being equal to the speed of sound, unless this happens precisely at the critical radius

r̃crit =
1

2
(2.236)

If we inject this value in the Bernoulli equation, we find

ρ̃ = exp

(
3

2

)
(2.237)

and finally, using the mass flux equation, we get

λcrit =
1

4
exp

(
3

2

)
' 1.12 (2.238)

Finally, the exact solution for the Bondi accretion rate is

Ṁ = λcritṀB (2.239)

quite close to our initial guess. We can examine the corresponding density profile. For r �
rcrit = rB/2, the density is almost constant and equal to ρ∞. Inside the sonic radius, for
r � rB/2, the flow is supersonic. We can neglect the ln ρ term in the Bernoulli equation, and
we obtain the following singular velocity and density profiles

v ' 2a

(
rB/2

r

)1/2

and ρ ' 2ρ∞

(
rB/2

r

)3/2

(2.240)

This derivation is valid for an isothermal equation of state. As an exercise, we leave it to the
reader to derive the Bondi solution for a polytropic equation of state, for which

P = P∞

(
ρ

ρ∞

)Γ
(2.241)

The solution is quite similar, with however some small interesting quantitative differences.

2.7 Sound waves

So far, we have studied static equilibrium and stationary solutions of the Euler equations with
application to astrophysical fluid flows. We now need to check that these solutions are stable.
The traditional approach to study the stability of equilibrium flows is to perturb slightly the
solution with deviations that are small enough to allow for a linearisation of the Euler equations.
The resulting system of equations is much simpler to solve, and lead to particular propagating
solutions called sound waves. If the amplitude of these waves remains constant (or decays with
time), the equilibrium solution is said to be stable. If, on the other hand, the amplitude increases
exponentially fast with time, we have an instability and the equilibrium solution is not viable.

2.7.1 Stable propagating waves

We consider the following simple equilibrium solution of the Euler equations ρeq = ρ0 constant
and veq = 0, with an isothermal equation of state P = ρa2. We write the Euler equations in one
space dimension with v = (vx, 0, 0)

∂ρ

∂t
+

∂

∂x
(ρv) = 0 (2.242)

∂v

∂t
+ v

∂v

∂x
+

1

ρ

∂P

∂x
= 0 (2.243)
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where we dropped the index x in the velocity variable for simplicity. There is no energy equation
to consider in the isothermal case. We define the perturbed solution as

ρ = ρ0 + δρ(x, t) (2.244)

v = 0 + δv(x, t) (2.245)

with |δρ| � ρ0 and |δv| � a. We can now linearise the two Euler equations by substituting
these expressions and neglect the quadratic terms. We also assume that our perturbations are
smooth enough, so that their derivatives remain bound. For the mass conservation equation, we
get

∂

∂t
(δρ) + (ρ0 + δρ)

∂

∂x
(δv) + δv

∂

∂x
(δρ) = 0 (2.246)

∂

∂t
(δρ) + ρ0

∂

∂x
(δv) + δρ

∂

∂x
(δv) + δv

∂

∂x
(δρ) = 0 (2.247)

Neglecting the two rightermost quadratic terms in this equation, we obtain to leading order the
linear equation

∂

∂t
(δρ) + ρ0

∂

∂x
(δv) = 0 (2.248)

The momentum conservation equation becomes

∂

∂t
(δv) + δv

∂

∂x
(δv) +

a2

ρ

∂

∂x
(ρ0 + δρ) = 0 (2.249)

The last term can be Taylor-expanded as

1

ρ
' 1

ρ0

(
1− δρ

ρ0

)
so that

a2

ρ

∂

∂x
(δρ) ' a2

ρ0

∂

∂x
(δρ)− a2

ρ2
0

δρ
∂

∂x
(δρ) (2.250)

Neglecting again the quadratic terms, we obtain to leading order the linear form of the momen-
tum conservation equation

∂

∂t
(δv) +

a2

ρ0

∂

∂x
(δρ) = 0 (2.251)

Now, if we take the time derivative of the first equation, and the space derivative of the second
equation, we combine the two equations and obtain the famous wave equation.

∂2

∂t2
(δρ) = a2 ∂

2

∂x2
(δρ) (2.252)

We are looking for planar wave solutions with the following Ansatz

δρ(x, t) ≡ ∆ρei(kx−ωt) (2.253)

δv(x, t) ≡ ∆v ei(kx−ωt) (2.254)

where ∆ρ and ∆v are the constant amplitude of the waves. Plugging this into the wave equation,
we get

− ω2∆ρ+ a2k2∆ρ = 0 (2.255)

Since we are looking for non-trivial solutions with ∆ρ 6= 0, we get the dispersion relation of the
waves.

ω2 = a2k2 (2.256)
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The wave speed is given by ω
k = ±a. In this case, it is called the sound speed. From the second

linearized Euler equation, we get a relation between the amplitudes

− iω∆v + ik
a2

ρ
∆ρ = 0 (2.257)

so that
∆v

a
= ±∆ρ

ρ0
(2.258)

The particles of the fluid are moving with the velocity field δv, they are oscillating back and forth
around a fixed average position. So particles are not really moving away from the equilibrium
solution. Travelling waves are moving at the speed of sound, but only as a virtual feature.
They don’t carry mass, only momentum and energy. Their amplitude is constant, so that the
corresponding equilibrium solution is said to be stable.
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2.7.2 Thermal instability

We now consider the more general case of a polytropic equation of state, for which

P = P (ρ) = ρ
kBTeq(ρ)

m
(2.259)

where the temperature is determined by a strict balance between heating and cooling processes.
Figure 2.2 shows the equilibrium pressure within the interstellar medium of the Milky Way at
different distances from the centre of the Galaxy. Closer to the centre, the radiation field and
the cosmic ray flux are both stronger, and the corresponding equilibrium pressure higher. At
low density, the gas settles into an isothermal equilibrium with T ' 104 K. At intermediate
densities, however, the pressure is dropping because cooling scales as n2 and it takes over these
various heating processes, lowering sharply the equilibrium temperature. At higher density, we
reach an asymptotic isothermal regime with T ' 10 K and the pressure is rising again.

We consider here again a uniform equilibrium state with ρ = ρ0, v = 0 and T = Teq(ρ0).
Starting again from the 1D Euler equations, with however a different equation of state, we get
the following linearized form

∂

∂t
(δρ) + ρ0

∂

∂x
(δv) = 0 (2.260)

∂

∂t
(δv) +

P ′(ρ0)

ρ0

∂

∂x
(δρ) = 0 (2.261)

with P ′(ρ) = ∂P
∂ρ . Taking the time derivative of the first equation, swapping the time and space

derivative of the second term and replacing it by the the second equation, we get a new form of
the wave equation

∂2

∂t2
(δρ)− P ′(ρ0)

∂2

∂x2
(δρ) = 0 (2.262)

We are considering here again solutions of the form δρ = ∆ρei(kx−ωt), where k is real but ω can
now be a complex number. Injecting the solution in the second order linear differential equation
leads to the the dispersion relation

ω2 = P ′(ρ0)k2 (2.263)

Note that we can recover the isothermal case easily because for P = ρa2, P ′ = a2 and the
dispersion relation leads to a real wave frequency with wave velocity ω

k = ±a. In the general
polytropic case, however, we have to distinguish two different cases:

• P ′(ρ0) > 0
In this case, both k and ω are real and we can define the sound speed as c2

s = P ′(ρ0) or

cs =
√
P ′(ρ0) (2.264)

We have propagating waves with a constant amplitude and wave velocities ±cs. Note
that if we include viscosity and/or thermal conduction, the wave amplitude will eventually
slowly decay. In conclusion, it means our equilibrium solution is stable.

• P ′(ρ0) < 0
In this case, we can find proper solutions only if k is real and ω is purely imaginary, because
ω2 < 0. We define the growth rate γ ∈ R as ω = iγ. The solutions are then defined by

γ = ±
√
−P ′(ρ0)k (2.265)
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Figure 2.2: Equilibrium pressure versus hydrogen number density in the Milky Way at different dis-
tances from the centre, reprinted from Wolfire et al. (2003).

and the amplitude is now either decaying exponentially or growing exponentially as

δρ = ∆ρe±γt eikx (2.266)

The solution with exp(+γt) grows exponentially fast without bounds: we have an insta-
bility. In summary, our equilibrium solution is unstable. Once the amplitude δρ becomes
comparable to ρ0, we reach the non-linear stage of the instability and our linear analysis
is not valid anymore. We have to solve the non-linear equations directly.

If we turn back to Figure 2.2, we see that for a typical ISM pressure of 3000 K cm−3, we have
a range of possible densities allowed by the equilibrium thermal model. The interval defined by
P ′ < 0 is however unstable, as we have just seen. As a consequence, the ISM will naturally split
into two stable phases, a dense cold molecular phase which corresponds to the rightmost stable
branch where P ′ > 0, n ' 100 H/cm3 and T ' 10 K, and a lower density warm atomic phase
which corresponds to the leftmost stable branch where P ′ > 0, n ' 0.1 H/cm3 and T ' 104 K.
In between these two stable phases, there is a forbidden region where P ′ < 0. The thermal
instability is a fundamental process that governs this phase transition within the ISM and leads
to the formation of dense molecular clouds.

2.7.3 Jeans instability

We now study the propagation of sound waves in the presence of gravity. We assume an isother-
mal equation of state with P = ρa2. Our equilibrium state is again uniform with ρ = ρ0, v = 0
and P = ρ0a

2. We need also the equilibrium state to satisfy Poisson equation

4φ = 4πGρ (2.267)
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which is a problem, because the potential of an infinite uniform background is infinite. In order
to restore a viable equilibrium state, we appeal to the so-called Jeans swindle. The trick is to
modify Poisson equation into

4φ = 4πG(ρ− ρ0) (2.268)

so that the equilibrium solution is now φ = 0 when ρ = ρ0. The Jeans swindle is hard to justify
rigorously. In only two cases we can motivate the extra term in the right-hand side: in the
presence of rotation, the centrifugal force plays the role of an effective potential balancing gravity,
and in cosmology, the expansion of the Universe cancels out exactly the mean background
density. In what follows, we just assume that this modification of Poisson equation is valid. We
then augment the one-dimensional Euler equations with the modified one-dimensional Poisson
equation

∂ρ

∂t
+ ρ

∂v

∂x
+ v

∂ρ

∂x
= 0 (2.269)

∂v

∂t
+ v

∂v

∂x
+
a2

ρ

∂ρ

∂x
= −∂φ

∂x
(2.270)

∂2φ

∂x2
= 4πG(ρ− ρ0) (2.271)

We then consider perturbations of the form

ρ = ρ0 + δρ (2.272)

v = 0 + δv (2.273)

φ = 0 + δφ (2.274)

Injecting these perturbations into the previous system of equations, we can linearize them by
dropping all high order quadratic terms and obtain the following system of linear differential
equations

∂

∂t
(δρ) + ρ0

∂

∂x
(δv) = 0 (2.275)

∂

∂t
(δv) +

a2

ρ0

∂

∂x
(δρ) = − ∂

∂x
(δφ) (2.276)

∂2

∂x2
(δφ) = 4πGδρ (2.277)

Here again, we take the time derivative of the mass conservation equation, swap the time and
space derivative of the velocity term and inject the momentum conservation equation. We obtain
the following relation

∂2

∂t2
(δρ)− a2 ∂

2

∂x2
(δρ)− ρ0

∂2

∂x2
(δφ) = 0 (2.278)

Finally, we use the Poisson equation to replace the third term and obtain the final equation on
the density perturbation

∂2

∂t2
(δρ)− a2 ∂

2

∂x2
(δρ)− 4πGρ0(δρ) = 0 (2.279)

As always, we consider solutions of the form δρ = ∆ρei(kx−ωt) where k is real but ω can be a
complex number. Injecting this in the previous differential equation and requiring ∆ρ 6= 0, we
obtain the following dispersion relation

ω2 = a2k2 − 4πGρ0 (2.280)
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We can define a critical wave number that separates stable modes with ω2 > 0 from unstable
modes with ω2 < 0.

k2
J =

4πGρ0

a2
(2.281)

This critical wave number can be used to define the Jeans length as

λJ =
2π

kJ
= a

√
π

Gρ0
(2.282)

If k > kJ , we have stable propagating waves, which for k � kJ are just normal sound waves
with ω

k = ±a.
If k < kJ , we have ω2 < 0 and ω = iγ where γ is the growth rate. This is what we call Jeans
instability. For k � kJ , we find γ =

√
4πGρ0. This growth rate can be used to define the free

fall time as

tff =
1

γ
=

1√
4πGρ0

(2.283)

This time is the e-folding time of the growth of the amplitude of the density fluctuations. For
very long wavelengths, gravity wins over pressure forces and the sound waves collapse under
their own weight within one free fall time. Beyond this time, the linearisation of the equations
is not valid anymore and we enter the non-linear regime of the gravitational instability. For very
short wavelengths, on the other hand, pressure forces win against gravity and sound waves can
propagate freely without perturbing the initial equilibrium state.

2.8 Shock waves

Another type of waves plays a fundamental role in astrophysics, the shock waves. These are
not linear objects like sound waves. they are the product of the non-linear evolution of the
Euler equations. Shock waves are discontinuities traveling in the fluid. Partial derivatives are
not defined across discontinuities, so we must rely on particular conservation laws, called the
Rankine-Hugoniot relations, to connect the two states on each side of the discontinuity. Shock
waves are also dissipative. Because all flow variables are discontinuous across shocks, the Euler
equations cease to be valid, as the scale of a discontinuity is obviously zero, much smaller than
the collision mean free path. In fact, shock waves have a finite thickness, close to the mean
free path of the particles. This thickness is due to viscous effects at small scales. The Rankine-
Hugoniot relations are powerful tools. Even if we ignore these small scale viscous effects, we
can still recover the correct relations connecting the upstream and downstream regions of the
shock. After deriving these relations in the specific cases of adiabatic and isothermal shocks, we
will apply our findings to the theory of astrophysical blast waves, used in particular to describe
supernova remnants in the interstellar medium.

2.8.1 Wave steepening and shock Formation

In order to describe the process of shock formation, we need to consider the full non-linear Euler
equations, with for the velocity in one dimension

∂v

∂t
+ v

∂v

∂x
+

1

ρ

∂P

∂x
= 0 (2.284)

The second term is usually called the non-linear term because it features a quadratic term in
the velocity perturbation. In the previous sections, this term was dropped, leading to linear
differential equations. We now want to keep this term and try to solve the previous equation in
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Figure 2.3: Space time diagram showing the characteristics of the Burgers equation. The dotted lines
shows the trajectories after characteristics crossings. The solid lines show the regularized
single valued solution and the formation of a shock front at x = 0.5 at time t = 0.16.

a slightly simplified setting. We consider here again an isothermal equation of state P = ρa2,
but we restrict ourselves to the supersonic regime for which a� v. In this case, we can write∣∣∣∣1ρ ∂P∂x

∣∣∣∣ =

∣∣∣∣a2

ρ

∂ρ

∂x

∣∣∣∣� ∣∣∣∣v ∂v∂x
∣∣∣∣ (2.285)

and we can drop the pressure gradient and obtain the famous Burgers equation

∂v

∂t
+ v

∂v

∂x
= 0 (2.286)

We now want to solve this equation with the prescribed initial condition v0(x) = v(x, t = 0).
For the sake of simplicity, we choose here a planar wave

v0(x) = ∆v sin

(
2π

L
x

)
(2.287)

consistent with the Ansatz used in the previous sections. We assume without loss of generality
that ∆v = 1 and L = 1. Let us now consider fluid trajectories x(t) defined by

ẋ = v(x(t), t) and x(0) = x0 (2.288)

We now define the scalar quantity
α(t) ≡ v(x(t), t) (2.289)

attached to each trajectory x(t). Taking the time derivative and applying the chain rule gives

α̇(t) =
∂v

∂x
ẋ+

∂v

∂t
= 0 (2.290)

so that α(t) = α(0) = v0(x0) remains constant in time. This means that v = v0 along the
trajectory and the direct consequence is that trajectories are straight lines

x(t) = x0 + v0(x0) t (2.291)

The straight lines are called characteristic curves, or in short, characteristics.
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Figure 2.4: Velocity profiles of the Burgers equation at three different times. We see how the initial
sine wave progressively steepens, leading to the formation of a singularity at x = 0.5 and
t = 0.16, after which characteristics are crossing each other and lead to a spurious multi-
valued solution (dotted lines). The correct regularized solution is shown as the discontinuous
solid line and features a shock front at x = 0.5.

We can now write the exact solution of Burgers equation by noticing that for any point (x, t)
in space-time, we can measure the velocity v and go back in time towards t = 0 following the
characteristic x0 = x− vt and match the value of the velocity with v0(x0). This can be written
as the following implicit solution for v(x, t)

v(x, t) = v0(x− v(x, t)t) (2.292)

We see in Figure 2.3 that the characteristics will cross at x = 0.5 in a finite time. This charac-
teristic crossing will lead to the formation of a singularity, as two different values of v will collide
at the same location. Which one shall we choose? Taking the time derivative of the previous
implicit solution, using again the chain rule, we find

∂v

∂t
=
∂v0

∂x

(
−v − t∂v

∂t

)
so that

∂v

∂t
=

[
−v(x, t)

∂v0

∂x

]/[
1 + t

∂v0

∂x

]
(2.293)

We see that the time derivative of v becomes singular in a finite time given by the crossing time

1

tcross
= −∂v0

∂x
(2.294)

The minimum positive value for tcross is obtained at x = 0.5 and corresponds to t = 1/2π. This
time marks the first characteristic crossing and the formation of the shock. In Figure 2.4, we see
the evolution of the velocity profile. The initial sine wave progressively steepens, as the central
characteristics all converge towards x = 0.5. At the crossing time, the velocity profile becomes
vertical and its derivative infinite. At later time, the velocity function becomes multi-valued,
with 3 possible solutions at each location. We know that in this case, the validity conditions
for the Euler equations are violated, as the collision mean free path will become larger than the
thickness of the velocity profile. We must therefore include at least a first order description of
non-LTE effects, namely viscosity. This leads to the viscous Burgers equation

∂v

∂t
+ v

∂v

∂x
= ν∆v (2.295)

where ν is the viscosity diffusion coefficient. Viscosity will regularize the problem and lead
to a non-singular solution. In this case, the solution will become unique and single-valued
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everywhere. This regularized solution is called the viscosity solution or the weak solution. Note
that the viscous Burgers equation has an exact solution based on the Hopf-Cole transform
(discussed in the next paragraph). The procedure is then to find the viscosity solution for a
finite viscosity parameter ν and then make ν → 0, instead of setting ν = 0 in the equations
before solving them, which leads to an ill-defined result.

2.8.2 Hopf-Cole transformation

In this subsection, we would like to find an explicit solution to the viscous Burgers equation.
Surprisingly enough, such a closed form solution exists thanks to a clever trick proposed inde-
pendently by Hopf and Cole in the early 50s. We start by re-writing the one-dimensional viscous
Burgers equation as

∂v

∂t
+

∂

∂x

(
v2

2

)
=

∂

∂x

(
ν
∂v

∂x

)
(2.296)

We now define a new field φ as

u = −2ν
1

φ

∂φ

∂x
(2.297)

that can be immediately integrated as

φ(x, t) = φ0 exp

(
− 1

2ν

∫ x

0
v(y, t)dy

)
(2.298)

We can now try to replace v by φ in the viscous Burgers equation, computing first

∂v

∂t
= −2ν

[
− 1

φ2

∂φ

∂t

∂φ

∂x
+

1

φ

∂2φ

∂t∂x

]
= −2ν

∂

∂x

(
1

φ

∂φ

∂t

)
(2.299)

We now move the non-linear term to the right-hand side of Burgers equation and compute

∂

∂x

(
ν
∂v

∂x
− v2

2

)
=

∂

∂x

(
−2ν2

[
− 1

φ2

(
∂φ

∂x

)2

+
1

φ

∂2φ

∂x2

]
− 2ν2 1

φ2

(
∂φ

∂x

)2
)

(2.300)

Owing to this clever transformation, we see that the first and the third term of this last equation
cancel out. We can then finally express the viscous Burgers equation as

∂

∂x

(
1

φ

∂φ

∂t

)
= ν

∂

∂x

(
1

φ

∂2φ

∂x2

)
(2.301)

We can easily integrate this differential equation in space and obtain

1

φ

∂φ

∂t
= ν

1

φ

∂2φ

∂x2
+ C(t) (2.302)

We now introduce a new variable ψ defined by

φ(x, t) = ψ(x, t) exp

(∫ t

0
C(t′)dt′

)
(2.303)

We can check that
∂φ

∂t
=
∂ψ

∂t
exp

(∫ t

0
C(t′)dt′

)
+ φC(t) (2.304)

so that ψ now satisfies the good-old heat equation

∂ψ

∂t
= ν

∂2ψ

∂x2
(2.305)
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It is easy to find the general solution of the heat equation using the convolution with the
corresponding Green’s function

G(x, t) =
1√

4πνt
exp

(
− x2

4νt

)
(2.306)

with the initial condition defined by

ψ0(x) = ψ(x, t = 0) (2.307)

as

ψ(x, t) =

∫ +∞

−∞
ψ0(y)G(x− y)dy =

1√
4πνt

∫ +∞

−∞
ψ0(y) exp

(
−(x− y)2

4νt

)
dy (2.308)

We note in passing that

ψ0(x) = φ(x, t = 0) = φ0 exp

(
− 1

2ν

∫ x

0
v0(y)dy

)
(2.309)

where v0(x) defines the initial conditions of our velocity field. In order to compute the final
solution for the velocity field, we recall that

u = −2ν
1

φ

∂φ

∂x
= −2ν

1

ψ

∂ψ

∂x
(2.310)

We need to compute the following derivative as

∂ψ

∂x
= − 1√

4πνt

∫ +∞

−∞
ψ0(y) exp

(
−(x− y)2

4νt

)(
x− y
2νt

)
dy (2.311)

to find the closed form solution of the viscous Burgers equation as

v(x, t) =

∫ +∞
−∞

x−y
t exp (−F (y)/2ν) dy∫ +∞

−∞ exp (−F (y)/2ν) dy
where F (y) =

(x− y)2

2t
+

∫ y

0
v0(z)dz (2.312)

2.8.3 Riemann problem

We see in the previous formula that the initial conditions are playing a central role in determining
the final solution. The general case is not really useful to describe the physics of shock waves.
It is actually more useful to consider a more specific set of initial conditions defined by constant
values in two infinite domains, to the left and to the right of a initial discontinuity located at
x = 0. This initial condition is called the Riemann problem and is a fundamental tool to design
numerical methods. We thus have

v0(x) = vL for x < 0 and v0(x) = vR for x > 0. (2.313)

We can now write the solution of the Riemann problem for the viscous Burgers equation with

F (y) =
(x− y)2

2t
+ vLy for y < 0 and F (y) =

(x− y)2

2t
+ vRy for y > 0 (2.314)

which is a simple piecewise parabolic function. As we have already discussed above, we are
interesting in the limit ν → 0. The Gaussian function we have in the previous integrals will
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Figure 2.5: Velocity profiles of the viscous Burgers equation for a Riemann problem with a shock
(bottom panel) and for a Riemann problem with a rarefaction wave (top panel) and different
values for the diffusion coefficient.
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converge towards the Dirac delta function, centred on the minimum of the previous (piecewise)
parabola. We therefore obtain for the solution to the Riemann problem the simple result

v(x, t) =
x− ymin

t
(2.315)

where ymin is the location of the minimum of the function F . Let’s try to find the location of
the minimum. In the left domain, we have find ymin,L = x − vLt and in the right domain we
find ymin,R = x− vRt. We recognise in these two equations the definitions of the left and right
characteristics. The corresponding minimum values are Fmin,L = vL(x − vLt/2) for the y < 0
and Fmin,R = vR(x− vRt/2) for the y > 0. We have now to consider two different cases.

• vL > vR: shock wave with converging characteristics. We can define three different regions.
Region 1 is defined by x < vRt. In this case, the minimum is in the left domain because
ymin,L < 0 as well as ymin,R < 0. We also have Fmin,L < Fmin,R. As a consequence,
ymin = x−vLt and v(x, t) = vL. Region 2 is defined by vRt < x < vLt. In this region, both
the left and right domains contains a minimum of their respective parabola. We have to
find where is the global minimum by imposing Fmin,L = Fmin,R, which gives

vL

(
x− vLt

2

)
= vR

(
x− vRt

2

)
or x = St where S =

vL + vR
2

(2.316)

We have introduced S the shock speed. Indeed, we see that if x < St then the global
minimum belongs to the left domain and we have v(x, t) = vL as before. On the other
hand, if x > St then the global minimum is on the right and we have ymin = ymin,R = x−vRt
so that v(x, t) = vR. Finally, region 3 is defined by x > vLt so that the global minimum is
clearly in the right domain and v(x, t) = vR. In conclusion, the solution to the Riemann
problem in this case is a shock wave solution with

v = vL for x < St and v = vR for x > St (2.317)

• vL < vR: rarefaction wave with diverging characteristics. We can also define similarly 3
different regions. Region 1 and 3 are easy, because the minimum of the parabola is always
within the corresponding left and right domain and is always the global minimum. We
thus have like before for x < vLt the solution v(x, t) = vL and for x > vRt the solution
v(x, t) = vR. The second region in the middle is more complicated. In this case, we have
vLt < x < vRt and as a consequence the minimum of the parabola is always outside of its
corresponding domain. It means that for region 2 the global minimum of F (y) is always
at ymin = 0 and the solution is v(x, t) = x/t. In conclusion, the solution for the Riemann
problem in this case is a rarefaction wave with

v = vL for x < vLt, v =
x

t
for vLt < x < vRt, v = vR for x > vRt (2.318)

We show in Figure 2.5 the solution of the Riemann problem for the viscous Burgers equation
and for various values of the diffusion coefficient ν. Interestingly, the proper inviscid solution
is recovered in the limit ν → 0 and corresponds to a discontinuity in the shock case and to
a inviscid rarefaction wave in the diverging characteristics case. Rarefaction waves, together
with shock waves and contact discontinuities form the entire family on non-linear waves of the
Euler equations. We will describe in more details contact discontinuities in a follow-up section,
focusing now on the description of shock waves.
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Figure 2.6: Space-time diagram with the integration region in grey

2.8.4 Rankine-Hugoniot relations

Now that we are convinced that discontinuities form systematically after a finite time in as-
trophysical fluid flows, we need a mathematical tool to deal with them. Indeed, the Euler
equations in Lagrangian or Eulerian forms feature many spatial derivatives which are obviously
not defined across discontinuities. Shock fronts have to be considered as a singular surface sep-
arating the flow in two regions: the pre-shock region that contains the unperturbed fluid and
the post-shock region with the shocked material. Inside these two regions, flow variables are
continuous and differentiable, but not across the shock. In order to connect these two regions
across the discontinuity, we need a new set of conservation laws in integral form, called the
Rankine-Hugoniot relations. To derive these famous relations, we write the Euler equations in
the following conservative form

∂U

∂t
+
∂F

∂x
= 0 (2.319)

where the vector of conservative variables is defined by

U = (ρ, ρv,E) (2.320)

and the vector of the fluxes of the conserved variables is defined by

F = (ρv, ρv2 + P, (E + P )v) (2.321)

These equations are one-dimensional and represent the flow evolution in the direction normal
to the shock surface. Note that many other equations can be expressed in this form: the
isothermal Euler equations, without the energy equation, the ideal MHD equations that include
the magnetic field, the relativistic Euler equations, the traffic flow equations, the shallow water
equations, etc. The Rankine-Hugoniot relations can be derived similarly for all these different
system of conservation laws. We now integrate this system of equations in a square region in
space-time between times t1 and t2 and positions x1 and x2 chosen close enough from each other
so that the shock trajectory (or shock characteristic) can be approximated by its tangent line.
The shock velocity S in the direction normal to the shock surface is therefore defined in this
small region by x1 − x2 = S(t1 − t2).

We now write the integral both in time and space as∫ t2

t1

∫ x2

x1

(
∂U

∂t
+
∂F

∂x

)
dx dt = 0 (2.322)
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The time derivative can be integrated immediately in time and the space derivative in space,
leading to ∫ x2

x1

[U(x, t2)−U(x, t1)] dx+

∫ t2

t1

[F(x2, t)− F(x1, t)] dt = 0 (2.323)

We now label the pre-shock values on the right side of the shock front as UR and FR and the
post-shock region on the left as UL and FL. Since we consider a vanishingly small space-time
interval, the pre-shock and post-shock values can be considered as constant both in time and
space. At time t = t2, one has U = UL everywhere, while at time t = t1, U = UR everywhere.
The first term can be written as

(x2 − x1) (UL −UR) (2.324)

The second term can be computed noticing that at x = x1, one has F = FL at all time, while
at x = x2, one has F = FR at all time.

(t2 − t1) (FR − FL) (2.325)

Combining the two and using the definition of the shock speed, we finally get the Rankine-
Hugoniot relations

FR − FL = S(UR −UL) (2.326)

Note that a more convenient form can be obtained by moving from the laboratory frame to the
shock frame. If the velocity field in the laboratory frame is noted v, then the shock velocity in
the shock frame is given by w = v − S and the Rankine-Hugoniot relations in this new frame
where S = 0, are just FR = FL, much simpler indeed.

2.8.5 Burgers shocks

In the simple case of the inviscid Burgers equation, we can use Rankine-Hugoniot relation to
recover the correct shock speed we have already found using the Hopf-Cole transform. Indeed,
since we have F = 1

2v
2 and U = v, we deduce immediately that

1

2
v2
R −

1

2
v2
L = S(vR − vL) or S =

vL + vR
2

(2.327)

in agreement with our previous result.

2.8.6 Isothermal shocks

We now apply our newly discovered relations to the case of an isothermal gas. The right region,
pre-shock states are given by (ρR, vR, S), and we wish to determine the post-shock states (ρL, vL)
as a function of the shock speed S. In the laboratory frame, the Rankine-Hugoniot relations
write

ρRvR − ρLvL = S(ρR − ρL) (2.328)

ρRv
2
R + ρRa

2 − ρLv2
L − ρLa2 = S(ρRvR − ρLvL) (2.329)

It is easier to move in the frame of the shock using the new velocity variable w = v− S. In this
frame, S = 0 and the shock characteristic is a vertical line. The Rankine-Hugoniot relations are
now much simpler

ρRwR = ρLwL (2.330)

ρRw
2
R + ρRa

2 = ρLw
2
L + ρLa

2 (2.331)
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It is customary to define the compression ratio of the shock as

r =
ρL
ρR

(2.332)

and the Mach number of the shock as

M =
|wR|
a

(2.333)

The mass conservation relation now writes

wL =
1

r
wR (2.334)

and the momentum conservation relation simplifies to

w2
R + a2 = r

(
w2
L + a2

)
(2.335)

Dividing by a2 and using the first relation, the second relation becomes

M2 + 1 = r

(
M2

r2
+ 1

)
(2.336)

After some easy manipulations, we obtain a polynomial of degree 2 for the unknown compression
ratio r

r2 − r(M2 + 1) +M2 = 0 (2.337)

Note r = 1 is always a solution of the Rankine-Hugoniot relations. It corresponds to a virtual
shock wave moving through the fluid without affecting the flow. The physical solution is the
other solution r = M2 > 1. One condition to get a shock wave is thus M > 1. Moving back
to the laboratory frame, we obtain the post-shock values as a function of M and the pre-shock
values

ρL =M2ρR (2.338)

vL =
1

M2
(vR − S) + S (2.339)

The strong shock limit is obtained forM→ +∞. In this case, we see that the compression ratio
becomes very large and that the post-shock velocity vL ' S. The fluid is therefore put in motion
by the shock wave and immediately follows it. Let’s now consider two different examples.

• First example: Let’s assume that the pre-shock velocity is zero vR = 0 and the shock
is moving from left to right with speed S > a. In this case, we have from the previous
relations M = S/a > 1. The compression ratio is fully specified by the shock speed with

r =M2 =
S2

a2
> 1 (2.340)

and the post-shock velocity is just

vL = S

(
1− a2

S2

)
(2.341)

• Second example: Let’s assume we don’t know the shock speed but we know that the fluid
is initially moving from right to left with vR < 0 and is crashing onto the left wall of
the laboratory. This sets the boundary conditions vL = 0. A shock will emerge from the
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left wall with S > 0 and will propagate to the right, slowing down the incoming fluid.
Using the previous relations, we deduce the shock speed value by solving the following
polynomial of degree 2

S2 − SvR − a2 = 0 (2.342)

for which the only physical solution is

S =
vR +

√
v2
R + 4a2

2
> a (2.343)

The corresponding compression ratio is

r = 1 +
v2
R

4a2
(2.344)

We see that in these two examples, the shock wave always travels supersonically with respect to
the fluid at rest. The compression ratio is always greater than 1, and scales as the Mach number
square, without bounds. In this isothermal case, the post-shock temperature remains constant
and equal to the pre-shock temperature.

2.8.7 Adiabatic shocks

We now move to the more complex case of an ideal gas equation of state with P = (γ − 1)e.
The Rankine-Hugoniot relations in the frame of the shock are

ρLwL = ρRwR (2.345)

ρLw
2
L + PL = ρRw

2
R + PR (2.346)

wL(EL + PL) = wR(ER + PR) (2.347)

Using the definition of the total energy E = e + 1
2ρw

2 and injecting the mass conservation
relation, we can write the energy equation as

1

2
w2
L +

γ

γ − 1

PL
ρL

=
1

2
w2
R +

γ

γ − 1

PR
ρR

(2.348)

In order to simplify the algebra, we consider the case where the fluid is initially at rest with
vR = 0 so that wR = −S. We also assume that the Mach numberM = S/cs � 1 with c2

s = γP/ρ
the adiabatic sound speed. We also define the compression ratio as before r = ρL/ρR. The mass
conservation relation gives

wL = −S
r

(2.349)

The momentum conservation relation becomes

ρLw
2
L + PL ' ρRS2 which gives

PL
ρL

=
S2

r
− S2

r2
(2.350)

where we have neglected the thermal pressure in the right-hand side owing to the strong shock
condition. Finally, the energy conservation relation becomes

1

2
w2
L +

γ

γ − 1

PL
ρL
' 1

2
S2 (2.351)
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Combining all the previous results lead to the following relation between r and S

1

2

S2

r2
+

γ

γ − 1

S2

r

(r − 1)

r
=

1

2
S2 (2.352)

which simplifies (as for the isothermal case) into the following polynomial of degree 2

r2 − 2γ

γ − 1
r +

γ + 1

γ − 1
= 0 (2.353)

which has the two solutions

r = 1 and r =
γ + 1

γ − 1
(2.354)

We thus get the post-shock density as a function of the pre-shock density using

ρL =
γ + 1

γ − 1
ρR (2.355)

The Maxwell-Boltzmann case with γ = 5/3 gives r = 4. The molecular equation of state with
γ = 7/5 leads to r = 6 and relativistic fluids with γ = 4/3 have r = 7. Interestingly, one also
recovers the isothermal limit with γ → 1 and r → +∞. The mass conservation relation gives us
the post-shock velocity with wL = −S/r and vL = S − S/r so that

vL =
2

γ + 1
S (2.356)

The post-shock pressure is obtained using the momentum conservation relation with

PL =
2

γ + 1
ρRS

2 (2.357)

and the post-shock temperature is given by

kBTL
m

=
PL
ρL

=
2(γ − 1)

(γ + 1)2
S2 (2.358)

We see that adiabatic shocks behave very differently than isothermal shocks. In the strong shock
limit, the compression ratio r is now finite and remains relatively small (from 4 to 7 depending
on the equation of state). On the other hand, the post-shock temperature scales as the square
of the shock speed and can become arbitrarily large, like the compression ratio in the isothermal
case. In the adiabatic case, energy is conserved and the kinetic energy of the pre-shock fluid
is transferred into thermal energy in the post-shock region. Shocks are thus dissipative waves
which generate entropy owing to viscous effects within the shock front.

2.8.8 Radiative shocks

In the general case, shocks are neither adiabatic, nor isothermal. We need to consider cooling
and heating processes in the energy equation to describe how the fluid will return to its initial
temperature after the shock has passed through the fluid. Radiative processes will be described
in the next chapter. They are due to inelastic collisions between atoms and molecules that emit
photons. Since inelastic collisions have a probability lower than one to occur during an otherwise
elastic collision, radiative processes will always be slower than viscous processes. A shock wave
is thus always adiabatic. Then, slowly, radiative processes cool down the gas in the post-shock
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region. After a certain distance, called the cooling length, the temperature goes back to the
initial pre-shock temperature. Overall, for scales much larger than the cooling length, the fluid
behaves as an isothermal fluid and one can use the isothermal Rankine-Hugoniot to predict the
very final state.

For sake of simplicity, we consider simplified heating and cooling processes using the following
energy equation

∂E

∂t
+

∂

∂x
(E + P ) v = ρ

ε0 − ε
tcool

(2.359)

where tcool is the cooling time. We see that the source term in the right-hand side will force the
fluid toward ε = ε0 as the equilibrium isothermal final state. Solving the one-dimensional Euler
equations in the frame of the shock leads to a stationary solution behind the shock shown in
Figure 2.7. We used in this example γ = 5/3, S = 10, vR = 0 and ρR = 1. One sees clearly
a discontinuity at x = 0. The Rankine-Hugoniot relations we used at the discontinuity are the
adiabatic ones, leading to a very small compression ratio of 4 and very large temperature jump
with

kBTL
m

=
3

16
S2 = 18.75 and wL = −1

4
S = −2.5 (2.360)

After this adiabatic shock, cooling starts to lower the temperature and the flow slows down and
compress the gas to maintain a quasi-uniform pressure. In this example, we adopt tcool = 0.1 so
that the cooling length can be computed as `cool = |wL|tcool = 0.25. One can see in Figure 2.7
that, after a couple of cooling lengths, the flow temperature returns to its initial value. The
final values on the extreme left of the shock profiles are indeed exactly the predicted jumps of
the isothermal Rankine-Hugoniot relations. If the relevant scales of the problem are much larger
than the cooling length, one can ignore the structure of the radiative shock and use directly the
isothermal shock predictions.

2.9 Astrophysical blast waves

We now apply our recent knowledge on shock waves to one of the most famous fluid dynamics
problem in astrophysics, namely the propagation of a spherical blast wave in the interstellar
medium. Supernova explosions are typical examples of such explosive events. The progenitor
star is violently expanding in its immediate environment and the ejecta are slowed down by the
surrounding gas. As a consequence, a shock wave is launched very rapidly and propagates into
the ISM supposed to be at rest. In this early phase, radiative losses are negligible and we can
use the ideal gas equation of state with P = (γ − 1)e. The key point of the theory of spherical
blast wave is that there are no preferred length scale involved: the explosion can be seen as a
point explosion and a scale-free spherical flow develops around it. The energy is so large that
we can safely consider the strong shock limit with M � 1. The only parameters are the initial
gas density ρ0 and the explosion energy E0. For supernovae, the explosion energy is close to
1051 erg, and the typical ISM density varies between 0.1 and 100 H/cm3. The spherical shock
radius is R(t), only depending on time, with R(0) = 0. The shock velocity is defined by

S = Ṙ (2.361)

Using the adiabatic Rankine-Hugoniot relations, in the laboratory frame and along the normal to
the shock surface, we get the following post-shock quantities immediately after the discontinuity

ρS =
γ + 1

γ − 1
ρ0, vS =

2

γ + 1
S, PS =

2

γ + 1
ρ0S

2 (2.362)

We still need to find the time evolution of the shock radius and the profiles of the various physical
quantities after the shock front.
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Figure 2.7: Flow solution for a radiative shock wave. The adiabatic shock front is located at x = 0,
followed by a radiative layer of thickness equal to the cooling length. After the radiative
layer, the flow variables finally reach the predicted value from the isothermal Rankine-
Hugoniot relations.

2.9.1 Spherical uniform model

As a first attempt to solve the problem, we assume that the shock heated gas is uniformly
distributed within the shock radius, and that the density, velocity and thermal pressure are all
equal to their post-shock values. We can compute the kinetic energy within the sphere as

Ekin =

∫ R(t)

0

1

2
ρSv

2
S 4πr2 dr =

8π/3

(γ + 1)(γ − 1)
ρ0S

2R3 (2.363)

and the total internal energy as

Etherm =

∫ R(t)

0

PS
γ − 1

4πr2 dr =
8π/3

(γ + 1)(γ − 1)
ρ0S

2R3 (2.364)

Interestingly, the total energy is distributed into exactly half kinetic and half thermal energy.
Requiring that the total energy is conserved and equal to the initial explosion energy, we find
the following differential equation for R(t)

16π/3

(γ + 1)(γ − 1)
ρ0Ṙ

2R3 = E0 with the solution R(t) '
(
E0

ρ0

)1/5

t2/5 (2.365)

where we used γ = 5/3. This is the famous energy-conserving Sedov solution, that the Russian
physicist Leonid Sedov found during World War II. We can deduce the corresponding shock
speed as

S = Ṙ =
2

5

(
E0

ρ0

)1/5

t−3/5 (2.366)
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The total scalar momentum of the blast wave is given by the product of the mass and the
uniform fluid radial velocity

pS =
4π

3
R3ρSvS =

8π

3(γ − 1)

(
E0

ρ0

)4/5

t3/5 (2.367)

We see that, although the shock velocity is slowly decreasing with time, the radial momentum
increases with time as the shock radius expands in the ISM. The Sedov solution is valid until
radiative effects become important, and the shock evolves into the isothermal regime.

2.9.2 Self-similar Sedov solution

The uniform blast wave solution we have found for R(t) is just a simple power law. Together
with the fact that there is no preferred absolute length scale in the problem, and that the
Euler equations are scale-free, it is very tempting to postulate that the density, velocity and
pressure profiles within the blast wave are self-similar. The self-similar solutions are defined
by ρ(r, t) = ρS ρ̃(x), v(r, t) = vS ṽ(x) and P (r, t) = PSP̃ (x), with x = r

R(t) the self-similar
coordinate. The shock location is not necessarily at x = 1 because our profiles will not be
uniform and we won’t find exactly the previous solution. We define the shock radius by xS .
At the shock radius, we have ρ̃(xS) = 1, ṽ(xS) = 1 and P̃ (xS) = 1. In words, one says that
the profiles remain similar to themselves (self-similar) after an appropriate scaling of the flow
variables.

We will now derive new differential equations of the single self-similar variable x instead of
two space-time coordinates (r, t). The 1D spherical Euler equations write

∂ρ

∂t
+

1

r2

∂

∂r

(
r2ρv

)
= 0 (2.368)

∂v

∂t
+ v

∂v

∂r
+

1

ρ

∂P

∂r
= 0 (2.369)

We write the energy equation using the internal energy density and replace e by the pressure
using P = (γ − 1)e.

∂P

∂t
+

1

r2

∂

∂r

(
r2Pv

)
+ (γ − 1)P

1

r2

∂

∂r

(
r2v
)

= 0 (2.370)

We will now change variables and replace all spatial derivatives by

∂(.)

∂r
=

1

R(t)

∂(.)

∂x
(2.371)

The time derivative is more tricky because x depends on time through R(t). For example, one
has to apply the chain rule and obtain

∂ρ

∂t
= ρS ρ̃

′(x)
(
− r

R2
Ṙ
)

= −(ρS
Ṙ

R
) (ρ̃′x) (2.372)

where we used the notation

ρ̃′(x) =
∂ρ̃

∂x
(2.373)

We then compute the divergence term in the mass conservation equation

1

r2

∂

∂r

(
r2ρv

)
=
(ρSvS

R

) 1

x2

∂

∂x
(x2ρ̃ṽ) (2.374)



CHAPTER 2. ASTROPHYSICAL FLUID DYNAMICS 87

Figure 2.8: Sedov solution: spherical profiles of the scaled flow variables, normalized to 1 at the shock
location xS = 1.

and combine it with the time derivative to get

−

(
ρS
Ṙ

R

)(
ρ̃′x
)

+
(ρSvS

R

) 1

x2

∂

∂x
(x2ρ̃ṽ) = 0 (2.375)

Injecting the value of the post-shock velocity

vS =
2

γ + 1
Ṙ (2.376)

we see that all scaling variables cancel out and we are left with a dimensionless equation

− ρ̃′x+
2

(γ + 1)

1

x2

∂

∂x
(x2ρ̃ṽ) = 0 (2.377)

Developing the divergence term, we obtain our first differential equation

ρ̃′
(

2

γ + 1
ṽ − x

)
+ ṽ′

(
2

γ + 1

)
ρ̃ = − 4

γ + 1

ρ̃ṽ

x
(2.378)

We now turn to the momentum equation, which writes in spherical coordinates

∂v

∂t
+ v

∂v

∂r
+

1

ρ

∂P

∂r
= 0 (2.379)

We have to be careful because we use v = vS ṽ(x) and the scaling variable vS now depends on
time. The time derivative thus writes

∂v

∂t
= v̇S ṽ + vS ṽ

′

(
−xṘ

R

)
=

2

γ + 1
R̈ ṽ − 2

γ + 1

Ṙ2

R
(ṽ′x) (2.380)
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The spatial derivatives can then be computed. First, the pressure gradient,

1

ρ

∂P

∂r
=

PS
ρSR

P̃ ′

ρ̃
=

2(γ − 1)

(γ + 1)2

Ṙ2

R

P̃ ′

ρ̃
(2.381)

and, second, the non-linear term

v
∂v

∂r
=
v2
S

R
ṽṽ′ =

4

(γ + 1)2

Ṙ2

R
ṽṽ′ (2.382)

Since vS ∝ t−3/5, we have

R̈ = −3

2

Ṙ2

R
(2.383)

which makes all the scaling variables cancel out. We can finally collect all the terms and obtain
our second differential equation.

