Selected Topics in General and Inorganic Chemistry

Lectures notes and interactive teaching by Jozef Noga
at Faculty of Natural Sciences, Comenius University, Bratislava

Table of topics:

1. Composition of the matter
. Basic chemical laws and rules, formulae, equations
. Structure of atoms
. Periodic table of elements
2. Molecular structures \& basic theories of chemical bonding
3. Principles of thermodynamics
4. States of the matter
. Introduction to chemical kinetics
5. Acids and bases
6. Introduction to electrochemistry
7. Elements and their basic compounds
8. Coordination chemistry
9. Organometallic compounds

Podmienky na absolvovanie predmetu (Grading policy):

There will be two running written tests examinations (maximum 20 points each) during the semester course. Final exam will consist of a 60-point test. Only those students will be admitted to final examination who achieve at least 60% of the points from tests and 60% of laboratory work evaluation. For grade A, it is necessary to obtain at least 92%, for grade B at least 84%, for grade C at least 76%, for grade D at least 68% and for grade E at least 60% of all points. Credits will not be assigned to a student, who will not earn at least 60% from running tests, or who will not earn at least 60\% from laboratory work and to student, who will not earn at least 60% from final exam.

What is Chemistry?

An introduction to chemical science

Chemistry is such a broad subject and one so full of detail that it is easy for a newcomer to find it somewhat overwhelming, if not intimidating. The best way around this is to look at Chemistry from a variety of viewpoints:

- How Chemistry relates to other sciences and to the world in general
- What are some of the fundamental concepts that extend throughout Chemistry?
- What are some of the major currents of modern-day Chemistry?

Chemistry: the central science

The real importance of Chemistry is that it serves as the interface to practically all of the other sciences

So just what is chemistry?

Chemistry can be approached in different ways, each yielding a different, valid, (and yet hopelessly incomplete) view of the subject.

Chemist's view

Mainly theoretical	Mainly practical
Why do particular combinations of atoms hold together, but not others?	What are the properties of a certain
compound?	

HISTORY

Chemistry is a branch of science that has been around for a long time. In fact, chemistry is known to date back to as far as the prehistoric times. Due to the amount of time chemistry takes up on the timeline, the science is split into four general chronological categories.

The four categories are:
prehistoric times - beginning of the Christian era (black magic) beginning of the Christian era - end of 17 th century (alchemy) end of 17th century - mid 19th century (traditional chemistry) mid 19th century - present (modern chemistry)

Milestones in the history of Chemistry

Prehistoric Times - Beginning of the Christian Era
Fire - Smoke - Ceramics
$\sim 3300 \mathrm{BC}$ Bronze Age (alloy consisting primarily of copper, with tin as the main additive)
1700 BC $\quad 6^{\text {th }}$ Babylonian king Hammurabi's reign

- known metals were recorded and listed in conjunction with heavenly bodies

~1300 BC Iron Age

430 BC Democritus proclaims the atom to be the simplest unit of matter

300 BC Aristotle declares the existence of only four elements: fire, air, water and earth properties: hot, cold, dry and wet

History of Chemistry

$\sim 300 \mathrm{BC}$ - End of 17th Century (Alchemy)
$300 \mathrm{BC}-300 \mathrm{AD}$ the Advent of the Alchemists attempt to transmute cheap metals to gold. The substance used for this conversion was called the Philosopher's Stone

$13^{\text {th }}-15^{\text {th }}$ century intensive effort;
pope John XXII (1316-34) issued an edict against gold-making
Despite the alchemists' efforts, transmutation of cheap metals to gold never happened within this time period.
1493-1541 Paracelsus - (Philippus von Hohenheim)
Modern toxicology, pharmacology;
Three principles: salt (solidity, inertness), sulfur (inflamability), mercury (fluidity, heaviness, metallicity)

History of Chemistry ~1700 - ~1850 (Traditional Chemistry)
Johann Joachim Becher - 1667 phlogiston theory postulated a fire-like element called phlogiston, contained within combustible bodies, that is released during combustion (rusting).

