CHAPTER ONE

VECTOR GEOMETRY

1.1 INTRODUCTION

In this chapter vectors are first introduced as geometric objects, namely as directed line
segments, or arrows. The operations of addition, subtraction, and multiplication by a
scalar (real number) are defined for these directed line segments. Two and three
dimensional Rectangular Cartesian coordinate systems are then introduced and used to
give an algebraic representation for the directed line segments (or vectors). Two new
operations on vectors called the dot product and the cross product are introduced. Some
familiar theorems from Euclidean geometry are proved using vector methods.

1.2 SCALARS AND VECTORS

Some physical quantities such as length, area, volume and mass can be completely
described by a single real number. Because these quantities are describable by giving
only a magnitude, they are called scalars. [The word scalar means representable by
position on a line; having only magnitude.] On the other hand physical quantities such as
displacement, velocity, force and acceleration require both a magnitude and a direction to
completely describe them. Such quantities are called vectors.

If you say that a car is traveling at 90 km/hr, you are using a scalar quantity, namely the
number 90 with no direction attached, to describe the speed of the car. On the other
hand, if you say that the car is traveling due north at 90 km/hr, your description of the
car's velocity is a vector quantity since it includes both magnitude and direction.

To distinguish between scalars and vectors we will denote scalars by lower case italic
type such as a, b, ¢ etc. and denote vectors by lower case boldface type such as u, v, w
etc. In handwritten script, this way of distinguishing between vectors and scalars must be
modified. It is customary to leave scalars as regular hand written script and modify the
symbols used to represent vectors by either underlining, such as u or vy, or by placing an
arrow above the symbol, such as 1I1 or {/



1.2 Problems

1. Determine whether a scalar quantity, a vector quantity or neither would be
appropriate to describe each of the following situations.

a. The outside temperature is 15° C.

b. A truck is traveling at 60 km/hr.

c. The water is flowing due north at 5 km/hr.

d. The wind is blowing from the south.

e. A vertically upwards force of 10 Newtons is applied to a rock.
f. The rock has a mass of 5 kilograms.

g. The box has a volume of .25 m’.

h. A car is speeding eastward.

i. The rock has a density of 5 gm/cm’.

j. A bulldozer moves the rock eastward 15m.

k. The wind is blowing at 20 km/hr from the south.

1. A stone dropped into a pond is sinking at the rate of 30 cm/sec.

1.3 GEOMETRICAL REPRESENTATION OF VECTORS

Because vectors are determined by both a magnitude and a direction, they are represented
geometrically in 2 or 3 dimensional space as directed

Q line segments or arrows. The length of the arrow

corresponds to the magnitude of the vector while the

v direction of the arrow corresponds to the direction of the



vector. The tail of the arrow is called the initial point of the vector while the tip of the
arrow 1is called the terminal point of the vector. If the vector v has the point P as its

initial point and the point Q as its terminal point we will write v =PQ .

Equal vectors u
Two vectors u and v, which have the same length and same / -
direction, are said to be equal vectors even though they have /
different initial points and different terminal points. If u and

v are equal vectors we write u = v.

Sum of two vectors

The sum of two vectors u and v, written u + v is the vector u+v
determined as follows. Place the vector v so that its initial
point coincides with the terminal point of the vector u. The =
vector u + v is the vector whose initial point is the initial point
of u and whose terminal point is the terminal point of v.
Zero vector
The zero vector, denoted 0, is the vector whose length is 0. Since a vector of length 0
does not have any direction associated with it we shall agree that its direction is arbitrary;
that is to say it can be assigned any direction we choose. The zero vector satisfies the

property: v+ 0=0+ v=yv for every vector v.

Negative of a vector
If u is a nonzero vector, we define the negative of u, denoted —u, to be the vector whose
magnitude (or length) is the same as the magnitude (or length) of the vector u, but whose

direction is opposite to that of u.

/U'A/—u

If lea is used to denote the vector from point A to point B, then the vector from point B
to point A is denoted by BA , and BA =— AB.

Difference of two vectors



If u and v are any two vectors, we define the difference of u and v, denoted u — v, to be
the vector u + (—=v). To construct the vector u — v we can either

(i) construct the sum of the vector u and the vector —v;  or

(i1) position u and v so that their initial points coincide; then the vector from the terminal

point of v to the terminal point of u is the vector u —v.

(1) (ii)

-V

Multiplying a vector by a scalar

If v is a nonzero vector and ¢ is a nonzero scalar, we define the product of ¢ and v,
denoted cv, to be the vector whose length is |C | times the length of v and whose
direction is the same as that of v if ¢ > 0 and opposite to that of v of ¢ < 0. We define

cv=0ifc=0o0rifv=0.

_——v /2/; Parallel 4 vectors
v vV

The l,y  vectors v (-1)v and c¢v are
parallel to each other. Their directions coincide if ¢
> 0 and the directions are opposite to each other if ¢ < 0. If u and v are parallel vectors,
then there exists a scalar ¢ such that u = cv. Conversely, if u = cv and ¢ # 0, then u and

v are parallel vectors.

Example
Let O, A and B be 3 points in the plane. Let B
(ﬂ =aand let @ =p. Find an expression for the vector

ﬂ in terms of the vectors a and b.