ṽ′
(

2

γ + 1
ṽ − x

)
+ P̃ ′

(
γ − 1

γ + 1

)
1

ρ̃
=

3

2
ṽ (2.384)

We can now repeat the same procedure for the energy equation (not shown here, left as an
exercise for the reader) and obtain our third differential equation

P̃ ′
(

2

γ + 1
ṽ − x

)
+ ṽ′

(
2γ

γ + 1

)
P̃ = 3P̃ − 4γ

γ + 1

P̃ ṽ

x
(2.385)

Surprisingly, this system of differential equations has an exact solution, but the derivation is quite
tedious. An easier approach is to solve it numerically using any integration technique, starting
at xS = 1, and solving numerically the previous system with initial conditions ρ̃ = ṽ = P̃ = 1
until one reaches x = 0 at the centre of the sphere. The numerical solution is plotted in
Figure 2.8. We see that the velocity profile is quasi-linear with respect to the radius, a much
better approximation that a constant value. The pressure, on the other hand, is more uniform.
The density and the temperature, however, are clearly not uniform. They rise and sink steeply
towards the origin, leading to the formation of a very hot, underdense bubble. Since the profiles
are far from our first uniform guess, the total energy will not add up to 1. The shock radius
has to be adjusted so that the total energy of the explosion is strictly conserved by the solution.
Integrating the numerical profiles from 0 to 1 leads to a total energy of Etot ' 0.4936 in self-
similar units. Since the total energy scales as R5

S , we deduce that the exact shock location is at

xS = E
−1/5
tot ' 1.1517

2.9.3 Momentum-conserving shell

When cooling processes start to become effective, the assumption of strict energy conservation
ceases to be valid. We can estimate when this happens by computing the total cooling rate of
the Sedov solution as

Ėcool =

∫ R(t)

0
n2
H Λ(T ) 4πr2 dr (2.386)

and then, in a second step, the total energy radiated since the time of the explosion. The cooling
time tcool is defined as the time we need to radiate away the initial explosion energy∫ tcool

0
Ėcool dt = E0 (2.387)
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At that time, the supernova remnant has reached the cooling radius defined by

Rcool = RS(tcool) (2.388)

Beyond this radius, the flow will quickly become isothermal. In the strong shock limit, the
Rankine-Hugoniot relation will give us

ρS 'M2ρ0 =
S2

a2
ρ0 and vS ' S (2.389)

We see that, as in the isothermal shock case, the fluid after the shock immediately follows the
shock front. The ISM will therefore accumulate in a very thin shell right behind the shock. The
total mass swept up by the shock is equal to the mass of ISM enclosed by the shock surface

MS =
4π

3
ρ0R

3(t) (2.390)

and is entirely located in a thin cold shell. The rest of the sphere is filled with the remnant
of the Sedov phase, namely a bubble of low density hot gas. This hot gas is called the hot
interstellar medium and represents the third main phase of the ISM (after the warm neutral
medium and the cold molecular gas discussed in the thermal instability section). Obviously,
during this isothermal evolution, the energy is not conserved. The shock is piling up gas like
a snow-plow piling up snow on a piste and this thin shell conserves its momentum. The initial
condition of the snow-plow phase is the final state of the Sedov phase, so that the conserved
momentum is

pcool = pS(tcool) (2.391)

For t > tcool, we write that the momentum is constant as

MSṘ = pcool (2.392)

This gives us a new differential equation for the shock radius

R3Ṙ =
3pcool

4πρ0
(2.393)

Integrating this gives us a new solution for the time evolution of the shock radius.

R(t) =

(
3pcool

πρ0

)1/4

t1/4 '
(
pcool

ρ0

)1/4

t1/4 (2.394)

We see that in this case, the shock is moving much slower. At some point, the shock velocity
will slow down so much that the shock front will become subsonic and the bubble will stop
expanding. The final stage is therefore a hot bubble surrounded by a dense shell of cold gas, in
which new stars will form and after some time explode in supernovae, and the whole cycle will
repeat.
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2.10 Astrophysical turbulence

We now turn to one of the most important topics in modern theory of astrophysical fluids, namely
the theory of turbulence. It plays a fundamental role in providing new mass, momentum and
energy transport phenomena. In engineering and climate modeling, the impact of turbulence is
major, and various fluid instabilities that seed turbulence are responsible for many important
processes like the theory of flight, boundary layers, global energy transfer in the oceans or
in the atmosphere, to name a few. In astrophysics, turbulence plays a fundamental role in the
interstellar medium and probably determines how stars acquire their mass. We have already seen
that turbulence controls the accretion rate in disks. It is also responsible for a very important
energy transfer mechanism in stars and planets called convection.

2.10.1 Some fundamental fluid properties

Before we describe in greater details the theory of turbulence, we need to explain a few basic
properties of fluid flows that we will appeal to in the following section. It is therefore very
important to become familiar with these concepts, as they are the building blocks of what
follows.

Adiabatic evolution

In absence of cooling and heating processes, and far away from shocks, the Euler equations are
said to be adiabatic. In other words, as we will prove now, the entropy is srictly conserved along
trajectories. If, on top of that, the initial entropy is homogeneous to start with, then it will
remain homogeneous at all time. The flow is said to be isentropic. It is important to understand
that adiabatic is not equivalent to isentropic. The latter is a stronger condition on the flow than
the former. Let’s write the Euler equations in Lagrangian form.

1

ρ

Dρ

Dt
= −∇ · v , ρ

Dε

Dt
= −P∇ · v , 1

ε

Dε

Dt
= −(γ − 1)∇ · v (2.395)

where in the rightmost equation, we have used the equation of state of an ideal gas P = (γ−1)ρε.
Combining the mass and energy conservation equations gives the following relation between the
mass density and the specific energy

1

ε

Dε

Dt
= (γ − 1)

1

ρ

Dρ

Dt
(2.396)

We define the pseudo-entropy (or the entropy for short), which is not the same as the true
entropy defined in the chapter on kinetic theory, as

S ≡ P

ργ
= (γ − 1)

ε

ργ−1
(2.397)

We compute the logarithmic Lagrange derivative of the entropy

1

S

DS

Dt
=

1

ε

Dε

Dt
− (γ − 1)

1

ρ

Dρ

Dt
= 0 (2.398)

In conclusion, the adiabatic evolution of the fluid, in absence of cooling and heating, and far
away from shocks, is described by a very simple equation, namely

DS

Dt
= 0 (2.399)



CHAPTER 2. ASTROPHYSICAL FLUID DYNAMICS 91

This simple equation just states that the entropy is conserved along the trajectory of each fluid
element. If xi is the initial location of the fluid element at time ti, and xf its final position at
time tf , then one has for an adiabatic evolution Sf = Si or

P (xf , tf )

ρ(xf , tf )γ
=
P (xi, ti)

ρ(xi, ti)γ
(2.400)

In contrast, isentropic flows have S(x, t) = S0 everywhere, or

P (x, t) = S0ρ
γ(x, t) (2.401)

We see that isentropic flows are a particular case of a polytropic equation of state for which
P = AρΓ with A = S0 and Γ = γ. Note that in general the polytropic exponent Γ comes from
external processes, such as cooling or heating, while the ideal gas adiabatic exponent γ comes
from microscopic processes describing the collisions.

Vorticity

A very important quantity used to describe turbulence is the vorticity. Vortices are fluid elements
for which the vorticity, defined as ω = ∇× v, is constant and follows the displacements of the
fluid element. Vortices are also called eddies. Examples of such vortices are cyclones in the
atmosphere of the tropical regions. We now derive the famous vorticity equation, using the
momentum conservation equation, including viscosity, as

Dv

Dt
=
∂v

∂t
+ (v · ∇)v = −1

ρ
∇P −∇φ+ ν4v (2.402)

with ν = µ/ρ = cst. The non-linear term, the one responsible for shock formation, can be
decomposed into

(v · ∇)v = ∇
(
v2

2

)
+ (∇× v)× v (2.403)

which, after introducing the vorticity ∇× v = ω gives

∂v

∂t
+∇

(
v2

2

)
+ ω × v = −1

ρ
∇P −∇φ+ ν4v (2.404)

We now take the curl of the previous equation, using the two following vector relations: ∇ ×
(∇φ) = 0 and ∇×4v = 4(∇× v), we obtain the vorticity equation

∂ω

∂t
+∇× (ω × v) =

1

ρ2
∇ρ×∇P + ν4ω (2.405)

This equation is among the most important results in fluid dynamics. It contains three terms
governing the time evolution of the vorticity. The first term (that appears as the second term on
the left-hand side of the equation) corresponds to the transport of vorticity. Although it is not
strictly a Lagrange derivative, it still means that, aside from the effect of vortex-stretching, the
eddies are basically following the Lagrangian flow. The second important term is the first on the
right-hand side of the equation: this is the so called baroclinic term, which creates vorticity due
to the interaction between pressure and density gradients. This term is in most circumstances
zero. For example, an incompressible fluid has ρ = ρ0, so ∇ρ = 0 and the baroclinic term
vanishes. An isothermal fluid or a fluid with a polytropic equation of state will have

∇P = P ′(ρ)∇ρ (2.406)
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so that the pressure gradient is always colinear to the density gradient and the curl in the
baroclinic term will also vanish. In general, in order to create vorticity, one need to have
misaligned pressure and density gradients. This can happen if certain heating terms are present
in a localised region, or if two shock waves interact and create a triple point. These situations for
which vorticity is created through the baroclinic term are usual associated to fluid instabilities.
The third important term is the last one on the right-hand side: viscous dissipation. One
recognizes the heat equation, this one for the vorticity. Since the molecular diffusion coefficient
is very small ν = λcolla, the dissipation of eddies will take a long time, and they can be relatively
long-lived features in the flow. A strong consequence of this equation is that if the baroclinic
term is zero and no other source of vorticity are present, then vorticity will decay and remain
zero for ever. We have a curl-free flow and it is justified to use the simple version of the second
Bernoulli theorem.

Helmholtz decomposition theorem

This theorem is also known as the fundamental theorem of vector calculus. It states that any
vector field v can be decomposed into the sum of the gradient of a scalar potential and the curl
of a vector potential

v = ∇ϕ+∇×A (2.407)

This decomposition is unique and both potentials can be found by solving two different Poisson
equations

4ϕ = ∇ · v = θ (2.408)

4A = ∇× v = ω (2.409)

with the proper boundary conditions. We didn’t really simplify the problem, since now we have
one vector field and one scalar field instead of just one vector field. The added value of the
Helmoltz decomposition will become clear now. Let’s consider two examples.

• Let us consider a curl-free flow, for which ω = 0. We also assume the boundary condition
at infinity is set to zero. Then, the corresponding vector potential is A = 0 and we have
a pure potential flow with v = ∇ϕ.

• Let us now consider in addition that our flow is incompressible, so that θ = 0. Using the
mass conservation equation, we see that

1

ρ

Dρ

Dt
= −∇ · v = −θ (2.410)

so that θ = 0 is equivalent to ρ = ρ0. In our study of sound waves, we have also seen
that the amplitude of the density perturbation is related to the amplitude of the velocity
perturbation by

∆ρ

ρ0
= ±∆v

a
(2.411)

We conclude that incompressible flows are also subsonic flows for which v � a. In this
case, since θ = 0, we have a potential flow for which the scalar potential satisfies Laplace
equation: 4ϕ = 0.
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Bernoulli theorem revisited

Since our incompressible flow is also a potential flow, we can go back to the second Bernoulli
theorem, which was written as

∂v

∂t
+∇

(
v2

2
+ φ+Π

)
= v × ω (2.412)

and simplify it because with Π = P/ρ0, ω = 0 and v = ∇ϕ. This gives us

∇
(
∂ϕ

∂t
+
v2

2
+ φ+

P

ρ0

)
= 0 (2.413)

If the gradient of a scalar quantity is zero everywhere, it means the quantity is uniform, so we
obtain

∂ϕ

∂t
+
v2

2
+ φ+

P

ρ0
= C(t) (2.414)

where the Bernoulli constant C(t) is the same everywhere in the fluid but possibly depends on
time. This form of the Bernoulli theorem will prove very useful in what comes next.

Contact discontinuity and the kinematic condition

We now describe a new type of discontinuity which is not a shock but the interface between two
fluids. This discontinuity is therefore not a wave that propagates through the fluid at a different
velocity S but a material interface. The key point in describing a contact discontinuity is the
requirement that the two fluids and the interface remain in contact. In the direction perpen-
dicular to the interface, we can write the Rankine-Hugoniot relations for a general discontinuity
as

ρ1v1 − ρ2v2 = S(ρ1 − ρ2) (2.415)(
ρ1v

2
1 + P1

)
−
(
ρ2v

2
2 + P2

)
= S(ρ1v1 − ρ2v2) (2.416)

(E1 + P1) v1 − (E2 + P2) v2 = S(E1 − E2) (2.417)

where we have defined the normal component of the velocities using the unit vector normal to
the interface n as

v1 = v1 · n and v2 = v2 · n and S = vI · n (2.418)

The contact condition, also called the “no vacuum” condition, is just

v1 = v2 = S (2.419)

We see that the mass conservation relation is trivially satisfied. On the other hand, the momen-
tum and total energy conservation relations require also pressure equality across the interface
as

P1 = P2 (2.420)

These two conditions are the Rankine-Hugoniot relations for contact discontinuities. Note that
contact discontinuities have in general a complex shape. In what follows, we restrict ourselves
to two dimensional flows, but it can be easily generalized to 3D. We will now derive what is
called the kinematic condition on the interface. We are in a Cartesian coordinate system with
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coordinates (x, z). If we represent the shape of the interface at any given time by the geometrical
function z = η(x, t), we can define the interface position vector and its velocity by

rI = (x(t), η(x, t)) (2.421)

vI = (ẋ,
∂η

∂x
ẋ+

∂η

∂t
) (2.422)

In the second equation, we have used the chain rule on the function η. The “no-vacuum”
condition writes vI · n = v · n. Note for a contact discontinuity, we can authorize slipping
motions so that vI · t 6= v · t, where t is the tangent vector to the interface. We can compute
easily the unit tangent vector and the unit normal vector as

t =

(
1,
∂η

∂x

)
/

√
1 +

(
∂η

∂x

)2

and n =

(
−∂η
∂x
, 1

)
/

√
1 +

(
∂η

∂x

)2

(2.423)

We now impose the contact condition for each fluid as v · n = vI · n which writes

− vx
∂η

∂x
+ vz = −ẋ ∂η

∂x
+ ẋ

∂η

∂x
+
∂η

∂t
(2.424)

which simplifies into the final kinematic condition on the interface

∂η

∂t
+ vx

∂η

∂x
= vz (2.425)

2.10.2 Rayleigh-Taylor instability

We consider two fluids with constant densities ρ1 and ρ2, separated by an interface initially
strictly horizontal. Fluid 1 is initially below z = 0 and fluid 2 is above z = 0. The gravity field
is constant and points downwards.

g = −gez with g > 0 (2.426)

Our initial state is described by the hydrostatic equilibrium equation with

− 1

ρ

∂P

∂z
= g and v = 0 (2.427)

Integrating this equation in fluid 1 and 2 gives for the equilibrium pressure profile

P1 = P0 − ρ1gz and P2 = P0 − ρ2gz (2.428)

We see that our two fluids meet at z = 0 with P1 = P2 = P0.

Perturbations

Now that our equilibrium state has been specified, we consider small perturbations with velocities
v1 � a and v2 � a so that, at least in the begining, the flow will remain subsonic and curl-free.
We thus have two potential flows with

v1 = ∇ϕ1, 4ϕ1 = 0 and v2 = ∇ϕ2, 4ϕ2 = 0 (2.429)

We use for our scalar potential a general solution of the form

ϕ1(x, z, t) = ϕ1(z) ei(kx−ωt) and ϕ2(x, z, t) = ϕ2(z) ei(kx−ωt) (2.430)
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where both ϕ1(z) and ϕ2(z) will be determined shortly. For the interface, we use a planar wave
solution of the form

η(x, t) = ∆η ei(kx−ωt) (2.431)

where ∆η is the fixed initial amplitude of the wave. Let’s first solve our two Laplace equations
in the two domains. For fluid 1, we have

4ϕ1 =
∂2ϕ1

∂x2
+
∂2ϕ1

∂z2
= −k2ϕ1(z) ei(kx−ωt) + ϕ1(z)′′ ei(kx−ωt) = 0 (2.432)

Dividing out the exponentials gives us the following diffential equation

ϕ1(z)′′ = k2ϕ1(z) (2.433)

for which the general solution is

ϕ1(z) = ∆ϕ+
1 e

+kz +∆ϕ−1 e
−kz (2.434)

where ∆ϕ+
1 and ∆ϕ+

1 are fixed ampitude set by the initial conditions. Since fluid 1 is defined
in the entire domain z < 0, we need to set ∆ϕ−1 = 0 to avoid a divergence at z → −∞. In
conclusion, the final form for our solution for ϕ1 reads

ϕ1(x, z, t) = ∆ϕ1 e
+kzei(kx−ωt) (2.435)

where we dropped the index + for simplicity. Equivalently, we have for fluid 2

ϕ2(x, z, t) = ∆ϕ2 e
−kzei(kx−ωt) (2.436)

for which we dropped the positive exponential to avoid a divergence at z → +∞. We have
therefore three unknown amplitudes to determine our complete solution ∆η, ∆ϕ1 and ∆ϕ2.

Kinematic condition

We now write the kinematic conditions between each fluid and the interface.

∂η

∂t
+ vx

∂η

∂x
= vz (2.437)

This equation is evaluated at z = η and linearized by Taylor expanding the exponential term
and dropping all high-order (quadratic or higher) terms in the equation.

∂η

∂t
' ∂ϕ1

∂z
and

∂η

∂t
' ∂ϕ2

∂z
(2.438)

Using the adopted solutions, we get the following relations between the amplitudes

−iω∆η = +k∆ϕ1 and − iω∆η = −k∆ϕ2 (2.439)

Bernoulli theorem and pressure equality

We now write the second Bernoulli theorem in each domain as

∂ϕ1

∂t
+
v2

1

2
+
P1

ρ1
+ gz = C1 (2.440)

∂ϕ2

∂t
+
v2

2

2
+
P2

ρ2
+ gz = C2 (2.441)
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The two Bernoulli constants can be found by noticing that the pressure at infinity matches the
initial equilibrium model. In other words, the perturbations vanish at infinity. We thus get

P1

ρ1
+ gz → P0

ρ1
= C1 as z → −∞ (2.442)

and similarly
P2

ρ2
+ gz → P0

ρ2
= C2 as z → +∞ (2.443)

We now linearize the two Bernoulli equations by dropping the kinetic energy term and evaluate
them at the interface z = η. This gives us

∂ϕ1

∂t
+
P1

ρ1
+ gη =

P0

ρ1
(2.444)

∂ϕ2

∂t
+
P2

ρ2
+ gη =

P0

ρ2
(2.445)

We finally require P1 = P2 at the interface, which gives the final relation between the amplitudes

ρ1 (−iω∆ϕ1 + g∆η) = ρ2 (−iω∆ϕ2 + g∆η) (2.446)

Injecting the two previous equations into the third one, we get the dispersion relation as

ρ1

(
−ω2 + gk

)
= ρ2

(
+ω2 + gk

)
(2.447)

and finally

ω2 =
ρ1 − ρ2

ρ1 + ρ2
gk (2.448)

• If ρ1 > ρ2, the previous dispersion relation yields stable propagating waves, with velocity
ω/k '

√
g/k. This is the solution for deep sea water, with long wavelength perturbations

moving faster than small wavelength ones.

• If ρ1 < ρ2, on the other hand, the solutions are unstable. This is the Rayleigh-Taylor
instability. The amplitude of the interface will grow exponentially fast. In the non-linear
regime, the low density fluid at the bottom generates bubbles that rise buoyantly in the
high density fluid. The high density fluid on top will sink in the form of cold fingers that
eventually break into droplets.

Note that the two fluids pressures at the interface are equal and a more general criterion for the
instability can be expressed as

S1 =
P1

ργ1
> S2 =

P2

ργ2
(2.449)

This instability is also called the interchange instability, because the high entropy fluid at the
bottom will change its position with the low entropy fluid on top. This instability is at the
origin of a fundamental process in stars and planets called convection. Once the amplitude of
the perturbations are large, the instability enters the non-linear regime. Figure 2.9 shows a time
sequence of the non-linear development of the Rayleigh-Taylor instability. Initially, the interface
is almost perfectly horizontal. Once the amplitude of the instability is large enough, we can see
by eye the planar wave solution. Later on, the lighter fluid develops large bubble that rise, while
the heavier fluid forms cold and dense fingers that sink in the direction of gravity. One can also
see on the sides of the fingers small vortices due to a secondary Kelvin-Helmholtz instability.
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Figure 2.9: Non-linear evolution of the Rayleigh-Taylor instability. Time advances from left to right
and from top to bottom. The heavy fluid in white is above the lighter one.

2.10.3 Kelvin-Helmholtz instability

We consider now a slightly different case, with two fluids separated by an horizontal interface,
with different densities ρ1 and ρ2 and different transverse velocities.

v1 = V1ex and v2 = V2ex (2.450)

We ignore gravity so that the initial pressure is uniform in both fluids and equal to P0. These
initial conditions satisfies trivially the Euler equations and they define our initial equilibrium.
We see that in each domain the initial velocity is obviously curl-free. It will remain so after we
perturb the interface with a planar wave of the form.

η(x, t) = ∆ηei(kx−ωt) (2.451)

The velocity perturbations are small enough to be subsonic. Our perturbed velocity fields will
be curl-free and divergence-free (incompressible limit). We thus have a potential flow and the
scalar potentials satisfy Laplace equation in each domain. We can directly write the solution in
the following form

v1 = V1ex +∇ϕ1 where ϕ1(x, z, t) = ∆ϕ1 e
+kzei(kx−ωt) (2.452)

v2 = V2ex +∇ϕ2 where ϕ2(x, z, t) = ∆ϕ2 e
−kzei(kx−ωt) (2.453)

Kinematic conditions

For fluid 1, the kinematic condition writes

∂η

∂t
+ vx,1

∂η

∂x
= vz,1 (2.454)
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with now

vx,1 = V1 +
∂ϕ1

∂x
and vz,1 =

∂ϕ1

∂z
(2.455)

Linearizing this equation at the interface position z = η leads us to keep more terms than in the
Rayleigh-Taylor case

∂η

∂t
+ V1

∂η

∂x
=
∂ϕ1

∂z
(2.456)

We now inject our Ansatz and obtain our first relation between the perturbation amplitudes

(−iω + ikV1)∆η = +k∆ϕ1 (2.457)

Similarly, for fluid 2, we get

(−iω + ikV2)∆η = −k∆ϕ2 (2.458)

Bernoulli equation and pressure equilibrium

We now use Bernoulli equation in fluid 1 for which we have no gravity

∂ϕ1

∂t
+

1

2
v2
x,1 +

1

2
v2
z,1 +

P1

ρ1
= C1 (2.459)

We find the Bernoulli constant by requiring that the perturbations vanish at −∞ so that

1

2
V 2

1 +
P0

ρ1
= C1 (2.460)

Finally, we linearize the Bernoulli equation, dropping all quadratic (or higher order) terms

∂ϕ1

∂t
+

1

2
V 2

1 + V1
∂ϕ1

∂x
+
P1

ρ1
=

1

2
V 2

1 +
P0

ρ1
(2.461)

This lead to the pressure in fluid 1 at the interface to be

P1 = P0 − ρ1

(
∂ϕ1

∂t
+ V1

∂ϕ1

∂x

)
(2.462)

and similarly for fluid 2, we have

P2 = P0 − ρ2

(
∂ϕ2

∂t
+ V2

∂ϕ2

∂x

)
(2.463)

Imposing pressure equality at the interface and computing the time and space derivatives gives
us our third relation

ρ1 (−iω + ikV1)∆ϕ1 = ρ2 (−iω + ikV2)∆ϕ2 (2.464)

Combining it with the two previously found relation leads to the dispersion relation

ρ1 (ω − kV1)2 = −ρ2 (ω − kV2)2 (2.465)

This is a problematic equation, because it states that a square is equal to minus another square.
The solution is to introduce an imaginary component, which is, as we now know very well, a
clear sign of instability. √

ρ1 (ω − kV1) = ±i√ρ2 (ω − kV2) (2.466)
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Figure 2.10: Non-linear evolution of the Kelvin-Helmoltz instability. Time advances from left to right
and from top to bottom. The heavy fluid is now below the lighter one.

After some manipulations, we obtain the final dispersion relation

ω

k
=
ρ1V1 + ρ2V2

ρ1 + ρ2
± i
√
ρ1ρ2

ρ1 + ρ2
(V1 − V2) (2.467)

The resulting waves are propagating waves, with speed equal to the density-weighted mean of
the two initial velocities, and with amplitude growing exponentially at the rate

γ ' |V1 − V2| k (2.468)

This is the Kelvin-Helmoltz instability. We see that the instability is triggered as soon as
the velocity difference is non-zero. This happens all the time! This is also called the shear
instability. Shearing flow configurations lead systematically to the fast amplification of any
small perturbationss and to the onset of turbulence. Note that gravity can stabilize the flow if
the heavy fluid sits below the lighter one. This is what happens in non self-gravitating accretion
disks, for which differential rotation alone does not trigger Kelvin-Helmoltz instability.

During its non-linear evolution (see Figure 2.10), the Kelvin-Helmoltz instability develops
complex features such as breaking waves, that later become turbulent eddies. Larger eddies can
in turn develop secondary eddies and lead to very complex flow patterns that we call turbulence.
In conclusion, we have seen two classical equilibrium situations where turbulence forms naturally.
We now describe in greater details the mathematical theory of turbulent flows.

2.10.4 Mean-flow equations for turbulent flows

In the last two sections, we have seen how turbulence can emerge from unstable situations. Once
the perturbations are fully developed into the non-linear regime, we need a theory to describe
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these fluctuations. The mean-flow equations are new fluid equations that can be used to describe
the large-scale flow, averaging over the small-scale fluctuations. Density, velocity and pressure
fluctuations are treated as random variables, whose exact values are not important. Only the
average statistical properties of the fluctuations are important. The new mathematical key
concept we introduce in this section is the averaging operator. For example, if you consider the
density field ρ(x, t) as the variable of interest, you can define the space average within a fixed
volume V0 as

ρ(t) =
1

V0

∫
V0

ρ(x, t)dV (2.469)

with the overbar indicating the volume average. You can also use a small probe that records
the value of the density at a fixed location, and then you can perform the time average within
a fixed time interval as

ρ(x) =
1

T0

∫
T0

ρ(x, t)dt (2.470)

These two averaging operators are easy to understand but they contain a fundamental flaw: In
both cases, we have lost one independent variable, either time or space, so we won’t be able
to find new fluid equations. There is one more definition we can use to define the averaging
operator, namely the ensemble average, defined by

ρ(x, t) =
1

N

∑
i=1,N

ρi(x, t) (2.471)

Index i now stands for a parallel universe where we have the same exact fluid flow but with
different random properties, so we can now average over N parallel universes to get the average
and still keep both time and space as independent variables. Although this definition of the
averaging operator is practical in a mathematical sense, it is not realistic as one cannot design
an experiment over parallel universes we don’t know how to explore. We nevertheless assume
that these three different definitions are equivalent and lead to the same value for the average
quantity. This is called the ergodic prinicple. In what follows, we will use the multiple universes
viewpoint, but keep in mind that this can also mean time and/or space average within one single
experiment.

Another interpretation of the averaging operator is related to the concept of smoothing. We
define a smoothing kernel of size R, say a Gaussian filter or a Top-Hat function W , and we
define the average at time t and position x as the convolution of the original density field and
the filter function

ρ(x, t) =

∫
R3

ρ(x′, t)W

(
x− x′

R

)
d3x′ (2.472)

The average density field is the smoothed density field at scales r > R, and the fluctuations are
defined as the small-scale perturbations for scales r < R. Whatever viewpoint we adopt, we
always define the fluctuating density as the different between the average and the original one.
We thus have in each parallel universe

ρ(x, t) = ρ(x, t) + ρ′(x, t) (2.473)

v(x, t) = v(x, t) + v′(x, t) (2.474)

P (x, t) = P (x, t) + P ′(x, t) (2.475)

If we apply the averaging operator to the previous three equations, we find

ρ′ = 0 , v′ = 0 and P ′ = 0 (2.476)
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Let’s now apply this operator to the mass conservation equation. We use in what follows Einstein
notations, and start with

∂ρ

∂t
+

∂

∂xj
(ρvj) = 0 (2.477)

We decompose both the density and the velocity into the mean flow and the fluctuating flow as
ρ = ρ+ ρ′ and vj = vj + v′j and obtain

∂ρ

∂t
+
∂ρ′

∂t
+

∂

∂xj

(
ρ vj + ρv′j + ρ′vj + ρ′v′j

)
= 0 (2.478)

We now apply the average operator on top of the entire equation. Already averaged quantity
can be considered as constant. Using the multiple universes interpretation, the average operator
obviously commutes with time and space derivatives. We therefore get

∂ρ

∂t
+

∂

∂xj

(
ρ vj + ρ′v′j

)
= 0 (2.479)

We see that we have identified a new quantity ρ′v′j 6= 0 called the turbulent mass flux. Apart
from this annoying term, we have derived a new mass conservation equation for the mean flow
only, that we can use to solve the mean flow evolution, ignoring the details of the turbulent
fluctuations. We however need to come up with a model for the turbulent mass flux.

Another approach, more suited for compressible fluids, is based on the Favre average. Favre
averaging is based on a mass-weighted average of all specific quantities like the velocity, the
specific internal energy or the temperature. We have by definition

ρv = ρ ṽ (2.480)

where the tilde means Favre average. We need to define new fluctuations with respect to this
new average

v = ṽ + v′′ and ε = ε̃+ ε′′ (2.481)

where now the double prime stands for fluctuations defined with respect to the mass-weighted,
Favre average, and single prime for fluctuations with respect to the standard, volume-weighted
average. Now we have for the fluctuating part the following property

ρv′′ = 0 and ρε′′ = 0 (2.482)

but of course we have unfortunately in this case

v′′ 6= 0 and ε′′ 6= 0 (2.483)

Let’s re-derive the mass conservation equation using the Favre average. This time, it is important
not to develop the density inside the space derivative

∂ρ

∂t
+
∂ρ′

∂t
+

∂

∂xj

(
ρ ṽj + ρv′′j

)
= 0 (2.484)

We now apply the average operator to the entire equation, which leads now to the much simpler
form

∂ρ

∂t
+

∂

∂xj
(ρ ṽj) = 0 (2.485)
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By adopting a new frame of reference, we have absorbed the turbulent mass flux in the Favre
average. We can now relate the two different definitions of the mean flow velocity by simply
identifying terms

ṽj = vj +
ρ′v′j
ρ

(2.486)

We now move to the momentum conservation equation. We start as always with

∂

∂t
(ρvi) +

∂

∂xj
(ρvivj) +

∂P

∂xi
= ρgi (2.487)

We decompose the velocity into vj = ṽj + v′′j but not the density

∂

∂t
(ρṽi) +

∂

∂t

(
ρv′′i
)

+
∂

∂xj

(
ρṽiṽj + ṽiρv

′′
j + ρv′′i ṽj + ρv′′i v

′′
j

)
+
∂P

∂xi
= ρgi (2.488)

Now we apply the average operator over the entire equation. All terms with a ρv′′i = 0 vanish
and we get the momentum conservation equation of the mean flow

∂

∂t
(ρṽi) +

∂

∂xj

(
ρṽiṽj + ρv′′i v

′′
j

)
+
∂P

∂xi
= ρgi (2.489)

This equation looks very much like the original one, but for one extra term, called the turbulent
pressure tensor defined as

PT = ρv′′ ⊗ v′′ (2.490)

In analogy with the chapter on kinetic theory, we deconpose this tensor into a traceless tensor
and an isotropic tensor as

PT = RT + PTI (2.491)

where the turbulent pressure is defined by

PT =
1

3
ρv′′2 =

2

3
KT (2.492)

and we have introduced the turbulent kinetic energy KT. The Reynolds tensor is now defined
by

RT = ρv′′ ⊗ v′′ − PTI (2.493)

and the momentum conservation equation for the mean flow can be modified as follows

∂

∂t
(ρṽi) +

∂

∂xj
(ρṽiṽj) +

∂

∂xj
(RT,ij) +

∂P

∂xi
+
∂PT

∂xi
= ρgi (2.494)

Finally, we derive the total energy equation for the mean flow. We start with the original energy
equation in Eulerian form

∂E

∂t
+

∂

∂xj
(E + P ) vj = ρvjgj (2.495)

The total energy is decomposed into

E =
1

2
ρv2 + ρε =

1

2
ρṽ2 + ρṽiv

′′
i +

1

2
ρv′′2 + ρε̃+ ρε′′ (2.496)

so that averaging the time derivative leads to

∂

∂t

(
1

2
ρṽ2 + 0 +

1

2
ρv′′2 + ρε̃+ 0

)
=
∂Etot

∂t
(2.497)
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where now the total energy writes

Etot =
1

2
ρṽ2 + ρε̃+KT (2.498)

We see that this new total energy is equal to the kinetic energy of the mean flow, plus the
internal energy of the mean flow, plus the turbulent kinetic energy. Let’s now compute the
space derivatives. Using P = (γ − 1)ρε, we have

∂

∂xj
(E + P ) vj =

∂

∂xj

(
1

2
ρṽ2vj + ρṽiv

′′
i vj +

1

2
ρv′′2vj + γρε̃vj + γρε′′vj

)
(2.499)

We now decompose vj = ṽj + v′′j in the previous equation and apply immediately the average
operator to obtain

∂

∂xj

(
1

2
ρṽ2ṽj + 0 + 0 + ρv′′i v

′′
j ṽi +

1

2
ρv′′2ṽj +

1

2
ρv′′2v′′j + γρε̃ṽj + 0 + 0 + γρε′′v′′j

)
(2.500)

We recognize the total energy flux due to the mean flow, the turbulence pressure tensor, that we
decompose into the Reynolds stress tensor plus the turbulent pressure, and a new term called
the turbulent heat flux. The total energy equation for the mean flow finally writes

∂Etot

∂t
+

∂

∂xj
(Etot + Ptot) ṽj +

∂

∂xj
(RT,ij ṽi) +

∂

∂xj
(QT,j) = ρṽjgj (2.501)

where the total pressure is defined by

Ptot = P + PT (2.502)

and the turbulent heat flux by

QT =
1

2
ρv′′2v′′ + γρε′′v′′ (2.503)

The analogy with kinetic theory is striking. We see that we have now introduced a new scale
which captures mesoscopic processes such as turbulence, between the macroscopic scale of the
system as a whole, described by the mean flow equations, and the microscopic processes such
as collisions. Turbulence is captured by the averaging operator in pretty much the same way
particles are captured in phase space by integrating over velocity space. We are facing the same
problem than in kinetic theory: We don’t know the exact form of the Reynolds stress tensor
and the turbulent heat flux. We don’t know the value of the turbulent kinetic energy either. We
will try to remedy for the latter in the next section.

2.10.5 Turbulent kinetic energy equation

We want to derive from first principles an equation governing the time evolution of the turbulent
kinetic enrgy KT. For this, we start as always from the Euler equations,

∂ρ

∂t
+

∂

∂xj
(ρvj) = 0 (2.504)

ρ
∂

∂t
vi + ρvj

∂

∂xj
vi +

∂P

∂xi
= ρgi (2.505)
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In the latter equation, we decompose vi = ṽi + v′′i but (very important!) not vj . We obtain

ρ
∂

∂t
ṽi + ρ

∂

∂t
v′′i + ρvj

∂

∂xj
ṽi + ρvj

∂

∂xj
v′′i +

∂P

∂xi
= ρgi (2.506)

We now multiply the previous equation by v′′i and sum over the three directions. If possible, we
make the specific kinetic energy appear. Otherwise, Einstein’s summation rules apply.

ρv′′i
∂

∂t
ṽi + ρ

∂

∂t

(
1

2
v′′2
)

+ ρv′′i vj
∂

∂xj
ṽi + ρvj

∂

∂xj

(
1

2
v′′2
)

= −v′′i
∂P

∂xi
+ ρv′′i gi (2.507)

We can now add to the previous equation

+
1

2
v′′2
[
∂ρ

∂t
+

∂

∂xj
(ρvj)

]
(2.508)

since it is exactly zero owing to the mass conservation equation. We get the sightly simpler form

ρv′′i
∂

∂t
ṽi +

∂

∂t

(
1

2
ρv′′2

)
+ ρv′′i vj

∂

∂xj
ṽi +

∂

∂xj

(
1

2
ρv′′2vj

)
= −v′′i

∂P

∂xi
+ ρv′′i gi (2.509)

Now comes the fateful moment: We at last decompose vj into ṽj + v′′j and apply immediately
the averaging operator to the entire equation.

0 +
∂

∂t
KT + 0 + ρv′′i v

′′
j

∂

∂xj
ṽi +

∂

∂xj
(KTṽj) +

∂

∂xj

(
1

2
ρv′′2v′′j

)
= −v′′i

∂P

∂xi
+ 0 (2.510)

We recognize again the turbulent pressure tensor, that we decompose again into the isotropic
turbulent pressure plus the Reynolds stress tensor. We also recognize one component of the
heat flux, the one associated to the turbulent transport of turbulent kinetic energy. We note
it here Q′T. Finally, on the right-hand side, we have a new term called the convective term or
the turbulent work of the pressure fluctuations. In summary, we have for the turbulent kinetic
energy equation

∂

∂t
KT +

∂

∂xj
(KTṽj) + PT

∂ṽj
∂xj

= −RT,ij
∂ṽi
∂xj
− ∂

∂xj

(
Q′T,j

)
− v′′j

∂P

∂xj
(2.511)

Here again, this equation looks very familiar. On the left-hand side, we have the transport of
turbulent kinetic energy by the mean flow, as well as the p dV work of the turbulent pressure due
to the mean flow. This is almost identical to the internal energy equation for the fluid. On the
right-hand side, we have new terms that are associated to the production of turbulent kinetic
energy. They are actually called the production terms. We will see in the next section how one
can compute these terms within some clever approximations. Qualitatively, however, these terms
will inject turbulent kinetic energy in the system, but we have no way to dissipate this energy.
In fact, viscous processes, not discussed here, will transform turbulent kinetic energy into heat
(see the vorticity equation in one of the previous sections). To properly close the system, we
need to add a new term called the dissipation term, which encodes the viscous processes at small
scales and acts as a sink term in the turbulent kinetic energy equation

∂

∂t
KT +

∂

∂xj
(KTṽj) + PT

∂ṽj
∂xj

= −RT,ij
∂ṽi
∂xj
− ∂

∂xj

(
Q′T,j

)
− v′′j

∂P

∂xj
− εT (2.512)

This new term εT can also be computed using the averaging operator, if one includes viscosity
in the Euler equations since the beginning of the present derivation. We leave the description
of turbulence dissipation to the last section of the chapter. This equation, sometimes called the
K-equation, can be augmented by a similar equation for the dissipation term εT. The resulting
model is very popular in engineering, and is called the K-ε model. In astrophysics, the most
popular approach is probably the mixing length theory.
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2.10.6 Eddy-viscosity and mixing length theory

We discuss now a model that gives an explicit form for the Reynolds tensor introduced above.
This model is called the eddy-viscosity model or the Boussinesq approximation. The idea is
to push the analogy with kinetic theory one step further and identifiy turbulent eddies with
microscopic particles. In kinetic theory, particles move with random motions, at a typical speed
given by the sound speed a and over a typical length scale given by the collision mean free
path λcoll. In the eddy-viscosity model, eddies also move with random motions, at a typical
speed given by the the turbulent velocity dispersion σT and over a typical length scale called
the mixing length and noted `.

The difference between particles and eddies is mostly the nature of the dissipation process.
For turbulence, kinetic energy dissipation occur through secondary instabilities, similar to what
we have seen in the Rayleigh-Taylor instability, that trigger a turbulent cascade to smaller and
smaller scales until the typical eddy size becomes comparable to the collision mean free path.
The kinetic energy is then dissipated into heat through viscous processes. The analogy then
leads logically to adopt for the Reynold tensor the same form that the one we obtained using
Chapman-Enskog theory, namely

RT = −µTS̃ (2.513)

where the shear tensor is now defined for the mean flow as

S̃ij =
∂ṽi
∂xj

+
∂ṽi
∂xj
− 2

3
(∇ · ṽ) δij (2.514)

The turbulent viscosity coefficient is given following the same analogy by

µT = ρ`σT (2.515)

We can then compute the production term associated to the Reynolds tensor using the dissipa-
tion function of the mean flow (see chapter 1) which writes

Φ̃ = µT

(
S̃ : ∇ṽ

)
= 2µT

∑
ij

[
1

2

(
∂ṽi
∂xj

+
∂ṽj
∂xi

)
− 1

3
(∇ · ṽ) δij

]2

(2.516)

It is customary to write the dissipation function using Einstein’s summation rule as

Φ̃ =
1

2
µT

∣∣∣S̃ij∣∣∣2 (2.517)

We now consider a mean equilibrium flow dominated by strong shear and in absence of gravity. In
this case, we can ignore the mean pressure gradients, as it is usually a condition for equilibrium.
More importantly, we can also assume that the pressure fluctuations are also zero. If a small
eddy or a low density bubble in the fluid is over- or under-pressurised compared to the mean flow
pressure, it will very quickly expand or collapse until it reaches pressure equilibrium. Another
viewpoint is to appeal to the Rankine-Hugoniot relations for a contact discontinuity which
demand pressure equilibrium at the interface between the eddy or the bubble and the ambient
gas. Given these conditions, we can safely assume that the convective production term in the
turbulent kinetic energy equation is zero. We also neglect the turbulent kinetic energy heat
flux Q′T ' 0 as it is of higher order (third-order) in the velocity fluctuations than the shear
production term. As a consequence, the turbulent kinetic energy equation can be written as

∂

∂t
KT +

∂

∂xj
(KTṽj) + PT

∂ṽj
∂xj

=
1

2
µT

∣∣∣S̃ij∣∣∣2 − εT (2.518)
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In the mixing length theory, we consider that eddies will travel over the mixing length at a
typical velocity σT before releasing their kinetic energy to viscous processes and heat. We can
thus write a simple model for εT as

εT =
KT

τdiss
with τdiss =

`

σT
and KT =

1

2
ρσ2

T (2.519)

The mixing length theory then considers that there is a balance between production and dis-
sipation of turbulence. Both terms exactly cancel out in the right-hand side of the turbulent
kinetic energy equation. This is also called the Smagorinsky approximation. Using µT = ρ`σT,
we get

1

2
ρ`σT

∣∣∣S̃ij∣∣∣2 =
KT

`
σT which leads to σT = `

√∣∣∣S̃ij∣∣∣2 (2.520)

In conclusion, the turbulence velocity dispersion is fully specified as the result of the balance
between injection of turbulence due to the mean shear flow (also known as the Kelvin-Helmoltz
instability) and dissipation of turbulence due to mixing and viscous processes. The only remain-
ing free parameter is the mixing length, that can be adjusted to an experiment, or identified
with the smoothing scale of the corresponding averaging operator. In the latter case, the theory
is called subgrid-scale (SGS) turbulence.

Note that in presence of gravity, the present approach is not valid, as gravity will stabilise
the Kelvin-Helmoltz instability and prevent the production of turbulence, unless shear stress
is strong enough to overcome gravity. In Keplerian disks, for example, the shear stress is the
product of the differential rotation, so we know that gravity will always stabilise the flow. The
source of turbulence has to be found elsewhere. Around supermassive black holes, the source of
turbulence is due to magnetic fields, In this case, although the eddy-viscosity model is a good
approximation, one cannot apply the Smagorinsky model to determine σT, since the production
term will be completely different. For protoplanetary disks, where magnetic fields are weak or
absent, the production term is unknown and could well be zero.

2.10.7 Convective heat flux in stars and planets

We now consider a different type of equilibrium for the mean flow, the hydrostatic equilibrium,
for which we have in spherical systems like stars or planets

1

ρ

∂P

∂r
= −g and ṽ = 0 (2.521)

The gravity is purely radial and pointing downward. We assume that the equilibrium structure
of the star follows a polytropic relation, as the result of an equilibrium between various heating
and cooling processes

P = AρΓ (2.522)

In the same time, the gas follows the ideal gas equation of state with

P = (γ − 1)e (2.523)

We now want to perturb slightly this perfect equilibrium, creating velocity, density and tem-
perature fluctuations. Following the same argument used in the previous section, pressure
equilibrium will be maintained within the fluctuations so that P ′ = 0, owing to the contact
discontinuity jump relations. In this context dominated by gravity, fluctuations are closer to
the Rayleigh-Taylor picture and are not really eddies but underdense rising bubbles evolving



CHAPTER 2. ASTROPHYSICAL FLUID DYNAMICS 107

together with overdense sinking fingers. Since in this hydrostatic case the mean flow velocity is
zero, we can write the fluctuating velocity equation as

ρ
∂

∂t
v′′i + ρvj

∂

∂r
v′′i = ρ

D

Dt
v′′i = −∂P

∂r
− ρg (2.524)

The right-hand side can be decomposed into

ρ
D

Dt
v′′i = −∂P

∂r
− ρg − ρ′g (2.525)

where we use the fact that P ′ = 0. Since the mean flow is in hydrostatic equilibrium, we obtain
finally

ρ
D

Dt
v′′i = −ρ′g (2.526)

We are left with only one force, namely the buoyancy of the fluid.