1774 Joseph Priestly heated calx of mercury, collected the colorless gas and burned different substances in this gas (discovery of oxygen)

Antoine Lavoisier - oxygen (1778); hydrogen (1783) disproved the phlogiston theory; list of elements law of mass conservation - Father of Modern Chemistry

John Dalton - 1803 Atomic Theory which states that all matter is composed of atoms, which are small and indivisible

History of Chemistry ~1850 - present (Modern Chemistry)
1854 Heinrich Geissler creates the first vacuum tube.
1879 William Crookes - plasma - ZnS fluorescence \rightarrow cathode rays

1885 Eugen Goldstein - positive particles - protons
1895 Wilhelm Roentgen accidentally discovered X-rays
1896 Henri Becquerel - fluorescence of pitchblend - natural radioactivity - Nobel Prize in Physics1903
with Marie Skłodowska-Curie and Pierre Curie

1897 J.J. Thomson - discovery of the electron

Synthesis is both one of the oldest areas of chemistry and one of the most actively pursued:

major threads

Combinatorial chemistry refers to a group of largelyautomated techniques for generating tiny quantities of huge numbers of different molecules ("libraries") and then picking out those having certain desired properties. Although it is a major drug discovery technique, it also has many other applications.
Green chemistry - synthetic methods that focus on reducing or eliminating the use or release of toxic or nonbiodegradable chemicals or byproducts.

Materials, polymers, nanotechnologies

Materials science attempts to relate the physical properties and performance of engineering materials to their underlying chemical structure with the aim of developing improved materials for various applications.

Organic semiconductors

number of potential advantages over conventional metalloidbased devices.

Nanodevice chemistry
constructing molecularscale assemblies for specific tasks such as computing, producing motions, etc.

Fullerenes, nanotubes and nanowires, graphene

Fullerenes were first
identified in 1985 as products of experiments in which graphite was vaporized using a laser
R. F. Curl, Jr., R. E. Smalley, and H. W. Kroto shared the 1996 Nobel Prize in Chemistry

Fullerene research is expected to lead to new materials, lubricants, coatings, catalysts, electrooptical devices, and medical applications

Biosensors and biochips

the surfaces of metals and semiconductors "decorated" with biopolymers can serve as extremely sensitive detectors of biological substances and infectious agents

Drug design

looks at interactions between enzymes and possible inhibitors

Computermodeling is an essential tool in this work

Proteomics

This huge field focuses on the relations between structure and function of proteins
there are about 400,000 different kinds in humans.

Proteomics is related to genetics in that the DNA sequences in genes get decoded into proteins which eventually define and regulate a particular organism.

Chemical genomics

explores the chain of events in which signaling molecules regulate gene expression

Atom (in a „nutshell")

Nucleus

Protons (+)
Neutrons (0)
nucleons surrounded by: electrons (-)

Z - proton number
N - neutron number A - nucleon number
$\mathrm{A}=\mathbf{Z}+\mathbf{N}$
${ }_{z}^{A} \mathrm{E} \quad{ }_{11}^{23} \mathrm{Na}$

Nuclide: atomic species characterized by a specific constitution of its nucleus.
Isotopes: same Z, different A
napr. ${ }_{26}^{54} \mathrm{Fe},{ }_{26}^{56} \mathrm{Fe},{ }_{26}^{57} \mathrm{Fe},{ }_{26}^{58} \mathrm{Fe}$
Isobars: different elements, equal „A"

Atomic mass: $\sim 10^{-27}-10^{-25} \mathrm{~kg}$ not practical \rightarrow relative atomic mass A_{r} Unified atomic mass unit (or constant):

$$
\begin{aligned}
& m_{u}=\frac{1}{12} m\left({ }_{6}^{12} C\right)=1,660565 \cdot 10^{-27} \mathrm{~kg} \\
& A_{r}\left({ }_{z}^{A} E\right)=m\left({ }_{Z}^{A} E\right) / m_{u}
\end{aligned}
$$

more isotopes \rightarrow weighted avarage
Approval by: IUPAC
International Union of Pure and Applied Chemistry

Molecules - entities composed of atoms, with unambiguous structure and unique properties