Solution
BA = BO +0A

= -OB +0A

= OA -OB
=a-b.

Example Prove that the line joining the mid points of two sides of a triangle is parallel

to and one-half the length of the third side of the triangle.

Solution

Let A ABC be given. Let M be the mid point of side AC and
let N be the mid point of side BC. Then

MN =MC+CN =L AC+1CB =1 (AC+CB) = AB.

This shows that MN is one-half the length of AB and also
that MN is parallel to AB [since the two vectors W and
%AWBM are equal, they have the same direction and hence are

parallel, so 1\7”1(? and Kﬁ will also be parallel].

Example

/

N

Let M be the mid point of the line segment PQ. Let O be a point not on the line PQ.

Prove that @:50_15%&2

Solution

OM = OP +PM = OP+1PQ

OP +1(PO+0Q)
OP+1PO+10Q
10P+10Q

_ —

OP+10Q

]
2
)
5

0=

1.3 Problems

M

1. For each of the following diagrams, find an expression for the vector ¢ in terms of the

vectors a and b.



a.
C
¢ C. b b
a 4>
a

B
2. Let OACB be the parallelogram shown. Let
a=O0A andlet b=O0B. Find expressions for
the diagonals OC and AB in terms of the
vectors a and b.
O a A

3. Let ABC be a triangle. Let M be a point on AC such that the length of AM = %2
length of MC. Let N be a point on BC such that the length of BN = %2 length of NC.
Show that MN is parallel to AB and that the length of MN is % the length of AB.

4. Let the point M divide the line segment AB in the ratio ;s with# + s = 1. Let O be a
point not on the line AB. Prove OM =sOA +1OB.

5. Prove that the diagonals of a parallelogram bisect each other.

6. Prove that the medians of a triangle are concurrent.

1.4 COORDINATE SYSTEMS

In order to further our study of vectors it will be necessary to consider vectors as
algebraic entities by introducing a coordinate system for the vectors. A coordinate
system is a frame of reference that is used as a standard for measuring distance and
direction. If we are working with vectors in two-dimensional space we will use a two-



dimensional rectangular Cartesian coordinate system. If we are working with vectors in
three-dimensional space, the coordinate system that we use is a three-dimensional
rectangular Cartesian coordinate system. To understand these two and three-dimensional
rectangular coordinate systems we first introduce a one-dimensional coordinate system
also known as a real number line.

Let R denote the set of all real numbers. Let / be a given line. We can set up a one-to-
one relationship between the real numbers R and the points on [/ as follows. Select a
point O, which will be called the origin, on the line /. To this point we associate the
number 0. Select a unit of length and use it to mark off equidistantly placed points on
either side of O. The points on one side of O, called the positive side, are assigned the
numbers 1, 2, 3 etc. while the points on the other side of O, called the negative side are
assigned the numbers —1, -2, -3 etc. A one-to-one correspondence now exists between
all the real numbers R and the points on /. The resulting line is called a real number line
or more simply a number line and the number associated with any given point on the
line is called its coordinate. We have just constructed a one-dimensional coordinate

system.

Two-dimensional rectangular Cartesian coordinate system
The two-dimensional Cartesian coordinate system has as its frame of reference two
number lines that intersect at right angles. The

: L . y
horizontal number line is called the x-axis and the A
vertical number line is the y-axis. The point of
intersection of the two axes is called the origin and x P(x, y)

is denoted by O. To each point P in two-
dimensional space we associate an ordered pair of

y
real numbers (x, y) called the coordinates of the

point. The number x is called the x-coordinate of 0 * > x
the point and the number y is the y-coordinate of the

point. The x-coordinate x is the horizontal distance

of the point P from the y-axis while the y-coordinate y is the vertical distance of the point

P from the x-axis. The set of all ordered pairs of real numbers is denoted R



Three-dimensional rectangular Cartesian coordinate system

The three-dimensional Cartesian coordinate system has as its frame of reference three
number lines that intersect at right angles at a point O called the origin. The number lines
are called the x-axis, the y-axis and the z-axis. To each point P in three-dimensional
space we associate an ordered triple of real numbers (x, y, z) called the coordinates of
the point. The number x is the distance of the point P from the yz-coordinate plane.
The number y is the distance of the point P from the xz-coordinate plane. The number z
is the distance of the point P from the xy-coordinate plane. The set of all ordered triples

of real numbers is denoted by R®. When the coordinate axes are labeled as shown in the

, , k]

A yz-coord 4
xz-coord A - plane A P
plane N
> y y
0 0)
) ]
xy-coord X point P(x,y,z)
X plane

following diagrams, the coordinate system is said to be a right-handed Cartesian
coordinate system.

Right-handed Cartesian coordinate system

A right-handed Cartesian coordinate system is one in which z
the coordinate axes are so labeled that if we curl the fingers on

our right hand so as to point from the positive x-axis towards

the positive y-axis, the thumb will point in the direction of the

positive z-axis. [If the thumb is pointing in the direction

opposite to the direction of the positive z-axis, the coordinate x

system is a left-handed coordinate system.]