Convective instability

If we slightly perturb the fluid at some initial radius ri with ρ ' ρ(ri) but ρ′ < 0, then the
bubble will rise owing to the buoyant force. Let’s assume that the bubble travels until some
final radius rf . The evolution of the bubble is considered to be fast enough so that the thermal
balance between heating and cooling has not enough time to apply. The evolution of the bubble
will then be adiabatic and the entropy of the bubble will be conserved

Pf
ργf

=
Pi
ργi

(2.527)

Because of the pressure equilibrium condions, the final bubble density will be

ρf = ρ(ri)

(
P (rf )

P (ri)

) 1
γ

(2.528)

Writing ∆r = rf − ri � ri, we can Taylor expand the previous equation and get

ρf = ρ(ri)

(
1 +

1

γ

1

P

∂P

∂r
∆r

)
= ρ(ri)

(
1− 1

γ

ρg

P
∆r

)
(2.529)

We used the hydrostatic equation to replace the pressure gradient in the rightmost equation.
The equilibrium density, on the other hand, follows the polytopic relation, so we have

ρ(rf ) = ρ(ri)

(
1− 1

Γ

ρg

P
∆r

)
(2.530)

The bubble will keep on rising due to buoyancy if ρf < ρ(rf ) or equivalently Γ > γ. This is the
criterion for the convective instability. The bubble will not travel and rise continuously towards
the outskirts of the star. Following mixing length theory, we consider that after a length ∆r = `,
the bubble will mix with its surroundings and dissipates its energy. We can finally compute the
typical density fluctuations due to rising and mixing bubbles as

ρ′ = ρf − ρ(rf ) = ρ

(
1

Γ
− 1

γ

)
ρg`

P
(2.531)

We see that we have indeed ρ′ < 0 for Γ > γ.
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Convective heat flux

When we derived the total energy equation for the mean flow, we have obtained new terms
featuring the Reynolds tensor and the turbulent heat flux. In the context of an hydrostatic
mean flow, the shear tensor is zero everywhere ans we can ignore the Reynold stress. The
turbulent heat flux, on the other hand, is very important. In our spherically symmetric star, we
have a component only in the radial direction

QT =
1

2
ρv′′2v′′ + γρε′′v′′ (2.532)

In stellar interiors, the velocity fluctuations are highly subsonic with v′′ � cs. The specific
internal energy is by far the dominant energy source. When our rising bubbles reach their
terminal radius, set by the mixing length, they deliver to their surroundings mostly internal
energy, so that

QT '
γkB

(γ − 1)m
ρT ′′v′′ = CPρT ′′v′′ (2.533)

where CP is the well-known specific heat capacity at constant pressure. Computing the con-
vective heat flux from first principle is not easy. In what follows, we assume that bubbles are
rising until they reach exactly one mixing length, and that the temperature difference between
the bubble and the ambiant gas at that final radius will set the typical temperature fluctuation

T ′′ = Tf − T̃ (rf ) (2.534)

Since our evolution is adiabatic, we can use exactly the same trick as before, Taylor expanding
the mean pressure and get

Tf = T̃ (ri)

(
1− γ − 1

γ

ρg

P
∆r

)
(2.535)

while the mean flow temperature follows the polytropic relation

T̃ (rf ) = T̃ (ri)

(
1− Γ − 1

Γ

ρg

P
∆r

)
(2.536)

From this, we get for the typical temperature fluctuation

T ′′ = T̃

(
1

γ
− 1

Γ

)
ρg`

P
(2.537)

Note that T ′′ > 0 if Γ > γ. Otherwise, there is no instability and no temperature fluctuations.
For the typical velocity fluctuations, we use as before v′′ ' σT the turbulence velocity dispersion.
We finally get the convective heat flux

QT ' ρCP T̃ σT

(
1

γ
− 1

Γ

)
ρg`

P
if Γ > γ, otherwise QT = 0. (2.538)

Mixing length theory for convection

In order to determine the turbulent velocity dispersion, we need to solve the turbulent kinetic
energy equation. The production term associated to the Reynolds tensor is again zero because
of our hydrostatic mean flow. What is important here is the convective production term. We
thus have

∂KT

∂t
= −v′′∂P

∂r
− εT (2.539)
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Exploiting the hydrostatic mean flow equation and the fact that P ′ = 0, we have

∂P

∂r
=
∂P

∂r
= −ρg (2.540)

and also following the property of the velocity fluctuations v′′

ρv′′ = ρv′′ + ρ′v′′ so that ρv′′ = 0 = ρv′′ + ρ′v′′ (2.541)

we can finally write the turbulent kinetic energy equation as

∂KT

∂t
= −ρ′v′′g − εT (2.542)

Using the previously computed density fluctuations ρ′ and velocity fluctuations v′′, we compute
the source term for turbulence as

− ρ′v′′g = ρσTg

(
1

γ
− 1

Γ

)
ρg`

P
= εT (2.543)

We use here again Smagorinsky approximation, imposing a strict balance between turbulence
production (through the Rayleigh-Taylor instability or buoyancy) and destruction (through vis-
cosity and heat conduction) over one mixing length. The dissipation term can be written as
before,

εT =
KT

`
σT (2.544)

which leads to the Smagorinsky prediction for the velocity dispersion of the convective flow

σT =
ρg`

P

√
2P

ρ

(
1

γ
− 1

Γ

)
if Γ > γ, otherwise σT = 0. (2.545)

This completely specifies the convective heat flux. Inside stars and planets, heating and cooling
processes can be very complex. For example, the core of the Sun is the realm of nuclear reactions,
while the radiative zone, as the name indicates, transports the released energy outside through
radiation transfer mechanisms. If for some reason, the resulting local polytropic inxex Γ (r)
always remains smaller than γ, the star will be convectively stable. If, on the other hand,
there exists a region r1 < r < r2 for which Γ (r) > γ, a strong convective flux will develop
and redistributes the energy so that Γ (r) ' γ within that region. These regions are called
convective zones, and the main property of convective zones is a quasi-uniform entropy. Cooling
and heating processes constantly fight against convection to have Γ > γ, but convection fights
back to restore Γ = γ. In the Sun, the convective zone occupies roughly half of the volume
and almost reaches the surface of the photosphere. In extreme cases, more massive stars can be
entirely convective and turbulent.

2.10.8 Kolmogorov theory and Burgers turbulence

After describing in great details the dynamics of the mean flow, we now focus on the properties
of the fluctuations themselves. We will present the probability distribution function (PDF) of
the velocity and also of the density fluctuations, and more importantly derive the shape of the
energy spectrum of turbulence. The theory of Kolmogorov will allow us to derive the scale-
dependant energy distribution of subsonic turbulence. In the interstellar medium, however, the
turbulence is mostly supersonic and is better described using the theory of Burgers.



CHAPTER 2. ASTROPHYSICAL FLUID DYNAMICS 110

Gaussian and lognormal distributions

In what follows, we will use the isothermal Euler equations as our guiding model. We also use
a frame of reference for which the mean flow velocity is zero. We will therefore drop the prime
and double prime notations for the fluctuations. In Lagrangian form, the Euler equations writes

1

ρ

Dρ

Dt
=
D ln ρ

Dt
= −∇ · v (2.546)

Dv

Dt
= −1

ρ
∇P = −a2∇ ln ρ (2.547)

Velocity and density fluctuations are considered as random processes. We can model the effect
of these fluctuations on the flow by writing a sequence of time step of fixed size ∆t, so that

ln ρn+1 = ln ρn −∇ · vn∆t (2.548)

vn+1 = vn − a2∇ ln ρn∆t (2.549)

Summing up since the initial time, we get finally

ln ρn+1 = ln ρ0 −∆t
∑
i=1,n

∇ · vi (2.550)

vn+1 = v0 − a2∆t
∑
i=1,n

∇ ln ρi (2.551)

Both v and ln ρ can be seen as a large sum of independant random variables. We can apply the
central limit theorem and conclude that both v and ln ρ are distributed according to a Gaussian
PDF. We define f(vx, vy, vz) the PDF of the velocity fluctuations, so that we can write the
probability to have a velocity fluctuation between vx and vx + dvx, vy and vy + dvy, vz and
vz + dvz as

dP = f(vx, vy, vz)dvxdvydvz and

∫
R3

f(v)d3v = 1 (2.552)

Similarly, we define
s = ln ρ/ρ (2.553)

and f(s) so that we can write the probability to have a density fluctuation between s and s+ ds
as

dP = f(s)ds and

∫
R
f(s)ds = 1 (2.554)

The central limit theorem gave us the exact form of these distribution functions, with

f(v) =
1

(2πσ2
v)

3/2
exp

(
−(v − v)2

2σ2
v

)
(2.555)

f(s) =
1

(2πσ2
s)

1/2
exp

(
−(s− s)2

2σ2
s

)
(2.556)

Recall that if we are in the comoving frame of the mean flow, we have v = 0. Note that variance
σv, although related to the mean flow turbulent kinetic energy, is not the same quantitiy, because
σT is a mass-weighted quantity, while σv is not. Only in the incompressible case do we have the
relation

σ2
T = 3σ2

v if ρ ≡ ρ (2.557)
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Nevertheless, the analogy with kinetic theory is strenghtened, as the Gaussian PDF for the
velocity fluctuations is identical to the Maxwell-Boltzmann DF for particles in local thermody-
namical equilibrium. The density PDF is called a lognormal distribution because the log follows
a Gaussian distribution. The mean value s can be found by requiring

ρ =

∫
R
ρf(s)ds or

∫
R

exps f(s)ds = 1 → s = −σ
2
s

2
(2.558)

We need now to estimate the variance of the lognormal distribution σs. For this, we consider
that the velocity field can be decomposed into a collection of planar sine waves. In other words,
we perform the Fourier transform of the velocity field. We know from a previous section that
these planar waves will evolve into shocks in a finite amount of time. These isothermal shocks
will compress the density of the fluid, with a compression ratio scaling as the square of the Mach
number. If we use the frame for which the mean flow velocity v = 0, we can use the compression
ratio of the “isothermal shock on a wall” example from the previous sections, with

r = 1 +
1

4

v2
x

a2
(2.559)

We define the Mach number of the turbulent flow using the 1D velocity dispersion

M =
σv
a

(2.560)

Although the typical average shock compression ratio and the corresponding typical average
post-shock density can be computed as

r = 1 +
1

4
M2 and ρ = ρ

(
1 +

1

4
M2

)
(2.561)

shock front are usually followed by an exponential rarefaction wave, so that the variance of the
lognormal distribution is reduced to

σs '

√
ln

(
1 +

1

4
M2

)
(2.562)

Both velocity and density PDFs are therefore fully specified using only one parameter, the
velocity dispersion σv. We see also that for a flow with a low Mach number, with M→ 0, the
density PDF converges towards a delta function at ρ = ρ, which is consistent with the fact that
the flow is incompressible. For very large Mach number, however, the lognormal PDF results in
a very wide range of densities.

Subsonic turbulence and the energy spectrum

Subsonic turbulence is traditionally described using the theory of Kolmogorov. This theory
considers that the kinetic energy of turbulent eddies is injected on large scales, say the size
of the system of interest, or the mixing length. These turbulent eddies then develop secondary
eddies, because of the Kelvin-Helmoltz instability for example, transferring the kinetic energy to
smaller and smaller scales. The process repeats itself with smaller and smaller eddies, building
up a turbulent cascade. Once the smallest eddies reach the size of the collision mean free path,
viscous processes finally dissipate the kinetic energy into heat.



CHAPTER 2. ASTROPHYSICAL FLUID DYNAMICS 112

In order to turn this qualitative vision into a quantitative theory, we need to introduce the
concept of Gaussian random fields. We start with our velocity perturbations, that follows a
Gaussian statistics. We define the Fourier transform of the velocity field by

v̂(k) =

∫
R3

v(x) expik·x d3x (2.563)

Gaussian random fields follows strict properties in the Fourier domain. If we write the complex
number v̂ as

v̂(k) = r(k) expiϕ(k) where r = |v̂| , and ϕ = arg(v̂), (2.564)

the phase ϕ(k) is uniformly distributed in [0, 2π] and the modulus r(k) follows a Gaussian
distribution with zero mean and variance P (k) called the power spectrum. A fundamental
assumption is that turbulence is isotropic, so that the variance depends only on k but not on
the direction of k. Since the flow is incompressible, the turbulent kinetic energy is defined as

KT =

∫
R3

1

2
ρv2d3x (2.565)

Using Parseval theorem for the Fourier transform and ignoring the constant density ρ, we get∫
R3

1

2
v2d3x =

∫
R3

1

2
|v̂|2 d3k =

∫
R

1

2
|v̂|2 4πk2dk (2.566)

For the rightmost equation, we used the isotropy condition. The total turbulent kinetic energy
is thus given be

KT =

∫
R
E(k)dk where E(k) = 2πk2 |v̂|2 (2.567)

The function E(k) is called the energy spectrum of turbulence.

Kolmogorov scaling relation

Kolmogorov main prediction was that the energy spectrum scales as k−5/3, in very good agree-
ment with data. We will derive this result here using simple arguments. We start writing down
the viscous Euler equation for an incompressible fluid

∂

∂t
v + (v · ∇) v +

1

ρ
∇P = ν4v (2.568)

We then Fourier transform it

∂

∂t
v̂(k, t) + T̂(k, t) = −νk2v̂(k, t) (2.569)

and introduce the vector field T̂ that includes the Fourier transform of the non-linear term and
of the pressure gradient. We then multiply by 4πk2v̂(k, t) to make the kinetic energy appear

∂

∂t
E(k, t) + 4πk2v̂ · T̂(k, t) = −2νk2E(k, t) (2.570)

We now define the spectral energy flux so that

∂

∂k
Π = 4πk2v̂ · T̂ (2.571)
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and the energy spectrum equation becomes finally

∂

∂t
E(k, t) +

∂

∂k
Π(k, t) = −2νk2E(k, t) (2.572)

The right-hand side stands for viscous dissipation of kinetic energy into heat, while the spectral
energy flux describes how kinetic energy flows through scales in Fourier space. The sum over
k-space of the viscous term is equal to the dissipation term we have introduced in the mean flow
turbulent kinetic energy equation

εT =

∫ +∞

0
2νk2E(k, t)dk (2.573)

We now consider three different scales.

• At small scales, the viscous term will dominates, owing to the k2 scaling of the Laplace
operator. We can then ignore the flux term and solve the heat equation

∂

∂t
E(k, t) = −2νk2E(k, t) with solution E(k, t) = E0(k) exp−2νk2t (2.574)

We have an exponential suppression of kinetic energy for all scale with k > kdiff = 1/
√

2νt.
This is the viscous diffusion regime.

• At intermediate scales, we can ignore the viscous effects and the spectral energy equation
becomes

∂

∂t
E(k, t) +

∂

∂k
Π(k, t) = 0 (2.575)

The Kolmogorov spectrum can be obtained if we demand that turbulence reaches a sta-
tionary state, for which

∂

∂t
E(k, t) = 0 or equivalently Π = Π0 (2.576)

This is called the inertial regime.

• At large scales, we need to inject turbulent kinetic energy in the system, otherwise we
won’t be able to obtain a stationary solution. This injection is due to the production
terms that we have derived earlier. They can be modeled by a source term in the previous
equation but for only one specific large scale kinj

∂

∂t
E(k, t) +

∂

∂k
Π(k, t) = Ėinjδ(k − kinj) (2.577)

where δ is the Dirac-Delta function. Note that since for k < kinj, E = 0 and Π = 0,
stationarity implies Π(kinj) = Π0 = Ėinj.

We will now model the inertial regime of the turbulent cascade, by writing the energy flux as
Π(k) = E(k)k̇ where k̇ is the Fourier space “velocity” of the turbulent cascade. This velocity
can be estimated using the so-called eddy turn-over time τeddy, which corresponds to the time it
takes for an eddy at scale k to develop secondary instabilities and produce smaller scale vortices.
We know from previous sections that this time scale is related to the Kelvin-Helmoltz instability
grow rate γKH = |V1 − V2| k ' v(k)k, where v(k) is the typical velocity of eddies at scale k.
Summing up all this, we have

Π = Ek̇ = E
k

τeddy
= EkγKH ' Evk2 (2.578)
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In order to compute v(k), we need to use the energy spectrum and a high-pass filter. Indeed,
if the total kinetic energy of the fluid is KT =

∫ +∞
0 E(k′)dk′ and corresponds to the kinetic

energy of the largest eddies, the kinetic energy associated to eddies of scale k is the integral of
the energy spectrum only for k′ > k.

1

2
v(k)2 =

∫ +∞

k
E(k′)dk′ =

1

α− 1
E(k)k (2.579)

We have assumed that the energy spectrum follows a power law scaling E(k) ∝ k−α, where
α > 1 still needs to be determined. We obtain the following form for the flux

Π =

√
2

α− 1
E3/2k5/2 = Π0 → E(k) =

(
1

3

)1/3

Π
2/3
0 k−5/3 (2.580)

where we have found and used α = 5/3. If we integrate the stationary spectral energy equation
between kinj and kdiff , we get ∫ kdiff

kinj

∂Π

∂k
= Π(kdiff)−Π0 ' −εT (2.581)

At k ' kdiff , the exponential decay ensures that E ' 0 and Π ' 0, so we can write Π0 = εT.
The final Kolmogorov spectrum is thus

E(k) ' 0.7 ε
2/3
T k−5/3 (2.582)

Note that in the Kolmogorov picture, we have Ėinj = Π0 = εT, which is also consistent with the
mixing length theory and Smagorinsky approximation.

Burgers turbulence and Larson scaling relation

Kolmogorov theory turned out to very succesfully explain subsonic turbulence on the Earth for
atmospheric and oceanic modelling or engineering applications. What about the interstellar
medium ? A very famous observational study realized almost 4 decades ago by astrophysicist
Richard Larson demonstrated that the 1D velocity dispersion in molecular clouds is strongly
correlated with their size and scales as

σv(`) ' 1 km/s

(
`

1 pc

)1/2

(2.583)

Using Kolmogorov theory, we can now compute the typical kinetic energy associated with eddies
of size ` = 2π/k as before

1

2
v(k)2 =

∫ +∞

k
E(k′)dk′ = 3E(k)k ∝ k−5/3k so that σv(`) ∝ `1/3 (2.584)

which obviously does not match the observational data. The problem is that Kolmogorov theory
only applies to incompressible, subsonic turbulence, and molecular clouds, with a typical velocity
of 1 km/s are obviously supersonic since the sound speed of the cold molecular gas is a '
0.2 km/s. A better model for supersonic turbulence is given again by the Burgers equation
and the formation of shocks. We have discussed already several times the unescapable fact that
shock waves form in finite time from initial random planar waves. A better description of the
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velocity field, after the shock has formed, is a Heavyside function (see Figure 2.4). In order to
simpifiy the computations, we assume the velocity field is given by

vx(x, y, z) = −1 for x < 0 and vx(x, y, z) = +1 for x > 0 (2.585)

We also see that the velocity field is uniform in the y and z direction. The Fourier transform of
such a velocity field is highly anisotropic, and takes the form

v̂x = − i

kx
δ(ky)δ(kz) (2.586)

where δ is the Dirac-Delta function. The kinetic energy associated to this profile is just

KT =

∫
R3

1

2
k−2
x δ(ky)δ(kz)dkxdkydkz =

∫ +∞

0
k−2
x dkx (2.587)

For each planar wave, we have a similar energy spectrum. If we have enough random orientations,
we can add up all these independant contributions and somewhat restore the isotropy condition.
We finally get for Burgers turbulence

E(k) ∝ k−2 (2.588)

We can now compute the typical velocity dispersion at scale ` = 2π/k

1

2
v(k)2 =

∫ +∞

k
E(k′)dk′ = E(k)k ∝ k−2k so that σv(`) ∝ `1/2 (2.589)

in agreement with Larson relation. The transition between supersonic turbulence and subsonic
turbulence occurs at the sonic scale `s defined by σv(`s) = a. Using Larson relation, we find
`s ' 0.1 pc. For ` > 0.1 pc, the interstellar medium turbulence is supersonic, with a lognormal
density PDF, while for ` < 0.1 pc, the turbulence is subsonic and the density remains almost
constant. Scales smaller than 0.1 pc are associated with dense molecular cores which are believed
to be the sites of star formation. If a dense subsonic core is gravitationally unstable, it will
eventually collapse and form one or two stars.



Chapter 3

Radiative processes in astrophysics

In this chapter, we describe radiative processes in the context of astrophysics. We will introduce
the theoretical framework to describe two main processes: 1- the transport of radiation and
the equation of radiative transfer, 2- the interaction between matter and radiation that occurs
during many different emission and absorption processes. The first half of this chapter will be
dedicated to the radiative transfer equation and its various applications for astrophysical fluid
flows. The second half will focus on the description of inelastic collisions featuring atoms and
molecules, and how they can absorb or emit photons in different regimes.

3.1 Radiative transfer equation

Quantum mechanics is based on the concept of particle-wave duality. Radiation is probably the
most extreme quantum object we will be dealing with, owing to its relativistic nature. Radiation
can therefore be described as a collection of photons, each one of them being a mass-less boson
carrying a quantum of energy E = hν and a spin equal to +1 or −1. Radiation can also be
described as an electromagnetic wave with frequency ω = 2πν following Maxwell’s equations
with two possible polarisations. We will use both interpretations depending on the context.
Since Chapter 1 of this course was dedicated to Boltzmann equation, we will adopt first the
photon point of view and exploit what we already know about the phase-space dynamics of a
fluid made of zero mass relativistic particles. This will be the basis of our derivation of the
radiative transfer equation.

3.1.1 Boltzmann equation for photons

In the kinetic theory framework, we describe photons using phase-space coordinates (q,p). q is
here the spatial coordinate of the fluid element, that we change into the spatial coordinate x.
p is the photon momentum. Since photons have no mass, we know from the relativistic form of
the energy that

E2 = p2c2 +m2c4 so that E = pc or p =
hν

c
(3.1)

Moreover, since the velocity can be obtained from Hamiltonian dynamics using

v = ẋ =
∂H

∂p
= cn (3.2)

where n is the unit vector pointing in the direction of the photon momentum, we conclude that
the photons move at the speed of light. The distribution function f is defined using the number
of photons per phase-space volume element

dN = f(x,p, t) d3x d3p (3.3)

116



CHAPTER 3. RADIATIVE PROCESSES IN ASTROPHYSICS 117

n1
n

dA1

dA
dΩ

Figure 3.1: Schematics of a light ray impacting a detector surface element dA1 at an angle θ1 defined
by cos θ1 = n · n1.

The resulting Boltzmann equation without collision term is written as (see Chapter 1 for the
justification).

∂f

∂t
+ ẋ · ∂f

∂x
+ ṗ · ∂f

∂p
= 0 (3.4)

which simplifies in
∂f

∂t
+ cn · ∂f

∂x
= 0 (3.5)

We have used again the fact that photons have no mass and thus cannot feel any Newtonian
gravity. The situation is different if one considers general relativity but this is outside the scope
of this course. Since the last equation only features the angular variable (θ, φ) defining the unit
vector n, it is customary to redefine the distribution function f the following way

f(x,p, t) = fν(x,n, t) (3.6)

where the degree of freedom associated to the norm of the momentum vector has been absorbed
in the notation using the index ν. This is just a new notation without any deeper meaning.

3.1.2 Radiation specific intensity

Unfortunately, radiation is traditionally not described using the distribution function in phase-
space, but using the radiation specific intensity Iν defined as

dE = Iν(x,n, t) dA1 cos θ1 dΩ dν dt = Iν(x,n, t) dAdΩ dν dt (3.7)

where dE is the energy absorbed by the surface element dA1 of a detector per units time dt
in frequency range dν, coming from a beam pointing in direction n and of size dΩ. The angle
cos θ1 = n1 · n is the angle between the unit normal vector on the detector n1 and the unit
vector n pointing in the direction of the light ray. We can also use the rightmost formulation
using the projected surface perpendicular to the light ray dA = dA1 cos θ1. The units of Iν are[
erg cm−2rad−1Hz−1s−1

]
.

It is straightforward to translate this new, more traditional definition into the kinetic theory
distribution function approach using our good-old collision cylinder. Indeed, during time step
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dt, the photons along the light ray cover an infinitesimal volume

d3x = cdtdA (3.8)

Using the definition of the photon momentum, we know that the momentum space volume
element is

d3p = p2dpdΩ =
h3ν2

c3
dνdΩ (3.9)

Using the definition of the distribution function, we can compute the energy in the phase-space
volume element as

dE = hνfνd3xd3p =
h4ν3

c2
fνdAdΩdνdt (3.10)

Identifying the terms, we finally get for the specific intensity

Iν =
h4ν3

c2
fν (3.11)

3.1.3 Bose-Einstein distribution and the Black Body spectrum

We know from the Chapter on kinetic theory that under local thermodynamical equilibrium
(LTE) conditions, the distribution function must satisfy a well defined form. In the case of
photons, which are mass-less bosons, we know detailed balance in phase-space leads to a new
collision invariant based on the occupation number N

ln
N

1 +N
= −βE = − hν

kBT
(3.12)

In the previous equation, we state that the new collision invariant has to be proportional to
the existing ones following the microscopic conservation laws. Since photons have no mass,
we do not have the coefficient related to mass conservation, namely the chemical potential
µ(x, t) = 0. We only have the multiplier associated to the total energy, which is noted here
β(x, t)−1 = kBT (x, t). We also assume that we are in the comoving frame of the fluid, so that
there is no term associated to the fluid bulk velocity. These terms will appear once we perform
a Lorentz transform from the comoving frame to the laboratory frame. In case of radiation, this
comoving frame versus laboratory frame distinction is of crucial importance. We will first ignore
it, neglecting relativistic effects, but we will have to introduce them later to get a consistent
description of radiation hydrodynamics.

Solving the previous equation for N , and using the relation between the distribution function
and the occupation number, we obtain the Bose-Einstein distribution function

fν =
2

h3
N =

2

h3

1

exp
(
hν
kBT

)
− 1

(3.13)

where we have multiplied the occupation number by 2 to account for the two possible spin states.
Finally, using the previously derived relation between the specific radiation intensity and the
distribution function, we deduce the LTE specific intensity called the black body spectrum as

Bν(T ) =
2hν3

c2

1

exp
(
hν
kBT

)
− 1

(3.14)

Note that for radiation, LTE is not reached through photon-photon collisions, but rather through
emission and absorption processes due to matter and radiation interactions. We will see how



CHAPTER 3. RADIATIVE PROCESSES IN ASTROPHYSICS 119

it works in details later. This radiation spectrum depends only on the frequency ν and on the
temperature T . Note that it does not depend on the angle variables, it is therefore an isotropic
distribution function, like the Maxwell-Boltzmann distribution for ideal gases. This spectrum
reaches its maximum at the wavelength

λmax =
c

νmax
=

0.3

T
cm (3.15)

where T is expressed in Kelvin. The surface temperature of the Sun is around T ' 6000 K, so
that its radiation spectrum peaks at λmax ' 500 nm, giving it its yellow colour. For frequencies
higher than the peak frequency, the specific intensity is decreasing exponentially fast towards
zero. This is known as Wien’s law. For smaller frequency ν � νmax, we are in the Rayleigh-Jeans
regime, and the black body radiation is proportional to the temperature with

Bν(T ) ' 2ν2

c2
kBT (3.16)

Even if the radiation specific intensity is not a perfect black body spectrum, because the system
is not in perfect LTE, it is customary to define the brightness temperature of the radiation as

kBTB =
c2

2ν2
Iν (3.17)

The brightness temperature corresponds to a true temperature if and only if the radiation is at
LTE.

3.1.4 Radiative transfer equation in vacuum

We will now translate the Boltzmann equation for the radiation using the previously defined
specific intensity. Since x, t and ν are all independent variables, we can just re-write the
Boltzmann equation as

1

c

∂Iν
∂t

+ n · ∇Iν = 0 (3.18)

Note that we have just replaced fν by Iν and divide the entire equation by c. This is a conven-
tion for the radiative transfer equation that we explain now. The Boltzmann equation can be
interpreted as a Lagrange derivative of the specific intensity along the trajectory of the light ray,
moving at the speed of light in direction n. The specific intensity is therefore conserved along
straight lines when the radiation propagates in vacuum. We can also define along the same
light ray the curvilinear coordinate s as ds = cdt. The radiative transfer equation in vacuum is
therefore equivalent to

dIν
ds

= 0 (3.19)

Note that the curvilinear coordinate is unique to each light ray. In order to describe the radiation
field in a full 3D sense, one must use the first form of the radiative transfer equation with
coordinates x, n and t.

3.1.5 Interaction between matter and radiation

Most collisions in the fluid are elastic collisions. They conserve strictly mass, momentum and
energy at the microscopic level. A few collisions are however inelastic, leading to the emission
or the absorption of a photon. For example, an hydrogen atom with its electron on the most
bound quantum state, called the fundamental level, can collide with a free electron, its most
probable collision partner. Most of the energy will be absorbed by the new kinetic energies of
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the collision partners, but some of the energy can be spent in exciting the bound electron from
the fundamental level to an excited state. This is an inelastic collision because the incoming
particle kinetic energy is decomposed into excitation energy for the bound electron and kinetic
energy for the outgoing particle. This excited state will later spontaneously decay back into the
fundamental level, emitting a photon in the process. This leads to a net production of radiation
emerging from the matter. The reverse situation is also possible, with an incoming photon
absorbed by an atom, leading to the ejection of the bound electron into the population of free
electron. This process is called photo-ionisation and leads to a net absorption of radiation by
the matter. These 2 processes are just 2 examples of radiation and matter interaction, either the
emission of radiation by matter or the absorption of radiation by matter. We will describe in
great details all the classical processes that are relevant for astrophysical radiative fluids. These
processes are described using jν , the emission coefficient and αν , the absorption coefficient, both
present in the right-hand side of the radiative transfer equation as

1

c

∂Iν
∂t

+ n · ∇Iν = jν − ανIν (3.20)

These two new terms are the equivalent of the collision integral in the Boltzmann equation. Note
that the absorption term is proportional to the incoming radiation specific intensity. The units
of jν are

[
erg cm−3rad−1Hz−1s−1

]
, while the units of αν are simply

[
cm−1

]
. The emissivity

coefficient is traditionally decomposed into spontaneous emission and induced (or stimulated)
emission, as

jν = js
ν + ji

ν = js
ν + αi

νIν (3.21)

where we used the fact that the induced emissivity coefficient is proportional to the incoming
radiation specific intensity. Stimulated emission is due to the friendly nature of bosons who tend
to gather together, with an enhanced probability of emission in phase-space volume elements
already occupied by other bosons. We have described this effect using the Bose enhancement
factor 1+N . Here also, we have to multiply the emissivity coefficient by this Bose enhancement
factor, leading to the induced emission term. The induced emission term can in fact be absorbed
into the absorption coefficient, with a negative sign, leaving the original form of the radiative
transfer equation unchanged, just corrected from induced (or stimulated) emission.

The absorption coefficient αν can be also defined using either the mean free path λν , the
opacity κν or the cross-section σν by

αν =
1

λν
= ρκν = nσν (3.22)

where λν is in [cm] and κν is in
[
cm2g−1

]
. The opacity can be understood in term of cross-

section per particle of fluid. A particle can indeed be considered as a small sphere of radius a
with a apparent cross-section σν = πa2 blocking the incoming light. The opacity is then defined
as σν = mκν where m is the mass of the particle.

3.2 Formal solution of the radiative transfer equation

In this section, we will solve the radiative transfer equation in a formal sense. This means we
will have a full mathematical expression describing the evolution of the specific intensity along
the light ray, but this expression is only of theoretical interest. We will however consider some
simplified cases where analytical expressions can be found and new insight on the propagation
of radiation in a gaseous medium can be gained.
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3.2.1 Optical depth

We start with the radiative transfer equation in Lagrangian form using the curvilinear coordinate
s along the light ray.

dIν
ds

= jν − ανIν (3.23)

Dividing by αν , we obtain the following useful form

dIν
dτν

=
jν
αν
− Iν (3.24)

where we have introduced the optical depth τν , a dimensionless quantity defined by

dτν = ανds or τν(s) =

∫ s

0
αν(s′)ds′ (3.25)

3.2.2 Source function and Kirchhoff’s law

We see in the previous equation that the right-hand side is the balance between a source term
and a sink term. In the frame of the fluid, or in the frame of the laboratory if the fluid is at
rest, one expect the source term to be isotropic. Indeed, if the fluid is in LTE, particles follow a
Maxwell-Boltzmann distribution in velocity space, and photons emitted by atoms and molecules
must come with equal probability in all directions. Note that if the fluid is moving, the Doppler
shift due to the bulk motion of the fluid will introduce a small anisotropy of the emission in the
laboratory frame, not in the comoving frame. In what follows, we ignore this relativistic effect
and assume that the source term, called the source function, is always isotropic in both frames.
The source function is noted Sν and is equal to

Sν(Tgas) =
jν
αν

(3.26)

Note that it depends on the gas temperature. If the gas is at LTE, it does not depend on the
radiation field. If now, we consider that radiation is also at LTE, then we know that the specific
intensity must follow the black body spectrum with the radiation temperature Bν(Trad). In the
case of full LTE, for which Tgas = Trad = T , the sink term must balance exactly the source term
and one has Sν(T ) = Bν(T ). The final argument is as follows: since the source function depends
only on gas properties (if this one is at LTE), then it must always satisfies Sν(Tgas) = Bν(Tgas),
even if the radiation is not at LTE. This property is known as Kirchhoff’s law and writes

jν
αν

= Bν(Tgas) (3.27)

This is the regime of thermal radiation.

3.2.3 Formal solution along the light ray

We now consider the general case where neither radiation nor gas are in LTE. We work on a
light ray that enters the slab at s = 0 and leaves the slab at s = S, so that S is the thickness
of the slab, as seen by the light ray. The light ray is coming from the left, say. We assume
it originates from a background star on the far left and follows a black body spectrum with
temperature T∗. Because the region on the left is in vacuum, one has Iν(s = 0) = Bν(T∗). We
would like to compute the evolution of the radiation specific intensity along the light ray, and
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especially how it emerges from the slab and appears to an observer located on the far right of
the slab. We use the radiative transfer equation in its optical depth formulation as

dIν
dτν

= Sν − Iν (3.28)

where τν is the integration variable. This is a first order linear ordinary differential equation.
We apply the usual method, solving first the homogeneous equation

dIν
dτν

= −Iν −→ Iν(τν) = Iν(0) exp−τν = Bν(T∗) exp−τν (3.29)

where, owing to the definition of τν , we have τν = 0 at s = 0. This homogeneous solution
corresponds to the attenuation of the star radiation by the absorbing layer of gas. In this case,
the observed radiation on the far right is just

Iobs
ν = Bν(T∗) exp−Tν (3.30)

where Tν is the total optical depth of the cloud calculated as

Tν =

∫ S

0
αν(s′)ds′ (3.31)

In order to find the general solution, we use the technique of the variation of the constant with
the Ansatz

Iν = Jν exp−τν (3.32)

Injecting this Ansatz into the original differential equation, we obtain

dJν
dτν

= Sν exp+τν −→ Jν =

∫ τν

0
Sν exp+τ ′ν dτ ′ν +Bν(T∗) (3.33)

Note that we introduced τ ′ν as dummy integration variable. We finally get the complete and
final formal solution to the radiative transfer problem along this single light ray

Iν (τν) =

∫ τν

0
Sν
(
τ ′ν
)

exp(τ ′ν−τν) dτ ′ν +Bν(T∗) exp−τν (3.34)

Let’s consider the particular case for which the source function is uniform throughout the gaseous
slab Sν = Bν(Tgas) where Tgas is uniform. we can trivially integrate the previous equation and
obtain

Iν (τν) = Bν(Tgas)
(
1− exp−τν

)
+Bν(T∗) exp−τν (3.35)

We have two limiting cases:

• τν � 1: this is the optically thick regime, for which the specific intensity converges expo-
nentially fast towards the black body spectrum at the gas temperature. Since this spectrum
is isotropic, we conclude that in the optically thick regime, the radiation is driven towards
LTE, with both an isotropic angular distribution, independent on the chosen light ray, and
a black body spectrum with Trad = Tgas.

• τν � 1: this is the optically thin regime. In this case, we can Taylor expand the two
exponentials and obtain Iν (τν) ' Bν(T∗) + (Bν(Tgas)−Bν(T∗)) τν . If Tgas > T∗, the
radiation intensity in the slab is larger than the background stellar light. The radiation
is said to be in emission. In the opposite case, the stellar light is attenuated and the
radiation is said to be in absorption. Interestingly, the emergent optically thin radiation
is directly proportional to τν and can be used to infer physical properties of the absorbing
gas.
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If the optical depth of the cloud is very large Tν � 1, we can compute the emerging radiation
as seen from the observer as

Iν (Tν) '
∫ Tν

0
Sν
(
τ ′ν
)

exp(τ ′ν−Tν) dτ ′ν (3.36)

The background stellar radiation has been totally absorbed by the gaseous slab. We can again
change variable and define τ ′ν = 0 on the far right end of the slab, with τ ′ν → Tν − τ ′ν . We get

Iobs
ν '

∫ Tν

0
Sν
(
τ ′ν
)

exp−τ
′
ν dτ ′ν '

∫ +∞

0
Sν
(
τ ′ν
)

exp−τ
′
ν dτ ′ν (3.37)

Decomposing the source function into a first order Taylor expansion,

Sν(τν) ' S(0)+
ν S(1)

ν (0)τν (3.38)

we find the Eddington-Barbier relation which states that

Iobs
ν ' Sν(τν = 1) (3.39)

This relation, surprisingly accurate in optically thick conditions, states that the emergent radia-
tion spectrum is equal to the source function evaluated at a position along the light ray precisely
defined at τν = 1. In stars, this position is called the photo-sphere. This relation is also at the
origin of the Limb darkening of the radiation emitted by the solar surface (left to the reader as
an exercise).

3.3 Moments of the radiative transfer equation

So far, we have described the evolution of radiation in a fluid only for one direction, namely
along one light ray, and for one frequency. Solving for the full problem requires to repeat
this for all directions and for all frequencies, a daunting task reminiscent of the challenges of
solving the full Boltzmann equation in kinetic theory. Fortunately, following the strategy we
have presented in Chapter 1, we can simplify the problem by integrating out the angular and
frequency variables. We have called this operation “taking moments” of the distribution function
or “taking moments” of the Boltzmann equation. Here again, we will do the same and take the
moments of both the specific intensity and the radiative transfer equation.

3.3.1 Moments of the specific intensity

We first define the radiation energy density uν using the same approach of the previous section,
where we have connected the specific intensity to the photon distribution function. Since the
volume element covered by radiation flowing at the speed of light is d3x = cdtdA, we can write
the energy in this volume element using both definitions as

dE = uνd3xdνdΩ = uνcdtdAdνdΩ = IνdtdAdνdΩ (3.40)

We deduce that the radiation energy density, expressed in units of
[
erg cm−3Hz−1rad−1

]
is then

uν (x,n, t) =
Iν
c

(3.41)

The first moment is defined as the total energy density and is the integral of the previous quantity
over the solid angle.

Eν (x, t) =

∫
4π

Iν
c

dΩ (3.42)



CHAPTER 3. RADIATIVE PROCESSES IN ASTROPHYSICS 124

This new quantity depends only on the space and time coordinates. Its units are
[
erg cm−3Hz−1

]
.

It is customary to define also the mean radiation specific intensity as

Jν (x, t) =

∫
4π
Iν

dΩ

4π
=

c

4π
Eν (3.43)

We can finally integrate the total energy density over frequencies and obtain the total integrated
radiation energy density, in units of

[
erg cm−3

]
Erad (x, t) =

∫ +∞

0
Eνdν (3.44)

where we used index “rad” to avoid confusion with the fluid total energy. If the radiation is in
LTE, we have Iν = Bν(T ) and strictly isotropic. The total energy radiation density is then

Eν (x, t) =
4π

c
Bν(T ) =

8πhν3

c3

1

exp
(
hν
kBT

)
− 1

(3.45)

We can easily integrate this over frequencies and get the black body integrated energy as

Erad(T ) =
8πh

c3

∫ +∞

0

ν3

exp
(
hν
kBT

)
− 1

dν =
8πh

c3

(
kBT

h

)4 ∫ +∞

0

x3

expx−1
dx (3.46)

Since everyone knows that ∫ +∞

0

x3

expx−1
dx =

π4

15
(3.47)

we finally get for the black body radiation

Erad(T ) = aT 4 where Stefan′s constant is a =
8π5

15

k4
B

h3c3
(3.48)

The striking feature of the black body is that the radiation energy depends only on temperature,
as opposed to a Maxwell-Boltzmann gas, for which the internal energy depends also on density,
or even only on density if it is degenerate. This is a consequence of photons having zero mass.

In analogy to kinetic theory, we now define more moments of the specific intensity that will
prove useful later. The radiation flux is defined as a vector field

Fν (x, t) =

∫
4π
IνndΩ (3.49)

While the radiation energy density is considered as a zeroth order moment of the specific in-
tensity, the radiation flux is the first order moment, because it comes with a polynomial of n
of degree 1. If the radiation field is isotropic, like black body radiation, Iν can be taken out of
the integral and the flux is trivially zero. Note that we can also define the momentum density
of the radiation by noticing that the momentum of a photon is given by its amplitude

p =
hν

c
so that pν =

uν
c

=
Iν
c2

and pν =
Iν
c2

n (3.50)

Finally, integrating over the solid angle, we get the total radiation momentum density as

Pν (x, t) =
Fν

c2
(3.51)
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This is the radiation equivalent to the fluid momentum ρv. We can follow the analogy with a
fluid even more and define the radiation pressure tensor as the following second-order moment
over the solid angle

Pν =

∫
4π

Iν
c

n⊗ ndΩ (3.52)

Note that the pressure tensor has the property

Tr Pν =

∫
4π

Iν
c

dΩ = Eν (3.53)

In case of isotropic black body radiation, the tensor is also isotropic and can be written as

Pν = PνI where Pν =
1

3
Eν (3.54)

The scalar quantity Pν is called the radiation pressure, and make sense only under optically
thick conditions. Note that we find that isotropic radiation behaves like a γ = 4/3 fluid, similar
to a relativistic Maxwell-Boltzmann gas.

3.3.2 Radiation energy conservation equation

We now move to the task of taking the moments of the radiative transfer equation, integrating
it over the solid angles. We first write the radiative transfer equation using time, space and
angle coordinates

1

c

∂Iν
∂t

+ n · ∇Iν = jν − ανIν (3.55)

We then perform the integration over 4π, bearing in mind that t, x and n are independent
variables. ∫

4π

1

c

∂Iν
∂t

dΩ +

∫
4π

n · ∇IνdΩ =

∫
4π
jνdΩ −

∫
4π
ανIνdΩ (3.56)

(1) (2) ( 3) (4)

The first term, labelled (1) can be computed by taking the time derivative out of the integral,
owing to the independence of t and n. This reveals the time derivative of the total radiation
energy density as

∂

∂t

∫
4π

Iν
c

dΩ =
∂Eν
∂t

(3.57)

The second term can be computed using the famous vector relation

n · ∇Iν = ∇ · (Iνn)− Iν∇ · n (3.58)

Since ∇ ·n = 0, owing to the independence of x and n, we can take the divergence operator out
of the integral as

∇ ·
[∫

4π
IνndΩ

]
≡ ∇ · Fν (3.59)

where we recognise the previously defined radiation flux

Fν =

∫
4π
IνndΩ (3.60)

We now deal with the source and sink terms on the right-hand side. The emissivity and absorp-
tion coefficients jν and αν are considered here as isotropic in the laboratory frame. This is in
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fact true only in the comoving frame, but we will correct for the relativistic Doppler effect in
the following sections. They can thus be taken out of the integral, leading to the final form of
the radiation energy conservation equation

∂Eν
∂t

+∇ · Fν = 4πjν − ανcEν (3.61)

3.3.3 Radiation flux conservation equation

We then follow the same procedure, this time multiplying the radiative transfer equation by ni,
each component of the direction vector n.∫

4π
ni

1

c

∂Iν
∂t

dΩ +

∫
4π
nin · ∇IνdΩ −

∫
4π
nijνdΩ −

∫
4π
niανIνdΩ (3.62)

(1) (2) ( 3) (4)

The first term can be written as the time derivative of the first component of the radiation flux

(1) =
1

c

∂Fi
∂t

(3.63)

The second term, using the same vector relation as before, gives

(2) = ∇ ·
(∫

4π
IνnindΩ

)
(3.64)

We recognise the first row of the previously defined radiation pressure tensor

Pν =

∫
4π

n⊗ n
Iν
c

dΩ (3.65)

The remaining terms of the right-hand side are respectively (3) zero, owing to the isotropy of
the emissivity coefficient, and (4) proportional to the radiation flux. We finally get in full vector
and tensor notations

1

c

∂Fν

∂t
+ c∇ · Pν = −ανFν (3.66)

3.3.4 Eddington tensor and closure relations

In the context of radiation transfer, it is customary to define the Eddington tensor as

Pν = DνEν (3.67)

The Eddington tensor is a dimensionless tensor that fully encodes the geometry of the radiation
field and its effect in the radiation flux conservation equation. In order to solve the previous
system of equations, we need a model for the Eddington tensor. There are various approxima-
tions one can use to close the otherwise infinite moments hierarchy. If we adopt a model for the
Eddington tensor, the moment hierarchy is closed at second-order.

