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Chapter 1

The Basic Ideas

This chapter contains a summary of some of the most important ideas that
underly all of physical chemistry. In other words, it could be subtitled In-
gredients in a Physical Chemists’ Cookbook or Tools in a Physical Chemists’
Workshop. These ideas are ones that physical chemists frequently refer to
when they are having conversations with each other. So, you could think of
this chapter as a Quick-Start guide to thinking, talking and walking like a
physical chemist. Having these basic ideas in mind can help make physical
chemistry less confusing by providing a broad overview of how various pieces
of nature’s puzzle fit together to produce a beautiful big picture.

1.1 Things to Keep in Mind

Physical Chemistry is a Conversation

Science is sometimes incorrectly envisioned as a static and impersonal body
of knowledge – in fact it is much more like an interesting conversation which
evolves in endlessly surprising ways. This multi-faceted conversation often
takes place between good friends, over lunch or coffee (or some other bever-
age), or while taking a break in the lab, or during a walk in the woods. It
also often includes people who live in very different places (and times), via
email, over the phone, at scientific meetings, or in journal articles, both in
the latest issues and in archives extending back many years, spanning cen-
turies, and drawing on memories that reach deeply into the foggy depths of
recorded history, and beyond.
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A classroom is one of the main places in which scientific conversations
happen. A classroom, of some kind or other, is where every single scientist
throughout history has come to find out more about the most interesting
discussions and realizations that other scientists have had. The best class-
room experiences are themselves conversations in which students and teachers
struggle to improve their individual and collective understandings by working
hard to clearly communicate and think in new ways.

Like any good conversation, scientific progress requires a free exchange of
ideas and an open-minded attitude. Obviously, having a conversation also
requires speaking the same language and sharing a common body of knowl-
edge and experience. However, the preconceptions that inevitably come along
with any body of knowledge can also be among the greatest impediments to
scientific progress, or, for that matter, any other kind of productive exchange
of ideas. So, the feeling of confusion or disorientation that may at times over-
take you while you are struggling to learn physical chemistry is not necessarily
a bad thing – that is often how it feels when an interesting conversation is
on the verge of a breakthrough.

Longing for Equilibrium

All changes in the world appear to be driven by an irresistible longing for
equilibrium. Although this longing is not the same as a subjective feeling of
longing, the effect can be much the same. Any change in the world clearly im-
plies the existence of an underlying driving force. Moreover, our experience
suggests that some changes can and do often occur spontaneously while oth-
ers are highly improbable or even impossible. These ideas are best illustrated
by some simple examples.

Consider a boulder situated very comfortably up on the side of a moun-
tain. Although this boulder may remain in more-or-less the same spot for
many years, if the ground holding it gives way, the boulder will spontaneously
careen down into the valley below – dramatically converting its potential en-
ergy into a great burst of kinetic energy. However, our experience also tells
us that under no circumstances would the boulder ever spontaneously roll
uphill, unless significant work were expended to push it.

This same tendency is also obviously responsible for the fact that rivers
invariably flow downhill, rather than uphill. Understanding this universal
tendency can be of great practical value. For example, one can build a wa-
terwheel or a hydroelectic generator in order to use the tendency of water to
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flow downhill in order to perform useful work, such as mechanically grinding
wheat into flower or generating horsepower in the form of electricity. As an-
other example, the tendency of electrons to flow downhill in potential energy
from one chemical compound to another may be used to produce batteries
and fuel cells, as well as to flex muscles and create brain storms.

The sun is another good example of the importance of disequilibrium.
Hydrogen atoms are just like boulders sitting high up on a hill, where they
can remain in a very stable state for many years. However, given the right
circumstances (such as the very high pressures and temperatures inside the
sun) hydrogen atoms can be dislodged to undergo fusion reactions such as, 4H
→ He + 2e−+2e+, releasing a great bust of energy in the form of sunlight.1

The longing for equilibrium is of keen interest not only to physical chemists
but also to engineers and mathematicians – whose research expenses are often
subsidized by investors anxious to capitalize on natures tendencies. Although
the above examples make it obvious how some spontaneous processes may be
converted to useful work, the general analysis of natures proclivity for equi-
libration is a deep and complex subject which motivated the development of
thermodynamics.

Among the most remarkable results of thermodynamics is the discovery
of a function, called entropy, which expresses the longing of all systems for
equilibrium in rigorous mathematical terms. This function may be used to
predict whether a given process can or cannot occur spontaneously. Even
more importantly, entropy can be used to predict the maximum amount of
work which can be obtained from any spontaneous process (or conversely,
the work required to drive a non-spontaneous process). We will return to
revisit these issues more closely in Chapter 2.

Invariants, Constraints and Symmetry

A recurring theme underlying all of physical chemistry (and other branches
of science) is the search for universal principles, or fundamental quantities,
which give rise to all observed phenomena. The search for such invariant

1Note that the reaction of four H (11H) atoms to form a He (42He) atom makes use of
the fact that a proton may decompose into a neutron plus a positron. There are also
other lower order reactions which can produce helium from heavy isotopes of hydrogen
(deuterium and tritium), such as 2

1H + 3
1H → 4

2He + 1
0n, which is among the processes

that may some day form the basis of environmentally safe nuclear fusion power plants on
earth.
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properties of nature has ancient roots, tracing back at least to the Ionian
school of Greek philosophy, which thrived in the 6th century BC, and whose
adherents, including Thales and Anaximander, postulated that all things
are composed of a single elemental substance. This school of thought also
influenced a young Ionian named Democretus, who proposed that everything
in the world is composed of atoms which are too small to be visible with the
naked eye.

The idea that some quantities are conserved in the course of chemical pro-
cesses seems pretty obvious. For example, although a chemical reaction may
produce dramatical changes in color, texture and other measurable proper-
ties, one would naturally expect the products of a reaction to weigh the same
amount as the reactants. Careful experimental measurements demonstrate
that mass is indeed conserved during chemical reactions, to within the ac-
curacy of a typical analytical balance. However, it turns out that mass is
not in fact perfectly conserved! This failure proves to be linked to a deeper
principle of energy conservation, as we will see.

The invariant properties of a system are also intimately linked to the
constraints and symmetries which characterize the system. These deep inter-
connections underly some of the most amazing scientific discoveries. Because
these ideas are so profound, they are often reserved for more advanced (grad-
uate level) courses in chemistry, physics and mathematics. However, there is
no harm in learning something about them, even before we fully understand
where they come from. The truth is not always easy to fathom, but it is
always worth the effort.

A good example of the connection between invariants, constraints and
symmetry emerges from considering the motion of an object in a central force
field – such as the earth moving in the central gravitational force field of the
sun, or an electron moving the central coulombic (electrostatic) force field of
a proton. In the 17th century Johannes Kepler demonstrated that a planet
which is constrained to move under the influence of the sun’s gravitational
force must sweep out a constant (invariant) area per unit time. This is a
special case of the principle of conservation of angular momentum, which
also holds for an electron in a quantum mechanical orbital around an atomic
nucleus.

The conservation of angular momentum is a necessary consequence of the
spherical symmetry of a central-force constraint. Similar connections between
invariants, constraints and symmetry underly the conservation of linear mo-
mentum in a system with translational invariance, such as objects moving
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in free space, or billiard balls rolling on a pool table. Thinking about these
connections led Einstein to develop the special theory of relativity, which is a
consequence of the experimentally observed invariance of the speed of light,
independent of the relative velocity of an observer (and the corresponding
invariance of Maxwell’s electromagnetic equations). The theory of relativity
leads to all sorts of surprising predictions about the interrelations between
light, space, time, energy and mass. Among these is a prediction that mass
cannot be perfectly conserved in any chemical reaction which either releases
or absorbs energy (as further discussed in section 1.2).