1.4 Problems

1. Draw a right-handed three-dimensional Cartesian coordinate system, and plot the
following points with the given coordinates.
a. P(2,1,3) b. Q(3,4,5) c. R(2,1,-2) d. S(0,-2,-1)



2. A cube has one vertex at the origin, and the diagonally opposite vertex is the point
with coordinates (1, 1, 1). Find the coordinates of the other vertices of the cube.

3. A rectangular parallelepiped (box) has one vertex at the origin and the diagonally
opposite vertex at the point (2, 3, 1). Find the coordinates of the other vertices.

4. A pyramid has a square base located on the xy-coordinate plane. Diagonally opposite
vertices of the square base are located at the points with coordinates (0, 0, 0) and
(2, 2, 0). The height of the pyramid is 2 units. Find the coordinates of the other
vertices of the pyramid. [Assume that the top of the pyramid lies directly above the
centre of the square base.]

5. A regular tetrahedron is a solid figure with 4 faces, each
of which is an equilateral triangle. If a regular
tetrahedron has one face lying on the xy-coordinate plane
with vertices at (0, 0, 0) and (0, 1, 0), find the
coordinates of the other two vertices if all coordinates are

tetetrahedron

nonnegative

1.5 DEFINING VECTORS ALGEBRAICALLY

Since a vector is determined solely by its magnitude and
direction, any given vector may be relocated with respect A )
to a given coordinate system so that its initial point is at /v

the origin O. Such a vector is said to be in standard v Pab)

position. When a given vector v is in standard position

there exists a unique terminal point P such that v = OP. P x

This one-to-one relationship between the vector v and the

terminal point P enables us to give an algebraic definition for the vector v. If v is a
vector in two-dimensional space and P(q, b) is the unique point P such that v = OP, then
we will identify the vector v with the ordered pair of real numbers (@,0) and write V = (a,
b). Similarly if v is a vector in three-dimensional space and P(a, b, c) is the unique point
P such that v = EP, then we will identify v with the ordered triple of real numbers
(a,b,c)and write v = (a, b, ¢). The two-dimensional vector v = (a, b) is said to have
components ¢ and b and the three-dimensional vector V=(a,b,¢) is said to have

components a, b and c.
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To avoid confusion, when dealing with the components of several vectors at the same
time it is customary to denote the components of a given vector by subscripted letters that
agree with the letter used to designate the vector. Thus we will write v= (v, v;) if vis a

. 2 . . . 3
vector in R* and v = (v, v, v3) if vis a vector in R".

Equal vectors

If equal vectors u and v are located so that their initial points are at the origin, then their
terminal points will coincide, and hence the corresponding components of u and v must
be equal to each other. Thus u = v in R* if and only if u, = v, and u, = v, while for
vectors in R?, u = v if and only if u;=v,, up=v, and uz =v;

Sum of two vectors y

Let u = (u1, uy) and v = (v;, v,) be two vectors in R%. If

the vectors are located so that their initial points are at
the origin, then their terminal points are the points Y,

with coordinates (u;, u,) and (vi, v,). If v is now

placed so that its initial point is at (u;, u,), which is the
terminal point of u, then the terminal point of v is the %,

point with coordinates (u,+ vi, u, + v2).
u. v

Hence u + v = (u; + vy, Uy + v2).
. . 3 .
A similar argument for the vectors u = (i, u,, u3) and v = (vy, v, v3) in R” gives

U+ v=_u +vi, U+ vy, Uz + v3).

Example
Letu=(1,2,3)andv=(4,1,5). Thenu+v=(1+4,2+1,3+5)=(5,3,8).
Multiplying a vector by a scalar

If u = (uy, u) is a vector in R” that has its initial

cu
2

point at the origin, then the terminal point of u is cu

the point with coordinates (u, u,). If ¢>0, then the u,
vector cu has the same direction as u and is ¢ times -

as long as u so its terminal point is the point with

coordinates (cu;, cu,). A similar argument applies

if ¢<0, except in this case the direction is reversed.

In either case we have cu = (cu,, cu,).

If instead u is a vector in R?, then a similar argument will show that cu = (cu;, cus, cus).



Example
Ifu=(3,1,2), then Su= (5%3,5%1,5%2) =(15,5,10) .

Difference of two vectors
The vector u — v is defined to be equal to the vector sum u + (—1)v.
If uw=(u, up) and v = (v, v,) are two vectors in Rz, then

u—v=_(~u,u) + (1) (vi,v2) = (Ui, uz) + (=vi, =v2) = (U = vy, s = V2).
Similarly, in R’ we haveu-v = (uy = Vv, U — Vo, Uz — V3).
Example

Ifu=(4,5,2) and v=(2,-1,3) then u—v=(4—2, 5-(-1), 2—3) =(2,6,-1).

Vector representation of a directed line segment._
Let v = ATB where A is the point with coordinates A

(a1, ay) and B is the point with coordinates (b;, b,).

Then A

v=AB = AO + OB
=-0A + OB= OB - OA
= (b1, b)) — (a1, ay) = (D) — a\, b, — a).

11

In R, if A = (a1, a», a;) and B = (by, b, b3) then
E = (bl -ay, by- as, bs- a3).