The first and simplest model is to assume that the radiation is isotropic in angular space,
like for example in the black body case, for which we have

Dν =
1

3
I and Pν =

1

3
EνI (3.68)

Note that the radiation is not isotropic, we only assume the Eddington tensor is isotropic, which
is obviously a very rough approximation, except in the optically thick limit.
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The second simple case is when we have only one bright source, say a star, in the optically
thin limit. At each point in space, we have

Iν(n) = I∗νδ(n− n0) (3.69)

where n0 is the unit vector in the direction of the source. In this limit, the total radiation energy
is just

Eν =

∫
4π

Iν
c

dΩ =
I∗ν
c

(3.70)

and the radiation flux is

Fν =

∫
4π
IνndΩ = I∗νn0 = cEνn0 (3.71)

In the optically thin limit, with only one source, the radiation flux is just the radiation energy
times the speed of light in the direction of the source. We can also compute the Eddington
tensor in the same regime,

Pν =

∫
4π

Iν
c

n⊗ ndΩ =
I∗ν
c

n0 ⊗ n0 = Eνn0 ⊗ n0 (3.72)

A third slightly more complicated model, called the M1 closure, was proposed by Levermore
(1984) and interpolate the previous two regime based on the magnitude of the flux Fν compared
to its maximum allowed value of cEν . The M1 closure uses the following form for the Eddington
tensor

Dν =
1− χ

2
I +

3χ− 1

2
n⊗ n (3.73)

where n = Fν/Fν and the function χ(f), not shown here, depends on f = Fν/(cEν), a quantity
called the reduced flux, and reproduces the two previously discussed asymptotic cases χ = 1/3
(isotropic) for f = 0 and χ = 1 (single optically thin source) for f = 1

More complex closure models are possible. The Optically Thin Variable Eddington Tensor
model, for example, assume that the Eddington tensor comes from the collective radiation of a
collection of N sources in an optically thin medium. The corresponding radiation field is used
only for the computation of the Eddington tensor, and writes

Iν(n) =

N∑
i=1

Iiνδ(n− ni) (3.74)

Another method, called the Stationary Variable Eddington Tensor model, solves first for the
stationary radiative transfer equation

n · ∇Iν = jν − ανIν (3.75)

without the time derivative, and then compute the corresponding Eddington tensor. These two
methods require a proper numerical integration scheme and quite expensive calculations, but
are still simpler and cheaper than solving the full time dependent radiative transfer equation.



CHAPTER 3. RADIATIVE PROCESSES IN ASTROPHYSICS 128

3.4 Radiation hydrodynamics

We can now integrate the two previous moments equations over the frequency. We obtain the
frequency integrated radiation energy equation as

∂Erad

∂t
+∇ · Frad = 4π

∫ +∞

0
jνdν −

∫ +∞

0
ανcEνdν (3.76)

The first term on the right-hand side is called the cooling function, and it represents the emission
of radiation from matter. It is noted here Crad and is given by

Crad = 4π

∫ +∞

0
jνdν (3.77)

If and only if the gas is in LTE (regime of thermal radiation), one can write the cooling function
as

Crad = 4π

∫ +∞

0
ανBν(Tgas)dν = αPcaT

4
gas (3.78)

where we have defined the Planck mean for the absorption coefficient αP as

αP(Tgas) =

∫ +∞
0 ανBν(Tgas)dν∫ +∞

0 Bν(Tgas)dν
(3.79)

The second term on the right-hand side is called the heating function. It represents the radiation
absorbed by matter. It is noted Hrad and is given by

Hrad =

∫ +∞

0
ανcEνdν = αEcErad (3.80)

where we have defined the energy mean for the absorption coefficient αE as

αE =

∫ +∞
0 ανEνdν∫ +∞

0 Eνdν
(3.81)

If and only if the radiation is in LTE (black body regime), one has Erad = aT 4
rad and αE =

αP(Trad). Obviously, if Trad = Tgas, we are in full LTE and the two terms exactly cancel out.
Integrating the radiation flux conservation equation over frequency, we get

1

c

∂Frad

∂t
+ c∇ · Prad = −

∫ +∞

0
ανFνdν = −αFFrad (3.82)

where we have defined the flux mean for the absorption coefficient αF as

αF =

∫ +∞
0 ανFνdν∫ +∞

0 Fνdν
(3.83)

Dividing by c, we can write the radiation momentum conservation equation as

1

c2

∂Frad

∂t
+∇ · Prad = −

∫ +∞

0

ανFν

c
dν = −αFFrad

c
(3.84)

Note that the radiation energy emitted by the gas must correspond to thermal energy lost by
the gas during inelastic collisions. The same applies for the momentum lost by radiation: It
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must correspond to a net gain of momentum by the gas. We therefore have to modify the gas
momentum and energy equation to account for the total energy and momentum balance. We
therefore have modified Euler equations for the gas. We start with the momentum conservation
equation which now reads

∂

∂t
(ρv) +∇ · (ρv ⊗ v) +∇P = ρa + ρarad (3.85)

where the radiative force (or the radiative acceleration) reads

ρarad =

∫ +∞

0

ανFν

c
dν =

αFFrad

c
(3.86)

For the fluid total energy equation, we have to account for two effects: First, we now have a
new external force, in addition to gravity, namely the radiative force. The modified momentum
conservation equation, when combined with the unmodified mass conservation, will lead to an
additional term in the energy equation due to the work of the radiative force. Second, we have
also to add source and sink of energy corresponding to the cooling and heating functions.

∂E

∂t
+∇ · (E + P ) v = ρa · v + ρarad · v +Hrad − Crad (3.87)

We at last derived the cooling and heating terms that we used multiple times in the Chapter
on astrophysical fluid dynamics. We see that they both originates from radiation and matter
interaction. The radiative force, however, is a new concept that we have not introduced earlier. It
plays a very important role in many astrophysical objects where the radiation flux is particularly
intense, mostly around massive stars or accretion disk around black holes. We will see later that
it also plays a fundamental role when the fluid is close to LTE, in the so-called diffusion limit.

These 4 equations define the radiation hydrodynamics system of equations. It features con-
servation of mass, only for the fluid, conservation of momentum for both radiation and fluid,
and conservation of energy for both radiation and fluid. Note that we can also add up the two
momentum (and energy) conservation equations and obtain new conservation laws for the full
system radiation + fluid.

3.5 Diffusion limit

We have seen in the previous section that under optically thick conditions, the specific intensity
converges towards the black body spectrum. The resulting isotropic angular distribution of the
radiation leads to a vanishing radiation flux. This corresponds to strict LTE conditions for the
radiation. Like for kinetic theory, we would like to study the regime when radiation is close to
LTE but not quite there yet, so that the radiation field is close to a black body, but not strictly
isotropic. We expect a small but non zero radiation flux. It is in fact possible to compute
the flux in that regime, following a methodology close to the Chapman-Enskog derivation for
viscosity in non-ideal fluids.

We assume that the radiation specific intensity is close to a black body but not strictly equal,
so that we have a small perturbation

Iν(x,n, t) = Bν(T ) + δIν(n) where δIν � Iν (3.88)

The resulting total radiation energy can be written as

Eν(x, t) =
4π

c
Bν(T ) + δEν(x, t) where δEν � Eν (3.89)



CHAPTER 3. RADIATIVE PROCESSES IN ASTROPHYSICS 130

and the radiation flux as

Fν(x, t) = 0 + δFν(x, t) where δFν � cEν (3.90)

We now follow the Chapman-Enskog methodology, introducing the reduced flux, so that one
can write

Fν(x, t) = fνcEν where fν � 1 (3.91)

We now inject this form into the radiation flux conservation equation

1

c

∂

∂t
(fνcEν) +∇ · (DνcEν) = −ανfνcEν (3.92)

where we have used the Eddington tensor form of the radiation pressure tensor. We now perform
an order of magnitude analysis of the previous equation, introducing the typical system size L,
the typical fluid time-scale T and the typical fluid velocity V = L/T . The previous equation
can be written as an order of magnitude estimate[

fνcEν
cT

]
+

[
DνcEν
L

]
= −

[
fνcEν
λν

]
(3.93)

The Eddington tensor is a dimensionless tensor whose magnitude is always of order unity with
Dν ∼ 1, actually between 1/3 and 1, as explained in the previous sections. In our optically thick
limit, since the radiation is close to isotropic, we have quite accurately

Dν '
1

3
I (3.94)

We define the light crossing time of the system as

tcross =
L

c
� T =

L

V
(3.95)

We see that the first term in the left-hand side is quite small, because cT � L and fν � 1. In
this limit, we can safely ignore it in the momentum conservation equation, an approximation
called the stationary flux limit. The term on the right-hand side, on the other hand, cannot
be ignored. It is true that fν � 1 but in the same time, we have λν � L, since we are in
the optically thick regime. Following the Chapman-Enskog method, we just consider the two
remaining terms have to be of the same order. This leads to the diffusion approximation, for
which we have

c

3
∇ · (IEν) =

c

3
∇Eν = −ανFν or Fν = − c

3αν
∇Eν (3.96)

The radiation energy conservation equation becomes

∂Eν
∂t

= ∇ ·
(

c

3αν
∇Eν

)
(3.97)

which is nothing but the good old heat equation. We see another analogy with kinetic theory
here, where energy transport is dominated by a diffusion process, and the diffusion coefficient
ν = cλν . The other source terms in the radiation energy equation vanished because we have
Iν ' Bν(T ). Since we have

Eν '
4π

c
Bν(T ) (3.98)

we can write

∇Eν '
4π

c

∂Bν
∂T
∇T (3.99)
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We can also integrate the previous equation over frequencies, and obtain

∂Erad

∂t
+∇ · Frad = 0 (3.100)

where the frequency integrated radiative flux write

Frad = − c

3αR
4aT 3∇T = −κrad∇T (3.101)

where we introduce the Rosseland mean as

1

αR
=

(∫ +∞

0

1

αν

∂Bν
∂T

dν

/∫ +∞

0

∂Bν
∂T

dν

)
(3.102)

Recall that we have for the black body radiation∫ +∞

0

4π

c
Bνdν = aT 4 (3.103)

It is worth stressing that the radiative flux in the diffusion limit is very close to the heat flux
we derived from kinetic theory, with a radiative heat coefficient

κrad =
4acT 3

3αR
(3.104)

that can be added directly to the electron conduction coefficient, since both processes are pro-
portional to the temperature gradient.

We can also compute the radiation force in the diffusion limit. It writes

ρarad =

∫ +∞

0

ανFν

c
dν = −1

3

∫ +∞

0
∇Eνdν = −1

3
∇Erad = −∇Prad (3.105)

We conclude that in the diffusion limit, the radiation force is independent of the opacity, and is
nothing but minus the radiation pressure gradient, completely analog to a fluid with γ = 4/3.
Indeed, the momentum conservation equation for the fluid writes in the diffusion limit

∂

∂t
(ρv) +∇ · (ρv ⊗ v) +∇ (P + Prad) = ρa (3.106)

In the limit of infinite opacity, however, the radiation flux in the diffusion limit converges to
zero, and the energy equation writes

∂Erad

∂t
= 0 (3.107)

which is not what we expect from a γ = 4/3 fluid. This inconsistency comes from the fact that
we have ignored so far relativistic corrections to the equations, due to the Lorentz transform
from the comoving (or rest) frame to the laboratory (or observer) frame. We will discuss these
interesting aspects in the next section.

3.6 Relativistic corrections for radiative transfer

Our derivation of the radiative transfer equations ignored completely so far relativistic effects of
the combined fluid of interacting photons and particles. This is problematic in multiple ways.
First, we have assumed that the emissivity coefficient jν was isotropic, because the underlying
Maxwell-Boltzmann distribution of the particle velocities was isotropic. This is only true in
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the frame comoving with the bulk flow. In the laboratory frame, the particle velocities are the
sum of the random thermal velocities and the average, fluid velocities that points in one specific
direction. If one defines the emissivity coefficient in the comoving frame as j0

ν , this is the truly
isotropic one. But the emissivity coefficient in the laboratory frame jν should be modified by
the Lorentz transformation bringing the emitted photon distribution to the lab frame.

The second problem arises when the radiation is close to LTE with matter. In this case,
we have shown that the radiation specific intensity becomes isotropic, and equal to the source
function, which, for thermal radiation, is equal to the black body distribution. Again, this is
only true in the comoving frame. One must therefore define radiation moments in the comoving
frame, as E0

ν and F0
ν , which differ from their equivalent in the laboratory frame Eν and Fν up

to a Lorentz transform. Note that here only photons are relativistic particles, but the fluid is
not, so we have v/c � 1. The corrections are likely to be very small. But as we have seen in
the previous section, in the diffusion limit, the radiation flux is also very small. We therefore
can’t ignore these small relativistic corrections if we want to accurately describe the optically
thick limit of radiative hydrodynamics. In the optically thin limit, relativistic effects can be
ignored, at least for radiation transport. As we will see later, Doppler effects are important for
line transfer and cannot be ignored, even in the optically thin limit.

3.6.1 Lorentz transform to first order in v/c

In order to change frame in the relativistic framework, we need to introduce the Lorentz trans-
form. We however only keep terms up to first order in v/c, dropping all terms in (v/c)2 and
higher. This gives the following matrix

L =


1 −vx

c −vy
c −vz

c
−vx

c 1 0 0
−vy

c 0 1 0
−vz

c 0 0 1

 (3.108)

Note that this modified Lorentz transform is not unitary anymore but only to first order so that
|det(L)| = 1 +O

(
(v/c)2

)
. A 4-vector coordinate in space-time in the comoving frame is related

to the coordinate in the laboratory frame by

X0 = LX where X0 = (ct0, x0, y0, z0)T and X = (ct, x, y, z)T (3.109)

We obtain the classical Galilean transformation to the comoving frame, with however a first-
order shift in the time coordinate

ct0 = ct− v · x
c

and x0 = x− vt (3.110)

We can also apply the Lorentz transform to the photon 4-momentum

P0 = LP where P0 =

(
hν0

c
,
hν0

c
n0

)T

and P =

(
hν

c
,
hν

c
n

)T

(3.111)

where n0 and n (resp. ν0 and ν) are the unit vectors pointing in the direction of the radiation
(resp. the photon frequency) in the comoving frame and in the laboratory frame. We obtain
the Doppler effect as

ν0 = ν
(

1− v · n
c

)
(3.112)

and the angle aberration effect as

ν0n0 = ν
(
n− v

c

)
(3.113)
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From our discussion in the previous chapter on relativistic kinetic theory, we have shown that
the phase-space fluid element d3xd3p is a relativistic invariant, but d3p alone is not. We have
shown however that d3p/E is a relativistic invariant. Using the form of d3p derived at the
beginning of this chapter, and using E = hν for photons, we have

d3p

E
=
p2

E
dpdΩ =

h2ν

c3
dνdΩ (3.114)

we deduce that
ν0dν0dΩ0 = νdνdΩ (3.115)

Using Liouville’s theorem, we have also deduced that the distribution function fν is a relativistic
invariant, but Iν , the radiation specific intensity, is not. Using the relation we have derived
between fν and Iν , namely

Iν =
h4ν3

c2
fν (3.116)

we deduce that Iν/ν
3 is a relativistic invariant, so that

I0
ν

ν3
0

=
Iν
ν3

(3.117)

3.6.2 Moments equations in the laboratory frame

In order to account for the relativistic corrections for the emission and absorption coefficients,
we need to consider the absorption along a light ray in the two frames. For simplicity, we
assume that the velocity of the fluid is only along the z-axis with v = vez. We can write the
two direction vectors n0 and n using the spherical coordinate system along the z axis. We have

ν0 sin θ0 cosφ0 = ν sin θ cosφ (3.118)

ν0 sin θ0 sinφ0 = ν sin θ sinφ

ν0 cos θ0 = ν
(

cos θ − v

c

)
The optical depth along the light ray can then be computed in the laboratory frame as

dτ = ανds = αν
d`

sin θ
(3.119)

where d` =
√

dx2 + dy2 is the projected length of the light ray ds in the x − y plane. The
key argument is as follows: the optical depth is a relativistic invariant, because it controls the
number of photon absorbed by the slab along the light ray. We thus have dτ0 = dτ . Because the
Lorentz boost is only along the z direction, d`, perpendicular to the fluid motion, is not affected
by the change of frame. We then have d`0 = d`. On the other hand, the angle θ is affected by
the angle aberration. Combining the two first equations on the spherical coordinates, we get

ν0 sin θ0 = ν sin θ (3.120)

We finally get the relation between α0
ν and αν in the two frames as

ν0α
0
ν = ναν (3.121)

The emissivity coefficient, jν can be treated similarly, by noticing that in the case of thermal
radiation, one has jν = ανBν , where Bν is the specific intensity of the black body radiation. It
therefore also satisfies

B0
ν

ν3
0

=
Bν
ν3

(3.122)
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Using the relation for αν , we deduce that

j0
ν

ν2
0

=
jν
ν2

(3.123)

We can write the radiative transfer equation in the laboratory frame as usual

1

c

∂

∂t
Iν + n · ∇Iν = jν − ανIν (3.124)

We then integrate this equation both in angle and in frequency, taking as usual the first and
second moments. For the first moment, we get easily

∂

∂t
Erad +∇ · Frad =

∫ +∞

0

∫
4π
jνdνdΩ −

∫ +∞

0

∫
4π
ανIνdνdΩ (3.125)

We need to express the two terms on the right-hand side as a function of the emissivity and
absorption coefficients in the comoving frame, the truly isotropic ones. The first term was
defined as the cooling function. It can be written as

Crad =

∫ +∞

0

∫
4π
jνdνdΩ =

∫ +∞

0

∫
4π

jν
ν2
ν (νdνdΩ) =

∫ +∞

0

∫
4π

j0
ν

ν2
0

ν (ν0dν0dΩ0) (3.126)

Using both the Doppler effect and the angle aberration, we obtain to leading order in v/c

Crad '
∫ +∞

0

∫
4π
j0
ν

(
1 +

v

c
· n0

)
dν0dΩ0 = C0

rad = α0
PcaT

4
gas (3.127)

where we assume thermal radiation for the emissivity coefficient in the comoving frame. The
Doppler contribution integrates to zero because j0

ν is isotropic in the comoving frame. The
second term on the right-hand side of the radiative energy equation was defined as the heating
function. It can be expressed as a function of the absorption coefficient in the comoving frame
using

Hrad =

∫ +∞

0

∫
4π
ανIνdνdΩ =

∫ +∞

0

∫
4π

(ανν)
1

ν
IνdνdΩ =

∫ +∞

0

∫
4π
α0
ν

ν0

ν
IνdνdΩ (3.128)

Using again the formula for the Doppler effect, we obtain

Hrad =

∫ +∞

0

∫
4π
α0
ν

(
1− v

c
· n
)
IνdνdΩ = α0

EcErad − α0
F

v

c
· Frad (3.129)

We finally obtain the radiation energy equation in the laboratory frame as

∂

∂t
Erad +∇ · Frad = α0

PcaT
4
gas − α0

EcErad + α0
F

v

c
· Frad (3.130)

For the second moment of the radiation transfer equation, we obtain

1

c

∂

∂t
Frad + c∇ · Prad =

∫ +∞

0

∫
4π
jνndνdΩ −

∫ +∞

0

∫
4π
ανIνndνdΩ (3.131)

The first term on the right-hand side can be computed using like before the angle aberration
formula. We get to leading order in v/c (left to the reader as an exercise)∫ +∞

0

∫
4π
jνndνdΩ ' α0

PaT
4
gasv (3.132)
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We conclude that there is in fact a non-zero contribution of the emissivity coefficient to the
radiation flux equation, entirely due to the Lorentz transform. The second term on the right-
hand side is simpler to handle because we want to keep the radiation moments in the laboratory
frame. We find ∫ +∞

0

∫
4π
ανIνndνdΩ =

∫ +∞

0

∫
4π
α0
ν

(
1− v

c
· n
)
IνndνdΩ (3.133)

which can be simplified using the radiation flux and the radiation pressure tensor as∫ +∞

0

∫
4π
ανIνndνdΩ = α0

FFrad − α0
EPradv (3.134)

We finally obtain for the radiation momentum equation in the laboratory frame

1

c

∂

∂t
Frad + c∇ · Prad = α0

PaT
4
gasv − α0

FFrad + α0
EPradv (3.135)

We can check that if Frad ' cErad, then the new correction terms are vanishingly small, justifying
why we neglect them in the optically thin regime. In the optically thick regime, however, they
are required.

3.6.3 Moments equations in the comoving frame

In order to simplify the discussion, we will now consider that we have a grey material, meaning
that the opacity does not depend on frequency, so that all our different definitions (Rosseland,
Planck, flux and energy means) for the frequency integrated opacities are equivalent. We can
then simplify the previous two equations as

∂

∂t
Erad +∇ · Frad = α0c

(
aT 4

gas − Erad

)
+ α0Frad ·

v

c
(3.136)

1

c

∂

∂t
Frad + c∇ · Prad = α0aT

4
gasv − α0Frad + α0Pradv (3.137)

If one wants to properly converge to the diffusion limit, it is mandatory to define also the
different radiation moments in the comoving frame. We thus need to transform also Erad and
Frad from the laboratory frame to the comoving frame. To perform this operation, we will use
the relativistic invariance of d3p/E and Iν/ν

3 and write

E0
rad =

∫ +∞

0

∫
4π

I0
ν

c
dν0dΩ0 =

∫ +∞

0

∫
4π

ν3
0

ν3

Iν
c

ν

ν0
dνdΩ (3.138)

Taylor expanding the Doppler term to first order in v/c, we finally get

E0
rad '

∫ +∞

0

∫
4π

Iν
c

(
1− 2

v · n
c

)
dνdΩ (3.139)

We can perform the angular and frequency integration and obtain

E0
rad = Erad −

2

c
Frad ·

v

c
(3.140)

Similarly, we can write the radiation flux in the comoving frame as

F0
rad =

∫ +∞

0

∫
4π
I0
νn0dν0dΩ0 =

∫ +∞

0

∫
4π

ν3
0

ν3
Iν
ν2

ν2
0

(
n− v

c

)
dνdΩ (3.141)
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and obtain

F0
rad =

∫ +∞

0

∫
4π
Iν

(
1− v · n

c

)(
n− v

c

)
dνdΩ (3.142)

Performing the angular and frequency integration and neglecting a quadratic term in v/c, we
finally get

F0
rad = Frad − Eradv − Pradv (3.143)

Injecting these two equations into the frequency integrated radiation energy and momentum
conservation equations and dropping all quadratic terms in v/c leads to

∂

∂t
Erad +∇ · Frad ' α0c

(
aT 4

gas − E0
rad

)
− α0F

0
rad ·

v

c
(3.144)

1

c

∂

∂t
Frad + c∇ · Prad ' α0

(
aT 4

gas − E0
rad

)
v − α0F

0
rad (3.145)

where now we have only comoving variables in the right-hand side of these equations. We see
now that the optically thick limit corresponds to E0

rad ' aT 4
gas and F0

rad ' 0 both expressed in
the comoving frame.

We need to derive now the diffusion limit in term of the comoving radiation energy and flux,
writing

E0
rad = aT 4

gas (1 + e) and F0
rad = caT 4

gas (0 + f) (3.146)

where the reduced energy and the reduced flux are both small, with |e| � 1 and |f | � 1 but,
very importantly, both small deviations are of the same order, with |e| ∼ |f |. We perform
the same order of magnitude estimate as before, on our new radiation momentum conservation
equation, with typical fluid length scale L and time scale T = L/V ,[

f
caT 4

gas

cT

]
+

[
Drad

caT 4
gas

L

]
= −

[
e
V aT 4

gas

λ0

]
−

[
f
caT 4

gas

λ0

]
(3.147)

The first term in the left-hand side can be dropped because we have Drad = 1/3I and tcross � T
as before. The first term in the right-hand side can also be ignored, because V � c. In this
Chapman-Enskog approach, we obtain for the diffusion limit the two relations

F0
rad ' −

c

3α0
∇E0

rad and E0
rad ' aT 4

gas (3.148)

exactly as before, but now valid in the comoving frame. In the diffusion limit, we can also write
the transformation between the laboratory frame and the comoving frame as

E0
rad ' Erad and F0

rad ' Frad −
4

3
E0

radv (3.149)

We now inject these relations to obtain the radiation energy equation fully formulated in the
comoving frame and in the diffusion limit as

∂

∂t
E0

rad +∇ · F0
rad +∇ ·

(
4

3
E0

radv

)
= α0c

(
aT 4

gas − E0
rad

)
+

1

3
v · ∇E0

rad (3.150)

which can be re-arranged as

∂

∂t
E0

rad +∇ ·
(
E0

radv
)

+
1

3
E0

rad∇ · v = ∇ ·
(

c

3α0
E0

rad

)
+ α0c

(
aT 4

gas − E0
rad

)
(3.151)
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Note that the left-hand side of the radiation energy equation is strictly equivalent to the internal
energy equation of a γ = 4/3 fluid. Relativistic corrections have thus repaired the inconsistency
we have detected in the previous section. We can now study the infinite opacity limit α0 → +∞.
We have in this case E0

rad = aT 4
gas and F0

rad = 0. We also have Trad = Tgas = T . Combining the
matter internal energy equation with the radiation energy equation, we can obtain the full LTE
radiation hydrodynamics equations

∂ρ

∂t
+∇ · v = 0 (3.152)

∂

∂t
(ρv) +∇ · (v ⊗ v) +∇Ptot = ρa (3.153)

∂Etot

∂t
+∇ · (Etot + Ptot) v = ρa · v (3.154)

where the total pressure is defined as

Ptot = Pgas + Prad =
ρkBT

m
+

1

3
aT 4 (3.155)

and the total energy is defined as

Etot =
1

2
ρv2 +

3

2

ρkBT

m
+ aT 4 (3.156)

We see that the equation of state for the coupled radiation + matter fluid is highly non-trivial.
If the gas pressure dominates, we have γ ' 5/3, but if the radiation pressure dominates, the
fluid behaves as if γ ' 4/3. We see that the transition occurs at a critical temperature given by

Tcrit =

(
3ρkB

am

)1/3

' 3.2× 107

(
ρ

1 g/cc

)1/3

K (3.157)

The centre of the Sun has a density of 150 g/cc and a temperature of 1.6 × 107 K, so that the
gas pressure dominates over the radiation pressure. In higher mass stars, on the other hand,
the temperature is much higher and the radiation pressure dominates. It is quite interesting to
realise that the full LTE gas + radiation fluid follows the original Euler equations, so that most
of the conclusion of the previous chapter on astrophysical fluid dynamics apply.
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3.7 Matter and radiation interaction

We now switch to the second part of the Chapter on radiation. The goal is to describe the
main emission and absorption processes encountered in astrophysics. We will use extensively
the wave-particle duality of radiation. While in the first part, we have adopted mainly the point
of view of photons and light rays, we will now focus more on the point of view of electromagnetic
waves. At a few rare occasions, we will also adopt a more quantum mechanics approach with
discrete particles and/or energy levels. The emission and absorption processes in astrophysics
can be decomposed into three main groups: bound-bound radiation with atomic and molecular
lines, bound-free radiation due to atomic ionisation processes, and finally free-free radiation due
to free electrons interacting with radiation or with ions. We will describe all these processes in
details, obtaining in each case detailed equations describing the associated phenomenon.

3.8 Larmor formula

The most important ingredient we need in this course is the radiation emitted by an accelerated
charged particle, in most cases an electron. Note that this electron can be bound to an atom
or freely moving in the continuum. In order to compute the emitted radiation from moving
charges, we need to rely on the theory of electromagnetism and the use of Maxwell’s equations
and retarded potentials. In this section, we use a much simpler derivation due to Thomson.

ct

cΔt

Δvt

θ

Δvt sin θ

Figure 3.2: Field lines around an accelerated charge used in the derivation of Larmor formula.

We consider a point particle of charge q = −e, namely an electron. If this electron is at rest,
it creates around itself a purely radial electric field given by Coulomb’s law

Er =
q

r2
(3.158)

We now give a kick in the x-direction to this particle, so that it acquires a small velocity
vx = ∆v � c during a small time step ∆t. The corresponding impulsive acceleration at time
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t = 0 is therefore

a =
∆v

∆t
(3.159)

Once the particle reaches its terminal velocity ∆v, it develops again a Coulomb potential, but
the information about the new particle position propagates at finite speed (the speed of light)
along the field lines.We see in Figure 3.2 a schematic of these field lines. The information about
the start of the accelerating pulse reach a given point along a field line at distance r = ct.
The new configuration of the field line is in place at a distance c∆t later. In order to connect
properly the field line before and after the pulse, the electrical field has to adjust, so that a
small transverse component is created, whose amplitude has to be, for geometrical reasons (see
Fig. 3.2),

E⊥
Er

=
∆vt sin θ

c∆t
(3.160)

Injecting the value of Er and replacing t by r/c, we get

E⊥ =
qa sin θ

rc2
(3.161)

A distant observer will see this transverse component as a time-dependant electric field, in other
words, an electromagnetic wave. Electromagnetic waves are solution of Maxwell’s equations in
vacuum, with E and B evolving as two coupled vector fields with E = B. The energy flux
carried by the electromagnetic wave is the Poynting flux, in units of

[
erg cm−2 s−1

]
S =

c

4π
E×B (3.162)

In the case of our accelerating charge, the Poynting vector is directed in the radial direction,
and its norm is

S =
c

4π
E2 =

d2W

dAdt
=

1

4π

q2a2 sin2 θ

r2c3
(3.163)

We see that the radiation is not isotropic. The sin2 θ dependance is typical of dipolar radiation.
The total power (in units of

[
erg s−1

]
) emitted by the accelerating charge can be computed by

integrating the flux through the surface of a distant sphere at r = R. Using spherical coordinates,
we obtain

dW

dt
=
q2a2

4πc3

∫
4π

sin2 θ

R2
R2dΩ =

q2a2

2c3

∫ π

0
sin3 θdθ (3.164)

where quite logically the radius dependence drops out. We used the surface element on the
sphere dS = r2dΩ = r2 sin θdθdφ. Solving the simple integral over θ and replacing q = −e, we
obtain the formula of Larmor for the total emitted power by the accelerating electron

dW

dt
=

2

3

e2

c3
|a(t)|2 (3.165)

We derived this famous formula for the simple case of an impulsive acceleration, but this formula
is more general and can be used for any acceleration profile a(t).

3.8.1 Radiation spectrum of an electromagnetic wave

In order to define the radiation spectrum of an electromagnetic wave, we need to use Fourier
analysis. The Fourier transform of the electric field is defined as

Ê(ω) =
1

2π

∫ +∞

−∞
E(t) exp−iωt dt (3.166)
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and the inverse Fourier transform is defined as

E(t) =

∫ +∞

−∞
Ê(ω) expiωt dω (3.167)

We now use (again) Parseval’s theorem to define the total energy of the wave as∫ +∞

−∞
E(t)2dt = 2π

∫ +∞

−∞

∣∣∣Ê(ω)
∣∣∣2 dω (3.168)

Note that we use a particular convention for the Fourier transform. This convention
can differ from the one adopted in other text books. Since the electric field is a real

signal, we have
∣∣∣Ê(−ω)

∣∣∣ =
∣∣∣Ê(ω)

∣∣∣, so we have∫ +∞

−∞
E(t)2dt = 4π

∫ +∞

0

∣∣∣Ê(ω)
∣∣∣2 dω (3.169)

We now use the Poynting vector to obtain the energy flux carried by the wave S(t) = c
4πE(t)2.

Integrating this in time and using Parseval’s theorem, we obtain the total energy per unit area
as

dW

dA
= c

∫ +∞

0

∣∣∣Ê(ω)
∣∣∣2 dω (3.170)

We see that the right-hand side represents the spectral energy decomposition of the electromag-
netic waves, also called the radiation spectrum, in

[
erg cm−2 Hz−1

]
with

d2W

dAdω
= c

∣∣∣Ê(ω)
∣∣∣2 (3.171)

3.8.2 Emitted radiation spectrum

Using the relation between the electric field and the acceleration we derived earlier, we get for
our accelerated electron

d2W

dAdω
=
e2 sin2 θ

r2c3
|â(ω)|2 (3.172)

where we introduce the Fourier transform of the acceleration

â(ω) =
1

2π

∫ +∞

−∞
a(t) exp−iωt dt (3.173)

Integrating this flux spectrum over the sphere at r = R, we get

dW

dω
=
e2

c3
|â(ω)|2 1

R2

∫
4π

sin2 θR2dΩ = 2π
e2

c3
|â(ω)|2

∫ π

0
sin3 θdθ (3.174)

The emitted radiation spectrum in
[
erg Hz−1

]
can be finally written as

dW

dω
=

8π

3

e2

c3
|â(ω)|2 (3.175)

This radiation spectrum is emitted by one particle being accelerated during one event, usually
a collision between an electron and a proton. Another collision will give rise to another pulse of
radiation, with probably a different dipole direction (the x-axis defined before) and a different
spectrum. In order to obtain the total emissivity of the fluid, one need to multiply by the rate
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of these events per unit volume ṅcoll. Assuming that the direction of these events is isotropically
distributed, like for a Maxwell-Boltzmann distribution of particles, we can obtain the final
emissivity coefficient by multiplying by ṅcoll as

4πjω = ṅcoll
dW

dω
(3.176)

in units of
[
erg cm−3 s−1 Hz−1

]
, which is exactly the definition of the emissivity coefficient we

gave in the previous section, except it was noted jν with ω = 2πν

3.9 Bremsstrahlung

We now have all the necessary tools to compute our first emission process, Bremsstrahlung,
also called free-free radiation. It corresponds to Larmor radiation during collisions between free
electrons and ions (mostly protons), interacting through the Coulomb interaction. Coulomb
collisions have been studied in details in the first Chapter. Because ions are much more massive
than electrons, the frame of the center of mass corresponds to the rest frame of the ion, while
the relative velocity corresponds to the velocity of the electron. We assume that the ions have
a charge q = +Ze, where Z = 1 for protons, while electrons have a charge q = −e.

We choose the x-axis aligned with the velocity of the incoming electron, while its y-coordinate
at infinity is the impact parameter b. We use the small deflection angle approximation, so that
the electron follows a straight line with y ' b and x ' vt. The time coordinate is chosen so that
t = 0 corresponds to the collision itself, where the radius between the electron and the ion is
minimum with r = b, while before or after the collision the radius is r2 = x2 + y2 ' (vt)2 + b2.

The acceleration that matters here is the acceleration in the y-direction. The acceleration
in the x-direction changes sign at t = 0 and averages to zero. For the Coulomb force, it writes

mea(t) = −Ze
2

r3
y ' −Ze

2

b2

[
1 +

(
t

τ

)2
]−3/2

where τ =
b

v
(3.177)

The total velocity kick in the y-direction is obtained by integrating the acceleration as

∆v =

∫ +∞

−∞
a(t)dt = −2Ze2

mebv
(3.178)

We see that the acceleration has a typical bell shape, with a maximum at t = 0 and a thickness
of τ = b/v. The Fourier transform â(ω) has also a typical bell shape with its maximum at ω = 0.
We have

â(ω) ' ∆v

2π
for ω ≤ 1

τ
and â(ω) ' 0 for ω ≥ 1

τ
(3.179)

Using Larmor formula, we compute the radiation energy spectrum of this single collision

dW

dω
=

8π

3

e2

c3
|â(ω)|2 =

2

3π

e2

c3
∆v2 =

8

3π

Z2e6

c3m2
eb

2v2
for ω ≤ v

b
(3.180)

Using the collision cylinder, we can compute the number of collisions between incoming electrons
with impact parameter between b and b+ db and velocity at infinity v and v + dv as

dncoll

dt
= ni (ne(v)dv) (2πbdb) v (3.181)
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where ne(v) is given by the Maxwell-Boltzmann distribution. In order to compute the total
emissivity coefficient, we need to integrate the single collision energy spectrum over all possible
impact parameters and all possible incoming electron velocities.

4πjω =

∫ +∞

0
nine(v)vdv

∫ +∞

0
2πb

dW

dω
db (3.182)

We first perform the integration with respect to the impact parameter. The functional form of
the integrand is db/b, which integrates into a logarithm, and therefore, as always, diverges for
both small and large impact parameters. Since the spectrum is approximately zero for b ≥ v/ω,
we use as upper bound of the integral bmax = v/ω. For the lower bound, we use the usual
value bmin = b90, the impact parameter corresponding to a 90-degrees deflection angle. We then
obtain

4πjω =
16

3

Z2e6

c3m2
e

∫ +∞

0
nine(v) ln

(
bmax

bmin

)
dv

v
(3.183)

The logarithm is absorbed in a slowly varying quantity called the free-free Gaunt factor and
defined by

gff(v, ω) =

√
3

π
ln

(
bmax

bmin

)
(3.184)

The factor
√

3/π was introduced in the Gaunt factor to account for the exact form of the
Fourier transform of the acceleration. The Gaunt factor is a slowly varying function of v and
ω. The emitted spectrum from a single collision is therefore almost flat. This cannot be true
for arbitrary high photon frequencies. Indeed, radiation during the collision will be emitted into
discrete photons. Since the maximum available energy in the collision is the kinetic energy of
the electron, we conclude that the maximum photon energy that can be emitted corresponds to
one single photon with energy hν = 1

2mev
2. This semi-classical argument allows us to derive

the spectral shape of the emitted radiation. The electron distribution function derives from
Maxwell-Boltzmann with

ne(v) =
ne(

2π kBT
me

)3/2
exp
−mev

2

2kBT 4πv2 (3.185)

We can integrate our almost flat radiation spectrum in velocity space, only including electrons
for which the kinetic energy is larger than the radiation energy

1

2
mev

2 ≥ hν (3.186)

This set the lower bound of the integral, and we obtain

4πjω =
32π

3
√

3

Z2e6

c3m2
e

nine(
2π kBT

me

)1/2
exp
− hν
kBT gff(ν) (3.187)

The average Gaunt factor gff(ν) corresponds to the previously defined Gaunt factor but averaged
over the Maxwellian distribution. Finally, using jν = 2πjω, we get the emissivity coefficient of
Bremsstrahlung

4πjν =
32π

3
√

3

Z2e6

c3m2
e

nine

(
2πme

kBT

)1/2

exp
− hν
kBT gff(ν) (3.188)

We can integrate over the frequencies to compute the corresponding cooling function,

Cff =

∫ +∞

0
4πjνdν =

32π

3
√

3

Z2e6

hc3m2
e

nine (2πmekBT )1/2 gff (3.189)



CHAPTER 3. RADIATIVE PROCESSES IN ASTROPHYSICS 143

Numerically, we obtain the final and famous result

Cff = 1.42× 10−27gffZ
2nine

√
T (3.190)

The frequency average of the average Gaunt factor encodes the slow variations of the Gaunt
factor gff(v, ω). This Gaunt factor is also used to include possible quantum corrections to our
simple semi-classical treatment. It is usually close to unity and traditionally set to be gff ' 1.2

In order to obtain the corresponding absorption coefficient, we invoke Kirchhoff’s relation
for thermal radiation

αν =
jν

Bν(T )
(3.191)

where Bν(T ) is the black body specific intensity. Note that the Bremsstrahlung emission has
a characteristic spectral shape, with an exponential cut-off for hν � kBT and a flat spec-
trum for hν � kBT . The cooling function has a characteristic

√
T temperature dependence.

Bremsstrahlung is the only remaining cooling process for hot ionised gas with T > 107 K. At high
photon frequencies, because of the exponential cut-off, the only remaining absorption process is
Thomson scattering.

3.10 Thomson scattering

Thomson scattering describes the interaction between a planar electromagnetic wave with a
free electron in the plasma. It can be described fully classically, as long as the energy of the
incoming photons satisfies hν � mec

2. In short, the incoming electromagnetic wave couples
to the electron that starts to oscillate. The resulting electron acceleration is transformed into
Larmor radiation, emitted in a dipole pattern. The corresponding energy is removed from the
incident wave, leading to the absorption of the incident radiation, and, simultaneously, to the
emission of radiation in the same frequency but in a different direction. This is why this process
is called scattering. Before we describe in details the interaction between the planar wave and
the free electron, we first need to introduce planar electromagnetic waves.

3.10.1 Planar electromagnetic waves

A planar wave propagating in the direction of a unit vector n0 is described by the following
electrical field

E(x, t) = E0 expi(k0x−ω0t) = E0 expi(k0x−ω0t) e0 (3.192)

where the x-axis is chosen aligned with n0. The unit vector e0 indicates the direction of the
polarisation of the wave, perpendicular to the x-axis. The wave is monochromatic with frequency
ω0 and satisfies the dispersion relation of waves propagating in vacuum ω0 = ck0. The magnetic
field follows a similar form with B = Bb0 where E = B and b0 is perpendicular to e0 and the
x-axis. The energy flux carried by the wave is given by the Poynting flux

S(x, t) =
c

4π
E×B =

c

4π
EBe0 × b0 =

c

4π
EBex (3.193)

We see that the Poynting flux is aligned with the x-axis and its norm can be written as

S(x, t) =
c

4π
E2(x, t) (3.194)

It is a space- and time-dependent quantity, that oscillates at twice the frequency of the electric
field. Planar waves are analogues to the light-rays we used in the previous chapter. The radiation
specific intensity of a light ray propagating in vacuum is however constant, and not oscillatory.
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The usual way of solving this conundrum is to define the intensity of the planar wave as the
average Poynting flux over one period T0 = 2π/ω0 and at some fixed location x. Adopting
without loss of generality x = 0, we have

E(x = 0, t) = E0 cos (ω0t) (3.195)

The average Poynting flux is a constant along the planar wave and its value is

S0 =
1

T0

∫ T0

0

c

4π
E2

0 cos2 (ω0t) dt =
c

8π
E2

0 (3.196)

We can now relate the specific radiation intensity along the light ray to the planar wave energy
flux as

Iω = S0δ(ω − ω0)δ(n− n0) (3.197)

We see that although S0 has units of
[
erg cm−2s−1

]
, Iω has units of

[
erg cm−2s−1Hz−1str−1

]
.

3.10.2 Thomson cross section

We now consider the Lorentz force due to the electromagnetic wave acting on the free electron.
The equation of motion for the electron writes

meẍ = −e
(
E +

v

c
×B

)
' −eE so that ẍ = − e

me
E0 cos(ω0t)e0 (3.198)

because the electron velocity is non relativistic v � c and B = E. From the previous sections,
we know that this acceleration will be transformed into Larmor radiation, where the power
emitted per solid angle is

dW

dtdΩ
(t) =

e2ẍ2(t)

4πc3
sin2 θ (3.199)

The new electromagnetic wave has the same frequency of the incoming one, it is therefore also
monochromatic, and the radiation intensity is defined using the average Poynting flux over one
period. We therefore obtain

dW0

dtdΩ
=

e4E2
0

8πc3m2
e

sin2 θ (3.200)

The angle θ is defined with respect to the polarisation of the incoming wave e0. Integrating over
solid angle, we get the power emitted by the oscillating electron in all direction averaged over
one period

dW0

dt
=

e4E2
0

3c3m2
e

(3.201)

In order to get the corresponding emissivity coefficient, we have to multiply by the number
density of electrons, and by the Dirac delta function to account for the monochromaticity,
which gives

4πjω = ne
dW0

dt
δ(ω − ω0) (3.202)

This energy emitted per unit time corresponds to the energy lost by the incoming wave. This
allows us to compute the cross section as

dW0

dt
= σT

c

8π
E2

0 (3.203)

which leads to the Thomson cross-section

σT =
8π

3

e4

c4m2
e

(3.204)
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The corresponding absorption coefficient is obtained using

αν = neσT (3.205)

There is a simple way to obtain this result, using the electron classical radius, which can be
defined by

e2

re
= mec

2 (3.206)

which states that the electron electrostatic energy is equal to the energy associated to the
electron rest mass. Although this has no particular physical meaning, Thomson scattering can
be pictured as electrons of finite size blocking the light, like small dust grains, giving the cross
section

σT ' πr2
e = π

e4

c4m2
e

(3.207)

We are just missing the factor 8/3.
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3.11 Atomic and molecular excitation levels

We now move to the description of what is called bound-bound radiation, namely absorption and
emission processes associated to bound states of atoms and molecules. The atomic structure is
usually described using quantum mechanics. This is not the goal of these lectures to give an
accurate account of quantum processes. We will just review the main results of quantum physics
theory, outlining a few well-known results using very rough derivations. We will use like in the
previous section a semi-classical approach of the theory of radiation and matter interaction,
leaving again the more rigorous derivations to quantum mechanics books.

3.11.1 Electronic, vibrational and rotational states

We consider bound states of the Hydrogen atom, with an electron orbiting around a proton. So
far we have considered only free electrons and naked protons. What we know from quantum
mechanics is that the electron orbital structure around the proton is quantized into a discrete
set of states, called electronic states. The same is true for molecular processes, with vibrational
and rotational states. We would like to estimate the energy of these electronic, vibrational and
rotational states.