Constraints and symmetries also play an important role in thermody-
namics. For example, as first clearly demonstrated by Joseph Black, an
18th century Scottish professor of medicine and chemistry, two chemical sys-
tems which are constrained in such a way that they cannot physically mix
but can exchange heat (e.g. because they are separated by partition made
from copper or some other good thermal conductor), invariably evolve to
an equilibrium state of the same temperature. Similarly, two systems which
are separated by a constraint which can freely translate, such as a movable
piston, will evolve to an equilibrium state of the same pressure. As another
example, if we remove a constraint that separated two different kinds of gases
(i.e. by opening a stopcock between the containers that hold the two gases)
then they will evolve to a state in which the concentration of each gas is the
same everywhere.

A common theme underlying the above examples is that systems tend to
evolve toward a state of maximum symmetry, to the extent allowed by the
constraints imposed on the system. Note that in the gas mixing example we
implicitly assumed that the two gases don’t react with each other and that
there is no difference in potential energy between one part of the system and
another. However, even when molecules can react or when there are any
sort of complicated potential energy differences within the system, Willard
Gibb’s brilliantly demonstrated that one can nevertheless identify a quantity
called the chemical potential whose invariance (i.e uniformity throughout the
system) is assured at equilibrium (as we will see in Chapter 2).
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1.2 Why is Energy so Important?

Conservation of Energy

The principle of energy conservation, which is closely related to the first law
of thermodynamics, identifies energy as the one quantity which is invariably
conserved during any process, chemical or otherwise. This principle also leads
to the recognition of different forms of energy, including kinetic and potential
energy, as well as work and heat, which represent means of exchanging energy
between a system and its surroundings.

The connection between kinetic, K, and potential, V , energies may be
illustrated by considering an apple falling off of a tree. If the apple of mass,
m, is initially hanging at a height, h, then its potential energy (relative to the
ground) is V = mgh (where g = 9.8 m/s2 is the acceleration due to gravity).
Once the apple hits the ground all of its potential energy will be converted to
kinetic energy, K = 1

2
mv2 = mgh = V (where v is the velocity of the apple).

Similar expressions could be used to obtain the increase in kinetic energy of
any object which results when it freely falls through a given potential energy
drop, or to calculate how high up an object could go if it is launched with a
particular initial value of kinetic energy. In the next section we will see why
it is that these two kinds of energy have the functional forms that they do.

Kinetic and potential energies can also be related to work, W , which is
defined as the product of the force, F , experienced by an object times the
distance, x over which that force is imposed. Thus, the work associated with
an infinitesimal displacement is

dW = Fdx (1.1)

and so the total work exchanged during a given process is

W =

∫
dW =

∫
Fdx (1.2)

where both integrals are performed from the starting point to the end point
of the path of interest. For example, if a constant force is used to accelerate a
object over a distance Δx then a total work of W = FΔx will be performed.
Moreover, the work that is done will produce an increase in kinetic and/or
potential energy which is exactly equal to W . We can also use eq 1.2 to
calculate the work associated with many other types of processes, such as
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compressing a gas, or moving an electron through a voltage gradient, or
breaking a chemical bond.

The way in which heat is related to other forms of energy is a subtle
and interesting issue. From a macroscopic perspective the heat exchanged
between a system and its surroundings may be defined as any change in
the energy of the system, other than that due to the performance of work
on the system (by the surroundings). From a molecular perspective one may
identify heat exchange with changes in the kinetic and/or potential energy of
molecules (as opposed to macroscopic objects). The flow of energy from the
macroscopic to the molecular scale is an interesting subject with practically
important ramifications.

The irreversible loss of useful macroscopically organized energy into less
useful random molecular energy is intimately linked to the concept of entropy.
Given that this concept has required centuries to develop, we should not be
surprised if it takes us some time and effort to fully apprehend its significance
and implications. One of the primary aims of physical chemistry is to attain
such an understanding by revisiting this and the other key ideas from various
different perspectives. Just as the different perspectives provided by our two
eyes are required to produce a three dimensional image of the world, so too
are different perspectives required in order to better visualize the world of
physical chemistry.

The Hamiltonian

The significance of energy conservation may be further illuminated by con-
sidering the interactions of particles moving on a flat potential surface (such
a billiard balls colliding on a pool table) or objects which move under the
influence of external forces (such as those produced by magnetic, electric or
gravitational fields). In the late 17th Century, Isaac Newton formulated his
famous second law, which applies to all such processes

F = ma (1.3)

where F is the force acting on an object of mass, m, and a = dv
dt

is the
acceleration it experiences as a result.

The force on an object may also be related to the slope of a potential
energy function. For example, consider a car parked on a hill. If you release
the brakes, then the car will tend to accelerated down the hill. The force
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which produces this motion is proportional to the slope of the hill. More
specifically, if some object is moving along the x-direction under the influence
of a potential energy function, V (x), then the force it experiences is

F = −
[
dV (x)

dx

]
. (1.4)

The minus sign simply indicates that a potential function (hill) which goes
up when you move forward will exert of force which pushes you back (down
the hill), as illustrate in Fig. 1.1.

Figure 1.1: A ball on a hill feels a force that is opposite in sign to the slope of the hill.
In other words, when the slope is positive, the ball is pushed backwards, while when the
slope is negative the ball is pushed forward.

The total energy of any system is defined as the sum of its kinetic, K,
and potential, V , energies, and is also called the Hamiltonian function, H .

H = K + V = Total Energy (1.5)

This function is named after William Rowan Hamilton, a leading 19th cen-
tury physicists.2

2Hamilton was born in Ireland in 1805, and demonstrated an early brilliance by learning
more than ten languages by the age of 12. His interest in mathematics apparently began
around that same time, when he met an American named Zorah Colburn who could
mentally calculate the solutions of equations involving large numbers. Soon after than
he began avidly reading all the mathematical physics books he could get his hands on,
included Newton’s Principia and Laplace’s Celestial Mechanics, in which he uncovered a
key error. He published a brilliant and highly influential paper on optics while he was still
an undergraduate, and was appointed a professor of Astronomy at Trinity College at the
age of 21.
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The usefulness of the Hamiltonian function can be illustrated by consid-
ering a particle moving in the x-direction under the influence of a potential
energy function, V (x). The kinetic energy of the particle is K = 1

2
mv2, and

so the Hamiltonian of such a system is

H =
1

2
mv2 + V (x) . (1.6)

If we take the time-derivative of both sides we discover a very interest prop-
erty the Hamiltonian function.

dH

dt
=

d

dt

[
1

2
mv2 + V (x)

]

=
1

2
m

[
2v

(
dv

dt

)]
+

[
dV (x)

dt

]

= mv

(
dv

dt

)
+

[
dV (x)

dx

](
dx

dt

)
= mva− Fv

= (ma− F )v = (0)v

= 0

This result clearly implies that H is time-independent, and so the total energy
of the system is conserved! In other words, we have shown that Newton’s
law implies the conservation of energy. However, while Newton formulated
classical mechanics in terms of forces which may have a complicated time-
dependence, the Hamiltonian formulation of classical mechanics is founded
on a time-independent (conserved) property – the total energy.3 Notice that
the above derivation also demonstrates why we define K ≡ 1

2
mv2, as this is

the quantity which combines with potential energy to form a Hamiltonian
that is time-independent.

3Hamilton also demonstrate that all of classical mechanics could be obtained from
what is now called Hamilton’s principle, which states that δ

∫
(K − V )dt = 0. In other

words, he demonstrated that the path followed by any mechanical system is one which
minimizes the time integral of the difference between its kinetic and potential energies.
This principle is closely related to Fermat’s principle of least time, which applies to the
path followed by light in a medium of varying refractive index. Hamilton’s principle also
played a central role in both Schroedinger’s and Feynmann’s 20th century contributions
to the development of quantum mechanics.
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Although the above derivation only considered a single particle moving
in the x-direction, the result can be generalized to show that the Hamil-
tonian of any isolated system, no matter how complicated, must also be
time-independent. Note that an isolated system is defined as one from which
nothing can leave (or enter). Thus, the entire universe is one example of
an isolated system, which implies that the energy of the universe must be
conserved!

Our experience tells us that the energy of some sub-systems within the
universe may not be conserved. For example, a car dissipates energy when
it drives, and so it is clearly not an isolated mechanical system. This is also
why a car is valuable, because it can use chemical energy to drive up hills and
speed along a highway for many miles at a steady clip, in spite of frictional
drag and wind resistance.