Example
IfA=(,2,3)and B=(4,6,9), then AB =(4-1,6-2,9-3)=(3,4,6)

Length of a vector
If v = (v, v») then the length of v is equal to the v, v)
length of the directed line segment from the origin

\%
(0, 0) to the point (v, v;). We will use the symbol || ||
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||V|| to represent the length of the vector v. Using Pythagoras’ theorem for right triangles

we can calculate that length to be ,lvlz + v22 and so we have the formula ||V|| = w/vlz + 1122 .

A similar argument for a vector v = (v, v, v3) in R’ using Pythagoras’ theorem twice,

gives ||V|| = ,IVIZ + v22 + 1)32 .

Theorem If ¢ is a scalar and v is a vector in R> or R®, then|c V]| =|c| |v]. _

Proof The following proof is for v in R*. The proof for v in R* is similar.

||c V|| :||(cvl,cv2)|| 2\/(cvl)2 +(cv,)’ :\/cz(v1 +v,%) :\/c72\/v12 +v,)? =|c| ||V||

Unit vector

If ||V|| =1 we say v is a unit vector. Because the length of a vector is a positive quantity,

the length of the vector cv is |C| ||V|| To find a unit vector in the direction of a given

1 1
vector v, multiply the vector v by the scalar M The resulting vector MV is a unit

1
vector in the direction of v. A unit vector in the direction opposite to v is _M v.

Example
If v = (2,2, 1), then the length of v is |[V| = V22 +22 +12 =J/4+4+1=+/9 =3 and a
I 1 @ 21C
unit vector in the direction of v is MV —5(2» 2,h= B’J;EEE A unit vector in the
L . .02 2 1C
direction opposite to that of v is B‘g, 373 E

1.5 Problems
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Letu=(2,1,3),v=3,1,-2)and w=(4, -1, 1).

1. Find the following vectors.
a. u+v b. u-v c. 2w d. 2u-—3v e. u+2v—=3w f. 2u+3v-

w

2. Find the following lengths.
a ol o M e 2wl a eyl e oy vow

3. Find components of the vector equal to the directed line segment P_d .
a. P=(1,2,3) Q=2,4,7) b. P=3,1,4) Q=(5,7,1)
c. P=(-2,51) Q=(4,-3,2) d P=(0,3,2) Q=(2,0,5)

4. Let v= K]é . If vand A are as given below, find the coordinates of B.
a. v=(3,5,4) A=(,3,2) b.v=(2,5,4) A=(,-2,2)

5. Let v= Eﬁ . If vand B are as given below, find the coordinates of A.
a. v=3,5,4 B=(2,5,6) b.v=(2,5,4) B=@4,1,7).

6. Let v be the given vector. Find a unit vector in the direction of v and find a unit
vector in the direction opposite to that of v.
a. v=(2,2,1)b. v=3,0,4) c. v=(1,2,3) d. v=(-2,3,-4).

7. If v=3a, 4a, 5a) and || = 10, find the value of a.

1.6 THE DOT PRODUCT (SCALAR PRODUCT)

The dot product is a method for multiplying two vectors. Because the product of the
multiplication is a scalar, the dot product is sometimes referred to as the scalar product.
The dot product will be used to find an angle between two vectors and will have
applications in finding distances between points and lines, points and planes, etc.

If u=(u, up) and v = (vy, v,) are two vectors in R, we define their dot product, denoted

U°*v asfollows: U*V = yv, + uv,.
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If u=(u, us, u3) and v = (v, v,, v3) are two vectors in R’, we define their dot product to

be U*V = uvy + urvy + usvs.

Example

Letu=(1,2,3)and v=(4, 5, 6).

Then U*V =(1)(4) +(2)(5) +(3)(6) =4+ 10 + 18 =32.

The following theorem relates the length of a vector to the dot product of the vector with
itself.

Theorem For any vector u in R or in R?, ||ll|| =vJueu,

Proof The following proof is for R®. The proof for R* is similar.
Letu = (uy, u,). Then W W= (4 1) (uy, wo) = uy” + uy" = "“”2

Taking square roots gives ||ll|| =vueu,

The next theorem lists some algebraic properties of the dot product.

Theorem Letu, v and w be vectors in R?> or R?, and let ¢ be a scalar. Then
(a) Usv=veu

(b) c(@* V) =(cu)* v=u* (cv)

(c)u*(v+w)=u*v+u*w

(d) u*0=0.

Proof (a) Letu = (u, up) and v = (vy, v,) be any two vectors in R’
Then U® V = 1wy, + usvs = viuy + vaup = v® u.  The proof for R* is similar

The proofs for parts (b), (c) and (d) are similar straightforward computations.

The following theorem shows how the dot product of two vectors u and v is related to the
angle between the vectors.
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Theorem Let u and v be two vectors in R* or R’. Let 8 be the angle between u and v.
Then U® V= ||u|| ||v|| cos0 .

Proof Let u and v to be a pair of adjacent sides of a
triangle whose third side is u — v. Using the cosine law for
triangles we get

2

| =2l [v]cos®

(u-v)e(u-v)=ueu+ve V—2||u|| ||V||cose

Ju-]" =l +]v

ueu-u°*v-veutvev=-ueutve V—2||u|| ||V||COSG

-2uev= —2||u|| ||V|| cos 0

ue v =|uf v|cos

Angle between two vectors
The preceding theorem provides a method for finding the cosine of the angle between

two vectors and hence finding the angle between the two vectors.  Solving
ue v =|ul| |[v|cos® for cos® gives the formula €088 = ”ll:”.—”:’]”

Example
Find the cosine of the angle between the vectors u = (3, 1, 2) and v = (1, 4, 3).