We can write the electron orbital energy as the sum of the potential energy and the kinetic
energy.

E =
p2

2me
− e2

r
(3.208)

If the electron is on a bound orbit, it must have E < 0. We know from quantum mechanics
that we cannot adopt a classical approach. The trick is to use Heisenberg uncertainty principle
to derive an order of magnitude estimate of the electron momentum with pr ' ~. Injecting this
relation for a marginally bound orbit with E = 0, we obtain the Bohr radius with

e2

rB
=

p2
B

2me
with pB =

~
rB

(3.209)

This gives for the Bohr radius (note that we dropped the factor 2)

rB =
~2

mee2
(3.210)

This is the typical radius for the electron orbit around the proton. The corresponding energy is
(note that we keep now the factor 2)

Eelec =
p2

B

2me
=

~2

2mer2
B

=
mee

4

2~2
(3.211)

The total energy for the bound electronic state for the Hydrogen atom is given by

Eelec,n = −Eelec

n2
= −13.6 eV

n2
(3.212)

Using a similar approach, we can estimate the vibrational energy levels for molecules, more
importantly the Hydrogen molecule. The idea is to consider the Hydrogen molecule as an
harmonic oscillator, like a spring, whose equation of motion is given by mpẍ = −kex where the
spring constant ke corresponds to the potential of the molecular bound, estimated here to be
roughly equal to the electrostatic potential e2/rB, and the typical spring length is given by the
Bohr radius rB. The harmonic oscillator energy in quantum mechanics is given by

Evib = ~ω where ω =

√
ke
mp

(3.213)
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The spring constant can be determined requiring that the spring potential energy is equal to
the electrostatic energy

1

2
ker

2
B = EB =

~2

2mer2
B

which gives ke =
~2

mer4
B

and ω =
~

√
mempr2

B

(3.214)

We finally find the typical energy for vibrational levels as

Evib =
~2

√
mempr2

B

=

√
me

mp
Eelec (3.215)

and the corresponding discrete energy levels are given

Evib,n = Evib

(
n+

1

2

)
= 0.31 eV

(
n+

1

2

)
(3.216)

Finally, the third category of bound states are molecular rotational energy levels, corresponding
to the balance between the centrifugal force and the molecular bound. The kinetic energy
associated to the rotation is now K = 1

2IΩ
2 = 1

2L
2/I where I = mpr

2
B is the moment of inertia

of the molecule and L = IΩ its angular momentum. We can estimate roughly the typical angular
momentum using the Heisenberg uncertainty principle L ' ~, which gives the typical energy for
rotational levels

Erot =
L2

2mpr2
B

=
~2

2mpr2
B

=
me

mp
Eelec (3.217)

and the corresponding discrete energy levels

Erot,n = ErotJ (J + 1) = 7.4× 10−4 eVJ (J + 1) (3.218)

We can compute the corresponding wavelength of the radiation associated to each process. Using
E = hν, we obtain λ = 912Å for Eelec = 13.6 eV, which corresponds to ultraviolet radiation.
Vibrational levels have λ ' 4 µm for Evib ' 0.3 eV and emits infrared radiation, while rotational
levels have λ ' 0.2mm for Erot ' 10−3 eV and are detected in the sub-mm range. Using E = kBT
(a temperature of 11605 K corresponds to 1 eV), we see that atomic transitions are excited for
temperature T ' 105 K, while molecular vibrational levels are excited for T ' 3000 K and the
lower rotational levels corresponds to T ' 10 K.

3.11.2 Collisional excitation

The first and most simple process that drives the bound electron from a lower to a higher
excited state are collisions. We have studied collisions quite extensively in the first Chapter.
These collisions were elastic collisions, leading to a redistribution of the collision partners in
momentum space, but without changing the nature of the involved particles. In this Chapter,
we consider inelastic collisions, between say an electron and an atom in excited level i, leading
to the excitation of the bound electron to a higher level j. In chemistry notations, this can be
written as

e− +H0
i
←−−−→ e− +H0

j (3.219)

The upper index usually refers to the charge of the particle, where the Hydrogen atom with the
bound electron has zero net charge. The free electron, on the other hand, has a negative charge
equal to −e, hence the upper index with a single negative sign. The double arrow in the centre
mean that the reaction is reversible. One collision can promote the bound electron to the higher
level j, but another later collision can demote the electron to the lower level i. In what follows,
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for sake of simplicity, we will use a two levels atom model. The generalisation to a multiple levels
atom is conceptually straightforward but computational more involving. We can now compute
the creation rate of the Hydrogen atom in state j = 1 as

dn1

dt
= n2ne 〈σ21v〉 − n1ne 〈σ12v〉 (3.220)

where the electron number density, and the number density of atoms in state 1 and 2 are
computed as

ne(x, t) =

∫
R3

fed
3p and n1(x, t) =

∫
R3

f1d3p and n2(x, t) =

∫
R3

f2d3p (3.221)

The two velocity-averaged cross sections are defined as the reaction cross section averaged over
the distribution function of the relative velocity v, which is in most cases the distribution function
of the electron. These collision rates are traditionally defined as

C21 = ne 〈σ21v〉 and C12 = ne 〈σ12v〉 (3.222)

so that the rate equation can now be written as

dn1

dt
= C21n2 − C12n1 = −dn2

dt
(3.223)

Note that when the system is in chemical equilibrium, we have the relation

C21n2 = C12n1 (3.224)

We will see in the following sections that this purely collisional description in only valid at high
electron densities. At lower densities, we must also include radiative processes.

3.11.3 Level population at LTE

We now want to compute the distribution of the excited states of the Hydrogen atom at LTE.
For this, we need first to define the energy of the Hydrogen atom occupying excitation level i as

E =
1

2
mpv

2 +
1

2
mev

2 + Eelec,i (3.225)

where Eelec,i represents to total orbital energy of the bound electron, namely the sum of the
orbital kinetic energy and the orbital electrostatic energy. In the previous equation, the first
two terms represent the translational kinetic energy of the bound system, in which the velocity of
the proton and the electron are the same. We can clearly neglect the contribution of the latter,
because mp = 1833me. We derived the LTE distribution function through reversible, elastic
collisions imposing detailed balance in phase-space. We can do the same thing here, leading to
distribution function for each species, with

fe =
2

h3
exp(µe− p2

2me
)/kBT (3.226)

for free electrons, and

fi =
gi
h3

exp
(µi− p2

2mp
−Ei)/kBT (3.227)

for the Hydrogen atoms in different excitation levels, where gi is the maximum number of
degenerate states of particle of type i that can occupy the same position in phase-space. Note
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that we ignored here the Fermi suppression factor 1 −N : We deal here with a non-degenerate
fluid. We use the same detailed balance argument, but now for the inelastic collisions between
different species, ln fe+ln fi = ln f ′e+ln f ′j . Note that here detailed balance is performed for each
individual degenerate state individually. Degenerate states have the same chemical potential, as
long as they are indistinguishable. This translates into the condition

µe + µi = µe + µj or equivalently µi = µj (3.228)

because the total energy is conserved during the collision. Note that this additive property of
the chemical potentials of reactants and products of a chemical reaction is quite general and of
course true only at LTE. Integrating over momentum space, we get the total number density of
atoms species i

ni(x, t) =

∫
R3

fi(x,p, t)d
3p = gi exp−Ei/kBT

expµi/kBT

h3

∫
R3

exp
− p2

2mp
/kBT d3p (3.229)

The last integral over momentum space can be readily integrated (it is a Gaussian), and we
obtain

ni(x, t) = gi exp−Ei/kBT
expµi/kBT

h3
(2πmpkBT )3/2 (3.230)

Dividing the number densities of two different levels i and j, we see that the temperature and the
chemical potential terms disappear (because µi = µj). We obtain the Boltzmann distribution
of level populations at LTE

ni
nj

=
gi
gj

exp−(Ei−Ej)/kBT (3.231)

We can also define the total number density of Hydrogen atoms, summing up over all possible
excited states

ntot(x, t) =

+∞∑
i=1

ni(x, t) =

(
+∞∑
i=1

gi exp−Ei/kBT

)
expµ1/kBT

h3
(2πmpkBT )3/2 (3.232)

where we used the fact that µi = µ1 for all levels. We can thus rewrite the level population at
LTE as

ni
ntot

=
gi exp−Ei/kBT

Z(T )
where Z(T ) =

+∞∑
i=1

gi exp−Ei/kBT (3.233)

The function Z(T ) is called the partition function of the level population. The first level i = 1,
also called the ground state or the fundamental level has energy E1 = −Eelec = −13.6 eV.
For gas temperature kBT � Eelec, we see that for all levels i > 1, the exponential term in
the Boltzmann relation will be zero. In this regime, ntot ' n1 and the level population is
said to be in the ground state. In the opposite regime, if kBT � Eelec, then the exponential
becomes one. The partition function now diverges. The Hydrogen atom has indeed multiple
degenerate states for each electronic level with gi = i2, these degenerate states corresponding to
angular momentum and spin degrees of freedom. In this limit, at high temperature, we get the
inconsistent result that

Z(T ) '
+∞∑
i=1

i2 → +∞ (3.234)

We can solve this inconsistency with an analogy to the orbital model of the electron orbiting
the proton. If we write that each energy level Ei corresponds to an orbital radius ri, we find

Ei = −Eelec

i2
= −e

2

ri
we find ri = rBi

2 (3.235)
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We now can compute the mean interparticle seperation for the atoms and identify it as the last
orbit the atom can have without having its bound electron being captured by another nearby
atom.

rmax =
1

n
1/3
tot

= rBi
2
max (3.236)

The partition function is then computed using only surviving bound states

Z(T ) '
imax∑
i=1

i2 where imax =
1√

rBn
1/3
tot

(3.237)

The partition function and the level population will converge properly, at the expense of having
more and more free electrons ejected from the higher energy levels. This process is called pressure
ionisation. Coming back to our simple two levels atom, we can compare the chemical equilibrium
relation to the LTE level population

n2

n1
=
C12

C21
versus

n2

n1
=
g2

g1
exp−(E2−E1)/kBT (3.238)

We know that at LTE, both relations are valid. Since C12 and C21 only depend on the micro-
scopic cross section and on the electron Maxwell-Boltzmann distribution, we conclude that the
collisional rates must satisfy this at all time (even in non-LTE conditions) the following relation

C12

C21
=
g2

g1
exp−(E2−E1)/kBT (3.239)

In many astrophysical databases, only 〈σ21v〉 is given, the collision rate from a higher to a lower
level, in units of

[
cm3s−1

]
. It usually depends quite weakly on the temperature. We can evaluate

the collisional excitation cross section, using the hard sphere model with σ0 ' 10−15 cm2 and
requiring the incoming electron to have a kinetic energy at least equal to the excitation energy
∆E21 = E2 − E1. This leads to the formula

C12 = ne 〈σ12v〉 = σ0

∫ +∞

∆E21

vfe(v)dv ' neσ0

(
kBT

me

)1/2

exp−(E2−E1)/kBT (3.240)

We can evaluate numerically the collision rate of this simple hard sphere model

〈σ12v〉 ' 3.9× 10−10T 1/2 exp−(E2−E1)/kBT cm3 s−1 (3.241)

The inverse reaction rate, from the lower to the higher level, can then be computed using the
previous LTE-based relation. We obtain easily

C21 = ne
g1

g2
σ0

(
kBT

me

)1/2

(3.242)

where the exponential term nicely cancels out. The corresponding collision deexcitation rate
writes

〈σ21v〉 = 3.9× 10−10 g1

g2
T 1/2 cm3 s−1 (3.243)

It is usually weakly dependent on the gas temperature.
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3.12 Line absorption and emission

We now describe the absorption of radiation by atoms on the ground state. A bound electron
can be promoted to an excited state by absorbing an incoming photon. The corresponding
chemical reaction can be written as

hν +H0
1
←−−−→ H0

2 (3.244)

The reverse reaction is called spontaneous emission. Because of energy conservation, the ab-
sorbed or emitted photons must have hν = E2 − E1. Note that at LTE, because the chemical
potential of photons is zero, detailed balance for radiative absorption and emission also gives

µν + µ1 = µ2 or equivalently µν = 0 and µ1 = µ2 (3.245)

3.12.1 Emission from a damped harmonic oscillator

The classical treatment of line emission and absorption was due to Lorentz. The idea is to
consider the excited state as an harmonic oscillator, where coordinate x represents the orbital
radius difference of the electron with respect to the ground state. In this classical view, one
writes

ẍ+
k

me
x = 0 where ω2

21 =
k

me
and ~ω21 = E2 − E1 (3.246)

Without surprise, we obtain the solution of the harmonic oscillator

x(t) = x0 cosω21t (3.247)

Using Larmor formula, we compute the power emitted by this accelerated electron as

P (t) =
2

3

e2

c3
ẍ2 =

2

3

e2

c3
ω4

21x
2
0 cos2(ω21t) (3.248)

As before, we average this power over one period to get the corresponding radiation energy
emitted per unit time as

P0 =
1

3

e2ω4
21

c3
x2

0 (3.249)

We see immediately a problem. Because the initial available energy, namely E2 − E1 is finite,
this radiation cannot last forever. This is in contradiction with the fact that the energy of the
harmonic oscillator is conserved. A better model for the excited atom is the damped harmonic
oscillator whose equation of motion is

ẍ+ Γ ẋ+ ω2
21x = 0 (3.250)

We can compute the drag coefficient by imposing that the work done by the friction force per
unit time is equal to the radiated power, and this for the original harmonic oscillator. In other
words, we neglect the effect of the drag over one oscillator period. This leads to

Pdrag = −Fdragẋ = meΓ ẋ
2 = meΓω

2
21x

2
0 sin2(ω21t) (3.251)

Here again, we average over one period, and impose that the energy dissipated by friction is
equal to the energy radiated away. This gives

1

2
meΓω

2
21x

2
0 =

1

3

e2ω4
21

c3
x2

0 (3.252)
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The corresponding drag coefficient writes

Γ =
2

3

e2ω2
21

mec3
(3.253)

This frequency Γ is much smaller than the harmonic oscillator frequency ω21 for most photon
energies. Indeed, one recognises in the previous equation the electron classical radius re

Γ =
2

3

re
c
ω2

21 (3.254)

The corresponding light crossing frequency is very high, with c/re ' 1021 Hz. We see for
example for visible light, we have ω21 ' 1014 Hz, so that Γ ' 10−7ω21, justifying our previous
approach of neglecting the effect of the drag in the harmonic oscillator solution. Using our
estimation of the drag coefficient, we now compute the true solution for x(t). We use the Ansatz
x(t) = x0 exp(iωt) with now ω 6= ω21, and inject in the equation of motion for the damped
oscillator. This leads to the dispersion relation

− ω2 + iΓω + ω2
21 = 0 (3.255)

We can solve this second order polynomial equation with

∆ = −Γ 2 + 4ω2
21 ' 4ω2

21 (3.256)

because, as we just discussed, the drag frequency is much smaller than the radiation frequency
in most cases. The general solution is therefore

ω = ±ω21 + i
Γ

2
(3.257)

Since the orbital coordinate is real and peaks at t = 0, we have

x(t) = x0 exp−Γt/2 cos(ω21t) (3.258)

The corresponding radiated energy, averaged over one period, and using again Γ � ω21 writes

P0 =
1

3
exp−Γt

e2ω4
21

c3
x2

0 (3.259)

Integrating in time this power, we get the total radiated energy and we impose it to be equal to
the excitation energy

E0 =
1

3Γ

e2ω4
21

c3
x2

0 = E2 − E1 = ~ω21 = hν21 (3.260)

This way, we obtain the initial coordinate of the harmonic oscillator x0 and the entire emission
process is described by

P0 = hν21Γ exp−Γt (3.261)

This model can be used to model the spontaneous emission of light from an excited atom
that falls back to the ground state. In order to get the spectrum of this quasi-monochromatic
radiation, we need to Fourier transform the orbital motion of the decaying electron.

x̂(ω) =
x0

2π

∫ +∞

0

1

2

(
exp−iω21t + expiω21t

)
exp−Γt/2 exp−iωt dt (3.262)
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The dominant term is the second one,

x̂(ω) ' x0

4π

∫ +∞

0
exp[i(ω21−ω)−(Γ/2)]t dt =

x0

4π

1

Γ/2− i(ω21 − ω)
(3.263)

Using Parseval theorem and Larmor formula, we get the radiation spectrum

dW

dω
=

8π

3

e2

c3
ω4 |x̂(ω)|2 (3.264)

We are mostly interested in the spectral distribution close to the oscillator frequency, so we
approximate ω ' ω21. We have

dW

dω
' 1

2π

1

3

e2ω4
21

c3
x2

0

1

(Γ/2)2 + (ω − ω21)2 (3.265)

Injecting the value we determined earlier for x0, we find

dW

dω
' 1

2π
hν21

Γ

(Γ/2)2 + (ω − ω21)2 (3.266)

We express the emitted radiation spectrum as a function of ν with ω = 2πν. We have

dW

dω
=

dW

2πdν
(3.267)

so that
dW

dν
= hν21

Γ/4π2

(Γ/4π)2 + (ν − ν21)2 (3.268)

Finally, since the emitted radiation is isotropic, multiplying by the rate of these deexcitation
events, we get

jν =
dn21

dt

hν21

4π

Γ/4π2

(Γ/4π)2 + (ν − ν21)2 =
dn21

dt

hν21

4π
φ(ν) (3.269)

The spectral energy distribution φ(ν) of the emitted radiation is called the line profile. In this
case, it is the Lorentz profile that describe spontaneous emission due to the radiative decay of
the excited level. We still need to estimate the deexcitation rate. It will come later.

3.12.2 Line absorption cross-section

We now move to the description of the interaction of our damped harmonic oscillator with an
incoming monochromatic electromagnetic field. The electric field of the planar wave is similar
to the Thomson scattering case with

E(t) = E0 expiωt (3.270)

The electron is now subject to the electromagnetic field of the incoming wave, and the equation
of motion writes, neglecting the contribution of the magnetic field to the Lorentz force,

ẍ+ Γ ẋ+ ω2
21x =

eE0

me
expiωt (3.271)

This equation corresponds now a forced harmonic oscillator. We are looking for solutions of the
form x(t) = x0 exp(iωt), where ω is the same frequency as the incoming electromagnetic wave.
Injecting this into the equation of motion, we obtain(

−ω2 + iΓω + ω2
21

)
x0 =

eE0

me
(3.272)
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We find after some manipulations

x0 =
eE0

me

ω2
21 − ω2 − iωΓ(

ω2
21 − ω2

)2
+ ω2Γ 2

(3.273)

The power emitted by the accelerated electron, average over one period, writes

P0 =
1

3

e4E2
0

m2
ec

3

ω4(
ω2

21 − ω2
)2

+ ω2Γ 2
(3.274)

We know that the incoming electromagnetic wave has for radiation intensity, using the Poynting
vector averaged over one period,

S0 =
c

8π
E2

0 (3.275)

We conclude that the emitted radiation is P0 = σ(ω)S0 where the absorption cross section is

σ21(ω) = σT
ω4(

ω2
21 − ω2

)2
+ ω2Γ 2

(3.276)

We can discuss several regimes for the previous important result.

• For ω → +∞, we see that σ21 → σT. The electromagnetic wave is so energetic that the
bound electron behaves like a free electron.

• For ω → 0, we have σ21 ' σT

(
ω4/ω4

21

)
. This regime is called Rayleigh scattering. This

is the reason why the sky is blue, as more energetic (blue) photons are absorbed and
re-emitted isotropically (in other words, scattered) more than less energetic (red) photons.

• For ω ' ω21, we can Taylor expand the previous equation using ∆ω = ω− ω21 � ω21 and
obtain the Lorentz absorption profile

σ21(ω) ' σT
ω2

21

4 (ω21 − ω)2 + Γ 2
(3.277)

We will use this profile from now on to describe the absorption cross section close to the
excitation frequency.

For reasons that will become obvious later, we prefer to use the frequency integrated cross
section, called the equivalent width of the line

σ0 =

∫ +∞

0
σ21(ω)dω ' σT

ω2
21

2Γ

∫ +∞

−∞

dx

1 + x2
= σT

πω2
21

2Γ
(3.278)

where we used the change of variable

x =
2 (ω − ω21)

Γ
(3.279)

Injecting the value we found for Γ , we obtain a value independent of the transition frequency

σ0 = 2π2 e2

mec
(3.280)
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We can finally write the cross section as σ21(ω) = σ0φ(ω), where the line profile is now normalised
to 1.

φ(ω) =
1

2π

Γ

(ω21 − ω)2 +
(
Γ
2

)2 with

∫ +∞

0
φ(ω)dω = 1 (3.281)

Note that the absorption cross section is expressed as a function of the wave frequency ω. If we
express it as a function of the photon frequency ν, we have instead σ21(ν) = σ0φ(ν) with

σ0 =
πe2

mec
and φ(ν) =

Γ/4π2

(ν21 − ν)2 + (Γ/4π)2 with

∫ +∞

0
φ(ν)dν = 1 (3.282)

The integrated cross section is a constant, with σ0 ' 0.027 cm2 Hz and independent on the
energy level. The shape of the Lorentz line profile has a typical width in photon frequency given
by ∆ν = Γ/2π. Interestingly, the width of the line profile expressed as a function of the photon
wavelength is

∆λ =
λ21

ν21
∆ν =

cΓ

2πν2
21

=
4π

3
re (3.283)

which is the electron classical radius, also independent on the transition frequency. The line
can become wider due to the random thermal or turbulent velocities of the emitting atoms.
This effect is called Doppler broadening and modifies strongly the line profile but does not
change the equivalent width σ0. The absorption coefficient can finally be computed as usual
by multiplying by the number density of the absorbing atoms, in this case, the population of
atoms in the ground state n1. Note that this derivation used a semi-classical approach. In
order to account for quantum mechanical effect, one introduces a correction factor f12 called the
oscillator strength, which depends on each radiative transition. In conclusion, we have for the
absorption coefficient due to radiative excitations from level 1 to level 2

αν = n1
πe2

mec
f12φ(ν) (3.284)

Most of the atomic lines are said to be “authorised”, and the oscillator strength is close to 1, with
values typically larger than 10−2. A few lines are “forbidden lines”, because of specific quantum
mechanical rules. In this case, the oscillator strengths can be very small, with f12 ' 10−10,
and the corresponding optical depth also much smaller than that of a normal line. Molecular
lines have typical oscillator strength f12 ' 10−5. This is because the effective charge that enters
Larmor formula is much smaller for most molecules. For H2, for example, the dipole moment
that measures the strength of the Larmor emission is zero. For CO, the asymmetry of the charge
distribution leads to a larger dipole moment, but still two to three orders of magnitude smaller
than the one of the first excited level of the Hydrogen atom.

3.13 Einstein relations

We have seen in the previous sections that the emissivity of the spontaneous radiative decay of
the atomic excited states depends on the unknown rate of deexcitation. This rate is encoded by
the first Einstein coefficient noted A21 so that

dn21

dt
= n2A21 (3.285)

The emissivity coefficient then writes

jν = n2
hν21

4π
A21φ(ν) (3.286)
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Following the same convention, Einstein introduced the second Einstein coefficient in the ab-
sorption coefficient as

αν = n1
hν21

4π
B12φ(ν) (3.287)

He also introduced the third Einstein coefficient to describe induced (or stimulated) emission, a
process we have already discussed and associated to the Bose enhancement factor.

jinduced
ν = n2

hν21

4π
B21Iνφ(ν) (3.288)

We already know that this term is associated to the quantum correction of the spontaneous
emission

jν = n2
hν21

4π
A21φ(ν) (1 +Nν) (3.289)

We already know from our previous semi-classical derivation that the different line profiles are
all given by the same Lorentz profile. We also know that the second Einstein coefficient is given
by

hν21

4π
B12 =

πe2

mec
f12 (3.290)

We now derive the famous Einstein relations. If the radiation and the fluid are both at LTE,
then we have to fullfill 3 conditions. First, the level population are given by the Boltzmann
relation we have derived earlier

n2

n1
=
g2

g1
exp−(E2−E1)/kBT =

g2

g1
exp−hν21/kBT (3.291)

Second, emission and absorption must balance each other perfectly.

jν + jinduced
ν = ανIν (3.292)

or equivalently

n2
hν21

4π
A21φ(ν) + n2

hν21

4π
B21Iνφ(ν) = n1

hν21

4π
B12Iνφ(ν) (3.293)

Third, the radiation specific intensity must be equal to the black body spectrum

Iν = Bν(T ) (3.294)

The second equation simplifies into

n2 (A21 +B21Bν(T )) = n1B12Bν(T ) (3.295)

and finally we get
n2A21 = (n1B12 − n2B21)Bν(T ) (3.296)

which leads to
A21/B21

(n1B12/n2B21 − 1)
= Bν(T ) =

2hν3
21/c

2

exp (hν21/kBT )− 1
(3.297)

Note that we have evaluated the black body spectrum at the exact line position. Since the left
equation must match the right one, we deduce the following two relations between the Einstein
coefficients.

A21 =
2hν3

21

c2
B21 (3.298)

and
g1B12 = g2B21 (3.299)
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These are known as the Einstein relations. The first relation is indeed nothing else than the
Bose enhancement factor multiplied to the spontaneous emission. As discussed before, induced
emission can be considered as negative absorption. Let’s assume we know the second Einstein
coefficient using the semi-classical theory.

B12 =
4π2e2

mechν21
f12 (3.300)

We deduce the third coefficient

B21 =
g1

g2
B12 =

4π2e2

mechν21

g1

g2
f12 (3.301)

and the first coefficient

A21 =
2hν3

21

c2
B21 =

8π2e2ν2
21

mec3

g1

g2
f12 = 3Γ

g1

g2
f12 (3.302)

We can find in astrophysical database the first Einstein coefficient, in units of
[
s−1
]
. We then

have to deduce the second and third using the previous relations. We can also find the oscillator
strength f21 which defines the second Einstein coefficient. We then deduce the first and third
using the previous relations. Using the semi-classical theory, we find for visible light with
ν21 ' 1014 Hz that Γ ' 2.4 × 106 sec−1. This frequency is associated to the inverse of the life
time of the excited state, which we find to be for visible light very short, namely around 4×10−7 s.
For sub-mm wavelengths associated to molecular lines, the lifetime is much longer, of the order of
several years, because of the much smaller oscillator strength. Although we derived the Einstein
relations under LTE conditions, since the various coefficients are microscopic properties of the
atoms, we conclude that these relations are true even in the non-LTE case. In the general case,
the intensity is not necessarily a black body, the level populations do not follow the Boltzmann
relations, and emission does not strictly balance absorption, but the Einstein relations still holds.
We can summarise our results by writing the emissivity coefficient as

jν =
πe2

mec
f12

2hν3
21

c2

g2

g1
n2φ(ν) (3.303)

and the absorption coefficient as

αν =
πe2

mec
f12

(
n1 −

g2

g1
n2

)
φ(ν) (3.304)

It is left as an exercise to the reader to show that under LTE conditions, the two previous
quantities satisfy Kirchhoff’s theorem. Under most conditions, the second level is much less
populated than the ground state. The absorption coefficient remains therefore positive. But
in some rare cases, we can have an inversion of the level population. The resulting negative
absorption coefficient leads to the laser or maser effect.

3.14 Non-LTE level population

We have determined the absorption rates of the radiative reactions leading to the excitation
of an atom from level 1 to level 2, and the emission rate of the radiative reactions leading to
the deexcitation of an atom from level 2 to level 1. These radiative reaction rates can now be
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added to the collision reactions rates we have already presented. We have already dealt with
spontaneous emission, for which

dn21

dt
= n2A21 (3.305)

owing to the definition of the first Einstein coefficient. We then want to compute the number
of transitions from 1 to 2 due to absorption of the incoming radiation. We just need to divide
the absorbed energy by the energy of one photon, and then integrate over all solid angles and
all frequencies. This gives

dn12

dt
=

∫ +∞

0

∫
4π
αν

Iν
hν

dΩdν (3.306)

where

αν = (n1B12 − n2B21)
hν21

4π
φ(ν) (3.307)

Since the line profile is very narrow at ν ' ν21, we have

dn12

dt
' (n1B12 − n2B21)

∫ +∞

0
φ(ν)dν

1

4π

∫
4π
IνdΩ (3.308)

We recognise the mean radiation intensity Jν , which is then weighted by the line profile and
integrated over frequency. We define

J21 =

∫ +∞

0
Jνφ(ν)dν (3.309)

We can finally add this up in the rate equation for level 1 as

dn1

dt
= n2C21 − n1C12 + n2A21 − (n1B12 − n2B21) J21 = −dn2

dt
(3.310)

We have seen that the first Einstein coefficient is usually quite large, with corresponding life
times much smaller than the typical astrophysical time scales. In this case, we can safely assume
that the system will reach chemical equilibrium, which can be written as

n2

(
C21 +A21 +B21J21

)
= n1

(
C12 +B12J21

)
(3.311)

We conclude that in the general case Jν 6= Bν(T ), we don’t get the LTE level population, which
can be defined by n2C21 = n1C12. Using the definitions C21 = ne 〈σ21v〉 and C12 = ne 〈σ12v〉, we
see that we converge towards the LTE limit only if the electron density is high enough, namely

ne � ncrit =
A21 +B21J21

〈σ21v〉
(3.312)

This critical density depends on the radiation field, which makes the overall coupled problem
of finding the level population and the corresponding radiation field a daunting task in general.
This requires complex iterative numerical methods and is still a field on intense research. Note
that when the level population is not at LTE, it is customary to define the excitation temperature
as

kBTexc = hν12/ ln
n1g2

n2g1
(3.313)

Only at LTE do we recover Texc = T . The stronger the radiation field, the larger the deviation
from LTE. The most optimistic case is to consider J21 = 0. This gives

ncrit =
A21

〈σ21v〉
(3.314)
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For atomic lines, we have A21 ' 107 Hz. We have also computed previously the collisional
deexcitation cross section as

〈σ21v〉 = 3.9× 10−10 g1

g2
T 1/2 cm3 s−1 (3.315)

We therefore find for the critical density

ncrit ' 2.5× 1016T−1/2 cm−3 (3.316)

This is the typical density of the Sun photosphere. LTE conditions can thus be found mostly in
stellar interiors. In all the other environments, we are in what is called coronal equilibrium. In
this case, we see that chemical equilibrium writes as

n2 = n1ne
〈σ12v〉
A21

(3.317)

In this regime, line emission is therefore proportional to n2. At LTE, on the other hand, line
emission is proportional to n. For molecular lines, we have A21 ' 10−7 Hz. Using the same cross
section, we find ncrit ' 103 cm−3. This corresponds to typical conditions inside dense molecular
clouds, in which modelling properly the transition from non-LTE to LTE is crucial.

3.15 Ionisation and recombinaison

This last section will be dedicated to bound-free radiation. This corresponds to inelastic colli-
sions leading to the absorption of a energetic enough photon and the ejection of a bound electron
into the continuum, or to the capture of a free electron from the continuum and the emission of
a photon. We can write these chemical reactions as

hν +H0 ←−−−→ e− +H+ (3.318)

Note that the bound electron can be in any of the previously discussed bound states. For
simplicity, however, we assume that the level population of the neutral Hydrogen atom is entirely
in the ground state.

3.15.1 Saha relation

In LTE, we can write the relation between the chemical potential. Using the fact that µν = 0,
we have

µ0 = µe + µ+ (3.319)

For each of the three species, at LTE, the distribution function follows the Maxwell-Boltzmann
with

f0 =
g0

h3
expµ0/kBT exp−E1/kBT exp

− p20
2mp

/kBT (3.320)

f+ =
g+

h3
expµ+/kBT exp

−
p2+

2mp
/kBT (3.321)

fe =
2

h3
expµe/kBT exp−

p2e
2me

/kBT (3.322)

Integrating over momentum space leads to

nH0(x, t) =

∫
R3

f0(x,p0, t)d
3p0 =

g0

h3
exp−E1/kBT expµ0/kBT

∫
R3

exp
− p20

2mp
/kBT d3p0 (3.323)
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We can integrate the Gaussian, leading to

nH0(x, t) =
g0

h3
exp−E1/kBT expµ0/kBT (2πmpkBT )3/2 (3.324)

We can write a similar equation for the number densities of the free electrons and of the naked
protons with

nH+(x, t) =
g+

h3
expµ+/kBT (2πmpkBT )3/2 (3.325)

and

ne−(x, t) =
2

h3
expµe/kBT (2πmekBT )3/2 (3.326)

The additive relation between the chemical potential forces us to combine the three number
densities into

nH+ne−

nH0

=

(
2πmekBT

h2

)3/2 2g+

g0
exp−χI/kBT (3.327)

where we introduced the ionisation potential for the ground state χI = −E1 = 13.6 eV. Note
that E1 < 0 and χI > 0. This relation, known as Saha relation, together with charge neutrality
and proton conservation allows us to determine the ionisation state of the gas at LTE.

nH+ = ne− and nH =
ρ

mp
= nH+ + nH0 (3.328)

3.15.2 Einstein-Milne relation

The previous chemical reactions lead to the absorption or the emission of a photon. Energy
conservation during the inelastic collision writes

1

2
mev

2
e +

1

2
mpv

2
+ = hν +

1

2
(mp +me)v

2
0 + E1 (3.329)

Because the proton is so much more massive than the electron, the centre of mass velocity can
be considered equal to the proton and neutral Hydrogen velocity, while the relative velocity is
equal to the electron velocity.

v+ = v0 = V and ve = v (3.330)

We then obtain the collision invariant, valid both for the emission or the absorption processes,

1

2
mev

2 = hν − χI (3.331)

We define the absorption cross-section, called the photo-ionisation cross-section σion(ν), so that
the number of collisions per unit time and per unit volume between neutral Hydrogens and
incoming photons leading to by a photo-ionisation event is

dNion = σion(ν)cfνf0d3pνd3p0dtd3x (3.332)

We define the emission cross-section, called the recombination cross-section σrec(v), so that the
number of collisions per unit time and per unit volume between protons and free electrons
leading to a recombination event is

dNrec = σrec(v)vfef+ (1 +Nν) d3ped
3p+dtd3x (3.333)

Note that in the last equation, we have properly multiply the cross-section by the Bose enhance-
ment factor for photons, which leads to the induced emission process for recombination. We
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now write the detailed balance condition for LTE, with dNion = dNrec. We already know that
d3p+ = d3p0, From energy conservation, we also get

mevdv = hdν (3.334)

The photon and electron momentum are defined as

pν =
hν

c
and pe = mev (3.335)

At LTE, we also know that the photon distribution function follows the black-body spectrum,
with

fν =
2

h3
Nν and

Nν
1 +Nν

= exp−hν/kBT (3.336)

Injecting the various LTE distribution functions in the detailed balance equation leads to

σion(ν)cg0d3pν = σrec(v)vg+d3pe (3.337)

Using mevdv = hdν together with

d3pν =
h3

c3
ν2dνdΩ and d3pe = m3

ev
2dvdΩ (3.338)

we find the Einstein-Milne relation

σion(ν)
h2ν2

c2
g0 = σrec(v)m2

ev
2g+ (3.339)

We have derived this relation at LTE, but since both cross section are microscopic properties of
the particles, they are valid all the time, even far from equilibrium. Interestingly, if we derive
the recombination cross section σrec(v), we can deduce immediately the photo-ionisation cross
section σion(ν).

3.16 Bound-free radiation

We now write the absorbed energy due to photo-ionisation events by multiplying the number of
events by the absorbed photon energy hν and integrate over Hydrogen atoms momentum space

dEion = nH0hνσion(ν)cfνd3pνdtd3x = nH0σion(ν)
h4ν3

c2
fνdνdΩdtd3x (3.340)

We recognise the specific intensity

Iν =
h4ν3

c2
fν (3.341)

We deduce that the absorption coefficient for photoionisation is

αν = nH0σion(ν) (3.342)

As before, we consider the induced emission as a negative absorption. We can do this thanks to
Einstein-Milne relation. Indeed, the energy emitted by induced emission during recombination
events can be written, after multiplying by the photon energy hν and integrating over protons
momentum space

dEinduced
rec = nH+hνσrec(v)vfeNνd3pedtd

3x = nH+hνσrec(v)vfeNνm3
ev

2dvdΩdtd3x (3.343)
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We use the connection between the free electron and the emitted photon with

1

2
mev

2 = hν − χI and mevdv = hdν (3.344)

and assume that electrons are in LTE, but not photons, so that

fe =
ne

(2πmekBT )3/2
exp−

1
2
mev2/kBT (3.345)

Injecting this into the induced emission energy and using the Einstein-Milne relation, we get

dEinduced
rec =

g0

g+

nH+ne expχI/kBT

(2πmekBT )3/2
σion(ν) exp−hν/kBT

h4ν3

c2
NνdνdΩdtd3x (3.346)

Assuming that the ionisation state is at LTE, we can use Saha relation and we get

dEinduced
rec = nH0

2

h3
σion(ν) exp−hν/kBT

h4ν3

c2
NνdνdΩdtd3x (3.347)

dEinduced
rec = nH0σion(ν) exp−hν/kBT

h4ν3

c2
fνdνdΩdtd3x (3.348)

We recognise again Iν . Adding this, with a negative sign, to the absorption coefficient, we finally
get

αν = nH0σion(ν)
(

1− exp−hν/kBT
)

(3.349)

Note that if electrons are at LTE, but the ionisation state is not at LTE, then we cannot perform
the last simplification. In the general case, the absorption coefficient writes

αν = nH0σion(ν)

(
1−

n∗H0

nH0

exp−hν/kBT

)
(3.350)

where the ∗ value refer to the H0 density computed assuming LTE. It can be obtained by
inverting Saha relation as

n∗H0 = nH+ne−
g0

2g+

(
expχI/kBT

/(
2πmekBT

h2

)3/2
)

(3.351)

Because this inverse Saha relation is quite complicated, it is customary to write it as

n∗H0 = nH+ne−f(T ) (3.352)

In order to compute the emissivity coefficient of recombination radiation, we will use the trick
of invoking Kirchhoff’s relation, which is valid if the gas is at LTE, namely

jν = ανBν(T ) (3.353)

Since again the microscopic properties of the gas are valid also outside of LTE, we get for the
emissivity coefficient

jν = n∗H0σion(ν)
2hν3

c2
exp−hν/kBT (3.354)

where again the ∗ symbol refers to the value of the neutral Hydrogen density calculated assuming
that Saha relation holds, which is different than the true nH0 .
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3.17 Recombination and photo-ionisation cross sections

We follow here the semi-classical derivation proposed by Kramers in 1923. The scenario we
present now is based on a free electron approaching a naked proton at rest on a Coulomb orbit
with impact parameter b and velocity v. We have already computed the emitted power to derive
the emissivity of Bremsstrahlung. We found the spectrum due to one single electron to be being
decelerated by the proton

dW

dω
=

8

3π

e6

c3m2
eb

2v2
for ω ≤ v

b
(3.355)

and zero otherwise. Most of the electrons will just walk by without being captured by the
proton, and contribute to the free-free, Bremsstrahlung radiation. We are interested in those
electrons that will land in one of the bound states of the Hydrogen atom. Since the classical
spectrum is flat, we can identify each photon emitted by an electron captured by level n with
the band of energy in between two consecutive bound states. The highest energy photon will
correspond to a recombination to the ground state, while lower and lower energy photons will
correspond to a recombination to less and less bound states. Following Kramers’ original idea,
we write each energy level as

En = −χI

n2
(3.356)

The frequency band between two consecutive states is

∆ω =
χI

~

(
1

n2
− 1

(n+ 1)2

)
' χI

~
2

n3
(3.357)

The cross section for the free electrons captured to a given bound state can be obtained by
requiring

dW

dω
∆ω = hν (3.358)

We use for the ionising potential

χI =
1

2

e2

rB
=
mee

4

2~2
with rB =

~2

mee2
(3.359)

We finally obtain using σrec(v) = πb2

σrec(v) =
64π3

3

e10

c3h4me

1

n3νv2
(3.360)

Using the Einstein-Milne relation with g0/g+ = n2, we immediately obtain the photoionisation
cross section as

σion(ν) =
64π3

3

e10me

ch6

1

n5ν3
(3.361)

Here again, like for Bremsstrahlung, we can introduce a Gaunt factor gbf to account for possible
quantum correction. Like for Bremsstrahlung, a factor π/

√
3 can then be introduced to account

for the exact shape of the acceleration profile. We have now computed the photo-ionisation cross
section and can therefore deduce the corresponding values for αν and jν , as explained in the
previous section. We leave to the reader as an exercise the direct computation of the emissivity
coefficient using the recombination cross section, without invoking Kirchhoff’s law. The result
should be identical.
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We now use the photo-ionisation cross section to compute recombination cooling. We restrict
ourselves to recombinations to the ground state with n = 1.

Crec =

∫ +∞

χI

4πjνdν = 4πnH+ne−f(T )

∫ +∞

χI

σion(ν)
2hν3

c2
exp−hν/kBT (3.362)

We see that the 1/ν3 dependance of the cross-section cancels out with the ν3 dependance of the
black body spectrum. We are left only with a simple integral over the exponential. Injecting
the function f(T ) from the Saha relation, we obtain

Crec = nH+ne−
128π3

3

e10

c3h3
(2πmekBT )−1/2 (3.363)

If we multiply by π/
√

3 to account for the Gaunt factor, we obtain finally

Crec = 2.24× 10−22gbfnH+ne−T
−0.5 (3.364)

If we compare this value to Bremsstrahlung cooling, we find that Hydrogen recombination cooling
dominates only for T < 105 K.

3.18 Non-LTE recombination and ionisation

In order to compute the ionisation state of the gas when it is not in LTE, we need to derive rate
equations for the ionisation/recombination balance. A very important chemical reaction needs
to be introduced first, namely collisional ionisation. It features a free electron that collides with
a neutral Hydrogen atom and manages to eject the bound electron into the continuum. It can
be written as follows

e− +H0 ←−−−→ e− + e− +H+ (3.365)

Note that it does not involve any photon. It is a pure collisional process. The reverse reaction
is called three-body recombination. In this case, the energy released by the capture of a free
electron is not provided to the system as radiation, but as an increase in the kinetic energy
of the second collision partner. This process is quite rare at low density, because it requires
to bring together 3 particles instead of 2 for binary collisions. At high density, however, it is
of primary importance, and in the absence of radiation, this is the process that will drive the
system towards LTE. We can now enumerate the 5 processes involved in the detailed ionisation
balance.

• photo-ionisation

• radiative recombination

• stimulated radiative recombination

• collisional ionisation

• three-body collisional recombination

We now compute each reaction rate one by one.
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3.18.1 Photo-ionisation rate

The total number of photo-ionisation is obtained by integrating the absorbed radiation over
angle and frequency. Only photons with hν > χI will contribute to photo-ionisations.

dnH0

dt
= −

∫ +∞

χI

∫
4π
αν

Iν
hν

dνdΩ (3.366)

where we divided by hν to get the number of photon absorbed per unit time. We use for αν our
previous result, which leads to

dnH0

dt
= −nH0

∫ +∞

χI

∫
4π
σion(ν)

Iν
hν

dνdΩ = −nH0Γion (3.367)

where the photo-ionisation rate is traditionally used and defined as

Γion =

∫ +∞

χI

4πσion(ν)
Jν
hν

dν (3.368)

where we replaced the specific intensity by the angle average intensity Jν .