One of the simplest examples of a non-isolated system is an object that
experiences a frictional force which is inversely proportional to its velocity,
Ffriction = −fv. Thus, the total force on such an object can be expressed as
the sum of this frictional force plus the force arising from its potential energy.

F = ma = −
(

dV

dx

)
− fv (1.7)

Notice that this equation can also be obtained by equating the time-derivative
of H with −fv2.

dH

dt
=

d

dt

[
1

2
mv2 + V (x)

]
= −fv2

[
ma +

(
dV

dx

)]
v = −(fv)v

ma +

(
dV

dx

)
= −fv

ma = −
(

dV

dx

)
− fv

This indicates that the Hamiltonian of such a system is not constant, dH
dt

=
−fv2. In other words, a frictional force has the effect of dissipating the
total energy of the system at a rate of −fv2. But where does this energy
go? Our experience tells us that friction is often accompanied by an increase
in temperature, such as that which you can feel when you rub your hand
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together rapidly. So, heat must be related in some simple way to dissipative
energy loss, as we will further explore in Chapter 2.

In summary, the Hamiltonian (total energy) of any isolated system is
time-independent (conserved), while that of a non-isolated system may not
be. However, since the entire universe (which includes the system and all
of its surroundings) is itself isolated, the universe must have a fixed amount
of total energy. Thus, any energy which leaves a system is not lost but
simply goes into some other part of the universe. We will further investigate
such energy exchange processes in Chapter 2, and will also re-encounter the
Hamiltonian when we investigate study the internal energy-level structures
of atoms and molecules in Section 1.4 (and then in greater detail in Chapter
3).

Relation Between Energy and Mass

A remarkable extension of the principle of energy conservation was discovered
in the early 20th century by Albert Einstein, whose theory of relativity made
it clear that there is an intimate connection between the conservation of
energy and mass. Einstein first reported this monumental finding in a short
note entitled Does the Inertia of a Body Depend on its Energy Content?
which he published in 1905 as an afterthought to his famous first paper
about relativity. In this note he analyzed the implications of relativity when
applied to processes involving the emission of light by atoms. This analysis
suggested that the measured mass of an atom must decrease when it looses
energy. Thus, Einstein obtained what may well be the most famous equation
in all of science.

E = mc2 (1.8)

This states that mass, m, and energy, E, are not independent variables, but
are related to each other by a constant of proportionality that is equal to
the square of the velocity of light, c2. Einstein actually wrote the equation
as m = E/c2, which better emphasizes the fact that the mass of an object
depends on how much energy it has, and so any energy change must be
accompanied by a change in mass.

For example, the combustion of methane, CH4 + 2 O2 → CO2 + 2 H2O,
is accompanied by the release of -604.5 kJ of heat (per mole of methane).
Equation 1.8 implies that this change in energy must also be accompanied
by a decrease in mass of about about 6.7 ng (6.7 × 10−9 g). Although such
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a change in mass is too small to be readily measurable, it does clearly imply
that mass is not strictly conserved during chemical reactions.

A more dramatic demonstration of the validity of eq 1.8 is the experimen-
tally observed annihilation of an electron and a positron to form two high
energy (gamma ray) photons, e− + e+ → 2γ, in which the entire mass of the
electron and positron is converted into energy (in the form of two photons
with no rest mass). This process also implies that the energy released in the
nuclear reaction, 4H→ He + 2e−+2e+, is exactly equivalent to the difference
in mass between one helium atom and four hydrogen atoms, which is 0.029 g
or 2.6 × 109 kJ! (per mole of He).

Comparison of the above chemical and nuclear reactions makes it clear
why nuclear fusion might some day prove to be an attractive alternative
to fossil fuels as a source of energy, although we have not yet devised a
practical means of performing such reactions in a safe and controlled way.
Alternatively, future generations may decide that the safest place to carry
out nuclear reactions is in the sun, where they already occur naturally, and
thus focus research efforts on improving the efficiency with which the sun’s
highly reliable and freely distributed supply of energy may best be harvested.

1.3 Quantization is Everywhere

Given that atoms and molecules are over 1000 times smaller than the thick-
ness of this page, it should not be too surprising that the way the world looks
and behaves on such very short length-scales is quite different from the macro-
scopic world of our everyday experience. So, although some of the things we
learn about the atomic world can seem kind of strange, this is largely due
to the quite natural difficulties associated projecting our macroscopic experi-
ences onto the sub-microscopic scale. One of the most persistently troubling
examples of such difficulties are those associated with a blurring of the lines
between what we perceive as the wave-like and particle-like properties of
objects.

In our everyday experience, we have little trouble distinguishing the dif-
ference between a wave on the ocean and a ball bouncing on the beach, or
between the vibration of a guitar string and a bullet shooting out of a gun.
That is because our macroscopic experience tells us that waves and parti-
cles are very different sort of objects. However, on the atomic scale such
distinctions are not so clear, as the same object can sometimes behave like
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a wave and at other times behave like a particle. This phenomena is also
closely related to the quantization of energy, and even more generally to the
quantization of action – a product of momentum and position whose units
are the same as those of angular momentum and Planck’s quantum of action
h, as we will see.

Much of our everyday experience suggests that energy is a continuous
function. For example, when we are driving a car we are able to continuously
accelerate from a state of zero kinetic energy up to a dangerously high kinetic
energy. The same is true of the kinetic energy of a baseball or a billiard
ball. Moreover, we expect a pendulum or a ball on a spring to be capable
of oscillating over a continuous range of amplitudes, and thus to have a
continuously variable energy.

However, on the atomic scale energies are usually quantized, in the sense
that they have discrete rather than continuous values. The energy spacing
between quantum states depends on the nature of the motion involved. When
a given degree of freedom has a quantum state spacing that is small compared
to the ambient thermal energy then it will behave classically, while when
the spacing is larger than the available thermal energy it will behave non-
classically, as further discussed in Section 1.4.

The Quantization of Light

The early development of quantum mechanics was marked by over two decades
of bold speculation, aimed at repairing glaring disagreements between clas-
sical predictions and experimental measurements. The ensuing debate gen-
erated a fascinating plethora of proposals regarding the fundamental con-
stituents underlying macroscopically observable phenomena.

The most famous failure of classical electrodynamics and thermodynam-
ics pertains to the spectra of so-called “black-bodies” – which in fact closely
resemble coals glowing in a campfire and the light emitted by stars overhead.
Classical theory predicted that the intensity of the light radiated by such
bodies should increase with increasing frequency, while experiments invari-
ably showed intensities decreasing to zero at the highest frequencies. Planck
resolved the discrepancy in 1900, by postulating that the energy emitted at
each black-body frequency, ν, is quantized in packets of hν, with a univer-
sal constant of proportionality, h, which now bears his name. However, it
was initially far from clear whether the required quantization should be at-
tributed to light or to the material from which the glowing body is composed,
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or both.
An important clarification of the above question was suggested by Ein-

stein in the first of his three famous papers written in 1905, in which he
presented various arguments all leading to the conclusion that light itself is
quantized in packets of energy hν, now known as photons.4 The following
are his own words (in translation) from the introduction to that paper.

It seems to me that the observations associated with blackbody
radiation, fluorescence, the production of cathode rays by ultravi-
olet light, and other related phenomena connected with the emis-
sion or transformation of light are more readily understood if one
assumes that the energy of light is discontinuously distributed in
space. In accordance with the assumption to be considered here,
the energy of a light ray spreading out from a point source is not
continuously distributed over an increasing space but consists of
a finite number of energy quanta which are localized at points
in space, which move without dividing, and which can only be
produced and absorbed as complete units.