Solution
cosf= 312,43 _ 3+4+6 13 13 13
G, L2 [(,4,3)] Vo+1+41+16+9 1426 2474213 247

LOVi3 0
Having found the cosine of the angle 0, we can find the angle B=cos™ % E: 47e,

Orthogonal vectors

Vectors u and v are said to be orthogonal or perpendicular to each other if they meet at
right angles. If u and v are orthogonal, then w* v = |u| [v]|cos(1¥2) = 0. [Since cos (T7/2)
=(0.] Conversely, if u® v =0 we must have eitheru =0 or v=0or ulJv. Since the zero
vector 0 can have any direction, we will agree that 0 is orthogonal to any vector. Hence

we say that u and v are orthogonal if and only if u® v =0.

Example
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Show that the vectors u = (1, 2, 2) and v = (2, 1, =2) are orthogonal vectors.

Solution
uv=(1,2,2)*2,1,-2)=2+2=4=0. Hence ulyv.

Normal vector
If [ is a line in R? or in R® and n is a vector that is orthogonal to the line /, we call n a

normal vector to the line /.

Theorem Let ax + by = ¢ be the equation of a line / in R®. Then the vector n = (a, b)

is a normal vector to the line /.

Proof First select two points P and Q on . Select P = (¢/a, 0) and
Q = (0, ¢/b), then the vector P—Q lies on /.

But PQ = (0, ¢/b) — (cla, 0) = (=cla, ¢/b). To show that n 0 PQ we
take the dot product.

n* P_Q = (a, b)* (—cla, c/b) == c + ¢ =0. This proves that the
vector n is a normal vector to the line /.

Example
Find a vector that is normal to the line 2x + 3y =5.

Solution
From the previous theorem the vector n = (2, 3) is normal to the given line 2x + 3y =5
since the coefficients of x and y are 2 and 3.

Projections
Let u and v be two given vectors with vZ0. The u-p
projection of u along v, denoted proj,u is the vector p

found as follows. Drop a perpendicular from the terminal

point of u that intersects the line through v at the point P. O ’D - >
Then projju=p = OP.

We find p as follows. Since p lies along v, there is a scalar k such that p = kv. Now u-p

is orthogonal to v so (u-p)* v=0. But
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ue*v ue°yv

(u-p)*v=0 = u*v-p°v=0 = u*v—-kvev=0 = k=, ||V||2 .
uev __ueyv
Hence proju=p=kv= " & _||V||2 v

Example
Letu=(8,1,4)and let v= (1, 2, 2). Find proj,u.

Solution
u-vV _ (8,1,4)-(1,2,2)(1,2’2):8+2+8
vev (1,2,2)+(1,2,2) 1+4+4

1,2,2)=2(1,2,2)=(2,4,4)

proj,u =

Distance between a point and a line in R’
To find the distance D between a point P and a line / in R?, we select a point Q on the line
[, then the distance D is the length of the projection of

QPon n, a normal vector to the line /.

wn o
DZHproanPH: QP.nn
nen
G [
I T

UL LU
Note that ‘QP‘ n‘ :‘PQ‘ n‘ and so either of the last two

forms for the distance D can be used interchangeably.
Example
Find the distance between the point P = (9, 1) and the line 3x + 4y = 6.

Solution
The point Q = (2, 0) lies on the line 3x + 4y = 6 so @5 =09,D)-(2,0)=(7,1).
QPenl [7.D+G.4)| _[21+4 o5 _

M Jorie 5

5

Since n = (3, 4), the distanceis D =

1.6 Problems
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In problems 1 to 3 below, letu= (1,2, 1), v=(3,2,4) and w = (1, -1, 3).

10.

1.

Calculate the following dot products.
a. u*v b. U*W ¢ Vew d. us(v+w) e. we (2v+3w)

Find the length of each of each of the following vectors.
a.u b.v c. W d u+v e. 2u-3v

Find the cosine of the angle between the following pairs of vectors.
a. uand v b. uandw c.vandw d. u+v andu-v

Show that the following pairs of vectors are orthogonal.
a. (2,1,3)and (1,1, -1) b. (1,3,5)and (2, 1, 1)
c. (4,5,1)and (2, -1, -3) d. (1,0, 1) and (0, 1, 0)

Find a vector n which is normal to the given line in R’
a. 2x+3y=5 b. x-2y=3 c. 3x+y=4 d. x+3y=1

Find proj,u for each of the following pairs of vectors u and v.
a.u=(1,2,1)andv=(3,1,0) b.u=3,1,49)andv=(1,2,2)
c.u=(5,4,3)andv=3,1,1) d u=(,1,2)andv=(3,4,1)

Find the distance between the point P and the line / in R’
a. P=(2,3) [3x+4y=1 b. P=(5,1) [©3x-4y=2
c. P=(5,3) L Sx+12y=1 d P=@3,4) [ x+2y=3

Prove Pythagoras’ theorem: The square on the hypotenuse of a right triangle
equals the sum of the squares on the other two sides.

Prove that the angle inscribed in a semi circle is a right angle.