3.18.2 Radiative and stimulated recombination rates

We now compute the radiative recombination rate. We have seen earlier that it was described
by the emissivity coefficient

jν = n∗H0σion(ν)
2hν3

c2
exp−hν/kBT (3.369)

where n∗H0 = nH+ne−f(T ). The recombination rate is just the total number of radiative recom-
binations, leading to

dnH0

dt
=

∫ +∞

χI

4π
jν
hν

dν = nH+ne−f(T )

∫ +∞

χI

4πσion(ν)
2ν2

c2
exp−hν/kBT dν (3.370)

It is customary to write this as
dnH0

dt
= nH+ne−αrec(T ) (3.371)

with

αrec(T ) = f(T )

∫ +∞

χI

4πσion(ν)
2ν2

c2
exp−hν/kBT dν (3.372)

A good approximation for the recombination rate is to divide the recombination cooling rate by
the ionisation potential χI = 13.6 eV. This leads to

αrec(T ) ' 1.02× 10−11T−0.5cm3s−1 (3.373)

The stimulated recombination coefficient can be computed following a similar procedure. Using
the corresponding cross section derived before, we have

dnH0

dt
=

∫ +∞

χI

∫
4π
αν

Iν
hν

dνdΩ (3.374)

with
αν = n∗H0σion(ν) exp−hν/kBT (3.375)
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This leads to
dnH0

dt
= nH+ne−f(T )

∫ +∞

χI

∫
4π
σion(ν) exp−hν/kBT

Iν
hν

dνdΩ (3.376)

We write this as
dnH0

dt
= nH+ne−Γrec(T ) (3.377)

where

Γrec(T ) = f(T )

∫ +∞

χI

4πσion(ν) exp−hν/kBT
Jν
hν

dν (3.378)

3.18.3 Collisional ionisation and three-body recombination rates

The last two rates are computed using the newly presented chemical reactions, namely ionisation
and recombination featuring no photon but only free electron. These are the equivalent of the
collisional excitations and deexcitations for line transitions. We write the collisional ionisation
rate between a free electron and an Hydrogen atom as

dnH0

dt
= −nH0ne− 〈σionv〉 = −nH0ne−αion(T ) (3.379)

Note that this is not the photo-ionisation cross section σion(ν) that depends on photon frequency.
This one depends on the electron velocity σion(v). Usually, this collision cross section is similar to
the elastic cross section we have computed for a Coulomb gas, times a small probability computed
in a quantum mechanical framework. Many astrophysical databases provide tabulated values for
this αion(T ). We can estimate it using a simple hard sphere model with constant cross section
σ0 ' 10−15 cm2, together with the requirement that the electron energy has to be larger than
the ionisation potential to be able to ionise the atom. This leads to

ne 〈σionv〉 ' σ0

∫ +∞

χI

vfe(v)dv ' neσ0

(
kBT

me

)1/2

exp−χI/kBT (3.380)

We finally obtain the collisional ionisation cross section

αion(T ) = σ0

(
kBT

me

)1/2

exp−χI/kBT (3.381)

The numerical value can be estimated as

αion = 3.9× 10−10T 1/2 exp−χI/kBT (3.382)

The reverse reaction, three-body recombination, is more tricky to compute. For the time being,
we write it formally as a three body collision, using

dnH0

dt
= nH+n2

e−δrec(T ) (3.383)

Note that we don’t need to compute this rate from first principle. We will use the same argument
as before, requiring that at LTE, if the electron density is high enough, we can neglect all the
other processes and write at chemical equilibrium

dnH0

dt
= 0 so that nH+n2

e−δrec(T ) = nH0ne−αion(T ) (3.384)
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We see that we have the relation

nH+ne−

nH0

=
αion(T )

δrec(T )
=

(
2πmekBT

h2

)3/2 2g+

g0
exp−χI/kBT (3.385)

where the right-hand side comes from Saha relation. Since the two coefficients are microscopic
properties of the plasma, this relation is valid at all time, not only at LTE. If we know αion, we
can therefore deduce δrec. Using the just derived form for the collisional ionisation coefficient,
we find for the ground state n = 1

δrec(T ) =
σ0h

3

√
8πme

(2πmekBT )−1 (3.386)

Using our simple hard sphere model, we found the following numerical form

δrec = 2.02× 10−25T−1 cm6 s−1 (3.387)

3.18.4 Ionisation rate equation

We can now combine these 5 processes into a rate equation for the formation or destruction of
H0, with

dnH0

dt
= δrec(T )nH+n2

e− + nH+ne−αrec(T ) + nH+ne−Γrec(T )− αion(T )nH0ne− − nH0Γion (3.388)

We see that the first 3 terms are all recombination processes. At high density, they will be
dominated by the three-body term because it scales as n3, while the others scale as n2. The last
2 terms are all ionisation processes, and here again the first one will dominate at high density
because it scales as n2, while the other scales only as n. The high density regime will be reached
if the electron density exceed a critical density. The most optimistic case is to consider no
radiation, which leads to

ncrit =
αrec(T )

δrec(T )
(3.389)

Using the numerical values we have computed in the previous sections for these rates, we find
the critical electron density

ncrit ' 5.05× 1013T 1/2 cm−3 (3.390)

The high density regime with ne > ncrit will ensure most of the time that conditions are close to
LTE, and one can then use the Saha relation. This regime is reached in dense stellar interiors.
The low density regime with ne < ncrit is for everything else. It is called coronal equilibrium
because it applies to stellar corona. This regime is of course valid in the interstellar medium
and even more in the intergalactic medium. In the very low density regime, ionisation equilib-
rium may not be reached. This means one has to solve the full time-dependant ionisation rate
equation.



Chapter 4

Collisionless self-gravitating fluids

In astrophysics, gravity (more precisely self-gravity ), plays a central role. It is probably the main
difference between astrophysics and many other disciplines in physics. In Chapter 1 (kinetic
theory), we have introduced gravity as an external force. In Chapter 2 (astrophysical fluid
dynamics), we have introduced the self-gravity of the gas also as an external force, without
really justifying how we could do it. In this Chapter, we will focus on self-gravitating systems,
such as galaxies or dark matter halos, for which the basic constituents, either stars or dark matter
particles, can be considered as individual microscopic particles interacting through their mutual
gravity. In this Chapter, gravity is not an external force anymore, it is the interaction between
the particles defining the system. It plays the same role as the Coulomb interaction or the
hard sphere interaction we have considered in the kinetic theory Chapter, who are considered as
short-range interactions only. In self-gravitating systems, gravity plays a role both at small scale,
causing collisions, and at large scale, defining what will be defined later as the coarse-grained
gravitational potential.

Indeed, in this Chapter, starting from the very general ”N-body system” approach, we
will be able to define precisely what is a collisionless system of particles, and justify why self-
gravity can be treated as an external force in the collisionless Boltzmann equation, although it
is obviously an internal force. Very famous collisionless systems are galaxies, like our own Milky
Way, made of a very large N = 1012 ensemble of individual stars. Galaxies are also surrounded
by a halo made of a very mysterious dark matter fluid, with a new, yet to be detected, type
of microscopic particles that interact only through gravity. How many dark matter particles
do we have in the Milky Way halo ? We don’t know because we don’t know the dark matter
particle mass. It could be N = 1070 if the particle mass is close to the proton mass, or it
could be 2000 more if it is closer to the electron mass. Other systems cannot be considered as
collisionless, because they are dominated by small-range gravitational interactions. For example,
globular clusters, made of N = 106 stars, are affected by collisions between stars, leading to
a process called gravitational evaporation. In general, star clusters, forming out of collapsing
molecular clouds, suffer from many collisional effects and as such cannot be described by the
collisionless Boltzmann equation. We will ignore the theory of such collisional systems in this
course, focusing only on vanilla collisionless dynamics, and describing only at the very end of the
Chapter a few collisional processes, such as dynamical friction. We will solve the collisionless
Boltzmann equation and find many interesting equilibrium solution in spherical and cylindrical
geometry. Like for fluid dynamics, we will also study the stability of these equilibrium solution,
looking for possibly stable or unstable waves.

168
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4.1 Theory of N-body systems

We consider a system of N stars or dark matter particles with identical mass m and subject
to their mutual gravitational interaction. We will follow here the formalism of Hamiltonian
dynamics. Since our particles are non-relativistic and since gravity follows Newton’s law, we can
write the Hamiltonian of our system as:

H =
N∑
i=1

p2
i

2m
−Gm2

N∑
i=1

i−1∑
j=1

1

|qi − qj |
(4.1)

Note that the potential term accounts for all binary interaction, without double-counting. The
system is described by the momenta and positions of each of the N particles, defining a single
point in a 6N dimensional phase-space (q1,p1,q2,p2, . . . ,qN ,pN ). Following Hamiltonian’s
dynamics, the trajectory of each of these N particles is described by

q̇i = vi =
∂H

∂pi
=

pi
m

(4.2)

and

ṗi = mv̇i = −∂H
∂qi

= −Gm2
N∑
j=1

qi − qj

|qi − qj |3
(4.3)

Note that the mutual interaction could be in principle any type of interaction that depends
only on the relative distance between particles, like the Coulomb interaction or the hard sphere
interaction. We will keep this in mind later but for the time being we consider only self-gravity.
Although such a dynamical Hamiltonian system conserves strictly mass and energy (and angular
momentum as we will see later), it won’t be able to reach an equilibrium, because stars or dark
matter particles will keep on moving in complex orbits. We won’t be able to find a stationary
solution in such a dynamical system.

4.1.1 The N-point probability distribution function

Indeed, the particle distribution function f defined in the first Chapter (kinetic theory) as the
6D density of particle in phase-space at position (q,p), can be written in the N -body context
as

f(q,p, t) =
N∑
i=1

δ(q− qi(t),p− pi(t)) (4.4)

where δ is the Dirac delta distribution. This approach is exact and deterministic, but not
very useful in practice, especially if one hopes to find equilibrium or stationary solutions. We
need to adopt a probabilistic view, where individual particle trajectories, corresponding to one
single point dynamically evolving in 6N phase-space, are replaced by the N -body probability
distribution function ρN , so that we can define

dP = ρN (q1,p1,q2,p2, . . . ,qN ,pN , t) d3q1d3p1d3q2d3p2 . . . d
3qNd3pN (4.5)

as the probability to find our system within a small volume elements around the given position in
the 6N dimensional phase-space. Obviously, this probability distribution function is normalized
such as ∫

R6N

dP = 1. (4.6)
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It is possible to compute various moments of any microscopic quantity Q by integrating it over
phase-space. It is usually referred to as the ensemble average of Q and defined as

Q =

∫
R6N

Q (q1,p1,q2,p2, . . . ,qN ,pN ) ρNd3q1d3p1d3q2d3p2 . . . d
3qNd3pN (4.7)

In particular, for each 6D phase-space coordinate (q,p), we can compute the expectation value
of the distribution function f as

f(q,p, t) =
N∑
i=1

∫
R6N

δ(q− qi,p− pi)ρNd3q1d3p1d3q2d3p2 . . . d
3qNd3pN (4.8)

In each term of the sum, we can integrate out the coordinate corresponding to each δ-function
and find

f(q,p, t) = N

∫
R6(N−1)

ρN (q,p,q2,p2, . . . ,qN ,pN , t) d3q2d3p2 . . . d
3qNd3pN (4.9)

where we used the fact that the N -point probability distribution function remains unchanged
when permuting the particles. We recognize in this last equation the one-point probability
distribution function defined as

ρ1(q1,p1, t) =

∫
R6(N−1)

ρN (q1,p1,q2,p2, . . . ,qN ,pN , t) d3q2d3p2 . . . d
3qNd3pN (4.10)

which is related to the particle distribution function f by

f(q,p, t) = Nρ1(q,p, t) (4.11)

We see that in order to find an evolution equation for f , we need to find one for ρ1, which means
finding at least the time evolution of ρN .

4.1.2 Liouville’s theorem

We will now derive an evolution equation for the N -point probability distribution function ρN
using a new form of Liouville theorem. We consider an infinitesimal volume element around
a given point in 6N -dimensional phase-space. Using a small time step ∆t, we know the new
position of our system in phase-space will be given by a first-order Taylor expansion of Hamilton’s
equations as

qi = qi,0 +
∂H

∂pi
∆t (4.12)

pi = pi,0 −
∂H

∂qi
∆t (4.13)

Note that these N different equations with i = 1, N define a coordinate mapping between the
two phase-spaces at t = 0 and at t = ∆t. We would like to compute the new volume element in
6N -dimensional phase-space

dV = d3q1d3p1d3q2d3p2 . . . d
3qNd3pN (4.14)

as a function of the old one

dV0 = d3q1,0d3p1,0d3q2,0d3p2,0 . . . d
3qN,0d3pN,0 (4.15)
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This is done as usual, using the determinant of the Jacobian matrix, which writes now (in 1D
instead of 3D for sake of simplicity) as

|det J| =
N∏
i=1

∣∣∣∣∣1 + ∂2H
∂pi∂qi

∆t ∂2H
∂p2
i
∆t

−∂2H
∂q2
i
∆t 1− ∂2H

∂qi∂pi
∆t

∣∣∣∣∣ (4.16)

For the same reasons as before, the linear terms in ∆t vanish and we find that the time derivative
of the volume element is zero, hence the volume element is conserved. Because the number of
possible states for our system is also conserved during this Hamiltonian evolution, the probability
dP is conserved. We conclude that the probability distribution function is constant in time. In
other worlds, we have

d

dt
[ρN (q1(t),p1(t),q2(t),p2(t), . . . ,qN (t),pN (t))] = 0 (4.17)

or, applying the chain rule, we find

∂ρN
∂t

+

N∑
i=1

(
∂ρN
∂qi

· q̇i +
∂ρN
∂pi

· ṗi
)

= 0 (4.18)

Using Hamilton’s equations, we transform this into

∂ρN
∂t

+
N∑
i=1

(
∂ρN
∂qi

· ∂H
∂pi
− ∂ρN
∂pi

· ∂H
∂qi

)
= 0 (4.19)

which can be written in the compact form

∂ρN
∂t

+ {ρN , H} = 0 (4.20)

where we introduce the N -dimensional Poisson bracket as

{A,B} =

N∑
i=1

(
∂A

∂qi
· ∂B
∂pi
− ∂A

∂pi
· ∂B
∂qi

)
(4.21)

We see now that a stationary solution of Liouville’s equation can be found requiring that ∂ρN
∂t = 0.

A rather general class of possible solution can be found easily with probability distribution
functions of the form ρN (H). In this case, one can indeed write the Poisson bracket as

{ρN , H} = ρ′N (H)
N∑
i=1

(
∂H

∂qi
· ∂H
∂pi
− ∂H

∂pi
· ∂H
∂qi

)
= 0 (4.22)

We will use this nice property later.

4.2 The BBGKY hierarchy

In order to describe equilibrium collisionless systems, we are mostly interested in the particle
distribution function (noted PDF from now on), more precisely its expectation value f , which is
proportional to the one-point probability distribution function ρ1. We will now derive a famous
result derived independently by multiple authors across the world in the late 30’s and early 40’s
and called the BBGKY hierarchy of equations (after Bogoliubov, Born, Green, Kirkwood and
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Yvon in alphabetical order). The idea of the BBGKY equations is to connect the P -point PDF
to the (P + 1)-point PDF. This way, we can compute the one-point PDF ρ1 as a function of
the two-point PDF ρ2, and so on, until we reach the relation between ρN−1 and ρN at the very
bottom of the hierarchy.

The calculation can be performed by splitting the N -body Hamiltonian into 3 different terms
H = HP+HN−P+Hcross, where the first term stands for the kinetic energy of the P first particles
and the interactions between only these P first particles.

HP =

P∑
i=1

p2
i

2m
−Gm2

P∑
i=1

i−1∑
j=1

1

|qi − qj |
(4.23)

The second term contains the kinetic energy of the last N − P particles and the interactions
term of only these N − P last particles.

HN−P =

N∑
i=P+1

p2
i

2m
−Gm2

N∑
i=(P+1)

i−1∑
j=(P+1)

1

|qi − qj |
(4.24)

Finally, the cross term contains no kinetic energy contribution and the cross interaction terms
between the two groups of particles.

Hcross = −Gm2
N∑

i=(P+1)

P∑
j=1

1

|qi − qj |
(4.25)

We now write the definition of the P -point PDF as

ρP (q1,p1, . . . ,qP ,pP , t) =

∫
R6(N−P )

ρN (q1,p1, . . . ,qN ,pN , t) d3q(P+1)d
3p(P+1) . . . d

3qNd3pN

(4.26)
We take the partial time derivative, which writes as

∂ρP
∂t

=

∫
R6(N−P )

∂ρN
∂t

d3q(P+1)d
3p(P+1) . . . d

3qNd3pN (4.27)

Injecting Liouville’s equation, we get

∂ρP
∂t

= −
∫
R6(N−P )

{ρN , H} d3q(P+1)d
3p(P+1) . . . d

3qNd3pN (4.28)

We then split the Hamiltonian into the previously discussed 3 terms, which translates into 3
different contributions to the partial time derivative of ρP . The first term, using notations that
now should make sense, is(

∂ρP
∂t

)
P

= −
∫
R6(N−P )

{ρN , HP }d3q(P+1)d
3p(P+1) . . . d

3qNd3pN (4.29)

Since the P first particles only Hamiltonian does not depend on any of the dummy variables in
the integral (they correspond to the N −P last particles only), we can take it out of the integral
and obtain (

∂ρP
∂t

)
P

= −
{∫

R6(N−P )

ρNd3q(P+1)d
3p(P+1) . . . d

3qNd3pN , Hn

}
(4.30)
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In the left-hand side of the Poisson bracket, we recognise the definition of the P -point PDF, so
finally this first term writes (

∂ρP
∂t

)
P

= −{ρP , HP } (4.31)

The second term corresponds to the Hamiltonian of the last N −P particles and writes as such
as (

∂ρP
∂t

)
N−P

= −
∫
R6(N−P )

{ρN , HN−P }d3q(P+1)d
3p(P+1) . . . d

3qNd3pN (4.32)

Writing the definition of the Poisson bracket using now index k (because index i and j are
already taken for the Hamiltonian HN−P )

{ρN , HN−P } =

N∑
k=1

(
∂ρN
∂qk

· ∂HN−P
∂pk

− ∂ρN
∂pk

· ∂HN−P
∂qk

)
(4.33)

we notice that the sum can actually start at index (P + 1) because HN−P depends only on the
last N − P positions and momenta. Injecting the definition of HN−P , we obtain

{ρN , HN−P } =
N∑

k=(P+1)

∂ρN
∂qk

· pk
m
− ∂ρN
∂pk

·Gm2
N∑

j=(P+1)

qk − qj

|qk − qj |3

 (4.34)

From this expression, we conclude that the second term is identically zero, because, on the left-
hand side and on the right-hand side of the Poisson bracket, the two terms can be integrated
by separating the positions and momenta variables. This leads to a cancellation of the integral,
because the left term can be integrated formally as∫

R3

∂ρN
∂qk

d3qk = [ρN ]+∞−∞ = 0 (4.35)

and the right term can be integrated as∫
R3

∂ρN
∂pk

d3pk = [ρN ]+∞−∞ = 0 (4.36)

In conclusion, we have (
∂ρP
∂t

)
N−P

= 0 (4.37)

Let’s now deal with the third term that contains the cross interaction Hamiltonian. We have(
∂ρP
∂t

)
cross

= −
∫
R6(N−P )

{ρN , Hcross} d3q(P+1)d
3p(P+1) . . . d

3qNd3pN (4.38)

Here again we have to develop the Poisson bracket using index k

{ρN , Hcross} =

N∑
k=1

(
∂ρN
∂qk

· ∂Hcross

∂pk
− ∂ρN
∂pk

· ∂Hcross

∂qk

)
= −

N∑
k=1

∂ρN
∂pk

· ∂Hcross

∂qk
(4.39)

where the last equality is obtained by noticing that the cross Hamiltonian does not contain any
momenta-dependent terms. We now compute the gradient of the cross Hamiltonian as

{ρN , Hcross} = −Gm2
P∑
k=1

∂ρN
∂pk

·
N∑

j=(P+1)

qk − qj

|qk − qj |3

−Gm2
N∑

k=(P+1)

∂ρN
∂pk

·
P∑
j=1

qk − qj

|qk − qj |3


(4.40)
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For the same reason as above, the second sum vanishes when integrated over the N − P last
phase-space dummy variables. We are left with only the first term on the left that we develop
and re-write switching the sum over k and the sum over j as

{ρN , Hcross} = −Gm2
N∑

j=(P+1)

P∑
k=1

qk − qj

|qk − qj |3
· ∂ρN
∂pk

(4.41)

When we perform the integral over the last N − P dummy variables, we can also perform a
permutation of each index j leaving the integral unchanged. This leads us to the almost final
result (where we set j = (P + 1))(

∂ρP
∂t

)
cross

= (N − P )Gm2

∫
R6(N−P )

P∑
k=1

qk − q(P+1)∣∣qk − q(P+1)

∣∣3 · ∂ρN∂pk
d3q(P+1)d

3p(P+1) . . . d
3qNd3pN

(4.42)
Introducing now the (P + 1)-point PDF

ρ(P+1) =

∫
R6(N−P−1)

ρNd3q(P+2)d
3p(P+2) . . . d

3qNd3pN (4.43)

we find the expression for the third term

(
∂ρP
∂t

)
cross

= (N − P )Gm2

∫
R6

P∑
k=1

qk − q(P+1)∣∣qk − q(P+1)

∣∣3 · ∂ρ(P+1)

∂pk
d3q(P+1)d

3p(P+1) (4.44)

Combining this last equation with the first term we derived (remember that the second term
vanished), we finally obtain the main equation of the BBGKY hierarchy

∂ρP
∂t

+ {ρP , HP } = (N − P )Gm2
P∑
k=1

∫
R6

qk − q(P+1)∣∣qk − q(P+1)

∣∣3 · ∂ρ(P+1)

∂pk
d3q(P+1)d

3p(P+1) (4.45)

This equation can be interpreted as follows: in absence of interaction force with the N−P other
particles, the time evolution of the P -point PDF is also following the Liouville’s equation but
only for the sub-system of P particles, totally ignoring the other N − P particles. The term on
the right-hand side can be considered as a collision integral between the P particle group we
have chosen to follow here and any other particle in the other N − P particle group. We see
that this equation sets a hierarchy in which ∂ρ1

∂t depends on ρ2, ∂ρ2

∂t depends on ρ3, and so on,

until we reach ∂ρN
∂t given by Liouville’s equation without a collision term.

4.2.1 The collisionless Boltzmann equation

As we said earlier, what we really need here to describe possible equilibrium systems is the
particle distribution function f or equivalently the one-point PDF ρ1, since we have the relation

f = Nρ1 (4.46)

For P = 1, we have for the one-particle Hamiltonian

H1 =
p2

1

2m
(4.47)
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because a single particle does not interact gravitationally with itself. The first equation in the
BBGKY hierarchy then writes

∂ρ1

∂t
+

p1

m
· ∂ρ1

∂q1
= (N − 1)Gm2

∫
R6

q1 − q2

|q1 − q2|3
· ∂ρ2

∂p1
d3q2d3p2 (4.48)

We see that it depends on the two-particle PDF ρ2, for which the two-particle Hamiltonian
writes now (P = 2)

H2 =
p2

1

2m
+

p2
2

2m
−Gm2 1

|q1 − q2|
(4.49)

so that the second equation in the BBGKY hierarchy writes

∂ρ2

∂t
+

p1

m
· ∂ρ2

∂q1
+

p2

m
· ∂ρ2

∂q2
−Gm2 q1 − q2

|q1 − q2|3
·
(
∂ρ2

∂p1
− ∂ρ2

∂p2

)
= (4.50)

(N − 2)Gm2

∫
R6

(
q1 − q3

|q1 − q3|3
· ∂ρ3

∂p1
+

q2 − q3

|q2 − q3|3
· ∂ρ3

∂p2

)
d3q3d3p3

Be reassured, we are going to stop the hierarchy here with this second equation. It is indeed
quite clear that this second equation features on the left hand side the relative force between
the two interacting particles 1 and 2, while the right-hand side contains the collision integral
with all possible third particles. These two contributions are fundamentally different. The left-
hand side interaction is local and describes two-body interactions. One might even call these
interactions“collisions”. The right-hand side is non-local as it features an integral over the entire
phase-space of particles of type 3. This is the gravitational interaction due to the large-scale
distribution of matter, in which distant particles dominates the integral. Note that the first
equation in the hierarchy only contains a large-scale contribution. This is why we need the
second equation of the hierarchy to define precisely what is a collisionless fluid.

Because the collision integral on the right-hand side is dominated by distant particles, we
can assume that the three-point PDF evaluated at the third particle coordinates is completely
uncorrelated with the two collision partners. Mathematically, this writes

ρ3(q1,p1,q2,p2,q3,p3) ' ρ2(q1,p1,q2,p2)ρ1(q3,p3) (4.51)

Note that this is equivalent to ignoring three-body collisions in setting up the properties of the
system. This is usually a valid assumption for rarefied gases. The collision integral can be
simplified greatly. We define first the fluid mass density as

ρ(q3) =

∫
R3

mf(q3,p3)d3p3 = Nm

∫
R3

ρ1(q3,p3)d3p3 (4.52)

which is exactly the same definition we use in Chapter 1 on kinetic theory. We then define the
total gravitational acceleration due to the entire particle distribution, also called the contribution
from the mean field φ.

g(q1) = −G
∫
R3

q1 − q3

|q1 − q3|3
ρ(q3)d3q3 = − ∂φ

∂q1
(4.53)

where the gravitational field is given by

φ(q1) = −G
∫
R3

ρ(q3)

|q1 − q3|
d3q3 (4.54)

Note that this is the gravity we are familiar with in fluid dynamics, defined by

g = −∇φ with ∆φ = 4πGρ (4.55)
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We can now simplify the collision integral quite drastically and we obtain a new right-hand side
for the second equation in the hierarchy

N − 2

N

(
−mg(q1) · ∂ρ2

∂p1
−mg(q2) · ∂ρ2

∂p2

)
(4.56)

If N is large enough, we can safely assume that N − 2 ' N and the second equation in the
hierarchy writes finally

∂ρ2

∂t
+

p1

m
· ∂ρ2

∂q1
+

p2

m
· ∂ρ2

∂q2
−Gm2 q1 − q2

|q1 − q2|3
·
(
∂ρ2

∂p1
− ∂ρ2

∂p2

)
' −mg1 ·

∂ρ2

∂p1
−mg2 ·

∂ρ2

∂p2

(4.57)
We can now rigorously define two regimes:

• the collisionless limit, for which the two-particle interaction term is always negligible
compared to the mean field contributions

• the collisional limit, for which the two-body interaction is always stronger than the
mean field contribution.

Mathematically, this boils down to comparing the magnitude of these two terms

−Gm q1 − q2

|q1 − q2|3
and {g1,g2} (4.58)

In this section, we are interested in the collisionless case, so we can write the second equation
of the hierarchy as this very simple equation

∂ρ2

∂t
+

p1

m
· ∂ρ2

∂q1
+

p2

m
· ∂ρ2

∂q2
+mg1 ·

∂ρ2

∂p1
+mg2 ·

∂ρ2

∂p2
= 0 (4.59)

We see that the gravitational acceleration comes only from the mean field contribution, where
long-range forces dominate. There is therefore no reason why strong correlations between nearby
particles should appear. We can therefore make the bold statement that particles of type 1 and
particles of type 2 are also uncorrelated,

ρ2(q1,p1,q2,p2) ' ρ1(q1,p1)ρ1(q2,p2) (4.60)

and re-write now the first equation in the hierarchy as

∂ρ1

∂t
+

p1

m
· ∂ρ1

∂q1
' −N − 1

N
mg1 ·

∂ρ1

∂p1
(4.61)

Assuming again that N is large enough so that N − 1 ' N , we finally obtain the collisionless
Boltzmann equation (CBE), also known as the Vlasov equation

∂ρ1

∂t
+

p1

m
· ∂ρ1

∂q1
+mg1 ·

∂ρ1

∂p1
= 0 (4.62)

We see that if initially we start from an uncorrelated particle distribution with ρ2(q1,p1,q2,p2) =
ρ1(q1,p1)ρ1(q2,p2), then the second equation of the hierarchy is automatically satisfied by the
first equation of the hierarchy and the property of the particles being uncorrelated is preserved
at all time. These are the conditions for having a true collisionless system: uncorrelated initial
conditions and gravitational interactions dominated by the mean field at all time and every-
where. In the next section, we will derive a quantitative condition for the collisionless limit to
be valid, based on the relaxation time.
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4.2.2 The collisional Boltzmann equation

Before we move on, we can discuss briefly the other limit, namely the strong collisional limit.
In this case, the second equation of the BBGKY hierarchy can be written as

∂ρ2

∂t
+

p1

m
· ∂ρ2

∂q1
+

p2

m
· ∂ρ2

∂q2
−Gm2 q1 − q2

|q1 − q2|3
·
(
∂ρ2

∂p1
− ∂ρ2

∂p2

)
= 0 (4.63)

in which we dropped the mean field contributions. We see that this equation becomes purely
local in phase-space and in fact describes a collision between two particles. In this case, the two-
particle PDF is strongly correlated and the right-hand side of the first equation of the hierarchy
cannot be simplified as in the collisionless case. It is more convenient here to replace q1 and
u1 = p1/m and q2 and u2 = p2/m by the centre of mass position Q and velocity V and the
relative position q and velocity v defined here as

Q =
q1 + q2

2
and q = q1 − q2 and V =

u1 + u2

2
and v = u1 − u2 (4.64)

Using these new variables, we can write the second equation of the BBGKY hierarchy as

∂ρ2

∂t
+ V · ∂ρ2

∂Q
+ v · ∂ρ2

∂q
= Gm2 q1 − q2

|q1 − q2|3
·
(
∂ρ2

∂p1
− ∂ρ2

∂p2

)
(4.65)

Remember that, during the collision, the centre of mass velocity is conserved and, as a conse-
quence, the centre of mass position is just a straight line. The time derivative and the spatial
derivative with respect to the centre of mass can both be neglected during the collision, as they
both evolve on macroscopic time scales. We therefore obtain a balance between the convective
term and the force term, both depending on the relative position during the collision, which
writes as

v · ∂ρ2

∂q
= Gm2 q1 − q2

|q1 − q2|3
·
(
∂ρ2

∂p1
− ∂ρ2

∂p2

)
(4.66)

Let us write again the first equation of the hierarchy.

∂ρ1

∂t
+

p1

m
· ∂ρ1

∂q1
= (N − 1)Gm2

∫
R6

q1 − q2

|q1 − q2|3
· ∂ρ2

∂p1
d3q2d3p2 (4.67)

We now modify the right-hand side by adding a term that is equal to zero, for again the same
reason as before, namely that we can integrate out the derivative of ρ2 with respect to the second
momentum.

∂ρ1

∂t
+

p1

m
· ∂ρ1

∂q1
= (N − 1)Gm2

∫
R6

q1 − q2

|q1 − q2|3
·
(
∂ρ2

∂p1
− ∂ρ2

∂p2

)
d3q2d3p2 (4.68)

We recognise in the integral the term we obtained using the second equation of the hierarchy.
We can therefore replace it using collision equilibrium condition as

∂ρ1

∂t
+

p1

m
· ∂ρ1

∂q1
= (N − 1)

∫
R6

v · ∂ρ2

∂q
d3qd3p2 (4.69)

Note that we changed variables in the integral from (q1,q2) to (Q,q). We now choose in the
integral the x-axis aligned with the relative velocity v. For the perpendicular plane, we use
a polar coordinate system with variable b and φ, where b is the impact parameter and φ the
collision plane angle. With d3q = dqbdbdφ, we have

∂ρ1

∂t
+

p1

m
· ∂ρ1

∂q1
= (N − 1)

∫
R3

∫ +∞

0

∫ 2π

0

∫ +∞

−∞
v
∂ρ2

∂q
dqbdbdφd3p2 (4.70)
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We can easily integrate ρ2 over q and obtain

∂ρ1

∂t
+

p1

m
· ∂ρ1

∂q1
= (N − 1)

∫
R3

∫ +∞

0

∫ 2π

0
v
(
ρ+∞

2 − ρ−∞2

)
bdbdφd3p2 (4.71)

Long before the collision, because of the large distances involved, the 2-point PDF at −∞ can
be considered as uncorrelated, so that

ρ−∞2 ' ρ1(Q,p1)ρ1(Q,p2) (4.72)

Note that here the centre of mass coordinate is considered fixed during the collision. This is not
strictly correct, as only the centre of mass velocity is conserved, but can be justified by the fact
that the centre of mass coordinate evolves very slowly, on a macroscopic time scale. The 2-point
PDF after the collision, on the other hand, is not uncorrelated, precisely because of the effect
of the collision. We can however compute its value using the reverse collision with incoming
velocities u′1 and u′2 corresponding to the outgoing velocities we have for the direct collision with
incoming velocities u1 and u2. We thus write

ρ+∞
2 (Q,p1,p2) = ρ−∞2 (Q,p′1,p

′
2) ' ρ1(Q,p′1)ρ1(Q,p′2) (4.73)

Finally, multiplying the entire equation by N and assuming again that N − 1 ' N , we obtain
the collisional Boltzmann equation in a form identical to the one we have found in Chapter 1.

∂f

∂t
+ v1 ·

∂f

∂q1
=

∫
R3

∫ +∞

0

∫ 2π

0

(
f ′1f
′
2 − f1f2

)
vbdbdφd3p2 (4.74)

For a collisional ionised gas, we have to consider two types of interaction, the gravitational
interaction and the Coulomb interaction. All the previous calculations can be performed also
for the Coulomb interaction, replacing Gm2 by e2 (using cgs units of course). On small scales,
the Coulomb interaction will dominate the gravitational one and the latter can be ignored. We
then find the collision integral of the Boltzmann equation based only on the Coulomb force. On
scales larger than the Debye length, the plasma develops an almost perfect charge neutrality and
only the gravitational interaction matters. Remember that on large scale the two-point PDF
is uncorrelated and therefore the collision integral for self-gravity simplifies into the mean field
contribution. This is how one justifies why we can consider self-gravity as an external force in
the Boltzmann and Euler equations for self-gravitating collisional fluids (see Chapter 2).

4.2.3 The relaxation time

We have seen in the previous paragraph that the most important condition for a collisionless
system is that the mean field force is much larger than the relative force during a binary collision.
In other words, it means that each particle in the system follows a strict Hamiltonian evolution
with a gravitational force due to the mean field, equivalent to an external gravitational field.
Because the evolution is described by a one-particle Hamiltonian, without a collision term on
the right-hand side, the particle total energy (kinetic plus potential) is strictly conserved along
its orbit. If on the other hand, individual binary collisions play a role, we don’t expect the
total energy of the particle to be conserved. The system will not be described by a one-particle
Hamiltonian anymore. In this section, we will compute the relaxation time, as the time needed
for binary collisions to dissipate the orbital energy. Obviously, if this time is long enough, then
we can conclude that the system is indeed collisionless. If on the other hand, the relaxation time
is comparable to the orbital time, then we can conclude that collisional effects will be strong.
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We consider a system of N particles (or stars) in virial equilibrium. The total mass of the
system is M = Nm where m is the particle mass. We also assume that the system is spherical,
with volume V = 4π/3R3. The mean particle density is n = N/V . We then consider one
particular particle that we want to follow along its orbit. Traditionally, this particle is called
the subject star and is labelled s. All the other particles in the system are called the field stars
and are labelled f . We put ourselves in the frame where the subject star is at rest and its
coordinates xs define the origin of the Cartesian axis. A more rigorous derivation would have
considered the center of mass of the collision instead. We then consider a collision partner as
one of the field stars. As always (see Chapter 1), we model the binary collision with the x-axis
aligned with the direction of the relative velocity v between the two collision partners, and the
impact parameter b as the distance between the incoming trajectory of the field star and the
x-axis. For sake of simplicity, we assume that the relative velocity is the same for all particle
and equal to v.

We use the so-called Born approximation, also named the “small deflection angle” approxi-
mation. In this case, the trajectory of the field star is just

x ' vt and y ' b (4.75)

where the time coordinate is defined so that t = 0 correspond to the collision. We can compute
the vertical acceleration felt by the subject star as

ay =
Gm

(x2 + y2)3/2
y ' Gm

(v2t2 + b2)3/2
b (4.76)

After the collision when t → +∞, the subject star will have a net positive velocity kick in the
y direction and with magnitude

∆v =

∫ +∞

−∞
ay(t)dt '

2Gm

bv
(4.77)

Note that the velocity change in the x direction is zero because the longitudinal accelerations
sum up to zero before and after the collision. After this single collision, the subject star kinetic
energy was increased by the amount

∆K =
1

2
∆v2 =

2G2m3

b2v2
(4.78)

We now compute the rate of change of the kinetic energy of the subject star by multiplying this
single discrete kinetic energy kick by the collision rate with all field stars of relative velocity
v. For this, we use the collision cylinder technique that should now be familiar, with volume
dV = 2πbdbvdt

dK

dt
=

∫ bmax

bmin

∆Kn2πbdbv =
4πG2m2

v
n log

bmax

bmin
(4.79)

We recognize here the classical Coulomb logarithm logΛ that appears quite naturally for gravity
too. We cannot integrate between zero to infinity, as it would diverge, We need to choose a
maximum and a minimum value. For the maximum impact parameter, we choose the system
size bmax = R. For the minimum value, we choose the “90 degree deflection angle” value given
by

bmin =
2Gm

v2
(4.80)

The justification is that those field stars will be removed from the vicinity of the orbit of the
subject stars and will not contribute to the integral.
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We now use the fact that our field stars are in virial equilibrium. The virial theorem writes
here 2K+V = 0 where the kinetic energy of the system is K = 1

2Mv2 and the virial is 3
5GM

2/R
for a uniform sphere. This gives

v2 =
3

5

GM

R
and bmin =

10

3

R

N
and finally logΛ ' logN (4.81)

We define the relaxation time as

dK

dT
=

K

trelax
where K =

1

2
v2 (4.82)

We want to express it in unit of the orbital time torb = R/v. From our previous calculations,
we get

1

trelax
=

1

torb

8πGm2R

v4
n logN (4.83)

Injecting the value for v2 we found from using the virial theorem, we get

1

trelax
=

1

torb

200πm2R3

9M2

N

V
logN (4.84)

Using now V = 4π/3R3, we finally get the famous result

trelax ' torb
1

16

N

logN
(4.85)

Interestingly enough, in our simplified approach using a uniform virialized sphere, the relaxation
time depends only on the number of particles. We can now examine a few well-known stellar
systems and check whether they can be considered as collisionless system or not. The Milky
Way, for example, contains approximately N = 400 billion stars. This gives us trelax = 109torb

for an orbital time is 200 Myr. The Milky Way is clearly a collisionless stellar system. A
typical globular cluster, on the other hand, can have as low as N = 105 stars. This results in
trelax = 500torb. We have to be careful here. Indeed, globular clusters are very old objects, as
old as the universe. The orbital time for globular clusters can be estimated to be 10 Myr, giving
a relaxation time of 5 Gyr, smaller than the age of the Universe which is 13 Gyr. Globular
clusters are therefore not collisionless systems and they cannot be described accurately by the
collisionless Boltzmann equation.

4.3 Potential-density pairs

In what follows, we assume that the conditions for having a collisionless system are fulfilled. We
can then now describe the distribution of the stars or dark matter particles using the distribution
function f which encodes the number of stars or dark matter particle per phase-space fluid
element as

dN = f(x,p)d3xd3p (4.86)

Note that compared to the previous sections, we are now abandoning the notation f . Indeed,
the distribution function f should be interpreted as the expectation of the number of parti-
cles in the phase-space element, not the actual number which can always fluctuate with time.
As the BBGKY analysis has demonstrated, the distribution function satisfies the collisionless
Boltzmann equation, thereafter noted CBE, which writes

∂f

∂t
+

p

m
· ∇f −m∇φ · ∂f

∂p
= 0 (4.87)
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where the gravitational potential is the solution of the Poisson equation

∆φ = 4πGρ (4.88)

and the fluid density is given by the zeroth-order moment of the distribution function as

ρ(x, t) =

∫
R3

mf(x,p, t)d3p (4.89)

In order to solve for the time evolution of f , we need to know the initial conditions at t = 0,
then compute ρ by integrating f in momentum space, then solve for the Poisson equation and
then finally update f using the CBE. In this sequence, one key step is to solve for the Poisson
equation. Indeed, if one knows ρ, one can immediately deduce φ, assuming we have proper
boundary conditions. Reversely, if one know φ, then using the Laplace operator will give us
immediately ρ. These two scalar fields actually defines what is called a potential-density pair.
We explain in this section how to compute potential density pair in two useful cases, namely
spherical symmetry and cylindrical symmetry. But before we do that, let us first define a useful
quantity, namely the gravitational potential energy associated to the potential-density pair.

4.3.1 Gravitational potential energy

An important quantity to characterize a potential-density pair is the gravitational potential
energy. It is defined as the total work required to bring the equilibrium system from infinity to
its current state. For an isolated particle embedded into a fixed external gravitational potential
φ, this can be computed as

Epot =

∫ x

+∞
δW = −

∫ x

+∞
F · dx = m

∫ x

+∞
∇φ · dx = mφ(x) (4.90)

In this case, we see that the gravitational potential energy is equal to the gravitational potential
multipled by the particle mass. In case of a potential-density pair (ρ(x), φ(x)), the situation
is more complicated because the system is self-gravitating. We have to take into account the
fact that bringing particles one by one from infinity will change the gravitational acceleration as
the entire system is assembled. Let us first consider the system in an intermediate state where
only a small fraction of the total mass has been already collected from infinity. If we had one
additional particle at position x, the increase in gravitational energy will be

δEpot = mφ(x) (4.91)

If now we collect new particles at each position in the system, we can write the total increase
in potential energy as

δEpot =

∫
V
δρ(x)φ(x)d3x (4.92)

where δρ is the small increment of density corresponding to all these new particles brought
in. Note that this will correspond to a change in the gravitational potential given by Poisson
equation

∆(δφ) = 4πGδρ (4.93)

We can inject the Laplacian operator in the integral

δEpot =
1

4πG

∫
V
∆(δφ)φ(x)d3x, (4.94)
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and use the tricks that

∆(δφ) = ∇ · (∇(δφ)) and ∇ · (φ∇(δφ)) = ∇(δφ) · ∇φ+ φ∇ · ∇(δφ) (4.95)

the second equation on the right-hand side being the famous vector relation that we have used
already multiple times. We can replace in the previous integral the Laplace operator and obtain
two integrals

δEpot =
1

4πG

∫
V
∇ · (φ∇(δφ)) d3x− 1

4πG

∫
V
∇(δφ) · ∇φd3x (4.96)

Using the divergence theorem, we can show that the first integral is exactly zero as the potential
vanishes at infinity. Using the following relation,

δ

(
1

2
|∇φ|2

)
= ∇(δφ) · ∇φ (4.97)

we can finally write the integral as

δEpot = − 1

8πG
δ

(∫
V
|∇φ|2 d3x

)
(4.98)

Using the definition of the gravitational acceleration g = −∇φ and adding up all the infinitesimal
contributions, ww finally find for the gravitational potential energy

Epot = − 1

8πG

∫
V
|g|2 d3x (4.99)

Note that this result allows us to also define the gravitational potential energy density as

epot = − 1

8πG
|g|2 (4.100)

This will be useful in one of the next sections. Interestingly, we see that it is always negative.
It also looks mathematically very similar to the electromagnetic energy density.

4.3.2 Spherically symmetric systems

In spherically symmetric systems, both the density ρ(r) and the potential φ(r) depend only on
the radial coordinate r. They are linked to one another by the Poisson equation, written in
spherical coordinates as

∆φ =
1

r2

∂

∂r

(
r2∂φ

∂r

)
= 4πGρ (4.101)

We have already solved this equation in Chapter 2 for the hydrostatic equilibrium equation. We
will not repeat it here but just mention in Table 4.1 a few well known spherical density-potential
pairs. They will be quite useful in what follows. One of the most famous profile in astrophysics
is probably the Navarro, Frenk and White (NFW) profile for dark matter haloes. It has been
found to fit the results of N-body simulations quite well and is now used routinely to describe
the mass distribution in galaxies and galaxy clusters. The density profile looks like

ρ(r) = ρs
1

r
rs

(
1 + r

rs

)2 (4.102)

and the cumulative mass within radius r can be integrated analytically as

M(< r) =

∫ r

0
4πr2ρ(r)dr = 4πρsr

3
s

(
ln

(
1 +

r

rs

)
− r/rs

1 + r/rs

)
(4.103)
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Name density potential acceleration

Point mass ρ(r) = m0δ(r) φ(r) = −Gm0
r g(r) = −Gm0

r2

Homogeneous sphere ρ(r) = ρ0 φ(r) = 4πG
3 ρ0

(
r2

2 −
3r2

0
2

)
g(r) = −4πG

3 ρ0r

Plummer sphere ρ(r) = 3
4π

M0b2

(r2+b2)5/2 φ(r) = − GM0√
r2+b2

g(r) = − GM0

(r2+b2)3/2 r

Singular isothermal ρ(r) =
σ2

0
2πG

1
r2 φ(r) = σ2

0 ln
(
r
r0

)2
g(r) = −2σ2

0
r

Table 4.1: Example of potential-density pairs in a few well-known spherical systems.

The gravitational potential has also a closed analytical form, which makes this profile particularly
attractive for many theoretical studies.

φ(r) = −4πGr2
s

rs
r

ln

(
1 +

r

rs

)
(4.104)

Interestingly enough, when one computes the circular velocity corresponding to the NFW profile,
one gets

v2
circ =

GM(< r)

r
= 4πGρsr

2
s

ln
(

1 + r
rs

)
− r/rs

1+r/rs

r/rs
(4.105)

The circular velocity is defined by the centrifugal force a rotating fluid would need in order to
balance exactly the gravitational force. The NFW circular velocity profile is quite flat, with a
maximum value vmax ' 1.64

√
Gρsr2

s reached at radius rmax ' 2.16rs. It turns out to be a good
model for many galaxies whose mass distribution is dominated by dark matter.