At the end of the above paper Einstein noted that the quantization of
light could explain the so-called “photo-electriceffect”, in which electrons are
ejected when a metal surface is irradiated with light. The problematic feature
of the associated experimental observations was that the kinetic energies of
the ejected electrons were found to be proportional to the frequency of the
light, rather than its intensity. Einstein pointed out that this apparently
paradoxical phenomena can readily be understood if light is composed of
particles (photons) with energy hν. These speculations were not widely em-
braced for over a decade, until Millikan reported the results of additional
key experiments. The following extended quotation from the introduction
of Millikan’s 1916 paper, entitled A Direct Photoelectric Determination of
Planck’s “h”, provides an interesting glimpse into the prevailing view of Ein-
stein’s photon postulate.

4Although Planck and Einstein developed our current understanding of photons, it
is an interesting and little known fact that the term “photon” was first introduced in
a short note submitted to the journal Nature in 1926 by a prominent physical chemist
named Gilbert Newton Lewis – the same G. N. Lewis who created the Lewis dot-structure
representation of chemical bonds, and the concept of Lewis acids and bases, as well as
many other important ideas pertaining to the thermodynamics of chemical processes.
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Quantum theory was not originally developed for the sake of
interpreting photoelectric phenomena. It was solely a theory as
to the mechanism of absorption and emission of electromagnetic
waves by resonators of atomic or subatomic dimensions. It had
nothing to say about the energy of an escaping electron or about
the conditions under which such an electron could make its es-
cape, and up to this day the form of the theory developed by its
author has not been able to account satisfactorily for the pho-
toelectric facts presented herewith. We are confronted, however,
by the astonishing situation that these facts were correctly and
exactly predicted nine years ago by a form of quantum theory
which has now been pretty generally abandoned.

It was in 1905 that Einstein made the first coupling of photo
effects with any form of quantum theory by bringing forward the
bold, not to say reckless, hypothesis of an electro-magnetic light
copuscle of energy hν, which energy was transferred upon absorp-
tion to an electron. This hypothesis may well be called reckless
first because an electro-magnetic disturbance which remains lo-
calized in space seems a violation of the very conception of an
electromagnetic disturbance, and second because it flies in the
face of the thoroughly established facts of interference. The hy-
pothesis was apparently made solely because it furnished a ready
explanation of one of the most remarkable facts brought to light
by recent investigations, viz., that the energy with which an elec-
tron is thrown out of a metal by ultra-violet light or X-rays is
independent of the intensity of the light while it depends on its
frequency. This fact alone seems to demand some modification
of classical theory or, at any rate, it has not yet been interpreted
satisfactorily in terms of classical theory.

Even after Millikan’s paper, and after Einstein received a Nobel prize “for
his service to theoretical physics and particularly for his discovery of the law
of the photo-electric effect”, the subject of photon quantization remained,
and continues to be, an active and interesting area of research, all the results
of which are entirely consistent with Einstein’s original proposal. However,
Einstein himself apparently retained some concerns about the photon con-
cept, as illustrated by the following quotation from the end of his 1917 paper
entitled On the Quantum Theory of Radiation (which is most famous for
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predicting stimulated emission, long before the development of lasers).

These properties of elementary particles. . .make the formulation
of a proper quantum theory of radiation appear almost unavoid-
able. The weakness of the theory lies on the one hand in the fact
that it does not get us any closer to making the connection with
wave theory; on the other, that it leaves the duration and direc-
tion of the elementary processes to ‘chance’. Nevertheless I am
fully confident that the approach chosen here is a reliable one.

Wave-Particles and Particles-Waves

The photo-electric effect is also closely related to the photo-ionization of
atoms and molecules by light. In both cases the energy of the emitted electron
is proportional to the frequency of the light. Also, in both cases no electrons
are emitted when the photon energy hν is too small. This makes sense,
because some energy is required in order to overcome the binding energy of
the electron to the material. So, for both the emission of photo-electrons
from a metal and the photo-ionization of molecules,

K = hν − Φ (1.9)

where K is the kinetic energy of the ejected electron and Φ is the binding
energy of the electron (which is a constant that is different for different
materials).

Other examples of the particle-like properties of light include phenomena
known as Compton scattering and Raman scattering. These both involve
the inellastic scattering of light by a chemical substance (either a solid or
a molecule). In other words, the energy of a photon is changed as it either
gives up or gains energy from an object with which it collides.

Compton scattering involves the collision of a high energy (x-ray) photon
with a free electron.5 So, the energy and momentum of the photon and the
electron both change when they collide. Raman scattering, on the other
hand, involves the interaction of a photon from with the vibrational modes
of a molecule, so a Raman scattered photon either gains or looses energy

5The electron in a Compton scattering experiment often starts out inside a solid ma-
terial. However, since the binding energy of the electron is much smaller than the energy
of an x-ray photon, the electron behaves essentially as if it is has no binding energy.



1.3. QUANTIZATION IS EVERYWHERE 25

when it collides with a vibrating molecule.6 Both processes are similar to
what might happen if you were to throw a baseball at a mattress spring, and
the ball bounced back with less energy because it lost energy to the mattress
springs.

Compton scattering is named after Arthur H. Compton, whose experi-
ments performed in 1923 revealed the particle-like properties of photons in
remarkable details. Compton’s experiments showed that when a photon hits
an electron, the two particles bounce off each other just like billiard balls on
a pool table. The angles of the outgoing electron and photon are exactly
those required in order to conserve both the energy and momentum of the
two particles.7

Energy and momentum are clearly closely related to each other. For ex-
ample, the kinetic energy of a free particle is E = 1

2
mv2 = p2/2m. Moreover,

Einsteins theory of relativity implies that E = mc2 for any particle. Since
p = mv, eq 1.8 implies that p = Ev/c2. The energy of a photon is

E = hν (1.10)

while the velocity and frequency of light are v = c and ν = c/λ, respectively
(where λ is the wavelength light). These identities may be combined to

6As we will see in Section 1.4, the vibrational energy of molecules is also quantized with
an energy spacing of hνV , where νV is the vibrational frequency of the molecule (which is
equal to the frequency of light which is resonant with the molecular vibration).

7More specifically, if the input photon energy is hνin and the initialy stationary electron
is kicked out with an energy of Δε = 1

2mv2 = h (νin − νout) and a momentum of Δp =

mv = h
(

1
λin
− 1

λout

)
, then the observed deflection angles of the outgoing electron, φ, and

photon, θ, will be related as follows.

cos θ =
Δε

cΔp
cosφ

where cos θ is also related the change in the photon wavelength Δλ = λout − λin. These
scattering predictions are obtained by equating the energy and momentum of the ingoing
and outgoing photon and electron, as described for example in Appendix XVII A in a
book entitled Light by R. W. Ditchburn.

Δλ =
h

mc
(1− cos θ)
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obtain the following expression for the momentum of a photon.

p =
hνc

c2
=

hν

c
=

h
(

c
λ

)
c

=
h

λ
(1.11)

The momentum of light can be observed experimentally by measuring the
“radiation pressure” exerted by light as it reflects off the surface of a mirror.
This pressure is exactly consistent with the particle-like properties of photons.
But, quite remarkably, the pressure and energy density of light can also be
correctly predicted from purely classical electromagnetic theory.

Photo-electric and Compton scattering experiments show that both pho-
tons and electrons have particle-like properties. However, the appearance of
ν and λ in the equations for the energy and momentum of a photon indi-
cates that the particle and wave properties of photons are inextricably linked.
Such observations led a graduate student named Luis de Broglie to propose
in 1924 that particles such as electrons, protons and atoms may also have
wave-like properties. This astonishing predictions was beautifully confirmed
in experiments which clearly show that electron and atoms do indeed have
wave-like properties.

In the late 1920’s Otto Stern and co-workers set out to systematically
test de Broglie’s hypothesis by conducting experiments in which a beams of
various kinds of atoms and molecules were directed at salt crystals. Their
results showed, for example, that a beam of He atoms undergoes diffraction
when it is scattered off of salt crystals. The observed diffraction fringe spacing
is related to the momentum of the He atoms and the lattice spacing of the
rock salt crystal, exactly as predicted by de Broglie.8

Thus, not only photons but all other particles appear to have a wavelength
which is related to their momentum.

p =
h

λ
(1.12)

The apparently universal validity of this expression is one of the clearest
pieces of evidence for the blurred distinction between particles and waves. All
waves have particle-like properties and all particles have wave-like properties,
but particles with very large momenta have very small wavelengths and waves
with very long wavelengths have very small momenta. Objects with large

8The diffraction of beams of He and H2 molecules produced by crystals of NaCl and
LiF were reported by Otto Stern and coworkers in 1930.
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momentum (such as macroscopic billiard balls) are more readily observable
as particles while those with small momentum (such as photons) are more
readily observable as waves.