Prove that the sum of the squares of the diagonals of a parallelogram equals the sum
of the squares of its sides.

Prove that the diagonals of a rhombus (parallelogram with equal sides) are
perpendicular.
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12.  Prove that the mid point of the hypotenuse of a right triangle is equidistant from the
three vertices of the triangle

13. Prove that the altitudes of a triangle are concurrent.

14. Let a and b be unit vectors in the xy-plane making angles O
and [3 respectively with the x-axis. Let i and j be the vectors
(1, 0) and (0, 1) respectively.

a. Show thati*i=1, i*j=0and j*j=1.
b. Show thata =cos@i+sina@j and b=cosBi+sinf]
c. Prove that cos(0 —[3) = cosacosf3+sinasinf,

1.7 THE CROSS PRODUCT (VECTOR PRODUCT)

In the previous section we were introduced to the dot product of two vectors. The result
of taking the dot product of two vectors is a scalar quantity. We now introduce a second
method of multiplying two vectors from R’ that results in a vector quantity. The symbol
used to denote this product is a cross %X, hence the name "cross product". Because the
result is a vector, the term "vector product” is sometimes used for this product.

The cross product has a number of applications. We will use the cross product to find the
areas of triangles and parallelograms. It will also be used to calculate the volume of a

parallelepiped and later to find the distance between a point and a line in R.

Cross product (vector product)
If u = (uy, us, u3) and v = (vy, vo, v3) are two vectors in R3, the cross product u*v is the
vector in R® defined as follows.

UXV = (UsV3—UsVa, UsVi—U V3, UV2—ULVY).

Example
Letu=(3,1,2)andlet v=(4,6.5).
Then uXv = (]X5—2X6, 2%x4-3x%x5, 3><6—]X4) :(—7, -7, 14)
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Although the definition of the cross product as given above may be difficult to
remember, the concept of a 2% 2 determinant can be used to simplify the process.

C (& bLC
Consider the 2%2 array of numbers [] [. The determinant of [] [, written,
T dr T dr
& bLC a b
det % dEor dl’ is defined to be the number ad — bc. Then the cross product of

u = (uy, Uy, uz) and v = (vy, v, v3), using determinants, can be written as the vector

We remember the components of u*v as follows.

U, U,

V, V3

@, u, u,lC
1) Form the 2%3 rectangular array E}l v2 v3 [ where the first row consists of the
1 2 3

components of the vector u and the second row consists of the components of vector v.

2) To find the first component of u*v, delete the first column and take the determinant
of the remaining 2*2 array; to find the second component of u*v, delete the second
column and take the negative of the determinant of the remaining 2*2 array; to find the
third component of u*v, delete the third column and take the determinant of the

remaining 2?2 array.

Example
Findu*Xvifu=(2,3,4)andv=(5,6,7).

Solution
2 3 4C
Construct the rectangular array g 6 7E. Then
o = 3 4 2 4 12 3
YT He 11 s 71 |5 6

=(3x7-4%6, —(2X7 —4x5), 2x6-3x5)
=(21-24, —(14-20), 12-15)
=(=3, 6, -3
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Theorem uUXV =_ VvXu

Proof uXv= (M2V3 — U3Va, U3V — U V3, U1V — I/lzvl)
= — (UzV2- UaV3, UV3 - U3V, UsV - UIV2)
= — (Valls — V3lUp, V3lUi — Vill3, Villy — Voldy)

=-v*u

Theorem u*v is orthogonal to both u and v.

Proof We show that u*v is orthogonal to u by showing that the dot product of u*v and
u is equal to zero. The proof that u*v is orthogonal to v is similar.
(@XV)* w= (U3 — UzVa, UsVy — ULV3, V2 — UpV1)® (s, U, U3)
= (U2vs — uzv2) ty+ (Usvy — uyvs)  + (Urva — uavy) U3
— UV3 Uy = U3V

U + UV Uy - UVs 4 /-V U+ uvrus -

UV Uz

arrows indicate

cancelino naire

=0
Since (u*v)®* u=0, u*Xv and u are orthogonal.

Example
Find a vector orthogonal to bothu = (1, 3,2) and v=(4, 0, 1).

Solution
The vector u*v is orthogonal to both u and v, so we calculate u>v.
3 2 1 201 3

uxv= , —
1 4 1/ 4 0O

)

‘Ez(g_o, ~(1-8), 0-12)=@3, 7, -12)
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The next theorem is a useful result that can be applied to calculate the area of a triangle
and the area of a parallelogram. It is also used to calculate the volume of a parallelepiped
in R*and to find the distance between a point and a line in R’.

Theorem ||u><v|| =||u|| ||V|| sin® where O is the angle between u and v

Proof The proof consists of 2 steps.
(1) We first show ||ll><V||2 =||u||2 ||V||2 —(uev)® by computing the left and right hand
sides separately and showing that they are equal to each other.

2 _ 2 2 2 .
X v]|™ = (uyvy —uv,)® + (v —uv)® H v, —uyv)? @)

||“||2||"||2 —(uev)? = (u,” +uy” g )0 A, ) =gy Fupv, fuv)’ o (ii)

A lengthy computation shows right hand sides of (i) and (ii) are equal and so we
conclude ||u><V||2 = ||u||2 ||V||2 —(uev)?,
(2) Starting with ||u><V||2 = ||u||2 ||V||2 —(uev)® we expand the dot product on the right
=l = (lul [v] cos &°
=l -cos* 6)
=[ul[}v]" sin* ©

Taking square roots gives the required result: Juxv| =[u]|v]sin®.