4.3.3 Axisymmetric systems and razor thin disks

In this section, we will spend more time describing axisymmetric systems, such as self-gravitating
disks. In Chapter 2, we have already studied accretion disks around a star or a black hole. We
considered then that the disk mass was much smaller than the mass of the central object, so that
the disk self-gravity could be ignored. In this Chapter, we want to precisely study the disk self-
gravity, so we need to derive potential-density pairs for the disk component itself. Axisymmetry
means here that both the density and the potential depends only on the cylindrical coordinates
r and z. The pair is described by the two functions ρ(r, z) and φ(r, z), connected by the Poisson
equation expressed in cylindrical coordinates

∆φ =
1

r
∂r (r∂rφ) + ∂2

zφ = 4πGρ(r, z) (4.106)

We then use the technique of the separation of the variables, writing ρ(r, z) = f1(r)f2(z). Note
that we have done this before in the accretion disk case. The vertical profile can be found solving
hydrostatic equilibrium and usually gives

ρ(r, z) = ρ1(r) exp−
z2

2H2 (4.107)

where H is the disk scale height. We can then define the disk surface density Σ(x, y) as

Σ(x, y) =

∫
R
ρ(x, y, z)dz = ρ1(r)H (4.108)

An interesting limit, called the razor thin disk limit, is obtained assuming H → 0 and ρ1 → +∞
but keeping Σ finite, so that

ρ(x, y, z) = Σ(x, y)δ(z) (4.109)
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where δ(z) is the Dirac delta function.
In order to solve for the corresponding gravitational potential, we first consider a single

planar wave in the disk midplane such as

Σ(x, y) = Σ̂(kx, ky) expi(kxx+kyy) (4.110)

For the corresponding gravitational potential, we postulate a solution of the form

φ(x, y, z) = φ̂(kx, ky) expi(kxx+kyy+kzz) (4.111)

We now write Poisson equation above and below the midplane as

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
=
(
−k2

x − k2
y − k2

z

)
φ = 0 (4.112)

because ρ = 0 outside the disk. The only possibility to obtain a non-vanishing potential is that
k2
z = −k2

x − k2
y or kz = ±ik where k2 = k2

x + k2
y. Using φ → 0 for z → ±∞, we obtain the

following form
φ(x, y, z) = φ̂(kx, ky) expi(kxx+kyy) exp−k|z| (4.113)

In order to find the final solution for the single planar wave, we need to somehow solve Poisson
equation across the disk. The second order derivative of φ in x and y are indeed well behaved
when |z| → 0, but the z derivative of φ is discontinuous across the disk. As a consequence the
second order derivative is not defined. The only way out of this unpleasant situation is to rely
on an integral form of Poisson equation. We first compute the following line integral across the
disk plane ∫ +ε

−ε
∆φdz =

∫ +ε

−ε

(
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

)
dz (4.114)

The first two terms inside the integral can be combined into

− k2φ̂(kx, ky) expi(kxx+kyy)

∫ +ε

−ε
exp−k|z| dz (4.115)

where here again k2 = k2
x + k2

y. We see that this last expression clearly converges towards zero
as ε→ 0. The third term can be simplified easily as∫ +ε

−ε

(
∂2φ

∂z2

)
dz =

[
∂φ

∂z

]+ε

−ε
−→ −2kφ̂(kx, ky) expi(kxx+kyy) for ε −→ 0 (4.116)

We can now perform the same line integral over the right-hand side of Poisson equation∫ +ε

−ε
4πGρdz = 4πGΣ̂(kx, ky) expi(kxx+kyy) . (4.117)

Comparing the two sides of Poisson equation, we finally obtain the important result

φ̂(kx, ky) = −2πG

k
Σ̂(kx, ky) (4.118)

We can generalise this result for an arbitrary function Σ(x, y) using the two dimensional Fourier
transform with

Σ̂(kx, ky) =

∫
R2

Σ(x, y) exp−i(kxx+kyy) dxdy (4.119)
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Σ(r) exp−αr 1

(r2+`2)1/2
1

(r2+l2)3/2

Σ̂(k) k

(k2+α2)3/2
1
k exp−k` 1

` exp−k`

Table 4.2: Famous examples of axisymmetric disk surface density profiles and their corresponding Han-
kel transform.

and its inverse

Σ(x, y) =
1

(2π)2

∫
R2

Σ̂(kx, ky) expi(kxx+kyy) dkxdky (4.120)

We obtain the final form for the potential of the razor thin disk as

φ(x, y, z) =
1

(2π)2

∫
R2

φ̂(kx, ky) expi(kxx+kyy) exp−k|z| dkxdky (4.121)

Interestingly, everything we did so far didn’t really make use of the axisymmetry of the disk.
This result is in fact valid for a razor thin plane that is not necessarily axisymmetric, or invariant
in the tangential direction. We will use this general property later in the Chapter. From now on,
we will exploit the rotation symmetry of our disks. We can write now the 2D Fourier transform
in polar (or cylindrical coordinate) r and θ as

Σ̂(kx, ky) = Σ̂(k, 0) =

∫ +∞

0

∫ 2π

0
Σ(r) expikr cos θ rdrdθ (4.122)

where k2 = k2
x + k2

y. We recognise the Bessel function of the first kind of order 0 as

J0(kr) =
1

2π

∫ 2π

0
expikr cos θ dθ (4.123)

which can be used to define a 1D Fourier transform in cylindrical coordinates, called the Hankel
transform as

Σ̂(k) = 2π

∫ +∞

0
Σ(r)J0(kr)rdr (4.124)

For the inverse Fourier transform, we have a similar property with

Σ(x, y) = Σ(r, 0) =
1

(2π)2

∫ +∞

0

∫ 2π

0
Σ̂(k) expikr cos θ kdkdθ (4.125)

which can be used to define the inverse Hankel tranform as

Σ(r) =
1

2π

∫ +∞

0
Σ̂(k)J0(kr)kdk (4.126)

Note that in the previous three equations, one can divide Σ̂(k) by 2π and get another convention
for the Hankel transform, for which the factor 2π has been absorbed in Σ̂(k). In Table 4.2, we
show a few examples of useful Hankel transform pairs using precisely this convention.
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Kuzmin disks

We now apply this formalism to a famous model that turns out to be fully analytical and that
was derived by Kuzmin. The disk surface density is given by

Σ(r) =
M

2π

`

(r2 + `2)3/2
(4.127)

The total mass in the disk can be readily computed as

Mdisk =

∫ +∞

0
Σ(r)2πrdr = M`

∫ +∞

0

rdr

(r2 + `2)3/2
= M`

[
− 1

(r2 + `2)1/2

]+∞

0

= M (4.128)

The Hankel transform can be extracted from Table 4.2.

Σ̂(k) =
M

2π
exp−kl (4.129)

Using Poisson equation in the Fourier domain, we get

φ̂(k) = −2πG

k
Σ̂(k) = −GM exp−kl

k
(4.130)

We know that the gravitational potential is given by

φ(r, z) =
1

2π

∫ +∞

0
φ̂(k) exp−k|z| J0(kr)kdk (4.131)

Injecting the solution of the Poisson equation, we get

φ(r, z) = −GM 1

2π

∫ +∞

0

exp−k(`+|z|)

k
J0(kr)kdk (4.132)

We recognize another Hankel transform from Table 4.2, so we finally get

φ(r, z) = − GM(
r2 + (`+ |z|)2

)1/2
(4.133)

This fully analytical solution is quite useful in testing models and developing numerical solutions.
Very far from the disk, the potential behaves like a point mass, as it should. In the disk midplane,
we can compute the disk circular velocity. This velocity corresponds to the centrifugal force
balancing exactly the gravitational acceleration. We get

vcirc =

√
r
∂φ(r, 0)

∂r
=

√
GM

r2

(r2 + `2)3/2
(4.134)

It reaches a maximum at r =
√

2` and then drops on each side, similar to the rotation curves of
many real galaxies.
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Exponential disks

Another interesting model, probably more realistic than the Kuzmin disk, is the razor thin
exponential disk. The surface density is given by

Σ(r) = Σ0 exp−αr (4.135)

The disk mass associated to this profile can be easily computed using the integration by parts

Mdisk =

∫ +∞

0
Σ(r)2πrdr = 2πΣ0

([
− r
α

exp−αr
]+∞

0
+

1

α

∫ +∞

0
exp−αr dr

)
(4.136)

Mdisk = 2πΣ0
1

α

[
− 1

α
exp−αr

]+∞

0

=
2πΣ0

α2
(4.137)

Using Table 4.2, we can compute the Hankel transforn as

Σ̂(k) = Σ0
k

(k2 + α2)3/2
(4.138)

Solving Poisson equation gives us

φ̂(k) = − 2πGΣ0

(k2 + α2)3/2
(4.139)

which finally leads to the potential

φ(r, z) = −GΣ0

∫ +∞

0

kdk

(k2 + α2)3/2
exp−k|z| J0(kr) (4.140)

which has to be numerically integrated. Interestingly, the circular velocity of the exponential
disk is slightly more peaky than the equivalent Kuzmin disk (equivalent means here similar mass
and size), but quite close, especially because it also reaches a maximum value close to the typical
radius of the Kuzmin disk.

Mestel disk

The last razor thin model we will consider here is the Mestel disk model given by the following
surface density profile

Σ(r) =
v2

0

2πGr
(4.141)

We will see how the only parameter, namely the velocity v0, can be interpreted. Using the
Hankel transform, we find

Σ̂(k) = 2π

∫ +∞

0

v2
0

2πGr
J0(kr)rdr =

v2
0

Gk

∫ +∞

0
J0(kr)d(kr) =

v2
0

Gk
(4.142)

because the Bessel function is normalised so that
∫
J0(x)dx = 1. Solving Poisson equation, we

get

φ̂(k) = −2πGΣ̂(k)

k
= −2πv2

0

k2
(4.143)

The final 3D potential is obtained by

φ(r, z) =
1

2π

∫ +∞

0
φ̂(k) exp−k|z| J0(kr)kdk = −v2

0

∫ +∞

0

exp−k|z|

k2
J0(kr)kdk (4.144)
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Looking again at Table 4.2, we don’t see the result for the corresponding inverse Hankel trans-
form. The trick is to compute the derivative of the previous integral with respect to |z|.

∂φ(r, z)

∂ |z|
= v2

0

∫ +∞

0

exp−k|z|

k
J0(kr)kdk =

v2
0(

r2 + |z|2
)1/2

(4.145)

where we use the inverse Hankel transform of the middle column of Table 4.2. Integrating the
previous result leads to a closed analytical form for the Mestel disk potential

φ(r, z) = v2
0 ln


√
r2 + |z|2 + |z|

r0

 (4.146)

The potential in the midplane is quite simple with

φ(r, 0) = v2
0 ln

(
r

r0

)
(4.147)

for which we can derive the circular velocity as

v2
circ = r

∂φ(r, 0)

∂r
= v2

0 (4.148)

We can now interpret v0 as being the flat circular velocity of the disk. Interestingly, Mestel
disks are the prototype example of strictly flat rotation curves, observed in many galaxies in
our vicinity. Unfortunately, the Mestel surface density profile does not match the distribution
of stars in these galaxies, who are better described by exponential profiles. The reason is that
the rotation curve of nearby galaxies is due to dark matter, rather than stars from which the
disk is composed. In summary, a realistic galaxy like our Milky Way can be described as the
sum of a spherical dark matter halo, following the NFW profile, and a razor thin exponential
disk of stars.

4.4 Stellar orbits

In Chapter 1, we have seen how collision invariants could be used to derive the equilibrium
distribution function assuming detailed balance in phase-space. In this Chapter, collisions are
absent, so we cannot invoke a collisional equilibrium in phase-space to derive possible equilibrium
distribution function. We can however study individual particle or stellar orbits and identify
possible orbital invariants. We will see in the next section that these orbital invariants are
crucial to determine the exact form of the equilibrium distribution function. The first orbital
invariant is obviously the total energy, or more precisely the one-particle Hamiltonian defined
by the sum of the kinetic energy and the mean field gravitational potential.

H(x,p) =
p2

2m
+mφ(x) (4.149)

Indeed, its time derivative is just

dH

dt
=

p

m
· ṗ +m∇φ · ẋ = 0 (4.150)

because the orbit of the particle is defined by the equations of motion

ẋ =
p

m
= v and ṗ = −m∇φ (4.151)
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We note this first orbital invariant
I1 = H(x,p) (4.152)

Beyond this first orbital invariant, we will discover other useful orbital invariants in different
geometries. We will first focus on stellar orbits in spherical potential-density pairs, and then
move to axisymmetric systems.

4.4.1 Stellar orbits in spherical potentials

Spherical systems are characterised by a spherically symmetric potential φ(r) and, as a conse-
quence, an acceleration always pointing towards the origin of our spherical coordinate system

g(r) = −∂φ
∂r

er (4.153)

We now introduce the angular momentum of the particle defined by

L = mx× v (4.154)

For a spherical potential, with x = rer and v̇ = g(r)erwe see that

dL

dt
= mẋ× v +mx× v̇ = 0 (4.155)

Interestingly, we just found 3 new orbital invariants as each component of the angular momentum
vector

I2 = Lx and I3 = Ly and I4 = Lz (4.156)

We conclude that the orbital motions will remain in a fixed plane called the orbital plane, defined
by the plane perpendicular to the constant angular momentum vector.

Homogeneous sphere

A particularly simple case for our spherical potential is the one for the homogeneous sphere.
Indeed, in this case, we have

gx = −4πG

3
ρ0x and gy = −4πG

3
ρ0y (4.157)

where we assume that the orbital plane is the (x, y) Cartesian plane. The trajectory of the
particle is given by Newton’s second law with

ẍ+
4πG

3
ρ0x = 0 and ÿ +

4πG

3
ρ0y = 0 (4.158)

We recognise two independent harmonic oscillators with the same frequency

ω2
0 =

4πG

3
ρ0 (4.159)

Orbits are ellipses with the origin at their center.

x = A cos (ω0t+ ψA) and y = B cos (ω0t+ ψB) (4.160)
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Kepler orbits

For more complex spherical potential, it is convenient to use 2D polar coordinates in the orbital
plane (r, θ). We can now try and solve the equation of motion of the particle using the following
Lagrangian

L = K − U =
1

2

(
ṙ2 + r2θ̇2

)
− φ(r) (4.161)

In this coordinate system, the momentum is defined by

pr =
∂L
∂ṙ

= ṙ and pθ =
∂L
∂θ̇

= r2θ̇ (4.162)

The tangential component of the momentum is nothing else than the specific angular momentum
of the particle. The trajectory is then obtained using the Euler-Lagrange equations

ṗr =
∂L
∂r

= rθ̇2 − ∂φ

∂r
and ṗθ =

∂L
∂θ

= 0 (4.163)

The right equation just confirms that the magnitude of the angular momentum is an orbital
invariant that we note here L = r2θ̇. The left equation can be interpreted as the radial acceler-
ation resulting from the competition between the centrifugal force and the gravitational force.
We can express the centrifugal force as a function of the angular momentum as

r̈ = rθ̇2 − ∂φ

∂r
=
L2

r3
− ∂φ

∂r
(4.164)

where we use the substitution

θ̇ =
L

r2
(4.165)

Interestingly, this last equation can be used to replace the time coordinate by the angular
coordinate along the orbit as

dr

dt
=
L

r2

dr

dθ
and

d2r

dt2
=
L

r2

d

dθ

(
L

r2

dr

dθ

)
(4.166)

Defining the new variable u = 1/r, we get

du

dθ
= − 1

r2

dr

dθ
and

d2r

dt2
= −L2u2d

2u

dθ2
(4.167)

and the equation of motion becomes

− L2u2d
2u

dθ2
= L2u3 − ∂φ

∂r
(4.168)

d2u

dθ2
+ u =

1

L2u2

∂φ

∂r
(4.169)

Using the potential of a point mass, ∂φ
∂r = Gm0/r

2 = Gm0u
2, we find the Kepler orbits with

d2u

dθ2
+ u =

Gm0

L2
(4.170)

whose general solutions are given by

u =
1

r
= A cos (θ + ψA) +

Gm0

L2
(4.171)

Interestingly, we recognise the classical polar form for ellipses, but this time the origin is not
at the center but at the focus point of the ellipse. Note that the homogeneous sphere and the
point mass potential are the only two cases that result in closed orbits like ellipses. Orbits for
general spherically symmetric potentials can be found similarly using polar coordinates. They
don’t however provide simple closed orbits but instead what is called Rosetta orbits.
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4.4.2 Stellar orbits in disks

We now describe stellar orbits in axisymmetric potentials of the form φ(r, z). For this, we use
naturally cylindrical coordinates (r, θ, z) The Lagrangian is defined as usual by

L = K − V =
1

2
(
ṙ2 + r2θ̇2 + ż2

)
− φ(r, z) (4.172)

The corresponding velocity and momentum vectors are

v =
(
ṙ, rθ̇, ż

)
and p =

(
ṙ, r2θ̇, ż

)
(4.173)

Finally, one can write the Euler-Lagrange equations as

dṙ

dt
=
∂L
∂r

= rθ̇2 − ∂φ

∂r
(4.174)

dθ̇

dt
=
∂L
∂θ

= 0 (4.175)

dż

dt
=
∂L
∂z

= −∂φ
∂z

(4.176)

The second equation can be interpreted as the conservation of the z-component of the angular
momentum, defined as

Lz = r2θ̇ = constant (4.177)

Note that in this case, only Lz is an orbital invariant, not Lx and Ly. We can exploit this new
conservation law and replace θ̇ in the previous equations by Lz/r

2. This leads to the definition
of a new effective potential

φeff(r, z) = φ(r, z) +
L2
z

2r2
(4.178)

and new quite simple equations of motions

r̈ = −∂φeff

∂r
(4.179)

z̈ = −∂φeff

∂z
(4.180)

Guiding center

Our new effective potential allows us to define the location of its minimum by requiring

∂φeff

∂r
= 0 and

∂φeff

∂z
= 0 (4.181)

The symmetry of the potential with respect to the vertical coordinate (see examples in the disk
section of the potential-density pairs chapter) puts the minimum of the potential in the midplane
with zmin = 0. We still need to find the minimum of φ(r, 0) with respect to the radial coordinate
r. This defines a particular radius called the guiding center radius rG which satisfies

∂φeff

∂r
= 0 or

∂φ

∂r
(rG, 0) =

L2
z

r3
G

(4.182)

We see that this potential minimum corresponds to a circular orbit in the midplane. In general,
stars do not follow strict circular orbits and can wander off the midplane. The guiding center
only represents a virtual star on a strict coplanar circular orbit that always sits at the minimum
of the effective potential.
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Nearly circular orbits

In relatively thin disks, one expect the orbits to remain close to being circular. We define a new
coordinate system for the stars defined relative to the guiding center with

x = r − rG with x� rG and z � rG (4.183)

We Taylor expand up to second order the effective potential close to the guiding center and
write

φeff ' φeff(rG, 0) + x
∂φeff

∂r
+ z

∂φeff

∂z
+
x2

2

∂2φeff

∂r2
+ xz

∂2φeff

∂r∂z
+
z2

2

∂2φeff

∂z2
(4.184)

Because the guiding center sits at the potential minimum, the first-order derivatives are zero.
The second-order cross derivative is also zero because of the symmetry with respect to the
midplane. We can finally write the effective potential as

φeff ' φeff(rG, 0) +
1

2
κ2x2 +

1

2
ν2z2 (4.185)

where we introduce the epicyclic frequency

κ2 =
∂2φeff

∂r2
(rG, 0) (4.186)

and the vertical frequency

ν2 =
∂2φeff

∂z2
(rG, 0) (4.187)

The orbits of the stars are described by two harmonic oscillators such as

ẍ+ κ2x = 0 and z̈ + ν2z = 0 (4.188)

These two harmonic oscillators can be used to identify three new orbital invariants, namely the
vertical angular momentum and the Hamiltonian associated to each oscillator

I1 = Lz and I2 =
ẋ2

2
+
κ2x2

2
and I3 =

ż2

2
+
ν2z2

2
(4.189)

Epicyclic frequency

The two previous harmonic oscillators describe elliptical orbits with the guiding center as the
center of the ellipses. Before we describe these ellipses in more details, let us compute first the
value of the epicyclic frequency. We have first to compute

∂φeff

∂r
=
∂φ

∂r
− L2

z

r3
(4.190)

so that

κ2 =
∂2φ

∂r2
(rG, 0) + 3

L2
z

r4
G

(4.191)

Because the guiding center sits at the minimum, it satisfies

∂φ

∂r
(rG, 0) =

L2
z

r3
G

(4.192)
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We recognise here again the circular velocity and the corresponding angular frequency Ω defined
as

v2
circ = r

∂φ

∂r
and vcirc = rΩcirc (4.193)

Injecting these new relations in the epicyclic frequency, we finally obtain

κ2 = r
∂

∂r

(
Ω2

circ

)
+ 4Ω2

circ (4.194)

We can evaluate this frequency for classical potentials.

• For a point mass, we have φ = −Gm0/r and Ωcirc ∝ r−3/2. This leads to κ2 = Ω2
circ. Both

frequency are equal. As a result, stars are making a complete orbit around the guiding
center at exactly the same time it takes for the guiding center to orbit around the galaxy.

• For a flat rotation curve, like Mestel disks, we have vcirc = constant and Ωcirc ∝ r−1. This
leads to κ2 = 2Ω2

circ.

• Finally, for solid body rotation, which is the case for an homogeneous sphere, one has
Ωcirc = constant and κ2 = 4Ω2

circ

It is tempting to summarise our previous discussion with the following property

Ωcirc ≤ κ ≤ 2Ωcirc (4.195)

The epicycle ellipse

We now solve for the solution of the stellar orbital motions around the guiding center. Since the
guiding center is orbiting around the galaxy in a perfect circle, we can follow it using its angular
coordinate θG. A star, on the other hand, we have in general a different angular coordinate θ,
and, more importantly, this angular coordinate will not necessarily follow the guiding center,
unless it is also on the same circular orbit. We now introduce a new Cartesian coordinate

y = rG sin (θ − θG) ' rG (θ − θG) (4.196)

which represents the perpendicular coordinate of the star in the co-rotating frame. If θ > θG,
then the star is in advance with respect to the guiding center and y > 0. If θ < θG, then the
star is lagging behind the guiding center and y < 0. We already now that the vertical angular
momentum is an orbital invariant, so we can write for this particular star

Lz = vθr = r2θ̇ = constant (4.197)

Note that the radius of the star is given by r = rG + x so that we can write

θ̇ =
Lz
r2

=
Lz
r2
G

1

(1 + x/rG)2 (4.198)

Within our approximation of nearly circular orbits, we have x � rG, so we can Taylor expand
this last expression, leading to

θ̇ ' Lz
r2
G

(
1− 2

x

rG

)
(4.199)

The guiding center, on the other hand, follows a strict circular orbit, for which

θ̇G = Ωcirc (4.200)
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We now consider all the stars that have the same vertical angular momentum as the guiding
center. This means that Lz can be written for both the guiding center and all the stars associated
to it as

Lz = Ωcircr
2
G (4.201)

We can finally compute the evolution of the Cartesian coordinate y as

ẏ = rG

(
θ̇ − θ̇G

)
= −2Ωcircx (4.202)

We can now solve for the elliptical orbit, writing first for the radial and vertical coordinates
x = r − rG and z

x = X cos (κt+ ψX) and z = Z cos (νt+ ψZ) (4.203)

We deduce from the equation for ẏ that

y = −Y sin (κt+ ψY ) where Y = 2X
Ωcirc

κ
(4.204)

Because κ is bounded by Ω and 2Ω, we see that X ≤ Y ≤ 2X. We see that stars orbit around
an ellipse elongated in the tangential direction, when looking down the disk face-on. This ellipse
is called the epicycle ellipse. Star are rotating around the guiding center in a clock-wise manner,
while the guiding center is rotating in the galaxy counter-clock-wise.
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4.5 Stationary solutions of the collisionless Boltzmann equation

After first justifying the use of the CBE to describe our collisionless N-body system, we have
then describe the orbits of stars in several typical potential-density pairs relevant for most
galaxies. We now want to find possible stationary distribution function that satisfies the CBE
on one hand, and the Poisson equation on the other hand, giving us a fully self-consistent
self-gravitating equilibrium system.

4.5.1 Jeans theorem

One important result from the previous section was the existence of several orbital invariants.
Let’s call these various invariants I1, I2, etc. These orbital invariants depends only on the
Hamiltonian variables x and p. Importantly, they do not depend explicitly on time. The fact
that they are constant along the orbit can be written as

dI
dt

=
∂I
∂x

ẋ +
∂I
∂p

ṗ = 0 (4.205)

Jeans theorem goes as follows: “Distribution functions that are function of the orbital invariants
satisfies the stationary CBE.’’. Indeed, the stationary CBE writes as

∂f

∂x
ẋ +

∂f

∂p
ṗ = 0 (4.206)

If we have f(I1, I2, ..., In), we can inject this form into left-hand side of the stationary CBE.
Using the chain rule, we obtain(

n∑
i=1

∂f

∂Ii
∂Ii
∂x

)
ẋ +

(
n∑
i=1

∂f

∂Ii
∂Ii
∂p

)
ṗ (4.207)

which can be re-arranged as
n∑
i=1

∂f

∂Ii

(
∂Ii
∂x

ẋ +
∂Ii
∂p

ṗ

)
= 0. (4.208)

This proves that f satisfies the stationary CBE. This theorem is quite powerful, in the sense that
for a given geometry, we have already identify many different orbital invariants. We just have to
postulate distributions of the form presented here and we know they will automatically satisfy
the stationary CBE. Note that this approach is quite similar to what we found for the Liouville
theorem applied to the N-point PDF ρN . We have shown previously that if the N-point PDF is
of the form ρN (H) where H is the N-particle Hamiltonian, then it was automatically satisfying
the stationary Liouville equation. Jeans theorem is applied only to the distribution function, or
equivalently to the one-point PDF ρ1, but it is valid for more than one orbital invariant.

4.5.2 Distribution functions for spherical systems

The Jeans theorem is a wonderful strategy to find stationary solutions of the CBE. We have
shown in the previous section that spherical systems have 4 orbital invariants, namely I1 = E,
I2 = Lx, I3 = Ly and I4 = Lz. The simplest choice would be to adopt f(E) as our Ansatz. This
leads to what is called ergodic or isotropic distribution functions. The most general choice would
be f(H,Lx, Ly, Lz), leading to what is called anisotropic distributions. In practice, however, only
anisotropic distributions of the form f(E,L) has been proposed in the literature, the most famous
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one being the Osipkov-Merritt distribution. In this section, we only study ergodic solutions f(E)
for which

E =
1

2
v2 + φ(r) (4.209)

We can easily compute the different moments of f like

ρ(r) =

∫ +∞

0
f(E)4πv2dv and ρv =

∫
R3

f(E)vd3v = 0 (4.210)

The second equality on the right-hand side was obtained using the fact that f is isotropic and
even in velocity space, while the velocity is odd. This is why the mean (or fluid) velocity vanishes
automatically. Note that we use here again the convention that the fluid quantities are defined
as averages of the particle (or microscopic) quantities in velocity space. We can also compute
the second order moments defined as

ρσ2
3D =

∫ +∞

0
f(E)v24πv2dv = 3ρσ2 (4.211)

where σ(r) is the 1D velocity dispersion of the underlying particle distribution at that particular
radius. It is customary at this point to change variables, using

ψ = −φ and ε = −E = ψ − 1

2
v2 (4.212)

These variables are called the relative potential for ψ and the binding energy for ε. While ψ is
usually always positive, the binding energy can be used to differentiate a bound particle if ε > 0
from an unbound particle if ε ≤ 0. In our quest for stationary distribution function, we do not
allow for unbound particles to be present. Indeed, one can always wait long enough for these
particles to leave the system. The distribution function will thus always satisfy

f(ε) ≥ 0 for ε > 0 and f(ε) = 0 for ε ≤ 0 (4.213)

We see that the condition for a particle to be bound can be written as

ε = ψ − 1

2
v2 > 0 or v < vescape =

√
2ψ(r) (4.214)

This introduces the notion of escape velocity as the velocity a particle needs to be unbound and
to escape the system. We can exploit this new definition and rewrite the zeroth order moment
as

ρ(r) =

∫ vescape

0
f(E)4πv2dv (4.215)

because we now know that f is zero for higher velocities. We now switch to the binding energy
variable, writing

v =
√

2 (ψ − ε) (4.216)

We obtain

ρ(ψ) = 4π
√

2

∫ ψ

0

√
ψ − εf(ε)dε (4.217)

We use the notation ρ(ψ) because ρ now depends explicitly on ψ and implicitly on the radius.
This is a very useful form, because we also know that the potential-density pair is also satisfying
Poisson equation

∆ψ = −4πGρ (4.218)

We have two equations with two unknown variables, so the problem appears a priori solvable.
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Eddington formula

In the previous section, we have shown that if one knows an explicit form for f , then one
can deduce a relation between ρ and ψ. Using finally Poisson equation, the whole equilibrium
solution can be found. In this section, we will do the opposite, namely determine f once we
have adopted a given potential-density pair. Taking the derivative of the density with respect
to ψ, replacing temporarily the upper bound of the integral by +∞, we obtain

dρ

dψ
= 4π

√
2

∫ ψ

0

1

2
√
ψ − ε

f(ε)dε (4.219)

that can be re-arranged as
1

π
√

8

dρ

dψ
=

∫ ψ

0

f(ε)√
ψ − ε

dε (4.220)

The expert eyes would immediately recognise this as a convolution using the Laplace transform.
Let us recall that the Laplace transform of a function f(x) is defined in this context as

f̂(s) =

∫ +∞

0
f(x) exp−sx dx (4.221)

The convolution of two functions is defined as

(f ∗ g) (y) =

∫ y

0
f(x)g(y − x)dx (4.222)

We might list a few important properties of the Laplace transform. First, the convolution theo-
rem states that the Laplace transform of a convolution is the product of the Laplace transforms
of the two functions.

(f ∗ g) (x)← Laplace transform→ f̂(s)ĝ(s) (4.223)

The derivative of a function has also a simple Laplace transform given be

f ′(x)← Laplace transform→ sf̂(s)− f(0) (4.224)

Finally, the following identity will prove handy later

1√
x
← Laplace transform→

√
π

s
(4.225)

Going back to the problem at hand, we define the new function g

g =
1

π
√

8

dρ

dψ
(4.226)

As we already noticed, it can be written as a convolution with

g(ψ) = f(ε) ∗ 1√
ε

(4.227)

If we perform a Laplace transform of all these functions, we get

ĝ(s) = f̂(s)

√
π

s
(4.228)

We now invert this relation and re-arrange it as follows

f̂(s) = ĝ(s)

√
s

π
= ĝ(s)

s

π

√
π

s
=

(
1

π
ĝ(s)

√
π

s

)
s (4.229)
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Figure 4.1: Comparison of mass distribution between the truncated Maxwell-Boltzmann distribution
(black) and the true distribution (red) obtained by solving numerically the Eddington for-
mula for the Singular Isothermal Sphere. The x-axis shows the binding energy with maxi-
mum value equal to the local relative potential at the particular radius for which ψ = 1.5σ2.

We can use the assumption that ρ → 0 fast enough, as r → +∞ and ψ → 0 to conclude that
g(0) = 0. We can finally perform the inverse Laplace transform of the last equation, recognising
first again the convolution between g and 1/

√
ψ and then using the property of the derivative

of the Laplace transform, so that

f(ε) =
d

dε

(
1

π

∫ ε

0

g(ψ)√
ε− ψ

dψ

)
(4.230)

Injecting the definition of g(ψ), we finally obtain the famous Eddington formula

f(ε) =
1

π2
√

8

d

dε

(∫ ε

0

dρ

dψ

dψ√
ε− ψ

)
(4.231)

This last equation is quite powerful, as it allows us to first choose a density profile ρ(r), then
solve Poisson equation to get ψ(r) and finally obtain f(ε) directly. We could do this interesting
exercise for any of the potential-density pairs we have presented in the previous sections. Most
of them require unfortunately a numerical evaluation of the Eddington formula.

The Singular Isothermal Sphere and the Maxwell-Boltzmann distribution

To illustrate the power of the Eddington formula, we now study the Singular Isothermal Sphere.
This is a famous potential-density pair for which the density is given by

ρ(r) = ρ0

(
r

r0

)−2

(4.232)
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The meaning of r0 and its corresponding density ρ0 will be explained later. We can now solve
Poisson equation, using ψ instead of φ.

∆ψ =
1

r2

∂

∂r

(
r2∂ψ

∂r

)
= −4πGρ = −4πGρ0r

2
0

1

r2
(4.233)

We get after one integration

r2∂ψ

∂r
= C0 − 4πGρ0r

2
0r (4.234)

We set the constant C0 to zero to remove the spurious point mass solution. We then integrate
a second time to get

ψ = ψ0 − 4πGρ0r
2
0 log r = 4πGρ0r

2
0 log

(r0

r

)
(4.235)

where we have chosen to set ψ = 0 at r = r0. This is the classical problem with the SIS, namely
that the potential diverges at infinity, so we have to choose a maximum radius r0 and set the
potential to zero at that finite radius. Note that the relative potential can be re-formulated by

ψ = 2πGρ0r
2
0 log

(r0

r

)2
= 2πGρ0r

2
0 log

(
ρ

ρ0

)
(4.236)

We define (quite arbitrarily for now) the velocity dispersion σ0 as

σ2
0 = 2πGρ0r

2
0 (4.237)

and finally express the potential-density pair in a compact and explicit form as

ρ = ρ0 expψ/σ
2
0 (4.238)

We can now use this formulation in the Eddington formula, with

dρ

dψ
=
ρ0

σ2
0

expψ/σ
2
0 , (4.239)

we obtain

f(ε) =
1

π2
√

8

ρ0

σ2
0

d

dε

(∫ ε

0
expψ/σ

2
0

dψ√
ε− ψ

)
(4.240)

We change the dummy integration variable from ψ to t such that

t =
√

2(ε− ψ) or ψ = ε− 1

2
t2 and dψ = −tdt (4.241)

which leads to the relatively cumbersome final form

f(ε) =
1

π2
√

8

ρ0

σ2
0

d

dε

(
√

2 expε/σ
2
0

∫ √2ε

0
exp
− t2

2σ2
0 dt

)
(4.242)

We can try to simplify our result by noticing that the upper bound of the integral is the escape
velocity of our stellar particles. If particles are sufficiently bound, one expect their typical
binding energy to be larger than their typical kinetic energy. This translates into the condition
ε� σ2

0, or equivalently setting the upper bound of the integral to +∞. We then get

f(ε) ' 1

π2
√

8

ρ0

σ2
0

d

dε

(√
πσ0 expε/σ

2
0

)
(4.243)
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Computing the derivative with respect to ε, we finally obtain

f(ε) ' ρ0

(2πσ2
o)

3/2
expε/σ

2
0 =

ρ0

(2πσ2
o)

3/2
expψ/σ

2
0 exp

− v2

2σ2
0 (4.244)

which is the Maxwell-Boltzmann distribution.

f(ε) =
ρ(r)(

2πσ2
0

)3/2 exp
− v2

2σ2
0 (4.245)

It is quite spectacular to discover the Maxwell-Boltzmann distribution in the context of colli-
sionless fluids. Remember that we derived it in Chapter 1 for strongly collisional fluids. The
reason is to be found in the notion of statistical equilibrium in phase-space. In the collisional
case, this equilibrium is reached through collisions, while in the collisionless case, it is reached
through different orbits filling up phase-space. Note however that the exact solution in this
case is not the Maxwell-Boltzmann but the more elaborate form we derived above. Indeed,
an obvious problem arises with the Maxwell-Boltzmann distribution: particle velocities are not
bounded, although they should obviously be bounded by the escape velocity at each radius. A
better approximation is given by the truncated Maxwellian

f(r, v) =
ρ(r)

(2πσ2
o)

3/2
exp
− v2

2σ2
0 for v < vescape(r) and f(r, v) = 0 otherwise. (4.246)

We also see that σ0 is indeed the constant velocity dispersion of the stars orbiting in the SIS.
This truncated Maxwellian approach is quite useful to get a first rough approximation of the dis-
tribution function for any potential-density pair. Keep in mind that the only accurate approach
would be to solve the Eddington formula.

4.5.3 Schwarzschild distribution for disks

We now move towards the problem of finding equilibrium distribution functions for axisymmetric
systems like disk. We already know quite a lot on stellar orbits in disks, in particular we have
identified 3 orbital invariants, namely

Lz = rvθ and Hz =
v2
z

2
+
ν2z2

2
and Hr =

ẋ2

2
+
κ2x2

2
(4.247)

Remember that x = r − rG was the coordinate in the radial direction relative to the guiding
center with radius rG set by the vertical angular momentum Lz = vcircrG. In this same rotating
frame, we defined also coordinate y = rG (θ − θG). We found in particular the following relation
between ẏ and x that allowed us to derive the epicycle ellipse.

ẏ = rG

(
θ̇ − ˙θG

)
= −2Ωcircx (4.248)

Using vθ = rθ̇ ' rGθ̇ and vcirc = rG ˙θG, we get

x =
vcirc − vθ

2Ωcirc
(4.249)

We can therefore re-write the radial Hamiltonian as

Hr =
v2
r

2
+

κ2

4Ω2
circ

(vθ − vcirc)
2 (4.250)
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We now follow Jeans theorem and introduce the following Ansatz for f

f(x,v) = S(Lz)T (Hz)U(Hr) (4.251)

Note that compare to a strict application of Jeans theorem, we also consider here a model with
proper separation of variables. We then follow the Maxwell-Boltzmann prescription derived in
the previous section, writing f as

f(x,v) = S(rvcirc) exp−Hz/σ
2
z exp−Hr/σ

2
r (4.252)

where σr and σr are two parameters of our model that need to be determined separately. Note
that in the last equation, the radial coordinate r is identified to the guiding center radius of
our nearly circular orbits. We can now inject the different equations we obtained for the two
Hamiltonians

f(r, z, vr, vθ, vz) = S(rvcirc) exp
− ν

2z2

2σ2
z exp

− v2
z

2σ2
z exp

− v2
r

2σ2
r exp

− (vθ−vcirc)2

2σ2
θ (4.253)

where the tangential velocity dispersion is found to be equal to

σθ =
2Ωcirc

κ
σr (4.254)

a result that will prove useful later. We also notice that the vertical structure of the disk is also
a Gaussian, like the accretion disk in vertical hydrostatic equilibrium, with disk scale height

H =
σz
ν

(4.255)

We can finally determine the function S(r) by computing the zeroth-order moment

ρ(r, z) =

∫
R3

fd3v = S(r) exp−
z2

2H2 (2π)3/2 σrσθσz (4.256)

Finally, integrating vertically, we get

Σ(r) =

∫ +∞

−∞
ρ(r, z)dz = S(r) (2π)2 σrσθσzH (4.257)

This determines completely the distribution function, called the Schwarzschild distribution

f(r, z, vr, vθ, vz) =
Σ(r)

(2π)2 σrσθσzH
exp−

z2

2H2 exp
− v2

z
2σ2
z exp

− v2
r

2σ2
r exp

− (vθ−vcirc)2

2σ2
θ (4.258)

Note that we derived this distribution function in the limit of nearly circular orbits. This
translates into the following condition on the two main parameters

σr � vcirc and σz � vcirc (4.259)

As a consequence, the disk is also very thin, with H � r. This explains why the mean tangential
velocity of the particle is equal to the circular velocity

vθ = vcirc (4.260)

As we will see later, this is not true anymore for thicker disks. We have also to be careful with
the Maxwell-Boltzmann approximation. Some of the particles will indeed escape if their kinetic
energy exceeds their potential energy. An additional constraint v < vescape can be introduced
in the model as an easy way to fix it. Note that it is also possible to derive a generalisation of
the Eddington formula for axisymmetric systems, leading to very accurate equilibrium models
for disks.
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4.6 Jeans equation

In the previous section, we have used the Maxwell-Boltzmann approximation to find useful
equilibrium distribution functions for collisionless systems. The key parameters of these distri-
butions are the mean (or bulk) velocities and the velocity dispersions. A nice way to constrain
these parameters is to compute the first moments of the CBE, exactly like in Chapter 1 when
we derived the Euler equations. In the context of collisionless fluids, the equations we find are
called Jeans equations. We can write again the CBE as

∂f

∂t
+ v · ∇f −∇φ · ∂f

∂v
= 0 (4.261)

It is identical to the Boltzmann equation, without the collision integral on the right-hand side.
The zeroth-order moment of the CBE leads to the mass conservation equation

∂ρ

∂t
+

∂

∂xj
(ρvj) = 0 (4.262)

The first-order moment can be obtained by multiplying the CBE by vi and integrate over velocity
space. After a derivation identical to what we did in Chapter 1, we obtain

∂ρvi
∂t

+
∂

∂xj

(
ρvi vj + ρσ2

ij

)
= −ρ ∂φ

∂xi
(4.263)

where the velocity dispersion tensor is defined as

ρσ2
ij =

∫
R3

(vi − vi) (vj − vj) fd3v (4.264)

If we look for a stationary solution, we can set all time derivatives to zero, but this leaves us
with 9 unknowns with only 4 equations. We cannot solve the problem in the general case. If
we add the conditions that the mean flow is static vi = 0 and that the distribution function
is isotropic, we find the hydrostatic equation we have derived in Chapter 2. Unfortunately,
collisionless systems are not necessarily isotropic in velocity space, except for a simple ergodic
spherical system like the singular isothermal sphere.

4.6.1 Spherical systems and the anisotropy parameter

We will now derive Jeans equation for a spherical system with φ(r) and ρ(r) depending only
on the radial coordinate. Unfortunately, we have to consider now all the orbits of the particles
defining the system, so we cannot put ourselves in the orbital plane of a single orbit anymore.
We have to use the full 3D spherical coordinates (r, θ, φ). In this coordinate system, the velocity
of a particle is given by

vr = ṙ and vθ = rθ̇ and vφ = r sin θφ̇ (4.265)

As always, we use the Lagrangian L = K − V = 1
2v

2 − φ(r). This leads to the following
momentum coordinates (pr, pθ, pφ) with

pr =
∂L
∂ṙ

= ṙ = vr and pθ =
∂L
∂θ̇

= r2θ̇ = rvθ and pφ =
∂L
∂φ̇

= r2 sin2 θφ̇ = r sin θvφ (4.266)

We can also write the Euler-Lagrange equations in this coordinate system as

ṗr =
∂L
∂r

= rθ̇2 + r sin2 θφ̇2 − ∂φ

∂r
(4.267)
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ṗθ =
∂L
∂θ

= r2 sin θ cos θφ̇2 (4.268)

ṗφ =
∂L
∂φ

= 0 (4.269)

A striking feature of these equations is the absence of an explicit dependancy with respect to φ.
This leads us to choose for f a relatively general Ansatz of the form

f(r, θ, vr, vθ, vφ) (4.270)

where we only removed a dependancy with φ. The stationary collisionless Boltzmann equation
can now be written in these generalised coordinates as

ṙ
∂f

∂r
+ θ̇

∂f

∂θ
+ ṗr

∂f

∂pr
+ ṗθ

∂f

∂pθ
= 0 (4.271)

Replacing time derivatives with momentum variables, we finally obtain the CBE in spherical
coordinates

pr
∂f

∂r
+
pθ
r2

∂f

∂θ
+

(
p2
θ

r3
+

p2
φ

r3 sin2 θ
− ∂φ

∂r

)
∂f

∂pr
+
p2
φ cos θ

r2 sin3 θ

∂f

∂pθ
= 0 (4.272)

We are now going to take the moments of this equation. As a warm-up, let compute zeroth-order
moment of f and try to relate it to the mass density. For this, we need to express the volume
element in momentum space as a function of the volume element in velocity space. Using the
previous relations, we have

d3p = dprdpθdpφ = dvrrdvθr sin θdvφ (4.273)∫
R3

fd3p = r2 sin θ

∫
R3

fd3v = r2 sin θρ(r) (4.274)

Let’s now compute the first-order moment∫
R3

pr [CBE] fd3p = 0 (4.275)

Looking at the form of the CBE we derived above, we see that it contains 4 different terms that
we will treat one by one.

(1) =

∫
R3

p2
r

∂f

∂r
d3p =

∂

∂r

(∫
R3

p2
rfd3p

)
=

∂

∂r

(
r2 sin θ

∫
R3

p2
rfd3v

)
(4.276)

We finally obtain

(1) =
∂

∂r

(
r2 sin θρp2

r

)
(4.277)

which can be used to define the variance of the radial momentum p2
r . The second tern writes

(2) =

∫
R3

prpθ
r2

∂f

∂θ
d3p =

∂

∂θ

(∫
R3

prpθ
r2

fd3p

)
=

∂

∂θ

(
sin θ

∫
R3

prpθfd3v

)
(4.278)

We finally obtain

(2) =
∂

∂θ
(sin θρprpθ) (4.279)
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which can be used to define the cross-correlation term prpθ. The third term can be simplified
using an integration by part for pr

(3) =

∫
R3

(
p2
θ

r3
+

p2
φ

r3 sin2 θ
− ∂φ

∂r

)
pr
∂f

∂pr
dp3 = −

∫
R3

(
p2
θ

r3
+

p2
φ

r3 sin2 θ
− ∂φ

∂r

)
fdp3 (4.280)

This leads again to

(3) = −r2 sin θρ(r)

(
p2
θ

r3
+

p2
φ

r3 sin2 θ
− ∂φ

∂r

)
(4.281)

which introduces the other variance terms p2
θ and p2

φ. The fourth term vanishes because we
can integrate directly the partial derivative of f . Before we collect the 3 non-vanishing terms
into a single equation, we want to express the momentum statistics as a function of the velocity
statistics. We have simply

p2
r = v2

r and prpθ = rvrvθ and p2
θ = r2v2

θ and p2
φ = r2 sin2 θv2

φ (4.282)

We can now write the final form of the Jeans equation for our relatively general spherical system
as

∂

∂r

(
r2ρv2

r

)
+

1

sin θ

∂

∂θ
(r sin θρvrvθ)− r2ρ(r)

(
v2
θ

r
+
v2
φ

r
− ∂φ

∂r

)
= 0 (4.283)

We will now simplify the problem further assuming first that the symmetries of f allow to assume
that the radial and the tangential velocities are uncorrelated so that vrvθ = 0. Furthermore, we
are looking for a static equilibrium solution for which all the mean velocities are zero. We can
then replace everywhere v2

r = σ2
r , v

2
θ = σ2

θ and v2
φ = σ2

φ. We can develop also

∂

∂r

(
r2ρσ2

r

)
= 2rρσ2

r + r2 ∂

∂r

(
ρσ2

r

)
(4.284)

The Jeans equation becomes

∂

∂r

(
ρσ2

r

)
+
ρ(r)

r

(
2σ2

r − σ2
θ − σ2

φ

)
= −ρ(r)

∂φ

∂r
(4.285)

We define the anisotropy parameter

β(r) = 1−
σ2
θ + σ2

φ

2σ2
r

(4.286)

which helps simplifying even more Jeans equation into

∂

∂r

(
ρσ2

r

)
+

2β(r)

r
ρσ2

r = −ρ∂φ
∂r

(4.287)

We can describe a few interesting asymptotic regimes.