1.4 Thermal Energies and Populations

Relation Between Energy and Probability

Energy plays a key role in determining the probability of finding a system
in a given state. Not surprisingly, states of lower energy have a higher prob-
ability than those of higher energy. This is, for example, why the density
of the atmosphere decreases with increasing altitude (i.e. with increasing
gravitational potential energy). It is also why the density of a vapor is lower
than that of the liquid with which it is at equilibrium (because molecules in
the liquid experience a greater, more negative, cohesive interaction energy
than they do in the vapor). The quantitative connection between energy
and probability was worked out by Maxwell, Boltzmann and Gibbs, whose
insights led to the following tremendously important, and yet remarkably
simple, proportionality.9

P (ε) ∝ e−βε (1.13)

P (ε) is the probability of finding a system in a state of a given energy, ε, and
β = 1/kBT , where kBT is a measure of thermal energy (equal to Boltzmann’s
constant, kB, times the absolute temperature, T ). So, eq 1.13 indicates that
the probability of occupying a state not only decreases with increasing energy
but also increases with temperature, which again makes good sense. In other
words, the probability of observing any system in a state of energy ε is
proportional to the Boltzmann factor e−βε, and this in turn only depends on
the ratio ε/kBT = βε.

When Boltzmann’s constant is multiplied by Avogadro’s number it be-
comes equivalent to the gas constant, R = NAkB. So, if we choose to express
energies in molar units then we should identify β = 1/RT . In other words,
kBT and RT are essentially equivalent, and so physical chemists tend to

9This relation was first derived by Maxwell and Boltzmann for gas phase systems, and
later generalized to any system by Gibbs. A nice summary of Gibbs’ method may be
found in Chapter 9 of a book entitled Introduction to Theoretical Physical Chemistry by
S. Golden (Addison-Wesley, Reading MA, 1961)
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switch back and forth between expressing thermal energy as kBT or RT ,
depending on whether the context calls for using molecular or molar units.

Notice that eq 1.13 is reminiscent of the well known relation between
chemical equilibrium constants and reaction free energies, K = e−ΔG/RT ,
where K represents the ratio of the concentrations (probabilities) of the prod-
uct and reactant molecules. This similarity is certainly no accident, as we
will learn in Chapters 2 and 4.

The proportionality in eq 1.13 may be turned into an equality by making
use of the fact that the total probability of observing a system in any state
must be equal to 1. In other words, we require that

∑
i P (εi) = 1, where the

sum is carried out over all the energies (quantum states) of the system. This
also implies that the constant of proportionality that is missing in eq 1.13 is
1/

∑
i P (εi) and so P (ε) is exactly given by the following expression.

P (εi) =
e−βεi∑
i e
−βεi

(1.14)

Note that the sum of P (εi) over all states is
∑

i e
−βεi/

∑
i e
−βεi = 1, as

expected.

The denominator in eq 1.14 plays a surprisingly important role in chemical
thermodynamics – it is called the partition function, and is often represented
by the letter q.10

q ≡
∑

i

e−βεi . (1.15)

One of the interesting facts about q is that it is equivalent to the number of
thermally populated quantum states, in a given system at a given tempera-
ture, as further discussed below.

In order to see how we can use eq 1.14 to obtain practical predictions, it
is useful to consider a system which has evenly spaced ladder of “quantum
states”, εn = nΔε, where Δε is a constant energy spacing and n is any
integer (0, 1, 2, 3 . . . , so εn = 0, Δε, 2Δε, 3Δε, . . . ). Such an energy level
structure arises in many situations, including molecular vibrations (described
as harmonic oscillators) as well as light (which also consists of harmonic
electromagnetic oscillations). Both experimental observations and quantum

10When describing a macroscopic system composed of many molecules (maintained at
constant temperature and volume) the partition function is often designated as Q, or
sometimes by other letters such as Z, but its definition is always the same.
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mechanical predictions agree that such systems behave just as if they have
an evenly spaced ladder of energy states.

Light of a given frequency (color) is composed of photons of energy hν
(where h is Planck’s constant and ν is the frequency of the light). Thus, a
beam of light can only have an energy of nΔε = nhν, where n is the number
of photons in the beam. Similarly, molecular vibrations can also only have
energies of nΔε = nhν where ν is the frequency of the molecular vibration.
When a molecule becomes macroscopically large, we call it a solid, and hν
becomes the energy of each vibrational “phonon” of the solid.

For any system with an evenly spaced ladder of energy states, one may
use the following nifty mathematical trick to transform the above probability
formula into a simple closed form. This begins by suggesting a change of
variables, x = e−βΔε. Thus, the partition function (denominator) in Eq.
1.14 may be written as,11

q =

∞∑
n=0

xn = 1 + x + x2 + x3 + . . . ., . (1.16)

Since βΔε is invariably positive it follows that 0 < x < 1. Under such
conditions, the series converges exactly to q = 1/(1−x) = 1/(1−e−βΔε) when
summed over all (the infinite number) of n values. Thus, the probability in
eq 1.14 may be expressed simply as

P (εn) =
e−βnΔε

q
= e−βnΔε

(
1− e−βΔε

)
. (1.17)

This expression indicates that the probability of observing a quantized oscil-
lator decreases exponentially with increasing n (at any fixed temperature).
In other words, the oscillator is less likely to occupy higher energy states,
as expected. Moreover, as the temperature approaches absolute zero, so
does the Boltzmann factor e−βΔε. As a result, the only state that has a
non-zero probability at very low temperature is the ground state, for which
P (ε0) = e−0 = 1, while for all other states P (εn) = e−βnΔε = 0. At high
temperature, on the other hand, all the states for which βεn << 1 will have
a finite probability while states for which βεn >> 1 will have essentially
zero probability. These results again make sense, as they indicate that the

11We refer to this partition function as q simply as a reminder that it pertains to a
system with n evenly spaced quantum state.
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temperature of a system determines how many states will be significantly
populated. At low temperature only the very lowest state will be populated,
while at higher temperature only states for which εn < kBT will be signifi-
cantly populated. So, as the temperature increases, so does the population
of higher energy states.

The quantitative connection between q and the number of states with a
significant thermal population can be inferred from the following considera-
tions. The value of q is given by eq 1.15, which consists of a sum of terms
each of which are equal to a number between 0 and 1. The lowest energy
terms in the series are each approximately equal to one (since e−βεi ≈ 1
whenever εi < kBT ), while the high energy terms are approximately zero
(since e−βεi ≈ 0 whenever εi < kBT ). Thus, q represents the average number
of terms in the sum which have a value near one, which in turn represents
the number of states which are significantly thermally populated.

The Boltzmann probabilities, P (ε), may be used to calculate the weighted
average of any property of the system. For example, the average energy of
any system is given by the following weighted average.

〈ε〉 =
∑

i

εiP (εi) =

∑
εie

−βεi∑
e−βεi

(1.18)

For a system with a ladder of evenly spaced energies the above sum reduced
to the following more compact expression.

〈ε〉 =

∑
εne−βεn∑
e−βεn

=
Δε e−βΔε

1− e−βΔε
=

Δε

e+βΔε − 1
. (1.19)

This result was obtained by noting that the derivative of q with respect to β

is
∑−εne−βεn, and so 〈ε〉 =

∑
εne−βεn

q
=

(
−1
q

)(
dq
dβ

)
.12

At very low temperature, the denominator of the above expression blows
up, and so 〈εn〉 = 0 (which makes sense since in this case all the population
goes to the ground state of energy ε0 = 0). On the other hand, at high
temperature, Δε << kBT and so βΔε << 1 and eβΔε ≈ 1 + βΔε, which
implies that 〈εn〉 ≈ Δε/(βΔε) = 1/β = kBT . So, at high temperature the
ladder of states is populated up to an energy equal to kBT (on the average).