The next theorem lists several properties of the cross product. The properties are
established by straightforward computations and so the proofs are omitted.

Theorem Let u, v and w be vectors in R’>. Then u, v and w satisfy the following
properties.

(a) uX(V+w) =uxv+uxw
(b) (W+V)Xw=uxw+vxw
(c) ux0=0xu=0

(d) uxu=0
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The area of a parallelogram

Let u and v be the adjacent sides of a parallelogram. The
area of a parallelogram is length of base X height. From the

adjoining diagram we have that the length of the base is ||V|| U h

h .
and the height is h. From trigonometry we get H =sinb g e >

h = ||u||sin 0. Therefore the area A is given by

A =base x height = v/ |ju]sin6 = ux v|

The area of a triangle

Let u and v be the adjacent sides of a triangle. Since the
area of the triangle is one-half the area of the parallelogram
with u and v as its adjacent sides, the area of the triangle is e

A= x| v

Example
Find the area of the parallelogram having adjacent sides u = (2, 3, 1) and v= (4,0 2).

Solution

31
uxv=
0 2

Area =uxv]| =](6,0,-12)] =36 +0+144 =/180 =+/36 x5 =/364/5 = 6/5

2

4 2

‘21

23D(60—12)
40%2”

Example
Find the area of the triangle whose vertices are A = (1, 2, 2), B =(3, 4, 5) and
C=(,6,4)

Solution
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Let u=AB=(3.4,5)~(1,2,2)=(2.2.3) and
let v=AC=(5,6,4)-(1,2,2)=(4,4,2).

2 3 2 32 2
,—‘ ‘E=(—8,8,0)

9

4 20 4 214 4
Area of triangle ABC = 3uxv|=1[(-8,8, 0)| = ; V64 +64+0 = 42

Then UXV:%

The volume of a parallelepiped

A parallelepiped is a solid (3-dimensional) A"V
figure having six faces with opposite pairs |
of faces being congruent parallelograms. A

parallelepiped can be specified by giving 3
vectors u, v and w that form the 3 edges

emanating from a common vertex. The

volume of the parallelepiped is the area of
the base X height. The area of the base is

the area of the parallelogram with u and v as adjacent sides and is equal to ||ll X V|| . The

height is the length of the projection of w onto u*v = ||Pr0juva

. || we (uxv) H (We (uxv) (We uxv)
IOy W/ = (uxv)=————uXy|=——-—7—
But”p ] | || (u x V) . (u x V) ||u x V||2 || || ||u % V”
(we (uxv)
Thus the volume of the parallelepiped is V= ||ll X V||— = |W * (ux V)| .

o]

Example
Find the volume of the parallelepiped having the following three vectors as edges.
u=(2,3,1), v=3,4,3)and w=(4, 5, 6)

Solution

3 1 2 1112 3
uxy= , = , =(,-3,-1

4 31 (3 31|13 4
we(uxv)=(4,56)(5,-3,-1)=20-15-6=-1
Volume =|w* (uxv)| =|-1| =1

1.7 Problems
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For problems 1 toSletu=(4, 3,2), v=(5,1,3)and w= (2, 1, 4).

1. Find a.u*v b.u*w c. VXw d. uX(v+w)
2. Find a. uX(v*w) b. (WXv)Xw c.(uXv)*v
3. Find a vector orthogonal to a. wand v b. uand w

4. Find the area of the parallelogram whose adjacent sides are

a. uandv b. wand w c. vand w

5. Find the area of the triangle whose adjacent sides are

a. uand v b. wand w c. vand w

6. Find the area of the triangle whose vertices are given.
a.(1,2,3), 2,4,5), (4,5,8) b. (2,2,1), (4,3,5), 5,6,7)
C h

. , sinA _sinB _sinC
7. Prove the law of sines for triangles. = =
a

b c B

8. Letu and v be two nonzero vectors in R*.
a. Prove that if u and v are parallel vectors, thenuxv =0.

b. Prove that if uXv =0, then u and v are parallel vectors.

1.8 STANDARD BASIS VECTORS FOR R®

The following three unit vectors 1 =(1,0,0) ,  j=(0,1,0) and k =(0,0,1) play a special
role in R* They are called the standard basis vectors for R’. Every vector in R’ can be
written as a unique combination of these three vectors as follows. Let v = (a, b, ¢) be an
arbitrary vector in R’. Then we can write

v =(a,b,c)=(a,0,0)+(0,b,0)+(0,0,c) = a(1,0,0) +b5(0,1,0) + c(0,0,1) =ai + bj+ ck .

Example
If v=(2,3,5), then V=2i+3j+5k
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For the dot product of the standard basis vectors with each other, we have the following

results, which can be verified by a direct computation.
ioi:joj:kok:l and ioj:joi:jok:koj:koi:iok:().

For the cross product of the standard basis vectors with each other, we have the following
results which can also be verified by a direct computation.

ixi:jxj:kxk:() and

i=j k j=%*k i k=i j j=v k k=j i id j,.