Relative molecular mass M_{r}
$M_{r}=m\left(X_{a} Y_{b}\right) / m_{u}=a A_{r}(X)+b A_{r}(Y)$
Molar fraction (n) (SI): mol - number of N_{A} entities
N_{A} Avogadro's constant $=$ number of atoms in $12 \mathrm{~g}{ }^{12} \mathrm{C}$
$\mathrm{N}_{\mathrm{A}}=6,022140.10^{23} \mathrm{~mol}^{-1}$

Molar mass: $M(A)=m(A) / n(A)$

Molar volume (V_{m}):

Avogadro's law - for an ideal gas

- equal volumes of all gases, at the same temperature and pressure, have the same number of molecules
equal $n(A) \rightarrow$ equal volume
standard: ($\mathrm{T}=273.1 \mathrm{~K} ; \mathrm{p}=101.32 \mathrm{kPa} ; \mathrm{V}_{\mathrm{m}}=22.41 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$)
otherwise: $\mathrm{V}_{\mathrm{m}}=\mathrm{V} / \mathrm{n}$
Amedeo Avogadro, 1776-1856, Italian

Physical properties of materials	
Extensive	Intensive
depend on the amount of a substance	do not depend on the amount of a substance
mass, volume, total energy content, total electric resistance total content of a given element, ...	density, colour, boiling point, electric conductivity, concentration, ...
Dichotomy - a unique classification is not always possible	
e. g. pressure - both dependent and independent	

Classification of material systems

Homogeneous

uniform intensive properties throughout its volume

A phase

Heterogeneous

two or more phases

Phase boundaries
colloids: no clear phase bondaries, intesive properties vary within
the volume the volume -
ner

Pure substances- Chemical individuals

Unique physical and chemical properties
Melting point (temperture), boiling p., spectral properties, ...
Production: from mixtures by separation methods
Destilation, crystalization, liquid extraction, chromatography ...

Are they really pure?
\ldots pure \rightarrow For analysis \rightarrow Chemically pure
\rightarrow Extra chemically pure substances
special -99,999 \% Si- number of 9s

Pure substances

Chemical elements

isoatomic composition same proton number
alotropic modification
O: $\mathrm{O}_{2}, \mathrm{O}_{3}$
C: grafite, diamant,
fulleren, amorfous carbon,
C-nanotubes, graphene, ...
Gr. allos, different tropos kind
Jöns Jakob Berzelius 1779-1848, Swedish

Changes in the substances
 Chemical change - reaction

Macroscopically: Microscopically:
process of creation reorganisation of of new compounds atoms in the space

$$
\begin{gathered}
A+B \rightarrow C+D \\
\text { reactants products } \\
A+B \leftrightarrow C+D \\
\text { chemical equilibrium }
\end{gathered}
$$

Chemical equations, mass balance, charge balance

Empirical laws

Law of constant composition
(Law of definite proportions)
(Joseph Luis Proust - 1799, Francúz)
(John Dalton - 1803, Angličan)
A chemical compound always contains exactly the same proportion of elements by mass, irrespective of the way of preparation

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl} \quad \square \quad \mathrm{H}: \mathrm{Cl}=2.76 \%: 97.24 \%
$$

$$
3 \mathrm{H}_{2} \mathrm{O}+\mathrm{PCl}_{3} \rightarrow 3 \mathrm{HCl}+\mathrm{H}_{3} \mathrm{PO}_{3}
$$

daltonides
bertholides - non-stochiometric
Claude Louis Berthollet 1748-1822 Francúz

Empirical laws

Law of multiple proportions
(John Dalton - 1803)

If two elements form more than one compound between them, then the ratios of the masses of the second element which combine with a fixed mass of the first element will be ratios of small whole numbers.
$\mathrm{MnO}, \mathrm{MnO}_{2}$

$$
\mathrm{Mn}=1
$$

$$
\mathrm{O}(\mathrm{MnO}): \mathrm{O}\left(\mathrm{MnO}_{2}\right)=1: 2
$$

Empirical laws

Law of combining volumes
(Joseph Luis Gay-Lussac - 1808, Francúz)

The ratio between the volumes of the reactant gases and the products can be expressed in simple whole numbers.
$\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow \mathbf{2 ~ H C l}$
1I 1 1 I