12The required derivative is dqn/dβ = −Δε e−βΔε/(1− e−βΔε)2, which leads to eq 1.19
when divided by −q (and the last identity in eq 1.19 is obtained by multiplying both the
numerator and denominator by e+βΔε).
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Note that this simple result pertains not only to very high temperatures but
also to a system of lower temperature which has very closely spaced energy
levels. This is because Δε/kBT becomes small, and so eβΔε ≈ 1+βΔε, either
at high temperature or when the energy spacings are very small (compared
to kBT ). So, the high temperature limit is equivalent to the classical limit in
which energies are essentially continuous.

There is a deeper – not so obvious, but pretty interesting – reason that the
average energy of an oscillator approaches kBT at high temperature. A hint
as to the reason is provided by the fact that a similar analysis of systems with
different sorts of energy level structures reveals that these often have average
energies that are proportional, but not exactly equal to, kBT . For example,
a particle that is free to translate in the x-direction turns out to have an
average kinetic energy of 1

2
kBT , while a particle that is free to translate in

three dimensions has an average kinetic energy of 3
2
kBT . So, each additional

dimension, or translational degree of freedom, increases the average kinetic
energy by 1

2
kBT .

The derivation of the above results also reveals that the constant of pro-
portionality between the average energy and kBT depends in a simple way
on the number of quadratic terms that appear in the Hamiltonian of the
system (as shown in Section 1.5). So, for example, a free particle that is
moving in the x-direction has a kinetic energy (and no potential energy) so
its Hamiltonian is Hx = 1

2
mv2

x, which is a quadratic function of the particles
velocity (in the x-direction), and produces an average energy of 1

2
kBT . The

Hamiltonian of a particle that is free to move in three dimensions has three
quadratic terms, Hxyz = 1

2
mv2

x + 1
2
mv2

y + 1
2
mv2

z , and so has an average energy

that is three times larger, 3
(

1
2
kBT

)
= 3

2
kBT . In other words, each quadratic

term appearing in the Hamiltonian contributes 1
2
kBT to the average energy

per molecule, or 1
2
RT to the average energy per mole.

The energy of a harmonic oscillator (such as a vibrating diatomic molecule)
contains both kinetic and potential energy contributions, each of which again
give rise to quadratic terms in the Hamiltonian, Hvib = 1

2
μv2 + 1

2
fδ2. The

two quadratic variables in this expression are the velocity v and displace-
ment δ of the oscillator (while μ and f are the corresponding reduced mass
and harmonic force constant).13 Although these variables represent different

13More specifically, for a diatomic harmonic oscillator v = |	v2 − 	v1| = dr/dt (where 	v1

and 	v2 are the velocity vectors of each atom) and δ = r − rb (where δ is the diatomic’s
instantaneous bond length, and rb is its average bond length). The other parameters in
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kinds of coordinates, it can be shown that each of the quadratic terms again
contribute an average energy of 1

2
kBT . This explains why the average energy

of a harmonic oscillator is equal to kBT , since 〈εvib〉 = 1
2
kBT + 1

2
kBT = kBT .

This result again pertains to high temperatures (or small quantum spacings).
At very low temperature (or in a system with large quantum spacings) the
energy gap between the ground and first excited state prevents any energy
from being absorbed by the system (as further discussed in section 1.4).

Rotational degrees of freedom also contribute quadratically to the Hamil-
tonian. For example, a diatomic molecule rotating about a given axis has a
rotational kinetic energy of Hrot = 1

2
Iω2, where I = μr2

b is the moment of
inertial of the diatomic and ω is its angular frequency of rotation (in units of
radians per second). Since a diatomic has two independent axes of rotation,
there are two quadratic rotational terms in its Hamiltonian. These con-
tribute an additional kBT to the average energy (whenever the temperature
is sufficiently high to overcome the rotational quantum state spacing).

We may now combine the above results to predict the total energy of a
diatomic, including all 7 of its quadratic Hamiltonian terms (2 vibrational,
2 rotation and 3 translational). Thus,a diatomic molecule is expected to
have a average energy of 7

2
kBT in the classical (high temperature) limit. The

experimentally observed energies of real diatomic molecules may deviate from
this prediction at low temperatures, as the result of energy quantization, as
described in the next section.

Transition from Quantum to Classical Behavior

One of the first experimental clues that something was amiss with the purely
classical view of physical chemistry came from experimental measurements
of the heat capacities of solids and gases. In both cases, experiments revealed
that at low temperatures chemical systems have smaller heat capacities than
expected based on classical predictions. For example, the anomalous low-
temperature heat capacities of solids were not understood until Albert Ein-
stein (1907) and later Peter Debye (1912) showed that these are consistent
with the quantization of phonons (vibrational motions of solids). Similar
non-classical behavior of the heat capacity of diatomic gases was also rec-
ognized prior to 1901, as poignantly attested by J. Willard Gibbs in the

eq 1.45 are the reduced mass μ = m1m2
m1+m2

and vibrational force constant f = μ (2πν)2 of
the diatomic (where ν is its harmonic vibrational frequency).
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following quotation from the preface to his Statistical Mechanics (the first
and still classic foundational textbook on this subject).

. . . we do not escape difficulties in as simple a matter as the num-
ber of degrees of freedom of a diatomic gas. It is well known
that while theory would assign to the gas six degrees of freedom
per molecule, in our experiments on specific heats we cannot ac-
count for more than five. Certainly one is building on an insecure
foundation, who rests his work on hypotheses concerning the con-
stitution of matter.

Difficulties of this kind have deterred the author from attempting
to explain the mysteries of nature, and have forced him to be
contented with the more modest aim of deducing some of the
more obvious propositions relating to the statistical branch of
mechanics. . . 14

Gibbs (who died in 1903) did not live to see these difficulties elegantly re-
solved in a way that left his statistical mechanics essentially unscathed (ex-
cept for the quantization of his phase space using Planck’s constant), and
revealed that molecular and electromagnetic (blackbody) harmonic oscilla-
tors are mathematically isomorphic.

Recall that in the classical limit the energy of a mole of gas molecules is
U = NA 〈ε〉 = D

2
NAkBT = D

2
RT , where D represents the number of degrees

of freedom or quadratic terms in the Hamiltonian (and R = kBNA is the
gas constant and NA is Avogadro’s number). In this limit, the molar heat
capacity (at constant-volume) is easy to calculate, since it is equal to first
derivative of the energy, CV =

(
∂U
∂T

)
V

= D
2
R. However, as temperature

decreases, different degrees of freedom are expected to become inactive, as
kBT becomes smaller than the corresponding quantum state spacing.

The experimental results in Fig. 1.2 clearly show the transition from
quantum to classical behavior with increasing temperature for two diatomic

14The fact that Gibbs expected a diatomic molecule to have six degrees of freedom sug-
gests that he viewed diatomics as rigid (non-vibrating) molecules with three translational
and three rotational degrees of freedom. We now know that molecules have an additional
vibrational degree of freedom. Also, the reason that a diatomic only has two active rota-
tion degrees of freedom is because rotation about the bond axis is of such high frequency
that it has an energy spacing that is typically much larger than kBT . This latter degree of
rotational freedom corresponds to the rotation of electrons, and so gives rise to electronic
state quantization.
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Figure 1.2: The experimental heat capacities (points) of argon and two di-
atomic molecules are plotted as a function of temperature. The horizon-
tal dashed lines indicate the predicted heat capacity of a classical molecule
with only translation (bottom), or only translation and rotation (middle), or
translation, rotation and vibration (top) degrees of freedom.

molecules (H2 and F2), while argon behaves perfectly classically over this en-
tire temperature range. Note that argon gas has three translation degrees of
freedom and so it is predicted to have a classical translational heat capacity
of 3

2
R, which is exactly what is observed experimentally. This clearly im-

plies that the quantum spacing between translational states of argon is small
compared to kBT , even at temperatures below 100 K (in fact, translational
quantum spacings are typically much smaller than kBT even at 1 K, and so
translational kinetic energy can almost always be treated classically).