The results for the cross products of any two of the three 1

standard basis vectors can be remembered by using the adjoining

diagram. The product of any two successive vectors in the

diagram, when moving clockwise, is the third vector in the < .
diagram. The product of any two successive vectors in the k !
diagram, when moving counterclockwise, is the negative of the

third vector in the diagram.

1.8 Problems

1. Write each of the following vectors as a combination of the three standard basis
vectors i, j, and k.
a.u=4,3,7) b. v=(3,-1,2) c. w=(-2,5,6) d r=(1,0,2)

2. Verify the following results for the standard basis vectors
i=(1,0,0),j=(0,1,0),and k =(0, 0, 1).
a. iei=1 b. Jej=1 ¢ i*j=0 d. jek=0
e. ixi=0 f ixj=k g ixk=-j h jxk =i

3. Compute the following dot products.
a. 2i+3j+k)* (3i—-2j + 5k) b. 3i+j +4k)* (2i — 5] + 6k)
c. (2i—5j + 3k)* (4i + 2j - 3k) d. i-3j+2k)* (6i +j—3k)

4. Compute the following cross products.
a. (2i+3j+k) > (3i-2j+5k) b. (3i+j+4k) * (2i - 5j + 6k)
c. (2i—5j+3k) * (4i+2j-3k) d. (i-3j+2k) * (6i+j-3k)

5. Find a if the following pairs of vectors are orthogonal.
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a U=dai+2aj+k, v=i-3j-5k b u=3ai+2j-3k, v=2i-6j+ak

1.9 VECTORS IN R"

We have already seen that the set of all real numbers R can be identified with a one-
dimensional number line; the set of all ordered pairs of real numbers R?can be identified
with a two-dimensional plane and that the set of all ordered triples of real numbers R*
can be identified with three-dimensional space. Continuing in this manner would suggest
that the set of all ordered four-tuples could be identified with a four-dimensional space
and more generally the set of all ordered m-tuples could be identified with an
m-dimensional space.

We use the symbol R™ to denote the set of all ordered m-tuples w = (u;, Uy, Uy, =+ JU,,) .
We will refer to the m-tuples as vectors in the space R™ and the entries u;, u, etc. as the

components of the vector u.

Two vectors from R™ are said to be equal if their corresponding components are equal to

each other. That is u = v if and only if u, = v;, u, = v, etc.

We define the sum of u and v by u + v = (i T v, u, +vy,-oooe M, TV,

We define multiplication of a vector v by a scalar ¢ as cu = (cu;,cuty,-cu,,) .

The length of the vector u is denoted ||l1|| and is defined by ||u|| = \/ ul2 + u22 +-t um2 .

The dot product is defined to be We V =y, +u,v, +--o-- tu,v,.
If ue v=0 we say that the vectors u and v are orthogonal to each other.

Note that there is no cross product defined for R™ when m # 3.

Example
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Letu=(1,3,2,4)and v=(2, -1, 4, 3) be two vectors in R*. Then
u+v=(1,3,2,4)+2,-1,4,3)=(1+2,3-1,2+4,4+3) =3, 2,6, 7)
u-v=(1,3,2,4)-2,-1,4,3)=(1-2,3+1,2-4,4-3)=(-1,4,-2, 1)
uev=(1,32,4°(2,-1,4,3) =1)2) +B)(-D) +(2)(4) +(4)(3) =2-3+8+12 =19
3u=3(1,3,2,4)= 3%1,3x3,3x2,3%x4)=(3,9,6, 12)

[ = VI2+32 22 +4% = JT+9+4+16 =30

1.9 Problems

For questions 1 to 6, letu=(1,3,2,4),v=(5,3,0,1),and w=(3,2,-1, 4).

1. Find a u+v b. 2u-3v C.u+v-w

2. Find a uc*yv b. VoW c. us(v+w)

3. Find a |uf b [v+wl e fu-v

4. Find a unit vector in the directionof ~a. w b. v c w

5. Show that the following pairs of vectors are orthogonal by showing that their dot
product is 0.
a. (1,2,3,1) (3,1,1,-8) b. (2,0,3,-1) (5,6,-2,4)
c. (1,2,3,4,5) 4,4,-3,-2,1) d. (1,3,5,2,4) (3,-4,-1,3,2)

6. Show that the following sets of vectors are mutually orthogonal by showing that each
vector in the set is orthogonal to all the other vectors in the set.

(1,1,0,0) (1,-1,2,3) 2,-2,1,-2)
2,1,-11,4) (3,2,0,-2) 2,-1,1,2)

1,-1,1,-1) (2,2,3,3) (3,3,-2,-2)
(1,0,2, 1) (2,3,-1,0) (6,-5,-3,0)

/o op

7. Consider the four unit vectors
e =(,0,0,0), e, =(0,1,0,0), e, =(0,0,1,0) and e, =(0,0,0,1) in R*. Write each

of the following vectors from R* as a combination of the vectors €,, €,, €; and e,
a. (2,3,5,4) b. (3,1,0,-2) c. (5,7,2,3)
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Prove the following results for €, €,, €; and e,
a. |e]=1 b. €-°e, =0

(e1+e2)-(el—e2) =0
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