• Isotropic orbits: the velocity dispersions are all equal in all directions, resulting into β = 0.
In this case, the Jeans equation is identical to the hydrostatic equilibrium equation we
derived and solved in Chapter 2.

• Purely radial orbits: this corresponds to σθ = σφ = 0 and therefore β = 1. As we show
below, the Jeans equation is easily solvable in this case. It corresponds to the external
regions of galactic halos where accretion flows are mostly radial.
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• Nearly circular orbits: not to be confused with disks, that we will describe in the next
section. Here, we have vθ = 0 but σθ >> σr. In this case, β can become negative and very
large.

The general strategy here is to assume a prescribed form for β(r) and solve for Jeans equation
to find the corresponding radial velocity dispersion profile. An interesting case is obtained with
β = constant, for which the solution is (left to the reader as an exercise)

ρσ2
r = r−2β

∫ +∞

r
x2βρ(x)

∂φ

∂x
dx (4.288)

Once we have found σr(r), we can then deduce f using the Maxwell-Boltzmann model with
f ∝ exp(−v2

r/2σ
2
r ).

4.6.2 Jeans equation for disks and the asymmetric drift

We now derive Jeans equation for axisymmetric systems for which we obviously use cylindrical
coordinates (r, θ, z). We restrict ourselves to distribution functions of the form f(r, z, vr, vθ, vz).
The Lagrangian is here again L = K − V = 1

2 ṙ
2 + 1

2r
2θ̇2 + 1

2 ż
2 − φ(r, z) and the momentum

variables are
pr = ṙ = vr and pθ = r2θ̇ = rvθ and pz = ż = vz (4.289)

The relation between the momentum space volume element and the velocity space volume ele-
ment is now given by

d3p = dprdpθdpz = rdvrdvθdvz (4.290)

We can now directly write the stationary CBE in cylindrical coordinates

pr
∂f

∂r
+ pz

∂f

∂z
+

(
p2
θ

r3
− ∂φ

∂r

)
∂f

∂pr
− ∂φ

∂z

∂f

∂pz
= 0 (4.291)

We first take the moment of the CBE multiplied by pr. We get the radial momentum conservation
equation

∂

∂r

(
rρv2

r

)
+

∂

∂z
(rρvrvz) + rρ

(
∂φ

∂r
−
v2
θ

r

)
= 0 (4.292)

It can be simplified into

∂

∂r

(
ρv2
r

)
+

∂

∂z
(ρvrvz) + ρ

(
∂φ

∂r
+
v2
r − v2

θ

r

)
= 0 (4.293)

We then take the moment of the CBE multiplied by pθ. We get the tangential momentum
conservation equation

∂

∂r

(
r2ρvrvθ

)
+

∂

∂z

(
r2ρvzvθ

)
= 0 (4.294)

We finally take the moment of the CBE multiplied by pz. We get the vertical momentum
conservation equation

∂

∂r
(rρvrvz) +

∂

∂z

(
rρvz

2
)

+ rρ
∂φ

∂z
= 0 (4.295)

We now assume that the underlying distribution function exhibits no cross-correlation between
the different velocity components

vrvθ = vzvθ = vrvz = 0 (4.296)
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This is usually the case if the distribution function f is even in vr and vz, like for example the
Schwarzschild distribution function. We are left with only two equations which now read

∂

∂r

(
ρv2
r

)
+ ρ

(
∂φ

∂r
+
v2
r − v2

θ

r

)
= 0 (4.297)

and
∂

∂z

(
ρvz

2
)

+ ρ
∂φ

∂z
= 0 (4.298)

If we have no vertical bulk velocity vz = 0, we finally obtain the vertical hydrostatic equilibrium
equation as

∂

∂z

(
ρσ2

z

)
+ ρ

∂φ

∂z
= 0 (4.299)

For a stable disk, it is reasonable to assume no bulk radial velocity so that vr = 0, but we have
obviously a non-zero mean tangential velocity. The radial equilibrium equation thus writes

1

ρ

∂

∂r

(
ρσ2

r

)
+
∂φ

∂r
+
σ2
r − σ2

θ

r
=
vθ

2

r
(4.300)

If we write this equation in the midplane, we recognise v2
circ = r ∂φ∂r . We can re-arrange the

previous equation as

vθ
2 − v2

circ =
r

ρ

∂

∂r

(
ρσ2

r

)
+ σ2

r − σ2
θ (4.301)

Re-arranging terms one last time, we finally obtain

v2
circ − vθ2 = σ2

r

(
σ2
θ

σ2
r

− 1−
∂ ln

(
ρσ2

r

)
∂ ln r

)
(4.302)

This equation is known as the asymmetric drift equation. Its interpretation is crucial to describe
the kinematics of stars in spiral galaxies. We can exploit the properties of the epicycle ellipse
around the guiding center in thin disks to compute

σ2
θ

σ2
r

=
4Ω2

circ

κ2
' 2 (4.303)

for a flat rotation curve. We also assume that the radial pressure is always a weakly decreasing
function of radius. We get

v2
circ − vθ2 ' σ2

r (4.304)

This very powerful result states that stars rotate at a mean tangential velocity always smaller
than the circular velocity, and that this difference is (almost) equal to the radial velocity disper-
sion. In the Milky Way, old stars have a rather large velocity dispersion, around 100 km/s, so
that their tangential velocity is significantly different than the one of the young stars, who have
a velocity dispersion as low as 10 km/s. The circular velocity of the Milky Way at the solar
radius being around 200 km/s, we conclude that young stars rotate at vθ ' 200 km/s, while old
stars rotate at only vθ ' 170 km/s. This validates the Schwarzschild model, but only for young
stars.
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4.7 Jeans instability and Landau damping

We have now extensively discussed various equilibrium solutions both in spherical and cylindrical
geometries. As always in this course, we would like now to test whether these equilibrium
solutions are stable. In this section, we describe the Jeans instability for collisionless systems,
for which the equilibrium solution is a homogeneous and uniform background, while the next
section is devoted to the stability analysis of disks. As always, we start with an equilibrium
distribution function f0(x,v) that satisfies the stationary CBE.

v · ∇f0 −∇φ0 ·
∂f0

∂v
= 0 (4.305)

where the potential satisfies Poisson equation and the equilibrium density is related to the
equilibrium distribution function by

ρ0(x) =

∫
R3

f0(x,v)d3v (4.306)

Similarly to the derivation of Jeans instability for collisional fluids, we consider here also a
uniform equilibrium density field and a uniform distribution function f0(v) that depends only
on v but not on x. We end up having a similar problem, namely our equilibrium gravitational
potential is ill-defined, as a uniform density field over an infinite domain results in a diverging
potential. We need to adopt the same strategy than for the collisional fluid case, namely use
Jeans swindle and re-define Poisson equation so that

∆φ = 4πG (ρ− ρ0) (4.307)

This gives us both φ0 = 0 and ∇f0 = 0 which satisfies trivially the stationary CBE. We now
perturb our uniform equilibrium solution as follows

f = f0 + δf and ρ = ρ0 + δρ and φ = 0 + δφ (4.308)

Injecting these perturbations into the CBE (not stationary this time of course) we get

∂

∂t
(f0 + δf) + v · ∇ (f0 + δf)−∇ (δφ) · ∂

∂v
(f0 + δf) = 0 (4.309)

Since f0 is constant and uniform, we can remove the corresponding time and space derivatives.
We now also linearise the CBE by neglecting the quadratic term ∇ (δφ) · (δf). We obtain the
linearised CBE

∂

∂t
(δf) + v · ∇ (δf)−∇ (δφ) · ∂f0

∂v
= 0 (4.310)

This equation has to be supplemented with the two already linearised equations for δρ and δφ

∆ (δφ) = 4πG (δρ) and δρ =

∫
R3

δfd3v (4.311)

We are now considering solutions of the form of planar waves, whose wave vector k is considered,
without loss of generality, aligned with the x-axis.

δf = f̂ expi(kx−ωt) and δφ = φ̂ expi(kx−ωt) and δρ = ρ̂ expi(kx−ωt) (4.312)

Note that the amplitudes of the planar waves are analogous to the Fourier coefficients of a general
function δf(x, t). Injecting our planar waves Ansatz into the CBE leads to the dispersion relation

− iωf̂ + ivxkf̂ − ikφ̂
∂f0

∂vx
= 0 (4.313)
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Re-arranging terms we finally get

f̂ =
k ∂f0

∂vx

kvx − ω
φ̂ (4.314)

Poisson equation can also be solved using our Ansatz as

− k2φ̂ = 4πGρ̂ and ρ̂ =

∫
R3

f̂d3v (4.315)

If we inject the equation for f̂ into the last one, we get

ρ̂ = φ̂

∫
R3

k ∂f0

∂vx

kvx − ω
d3v (4.316)

In the last equation, we could remove φ̂ from the integral, because it depends only on (Fourier)
space coordinates. Using Poisson equation and requesting the amplitude of our waves to be
non-zero, we finally get the dispersion relation

1 = −4πG

k2

∫
R3

k ∂f0

∂vx

kvx − ω
d3v (4.317)

We can simplify this equation introducing a function we are already familiar with, namely the
one-dimensional distribution function defined by

F0(vx) =

∫
R2

f0(vx, vy, vz)dvydvz (4.318)

The dispersion relation becomes

1 = −4πG

k2

∫
R

k ∂F0
∂vx

kvx − ω
dvx (4.319)

We immediately see that the denominator can vanish if the particle velocity is in resonance with
the wave, namely when vx ' ω/k. In this case, especially if ω is a real number, the integral is
ill-defined. We now assume that f0 is a Maxwell-Boltzman distribution so that

f0 =
ρ0

(2πσ2)3/2
exp−

v2

2σ2 and F0 =
ρ0

(2πσ2)1/2
exp−

v2
x

2σ2 (4.320)

where σ is the velocity dispersion characterising the equilibrium solution f0. We immediately
get

∂F0

∂vx
=

ρ0

(2πσ2)1/2

(
− vx
σ2

)
exp−

v2
x

2σ2 (4.321)

We introduce the normalised velocity u = vx/σ and get for the dispersion relation

1 =
4πGρ0

k2σ2

∫
R

kσu

kσu− ω
1√
2π

exp−
u2

2 du (4.322)

which can be further simplified into

1 =
4πGρ0

k2σ2

(
1 + ω

∫
R

1

kσu− ω
1√
2π

exp−
u2

2 du

)
(4.323)
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Note that in the general case, ω = ωr + iωi is a complex number. We define another complex
number

Z(ω) = Zr + iZi =

∫
R

1

kσu− ω
1√
2π

exp−
u2

2 du (4.324)

The dispersion relation takes now the very compact form

1 =
k2
J

k2
(1 + ωZ(ω)) (4.325)

where we have introduced the Jeans wave number

k2
J =

4πGρ0

σ2
(4.326)

Interestingly, it is identical to the Jeans wave number that we found in the collisional fluid case,
with the sound speed replaced by the velocity dispersion. Since ω is a complex number, we need
to consider the three possible cases:

• ωi > 0: growing amplitude, unstable waves

• ωi = 0: constant amplitude, travelling waves

• ωi < 0: damped waves

4.7.1 Collisionless Jeans instability

We consider here the unstable case with ωi > 0. The integral over u does not have a pole,
namely a possible location where the integral might diverge. Indeed, if ωi > 0, the pole where
the resonance occurs is off the x-axis. The complex number Z(ω) can be expressed as

Z(ω) =

∫
R

kσu− ωr + iωi

(kσu− ωr)2 + ω2
i

1√
2π

exp−
u2

2 du (4.327)

We thus deduce

Zr =

∫
R

kσu− ωr
(kσu− ωr)2 + ω2

i

1√
2π

exp−
u2

2 du (4.328)

and

Zi =

∫
R

ωi

(kσu− ωr)2 + ω2
i

1√
2π

exp−
u2

2 du (4.329)

We see that both integrals are well defined and converge for all possible values of ωr. We can
also express the dispersion relation more explicitly as

1 =
k2
J

k2
[1 + ωrZr − ωiZi + i (ωiZr + ωrZi)] (4.330)

We can compute directly the imaginary component of the dispersion relation

ωiZr + ωrZi = ωi

∫
R

kσu

(kσu− ωr)2 + ω2
i

1√
2π

exp−
u2

2 du (4.331)

We find that it is zero only if ωr = 0. This means we have no travelling wave solution. Because
ωr = 0, we see that Zr is also zero because the integrand is an odd function of u. Since both ωr
and Zr vanish, we can re-write the dispersion relation as

1 =
k2
J

k2
[1− ωiZi] (4.332)
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which has now no imaginary component as it should. We also have in this case

Zi =

∫
R

ωi

(kσu)2 + ω2
i

1√
2π

exp−
u2

2 du > 0 (4.333)

Interestingly, since ωiZi > 0, we conclude that k < kJ . The unstable regime corresponds to
wavelengths larger than the Jeans length, exactly like for collisional fluids. In the very large
wavelength limit, we can compute exactly the corresponding instability growth rate. Indeed, we
write the dispersion relation as

1 =
k2
J

k2

[
1−

∫
R

1

1 + (kσu/ωi)
2

1√
2π

exp−
u2

2 du

]
(4.334)

For very small wave numbers with k � kJ , we can perform a Taylor expansion of the integrand
as follows

1

1 + (kσu/ωi)
2 ' 1− (kσu/ωi)

2 (4.335)

Because the Gaussian satisfies these two relations∫
R

1√
2π

exp−
u2

2 du = 1 and

∫
R

1√
2π
u2 exp−

u2

2 du = 1, (4.336)

we end up with the following dispersion relation

1 '
k2
J

k2

[
1−

(
1− k2σ2

ω2
i

)]
=
k2
Jσ

2

ω2
i

(4.337)

We finally obtain for the growth rate in the limit k � kJ

ωi ' ωff = kJσ =
√

4πGρ0 (4.338)

which is the inverse of the free-fall time, again identical to the collisional fluid result.

4.7.2 Absence of propagating wave solutions

We are now looking for propagating wave solutions, for which ωi = 0. If ωr 6= 0, then we have
a pole on the x-axis where the previous integrands diverge. We have in particular

Z(ω) =

∫
R

1

kσu− ωr
1√
2π

exp−
u2

2 du (4.339)

We would like to use Cauchy formula, which, for an analytic complex function f(z) and for a
positively oriented closed contour that contains the pole z0, writes∫

C

f(z)

z − z0
dz = iπf(z0) (4.340)

The natural choice would be to use a contour defined by the x-axis and the upper half-circle
with infinite radius. The problem is that the Gaussian function is ill-defined for large imaginary
numbers. It is better to use the Landau contour as the union of the entire x-axis and a half-circle
with a vanishingly small radius around the pole. In this case, we get

Z(ω) = PV
{∫

R

1

kσu− ωr
1√
2π

exp−
u2

2 du

}
+ iπ

1√
2π

exp−
ω2
r

2σ2k2

kσ
(4.341)
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where PV stands for the Principal Value of the integral. We see that we obtain

Zr = PV
{∫

R

1

kσu− ωr
1√
2π

exp−
u2

2 du

}
(4.342)

and

Zi = π
1√
2π

exp−
ω2
r

2σ2k2

kσ
(4.343)

In this regime where ωi = 0, the dispersion relation writes

1 =
k2
J

k2
[1 + ωrZr + i (ωrZi)] (4.344)

We see here again a problem: if ωr 6= 0 then the dispersion relation contains a non-vanishing
imaginary component, because Zi > 0. We must necessarily have ωr = 0, which means there are
no travelling wave solutions. This result is in striking contrast with the collisional fluid case,
where we found travelling sound waves. For collisionless fluids, there are no sound waves, only
unstable waves with ωi > 0 or damped waves with ωi < 0. Interestingly, the trivial case ω = 0
that we just found corresponds exactly to k = kJ , the Jeans wavenumber.

4.7.3 Landau damping

We can solve for the dispersion relation for damped waves with ωi < 0 and k > kJ . The presence
of the singularity at ω = vk shows that particles moving at a speed close to the wave speed (also
called resonant particles) play an important role in the damping of self-gravitating waves. It is
however quite difficult to do in practice and requires a lot of virtuosity in the complex plane.
We will use instead in this paragraph a different path that will clearly expose the physical
process known as Landau damping. We consider the gravitation acceleration of the planar wave
perturbation we introduced above, with

δg(x, t) = g0 cos(kx− ωt) (4.345)

For simplicity, we have set the phase and the amplitude so that g = g0 > 0 for x = t = 0. We
then consider one particle with initial position x = 0 at t = 0 and initial velocity v0. The initial
particle velocity is drawn from the equilibrium Maxwell-Boltzmann distribution with variance
σ. Note that δg is a small perturbation of the equilibrium gravitational acceleration. We don’t
expect the trajectory of the particle to be strongly affected by this perturbation. We thus have
to first order that the trajectory is a straight line with

v(t) ' v0 and x(t) ' v0t (4.346)

The gravitational acceleration that this particle will feel is therefore given to first order by

dv

dt
' g0 cos(kv0 − ω)t (4.347)

We can now compute a better, second-order solution for the particle velocity as

v(t) = v0 +

∫ t

0
g0 cos(kv0 − ω)tdt = v0 + g0

sin(kv0 − ω)t

kv0 − ω
(4.348)

Note that if the particle moves initially at exactly the wave speed with kv0 = ω, then the
trajectory is a parabola with

v(t) = v0 + g0t and x(t) = v0t+
1

2
g0t

2 (4.349)
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This sets the time scale over which the particle distribution will be accelerated so much that
the perturbation cannot be considered as small anymore.

t0 =
σ

g0
(4.350)

We will use this time scale in what follows as the maximum time scale over which the wave can
propagate. If kv0 6= ω, we can integrate the velocity and obtain the trajectory as

x(t) = v0t+

∫ t

0
g0

sin(kv0 − ω)t

kv0 − ω
dt = v0t+ g0

1− cos(kv0 − ω)t

(kv0 − ω)2
(4.351)

We see that the particle trajectory is modulated by the underlying wave at a much lower fre-
quencyΩ = kv0−ω. The trajectory of resonant particles will feature a particularly low frequency,
ultimately going to zero as kv0 → ω. We now compute the instantaneous power gained by the
particle due to the gravitational force.

P (t) = mδg(t)v(t) (4.352)

For the gravity acceleration, we have to use also a second-order solution as

δg(t) = g0 cos(kx(t)− ωt) = g0 cos(kv0t+ kδx− ωt) (4.353)

We perform a Taylor expansion and get the second-order solution for the acceleration on the
particle as

δg(t) ' g0 cos(kv0 − ω)t− g0kδx sin(kv0 − ω)t (4.354)

Recall that we already found

δx = g0
1− cos(kv0 − ω)t

(kv0 − ω)2
and v(t) = v0 + g0

sin(kv0 − ω)t

kv0 − ω
(4.355)

Injecting this in the instantaneous power will produce several terms, that we will not write here.
The main result is that the instantaneous power is an oscillating function of time. Particles gain
and loose energy, in sync with the frequency of the wave Ω, similarly to a surfer riding a wave.
Following what we did in the Chapter on radiative transfer, it makes more sense to average the
power over one period to get an idea of the secular energy gain or loss of the particle. The
period is here given be

T =
2π

Ω
=

2π

kv0 − ω
(4.356)

Only one term will survive the averaging procedure, namely

P0 =
1

T

∫ T

0
P (t)dt = −m

2

kg3
0

(kv0 − ω)3 (4.357)

For reasons that will become clear later, we re-write this result as

P0 =
m

4
g3

0

∂φ

∂v0
with φ(v0) =

1

(kv0 − ω)2 (4.358)

This result requires some discussion. We see that particles with kv0 < ω will gain energy
(P0 > 0) while particle with kv0 > ω will loose energy (P0 < 0) as they ride the gravitational
planar wave. The closer the particles are to the resonant velocity kv0 = ω, the more energy
they gain (or loose). In fact, the power diverges for resonant particles. This problem can be
regularised by noticing that the oscillation frequency Ω for these waves is so small that one
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cannot average over at least one period when the maximum allowed time is reached. In other
words, the particles with maximum energy gain and loss will be those within

k∆v = |kv0 − ω| =
2π

t0
=

2πg0

σ
(4.359)

from the wave frequency ω. We can regularise the previous equation for the power using the
Lorentz line profile we derived in Chapter 3. Indeed, we can replace the previous diverging
formula with a regularised version as follows

P0 =
m

4
g3

0

∂φ

∂v0
with φ(v0) =

1

(kv0 − ω)2 + k2∆v2
(4.360)

We can now integrate the total energy lost or gained by the entire population of particle using
the Maxwell-Boltzmann distribution. We use a smart integration by part to obtain

Ptot =

∫
R
P0F0(v0)dv0 =

1

4
g3

0

∫
R

∂φ

∂v0
F0(v0)dv0 = −1

4
g3

0

∫
R

∂F0

∂v0
φ(v0)dv0 (4.361)

Note that the particle mass disappeared because it has been absorbed by the distribution func-
tion F0 as it is normalised to the mass density ρ0. Remember also that F0 is a one-dimensional
Maxwell-Boltzmann distribution with

∂F0

∂v0
= − ρ0√

2π

v0

σ3
exp−

v2
0

2σ2 (4.362)

Because φ is a very narrow line, like a typical Lorentz profile, we can evaluate the integrand at
the resonance kv0 = ω and obtain

Ptot ' −
1

4
g3

0

∂F0(ω/k)

∂v0

∫ +∞

−∞
φ(v0)dv0 = −1

4
g3

0

∂F0(ω/k)

∂v0

π

k2∆v
(4.363)

Injecting the various terms we have computed above, we finally get

Ptot =
1

8

ρ0g
2
0

σ2

ω

k2

1√
2π

exp−
ω2

2k2σ2 (4.364)

Because we have integrated over all particles in the Maxwell-Boltzmann distribution, we obtain
here the energy gained by particles per unit volume. Note that it is positive. This is because
we have more particles with kv0 < ω than particles with kv0 > ω in the Maxwell-Boltzmann
distribution. Because the kinetic energy of the overall particle distribution is increasing, the
potential energy in the gravitational planar wave has to decrease. Hence the name Landau
damping. We know from a previous section that the potential energy density of the gravitational
planar wave (integrated here in time over one period and in space over one wavelength) is given
by

epot = − 1

8πG

1

4
g2

0. (4.365)

We can immediately deduce the damping rate as

ωdamp = −Ptot

epot
= ω

k2
J

k2

exp−
ω2

2k2σ2

√
2π

(4.366)

Remember that we are in the regime k > kJ , so that this damping rate is usually quite slow
compared to the wave frequency ω. For very small wavelength, the damping time scale becomes
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so long that it can be ignored and the gravitational planar waves behave like sound waves. On
the other hand, damping becomes stronger as one approaches the Jeans length. For collisionless
fluids, particles can remain close to the resonance long enough so that they can gain energy
from the wave. In the strong collisional case, however, collisions are so frequent that resonant
particles are constantly kicked out of their surf board. They cannot stay at the top of the wave
and pump enough energy out of it. This is why there is no damping for self-gravitating sound
waves in the collisional fluid case.

4.8 Toomre instability in self-gravitating disks

In this section, we describe a very important physical process in astrophysics, namely the insta-
bility of self-gravitating disks under fragmentation. This process is at the origin of the formation
of molecular clouds and spiral arms in galaxies, as well as the formation of giant planets and
spiral structures in massive proto-planetary disks. Note also that the instability analysis we
present here applies for both gas ans stellar disks. We will first draw a simple picture for this
disk instability based on the competition of several well identified processes. We will then derive
more rigorously the dispersion relation for self-gravitating waves in disks.

4.8.1 Toomre parameter

In this section, we consider again razor-thin disks for which the volume density is given by

ρ(r, z) = Σ(r)δ(z) (4.367)

We are now consider a small perturbation at the surface of the disk of size λ. This perturbation
can be seen as a small circle of radius λ encompassing a small amount of gas and stars. We can
compute the mass in this clump as

Mclump = Σ(r)πλ2 (4.368)

The question we ask now is the following: can this clump collapse under its own gravity ? For
this, we consider two main effects that can prevent the collapse.

• Thermal support: thermal or turbulent random motions of gas and stars can provide
support against the collapse of the cloud. We have seen in Chapter 2 that the virial
theorem can be used to check if a system should collapse or expand. The condition for the
collapse is given by the virial parameter αvir < 1

GMclump

λ
> c2

s (4.369)

Note here that cs is the gas sound speed, but it could be replaced by the star velocity
dispersion or the turbulence velocity dispersion. Injecting the equation for the mass of the
clump, we get the condition

λ > λJ =
c2
s

πGΣ
(4.370)

where the critical cloud size we found is called the two-dimensional Jeans length. It is
different from the Jeans length we found for three-dimensional homogeneous systems.

• Centrifugal support: our small clump is also rotating in the frame of the guiding centre,
following the epicycle ellipse. Particles of gas or stars are experiencing a centrifugal force



CHAPTER 4. COLLISIONLESS SELF-GRAVITATING FLUIDS 215

in this frame that tends to pull the cloud apart, working against gravity. We can write
the condition for the collapse as

GMclump

λ2
>
ẋ2

λ
(4.371)

In other words, the gravitational acceleration of the cloud exceeds the centrifugal force
due to the epicycle rotation velocity. We now from the previous sections that we can write
ẋ2 = κ2x2 where we use for the epicycle ellipse x ' λ. This leads to

GMclump

λ2
> κ2λ (4.372)

or equivalently

λ < λT =
πGΣ

κ2
(4.373)

where the second critical length we found is called the Toomre length.

Combining these two results, we see that the conditions for a cloud of size λ to collapse is given
by λJ < λ < λT . In other words, the disk will be unstable against fragmentation, if a gap can
be opened between the Jeans length and the Toomre length or λJ < λT . In order to get a stable
disk, on the other hand, we just need to have λJ ≥ λT and the gap will be closed. This condition
can be turned into a stability criteria for the disk

λJ =
c2
s

πGΣ
≥ λT =

πGΣ

κ2
(4.374)

We introduce the Toomre parameter Q. The condition for collapse is Q < 1 and the condition
for stability is Q ≥ 1.

Q =
csκ

πGΣ
(4.375)

4.8.2 Stability analysis of a razor-thin disk

We now switch to a more rigorous treatment of the disk instability. We will use the Euler
equation for an isothermal gas. Note that one could have used instead the Jeans equations for
a constant velocity dispersion stellar disk and obtained a similar result. We use here obviously
a cylindrical coordinate system. The Euler equations can written in cylindrical coordinate as
follows

Dvr
Dt

=
∂vr
∂t

+ vr
∂vr
∂r

+ vθ
1

r

∂vr
∂θ

=
v2
θ

r
− ∂φ

∂r
− 1

Σ

∂P

∂r
(4.376)

Dvθ
Dt

=
∂vθ
∂t

+ vr
∂vθ
∂r

+ vθ
1

r

∂vθ
∂θ

= −vθvr
r
− 1

r

∂φ

∂θ
− 1

Σ

1

r

∂P

∂θ
(4.377)

∂Σ

∂t
+

1

r

∂

∂r
(rvrΣ) +

1

r

∂

∂θ
(vθΣ) = 0 (4.378)

Note that these equations are identical to the one we derived for accretion disks. The only
difference is the self-gravity of the disk. Since our gas is isothermal, we can write P = Σc2s
where cs is the isothermal sound speed. We can also write the pressure gradient term as

1

Σ

∂P

∂r
=

∂

∂r

(
c2
s logΣ

)
=
∂Π

∂r
where Π = c2

s log
Σ

Σ0
(4.379)

The equilibrium model we consider here can be any of the equilibrium disks we have presented
in this course. It is defined by zero radial velocity, a tangential velocity close to the circular
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velocity and a given potential-density pair. We now perturb our equilibrium model slightly, so
that the perturbed velocity field can be written as

vr = 0 + δvr and vθ = v0
θ + δvθ (4.380)

and the perturbed potential-density pair can be written as

Σ = Σ0 + δΣ and φ = φ0 + δφ (4.381)

Finally, the perturbed pressure can be written as

Π = c2
s log

Σ0 + δΣ

Σ0
' Π0 + c2

s

δΣ

Σ0
(4.382)

Note that we have just linearised the pressure perturbation and obtained

δΠ =
c2
s

Σ0
δΣ (4.383)

Let’s now linearise the other equations of the model. For the radial velocity we can re-write the
first Euler equation, dropping all quadratic terms

∂

∂t
(δvr) +

v0
θ

r

∂

∂θ
(δvr) = 2

v0
θ

r
(δvθ)−

∂

∂r
(δφ+ δΠ) (4.384)

Note that we have also removed in the previous equation equilibrium terms using the equilibrium
condition

(v0
θ)

2

r
=
∂φ0

∂r
+
∂Π0

∂r
(4.385)

The tangential velocity equation can be linearised as follows

∂

∂t
(δvθ) +

∂v0
θ

∂r
(δvr) +

v0
θ

r

∂

∂θ
(δvθ) = −

v0
θ

r
(δvr)−

1

r

∂

∂θ
(δφ+ δΠ) (4.386)

where we used the fact that the equilibrium variables are all axisymmetric. Finally, we linearise
the mass conservation equation as

∂

∂t
(δΣ) +

1

r

∂

∂r
(rΣ0δvr) +

v0
θ

r

∂

∂θ
(δΣ) +

Σ0

r

∂

∂θ
(δvθ) = 0 (4.387)

We recognise everywhere in these equations the orbital frequency of the equilibrium model
v0
θ = Ωr. In order to facilitate the next steps, we now consider as always planar wave solutions

but this time only in the tangential direction

δvr = v̂r(r) expi(mθ−ωt), δvθ = v̂θ(r) expi(mθ−ωt), etc. (4.388)

This Ansatz could be interpreted as a Fourier transform in time and angular domain. We can
compute time and angular derivatives easily and derive new forms for the previous equations
The radial velocity equation writes for example

(−iω + imΩ) v̂r − 2Ωv̂θ = − ∂

∂r

(
φ̂+ Π̂

)
(4.389)

The tangential velocity equation becomes

(−iω + imΩ) v̂θ +

(
∂v0

θ

∂r
+Ω

)
v̂r = −im1

r

(
φ̂+ Π̂

)
(4.390)
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Finally, we have for the mass conservation equation

(−iω + imΩ) Σ̂ +
1

r

∂

∂r
(rΣ0v̂r) + im

Σ0

r
v̂θ = 0 (4.391)

We can combine the two velocity equations, multiplying the radial one by (−iω + imΩ), the
second one by 2Ω and adding them up, and obtain[
− (ω −mΩ)2 + 2Ω

(
∂v0

θ

∂r
+Ω

)]
v̂r = i (ω −mΩ)

∂

∂r

(
φ̂+ Π̂

)
− i2mΩ 1

r

(
φ̂+ Π̂

)
(4.392)

In the left bracket, we recognise the epicyclic frequency

κ2 = 2Ω

(
r
∂Ω

∂r
+ 2Ω

)
(4.393)

The radial velocity equation can be written as[
κ2 − (ω −mΩ)2

]
v̂r = i (ω −mΩ)

∂

∂r

(
φ̂+ Π̂

)
− i2mΩ 1

r

(
φ̂+ Π̂

)
(4.394)

Following a similar strategy, we get the tangential velocity equation as[
κ2 − (ω −mΩ)2

]
v̂θ =

κ2

2Ω

∂

∂r

(
φ̂+ Π̂

)
−m (ω −mΩ)

1

r

(
φ̂+ Π̂

)
(4.395)

It is interesting to realise that the left-hand side of the two velocity equations contains a term
that can vanish. If this happens, we have a resonance and the amplitudes of the wave can
diverge. This happens when the wave frequency is equal to the Lindblad resonances

ωL = mΩ ± κ (4.396)

For m = 0 (axisymmetric perturbations), the Lindblad resonance frequency is equal to the
epicyclic frequency. It means that stars who are oscillating in the radial direction at the epicyclic
frequency are in sync with the radial perturbation of the potential. Similarly to Landau damping,
this creates a resonance with a strong energy exchange between the stars and the wave.

4.8.3 Local disk approximation

In order to simplify the problem, we adopt now the local disk approximation. We consider a small
portion of the disk at a specified radius r0, where the geometrical terms due to the cylindrical
coordinates can be ignored. In mathematical terms, this corresponds to

∂

∂r

(
φ̂
)
� φ̂

r
,

∂

∂r

(
∆̂
)
� ∆̂

r
, etc. (4.397)

Our equations become of course way simpler, with[
κ2 − (ω −mΩ)2

]
v̂r = i (ω −mΩ)

∂

∂r

(
φ̂+ Π̂

)
(4.398)

(−iω + imΩ) Σ̂ +
∂

∂r
(Σ0v̂r) = 0 (4.399)

We have omitted the tangential velocity equation for clarity. We can now Fourier transform
our solution in the radial direction, since geometrical terms have been removed and our local
geometry is now quasi-Cartesian with x = r and y = r0θ. We therefore introduce

v̂r(r) = ṽr expikr, v̂θ(r) = ṽθ expikr, etc. (4.400)
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where the wavenumber k corresponds to kx and the tangential mode m corresponds to kyr0.
Our equations now write[

κ2 − (ω −mΩ)2
]
ṽr = −k (ω −mΩ)

(
φ̃+ Π̃

)
(4.401)

(−iω + imΩ) Σ̃ = −ikΣ0ṽr (4.402)

Remember that the pressure perturbation is related to the density perturbation by

Π̃ =
c2
s

Σ0
Σ̃ (4.403)

An important missing ingredient is here the gravitational potential. Remember that we found
that the Fourier amplitude of the potential of a razor-thin disk is related to the Fourier amplitude
of the surface density by a 2D Poisson equation

φ̃ = − 2πG√
k2
x + k2

y

Σ̃ ' −2πG

|k|
Σ̃ (4.404)

Here, we consider only low m modes, so that it is indeed safe to assume that ky � kx and

kx ' k. Injecting the values of φ̃ and Π̃ as a function of ∆̃, we finally get

ṽr = − (ω −mΩ)[
κ2 − (ω −mΩ)2

] ( c2
s

Σ0
− 2πG

|k|

)
kΣ̃ (4.405)

Σ̃ =
Σ0

(ω −mΩ)
kṽr (4.406)

Combining the two equations, we obtain finally the dispersion relation

1 = − k2[
κ2 − (ω −mΩ)2

] (c2
s −

2πGΣ0

|k|

)
(4.407)

which can be simplified as

k2c2
s − 2πGΣ0k + κ2 = (ω −mΩ)2 (4.408)

This famous result is known as the Toomre dispersion relation. Be careful to make the difference
between the radial wave number k and the epicyclic frequency κ. It might be useful to remind
the reader what is the actual form of the solutions, shown here for example for the radial velocity

δvr = ṽr expi(mθ+kr−ωt) (4.409)

As always, if we find that ω = ωr + iωi has a positive imaginary part, we have an instability.
This is true if the left-hand side of the dispersion relation is negative

k2c2
s − 2πGΣ0k + κ2 < 0 (4.410)

We have to find at least one real root for this degree-two polynomial which is equivalent to the
(reduced) discriminant being positive

∆′ = π2G2Σ2
0 − κ2c2

s > 0 (4.411)
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or equivalently the Toomre parameter being less than 1.

Q =
κcs
πGΣ0

< 1 (4.412)

Interestingly, the Toomre wavelength λT corresponds to the smallest root kT , while the Jeans
length corresponds to the largest root kJ . The most unstable wavenumber corresponds to the
minimum of the parabola which is reached for

kmin =
πGΣ0

c2
s

(4.413)

and the corresponding wave frequency reads

ω = mΩ + iκ

√
1

Q2
− 1 (4.414)

Interestingly, we see that the instability growth rate is close to the epicyclic frequency of the
disk at the current location r0. This instability plays a major role in galactic dynamics and
proto-stellar disk evolution. It explains the origin of spiral waves in quiescent disks like the
Milky Way or violent fragmentation in high redshift, gas rich galaxies.

4.9 Dynamical friction

In this last section, we would like to describe collisions more explicitly and how they might affect
collisionless orbits. When we have computed the relaxation time, we have estimated how much
kinetic energy of the subject star was lost by two-body interactions with the other stars in the
system, the so-called field stars. In this section, we would like to repeat this derivation more
rigorously, but this time looking at the momentum exchange between the field stars and the
subject star. Moreover, the subject star is assumed to have a mass M � m, much larger than
the mass of the field stars. We can describe the gravitational collision as usual, in the frame of
the centre of mass, which in this case is the frame comoving with the massive subject star. We
consider field stars bombarding the subject stars from the left, with the x-axis aligned with the
direction of the relative velocity of the field stars.

4.9.1 Hyperbolic orbits

We use now standard notations, with b the impact parameter of the field stars, φ the orbital
plane angle and θ the deflection angle (see Chapter 1). The centre of mass velocity is equal to
the field star velocity V ' vs and the relative velocity is equal to v ' vf − vs. Note that the
norm of the relative velocity will be conserved, but not its direction. The particle approaches
from the left with x = −∞, y = b, vx = v∞ and vy = 0. The trajectory is described by a Kepler
orbit, with interaction potential φ(r) = −GM/r. Using the solution for Kepler orbits that we
have found earlier in this chapter, we can describe the trajectory with

u = C cos(θ − θ0) +
GM

L2
(4.415)

where the new variable u is defined by u = 1/r. L = rvθ is the constant angular momentum
and C is a constant yet to be determined. Using the conditions at x → −∞, we get easily the
value of the angular momentum as L = −bv∞. Note that it is negative in our positively oriented
polar coordinate system. The radial velocity of the star writes in polar coordinates

vr = ṙ = Cr2θ̇ sin(θ − θ0) = CL sin(θ − θ0) = −Cbv∞ sin(θ − θ0) (4.416)
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Using again the conditions as x → −∞, which corresponds to θ = π and r → +∞, we find for
the radial velocity

vr → −v∞ = −Cbv∞ sin(π − θ0) or sin θ0 =
1

Cb
(4.417)

and for the inverse radius

u =
1

r
→ 0 = C cos(π − θ0) +

GM

L2
or cos θ0 =

GM

Cb2v2
∞

(4.418)

Combining these two results gives us the value of the orbital phase as

tan θ0 =
bv2
∞

GM
=

b

b90
with b90 =

GM

v2
∞

(4.419)

where we introduced the well-known impact parameter b90 corresponding to a 90 degree deflec-
tion angle. This phase corresponds to the apocenter of the orbit, in other words the point of
closest approach. The deflection angle corresponds to the polar coordinate for which vr = +v∞,
which gives

θdefl = 2θ0 − π (4.420)

We can compute the velocity of the escaping star after the collision as

vx = v‖ = v∞ cos θdefl and vy = v⊥ = v∞ sin θdefl (4.421)

We are interested mostly in the parallel velocity kick, leading to a drag force due to collisions
with field stars. The perpendicular velocity kick will average out with particles coming in with
the opposite impact parameter. The parallel velocity kick is therefore

∆v‖ = v∞ cos θdefl − v∞ = −v∞ (1− cos θdefl) = −v∞ (1 + cos 2θ0) (4.422)

Using some standard trigonometry, we get finally

∆v‖ = − 2v∞
1 + tan θ2

0

= − 2v∞

1 + b2

b290

(4.423)

Note that this velocity kick is negative. It corresponds to the field star being decelerated by the
interaction with the subject star. Momentum conservation implies that in return, the subject
star will received a much smaller, but positive velocity kick in the x-direction, whose value is
given by

∆vs,‖ =
m

M

2v∞

1 + b2

b290

(4.424)

4.9.2 Chandrashekar formula

We now want to compute the total momentum gained by the subject stars due to collisions with
field stars with a given velocity vf and at the position of the subject star xs. Note that the
number density of such stars is given by the distribution function as

δnf = f(xs,vf )d3vf (4.425)
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Using the collision cylinder, we integrate over all possible impact parameters to get the net force
applied to the subject star

δFs = M
dvs
dt

=

∫ bmax

bmin

M∆vs,‖2πbvδnfdb (4.426)

where the relative velocity was defined above as v = v∞ = |vf − vs|. We get

δFs = δnf4πmv2
∞

∫ bmax

bmin

bdb

1 + b2

b290

= δnf4πmv2
∞b

2
90

[
ln

(
1 +

b2

b290

)]bmax

bmin

(4.427)

We see that the lower bound of the integral can be taken as bmin = 0 but the upper bound has
to be finite. A conservative choice is here the size of the entire galaxy R. This leads us to define
here again a Coulomb logarithm as

lnΛ = ln

(
1 +

R2

b290

)
= ln

(
1 +

R2v4
∞

G2M2

)
(4.428)

so that the force contribution can be written as

δFs = δnf4πm
G2M2

v2
∞

lnΛ (4.429)

Note that this force contribution is positive, and aligned with the relative velocity vector vf−vs.
We need to reformulate this force contribution in an absolute frame, not in the frame aligned
with the direction of the relative velocity of the field stars. This can be done using now a vector
representation as

δFs = δnf4πmG2M2 lnΛ
vf − vs

|vf − vs|3
(4.430)

In this absolute frame, we can now integrate over the field stars particle velocity distribution
function. We get for the total force

Fs = 4πG2M2 lnΛ

∫
R3

vf − vs

|vf − vs|3
fd3vf (4.431)

Note that here again the particle mass disappeared, because we absorbed it in the distribution
function definition which is normalised to ρ. We have also introduced the average Coulomb
logarithm to account for its integration over velocity space. We now assume that the distribution
function is isotropic, like the ergodic family f(E) or the Maxwell-Boltzmann distribution. This
means that the distribution function is spherically symmetric in velocity space. We now use an
analogy with the gravitational force of a fluid with mass density ρ(x) acting on a fixed point y
that writes

g(y) =

∫
R3

G
x− y

|x− y|3
ρ(x)d3x (4.432)

If the mass density is spherically symmetric ρ(r), we can use the divergence theorem and compute
directly the gravitational acceleration as

g(y) = −GM(< y)

y3
y (4.433)

where y is the radius with respect to the centre of symmetry of the system. We now exploit this
analogy to re-write the integral of our isotropic distribution function as∫

R3

vf − vs

|vf − vs|3
fd3vf = −ρ(< vs)

v3
s

vs (4.434)
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The notation ρ(< vs) corresponds to the mass density of particles whose velocity is smaller than
the subject star velocity. Only slow enough particles contributes to the drag force. We can now
present the final expression of the dynamical friction force, known as Chandrashekar formula.

Fs = −4πG2M2 lnΛ
ρ(< vs)

v3
s

vs (4.435)

In order to estimate the effect of dynamical friction on our massive object, we define the dy-
namical friction time scale as

1

tdf
=

1

vs

dvs
dt

(4.436)

for a typical collisionless, nearly circular orbit. If the massive object finds itself on radius rs
within a galaxy of mass Mgal, we now that the typical orbital velocity is

v2
s '

GMgal

rs
(4.437)

Since the magnitude of the acceleration of the drag force is

dvs
dt

= 4πG2M lnΛ
ρ

v2
s

(4.438)

we get
1

tdf
= 4πG2M lnΛ

ρ

v3
s

(4.439)

As always, we want to compare this time scale with the orbital time give by torb = rs/vs.

1

tdf
= torb

1

rs
4πG2M lnΛ

ρ

v2
s

= torb4πGρ
M

Mgal
lnΛ (4.440)

where we injected the value of the circular velocity. Introducing the free-fall time of our colli-
sionless stellar fluid, we finally get

1

tdf
=
torb

t2ff

M

Mgal
lnΛ (4.441)

We still have to compute the average Coulomb logarithm. We can estimate it approximately by

lnΛ ' ln

(
1 +

R2σ4

G2M2

)
' 2 ln

Mgal

M
(4.442)

where we used the fact that the typical stellar velocity dispersion satisfies σ2 ' GMgal/R. If the
stellar mass is comparable to the dark matter mass, we find that the free-fall time is comparable
to the orbital time. We finally get the result

tdf =
torb

2

Mgal/M

ln(Mgal/M)
=
torb

2

µ

lnµ
(4.443)

It is quite striking that this formula resembles the relaxation time formula so much. This clearly
suggests that dynamical friction is a relaxation process associated to collisions. It all depends
on the mass ratio µ between the host galaxy and the massive object. For µ = 10, we find
tdf ' 2torb, while for µ = 100, we find tdf ' 10torb. For the Milky Way, we have Mgal ' 1010

solar masses. Only objects as massive as 108 solar masses will be able to deviate enough from a
pure collisionless dynamics and see their trajectory modified by dynamical friction. This proves
for example that the supermassive black hole at the centre of our galaxy (106 solar masses)
has not been accreted from outside but most likely formed in situ. On the other hand, with
an estimated stellar mass of 3× 109 solar masses, the large Magellanic cloud will quickly spiral
down towards the centre of the Milky Way.
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