At low temperatures the hydrogen molecule H2 also only appears to have
three active degrees of freedom. This implies that the rotational quantum
states of H2 are sufficiently large that they only become active at tempera-
tures well above 100 K. This is quite unusual, as most molecules have signif-
icantly smaller rotational quantum states spacings. The reason H2 is excep-
tional is that it has an unusually high rotational frequency (because of its
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small mass or moment of inertia). Hydrogen also has a very high vibrational
frequency (again because of its small reduced mass). Thus both the rota-
tional and vibrational quantum spacings of H2 are significantly larger than
those of other (heavier) diatomic molecules. So, only the three translations
of H2 are thermally active below about 100 K, and even at temperatures
as high as 400 K the vibrational motion of H2 is evidently not yet active.
The heavier diatomic F2 apparently has significantly smaller rotational and
vibrational quantum state spacings than H2. Even at very low temperatures
the two rotational degrees of freedom of F2 are clearly already active. More-
over, the experimental results indicate that the vibrational quantum state
spacing of F2 has a magnitude of the order of εV ≈ kB × 1000K ≈ 10−20 J
or in molar units R× 1000K ≈ 10 kJ/mol.

The vibrational quantum spacing is equal to Planck’s constant times the
vibrational frequency, Δε = hν = hcν̃ = hc/λ, where ν̃ is the frequency
expressed in “wavenumber” units, which is equivalent to one over the wave-
length of light with the same frequency ν̃ = 1/λ. In other words, λ is the
wavelength of light whose frequency is resonant with that of the molecular
vibration. Molecular vibrations typically have wavenumber frequencies some-
where between 100 cm−1 and 5000 cm−1, which corresponds to wavelengths
between 0.0002 cm and 0.01 cm (or 2 – 100 μm), in the infrared region of
the electromagnetic spectrum.

The temperature dependence of the vibrational contribution to the heat
capacity may be compared with the theoretical predictions of eq 1.19 (with
Δε = hcν̃). More specifically, the vibrational contribution to the heat ca-
pacity of a diatomic may be obtained by differentiating eq 1.19 with respect
to temperature (or first differentiating with respect to β and noting that
dβ/dT = −1/kBT 2 = −kBβ2, which becomes dβ/dT = 1/RT 2 when ex-
pressed in molar units).

Cvib
V = − 1

RT 2

d

dβ

[
Δε

eβΔε − 1

]
= R

(βΔε)2 eβΔε

[eβΔε − 1]2
(1.20)

Since translational and rotational energies typically have much smaller
energy spacings, these degrees of freedom behave classically down to quite
low temperatures. In other words, the sum of the translational and rotational
contribution to the molar energy of a diatomic is 3

2
RT + RT = 5

2
RT , and

so the corresponding contribution to the heat capacity is simply 5
2
R. Hence,

the following expression is expected to accurately represent the total molar
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heat capacity of a diatomic gas such as F2.

CV

R
=

5

2
+

(βΔε)2 eβΔε

[eβΔε − 1]2
(1.21)

Hydrogen (H2) is exceptional, as previously noted, as its large rotational
quantum state spacing gives rise to a rotational heat capacity that remains
temperature dependent up to moderately high temperatures.

The spacings between a molecule’s translational quantum states depend
on the size of the box which contains the molecule. In a macroscopic container
this energy spacing is so small that translational energies invariably behave
classically. However, when a particle is confined to a container of nanometer
(or smaller) dimensions then its translational quantum state spacing becomes
much larger. For example, this is the case for an electron confined within an
atom or molecule, whose translational quantization gives rise to electronic
state spacings that are typically much larger than kBT (or RT in molar
units), as we will see when we investigate the subject of quantum mechanics
in greater detail (in Chapter 3).

1.5 Classical Energies and Hyper-Spheres

Calculating probabilities and average energies for degrees of freedom which
are not quantized (or have very small quantum state spacings) requires re-
placing sums by integrals. For example, for systems with a continuum of
energies eq 1.14 becomes

P (ε) =
e−βεdτ∫
e−βεdτ

(1.22)

where τ represents any variable(s) on which the energy depends (such as the
positions and velocities of each of the molecules in the system). In other
words, the partition function is also now expressed as an integral.

q =

∫
e−βεdτ (1.23)

The average energy of any such classical degree of freedom is obtained from
the following weighted integral of ε times the corresponding probability.

〈ε〉 =

∫
εP (ε) =

∫
εe−βεdτ∫
e−βεdτ

(1.24)
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Since translational degrees of freedom typically behave classically (in any
system of macroscopic volume), the above integral expressions may be used to
calculate the associated probabilities and average energies. Lets first consider
only the kinetic energy along the x-direction, for which the energy is εx =
1
2
mv2

x. The variable τ in eqs 1.22–1.24 may in this case be taken to be
equal to vx. The corresponding partition function can again be evaluated
analytically.15

qx =

∫
e−βεxdτ =

∫ ∞

−∞
e−mv2

x/2kBT dvx =

√
2πkBT

m
(1.25)

Thus, the probability of observing a molecule with a velocity between vx and
vx + dvx is,

P (vx) =

√
m

2πkBT
e−mv2

x/2kBT dvx (1.26)

The above expression may readily be extended to three dimensions by re-
calling that the probabilities of observing a combination of statistically inde-
pendent events behave very much like the probabilities of tossing a sequence
of coins, or rolling a pair of dice. For example, the probability of tossing two
heads in a row is 1

2
1
2

= 1
4
, while that of tossing three heads in a row is 1

2
1
2

1
2

= 1
8
.

Similarly, the probability of throwing a snake eyes (two ones) with a pair of
dice is 1

6
1
6

= 1
36

. In other words, the combined probabilities of statistically
independent events always multiply. This simple fact may be used to convert
the probability associated with velocity in the x-direction, to the probability
associated with the total velocity in three-dimensions, v =

√
v2

x + v2
y + v2

z .

P (v) = P (vx) P (vy) P (vz)

=

(
m

2πkBT

)3/2

e−m(v2
x+v2

y+v2
z)/2kBT dvxdvydvz

We may also transform the above three dimensional integral to a one dimen-
sional integral with respect to the total velocity v.

P (v) =

(
m

2πkBT

)3/2

e−mv2/2kBT 4πv2dv (1.27)

15The last identity in eq 1.25 is obtained using
∫∞
−∞ e−ax2

dx = 2
∫∞
0 e−ax2

dx =
√

π
a

(from a table of integrals).
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Notice that 4πv2 may be viewed as the “surface area” of a sphere of “radius”
v, and so 4πv2dv is the “volume” of a shell of thickness dv. Thus, integration
over 4πv2dv is equivalent to integration over dvxdvydvz.

16

The total translational kinetic energy of a molecule (in three-dimensions)
is ε = 1

2
mv2 so we may also change the independent variable in eq 1.27 from

v to ε (since v =
√

2ε
m

and so dv = 1√
2mε

dε),

P (ε) =
2√
π

√
ε∗e−ε∗dε∗ (1.28)

where ε∗ = ε/kBT . This energy probability density can be used to calculate
the average translational kinetic energy of a molecule (in three-dimensions).17

〈ε〉 = kBT
2√
π

∫ ∞

0

ε∗
√

ε∗e−ε∗dε∗ =
3

2
kBT (1.29)

Thus, as expected, the average translational kinetic energy of a molecule in
three dimensions is exactly three times its average energy in one dimension.

The above results clearly suggest that we may use a similar procedure
to calculate probabilities and average energies for systems with any num-
ber of degrees of freedom which contribute quadratically to the total energy
(Hamiltonian). In order to more easily see how we may generalize the above
results, it is useful to note that the translational kinetic energy along each
direction in space may be re-scaled to produce a new variable ri ≡ vi

√
m/2,

so that
ε = r2

x + r2
y + r2

z .

The right hand side of the above expression looks just like the square of the
radius of a sphere, r2 = r2

x + r2
y + r2

z , and so we may equate ε = r2. We can
do the same thing for systems with any number of translational degrees of
freedom, or any other degrees of freedom which contribute quadratic terms
to the energy.

For example, the two quadratic variables which contribute to the energy of
a classical harmonic oscillator may be re-scaled to express εvib = r2

1 +r2
2 = r2.

16The volume element dvxdvydvz may be expresses as v2 sin φdφdθdv in polar coordi-
nates, and then integrated over all angles (i.e. from 0 to π for φ and 0 to 2π for θ) to
obtain 4πv2dv.

17The integral in eq 1.29 was evaluated using the fact that
∫∞
0

xbe−xdx = Γ(b + 1), for
any real positive value of b. The Gamma function, Γ is further described in the paragraph
following the eq 1.30.
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If we add the two rotational degrees of freedom of a diatomic molecule we
may express the total vibrational plus rotational energy of the diatomic as the
sum of four re-scaled quadratic components, εvib−rot = r2

1+r2
2+r2

3+r2
4.

18 Note
that this is again equivalent to the square of the radius of a four-dimensional
hyper-sphere, r2 = r2

1 + r2
2 + r2

3 + r2
4 (or r =

√
r2
1 + r2

2 + r2
3 + r2

4).
More generally, any system with D (quadratic) degrees of freedom can

be represented as a D-dimensional hyper-sphere. In order to make use of
this correspondence, we need to consider some interesting facts about hyper-
spheres. The volume of a hyper-sphere may be expressed as the following
function of its radius r and dimension D.

VD =
πD/2

Γ
(
D
2

+ 1
)rD (1.30)

The Gamma function, Γ(b + 1), is closely related to the factorial function
since Γ(n + 1) = n! = n(n − 1)(n − 2) . . . 1, when n is a positive integer,
and Γ(1) = 0! = 1. For half-integer values of b the Gamma function may be
evaluated by noting that Γ

(
1
2

)
=
√

π and Γ(b + 1) = bΓ(b). So, it is pretty
easy to show that the above expression produces the correct “volumes” of
V1 = 2r, V2 = πr2 and V3 = 4

3
πr3 for “spheres” in 1, 2, and 3 dimensions,

respectively. The same formula also correctly predicts the volumes of hyper-
spheres in higher dimensions, each of which are enclosed by a surface that is
equidistant from a single point.

The surface area of a hyper-sphere may be obtained by differentiating the
volume with respect to r, and so19

AD =
dVD

dr
=

DπD/2

Γ
(
D
2

+ 1
)rD−1 (1.31)

This surface area may be used to obtain the volume of a hyper-spherical shell
of radius r and thickness dr. The volume of such a shell is simply ADdr, and
so the probability of observing a state with a value between r and r + dr in
a system with D quadratic degrees of freedom is,

PD(r) = [P1(r1)]
D =

D

Γ
(
D
2

+ 1
)r∗D−1e−r

∗2
dr∗ , (1.32)

18More specifically, the rescaled variables are r2
1 = 1

2μΔv2, r2
2 = 1

2fΔr2, r2
3 = r2

4 = 1
2Iω2.

19The derivative relation between volume and surface area follows from the fact that
V =

∫ r

0
Adr which implies that A = dV/dr



40 CHAPTER 1. THE BASIC IDEAS

where P1(r1) is the probability associated with a single re-scaled quadratic
degree of freedom and r∗ = r/

√
kBT .20 By using ε = r2 we may transform

to the corresponding energy probability density (with ε∗ = ε/kBT ).

PD (ε) =
D

2Γ
(
D
2

+ 1
)ε∗

D
2
−1e−ε∗dε∗ (1.33)

The average value of any function of r may be obtained using PD(r),

〈f(r)〉D =

∫
f(r)PD(r) =

D

Γ
(
D
2

+ 1
) ∫ ∞

0

f(r)r∗D−1e−r
∗2

dr∗ (1.34)

while the corresponding average value of any function of ε may be obtained
using PD(ε).

〈f(ε)〉D =

∫
f(ε)PD(ε) =

D

2Γ
(
D
2

+ 1
) ∫ ∞

0

f(ε)ε∗
D
2
−1e−ε∗dε∗ (1.35)

Thus, for example, we may use eq 1.35 (or eq 1.34) to predict the average
energy of any system with D (quadratic) degrees of freedom.21

〈ε〉D =
D

2
kBT (1.36)

For a harmonic oscillator D = 2 and so eq 1.36 implies that the average
vibrational energy of a diatomic molecule is 〈ε〉 = kBT , as expected. We
may also use eq 1.34 to evaluate the average amplitude δ and velocity v of
the vibrating diatomic. In this case, it is convenient to treat each quadratic
term as a separate one-dimensional coordinate.

〈δ〉 = 〈r∗〉1
√

2kBT

f
=

√
8kBT

πf
(1.37)

20Equation 1.32 is obtained by noting that in one dimension the partition function
associated with a single re-scaled coordinate r1 is, q =

∫∞
−∞ e−r2

1/kBT dr1 =
√

πkBT , so

P1(r1) = e−r2
1/kB T dr1√
πkBT

, and thus [P1(r1)]
D = e−r2/kBT

(πkBT )
D
2

AD dr, where r2 =
∑D

i=1 r2
i . Note that

while r1 extends over the entire real axis (including both positive and negative values),
while r =

√
r2 > 0, as it represents the absolute “velocity” or “vibrational amplitude”, in

the appropriately re-scaled units.
21The required integrals may be evaluated using one of the following standard integrals,∫∞

0
xbe−axdx = Γ(b + 1)/ab+1 or

∫∞
0

xbe−ax2
dx = Γ( b+1

2 )/(2 a
b+1
2 ).
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〈v〉 = 〈r∗〉1
√

2kBT

μ
=

√
8kBT

πμ
(1.38)

Thus, the average amplitude and velocity of the vibrating molecule are both
predicted to increase with increasing temperature – which seems reasonable.
They are also predicted to decrease with increasing force constant or reduced
mass. Note that the square-root derives from the fact that the energy depends
quadratically on δ and v.

Beyond the Quadratic Approximation

The above results are all restricted to systems whose Hamiltonians may be
expressed as the sum of quadratic position and/or velocity (or momentum)
variables. For translational kinetic energy this is exactly the case, while for
vibrational and rotational motions the corresponding quadratic terms are
approximations which ignore anharmonic and cetrifugal effects that give rise
to additional non-quadratic contributions to the Hamiltonian. However, the
above procedure may readily be extended to treat such contributions.

As one example, the puckering motion of four-membered ring compounds,
such as cyclobutanone and trimethylene oxide, have potential energies that
scale approximately as the fourth power, rather than square, of the corre-
sponding displacement, ε = ax4. The average potential energy associated
with this motion may again be obtained by applying eq 1.24.

〈ε〉 =

∫
ax4e−βax4

dx∫
e−βax4dx

=
1

4β
=

1

4
kBT (1.39)

So, this degree of freedom is expected to have an average potential energy
that is smaller (by a factor of two) than that of a harmonic (quadratic)
vibration, at high temperature.

More generally, any contribution to the energy which is proportional to
the nth-power of the corresponding variable gives rise to an average potential
energy of 1

n
kBT , in the classical limit. So, a particle in D-dimensions which is

confined by a central force potential of the form V (r) = crn has an average
kinetic energy of 〈K〉 = D

2
kBT and an average potential energy of 〈V 〉 =

1
n
kBT . This implies that the ratio of the potential and kinetic energies of

such a particle is simply determined by the values of D and n.

〈V 〉
〈K〉 =

2

nD
(1.40)
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This important result is equivalent to that obtained from the Virial Theorem
of Clausius. Note that for a 1-dimensional harmonic oscillator this predicts
that 〈V 〉 / 〈K〉 = 1, as expected. On the other hand, for a three dimen-
sional particle confined by potential which scales as 1/r (such as an electron
bound to a proton or a planet rotating around the sun), the ratio becomes
〈V 〉 / 〈K〉 = −2/3, which is again consistent with experimental observations.


