
Advanced Algorithm Analysis

Dr. A . Sattar

Semester: Fall 2008
Computer Science Department
International Islamic University

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/2

Course Contents

• Introduction to Algorithm Analysis
• Mathematical Preliminaries
• Asymptotic Analysis
• Recurrences
• Sorting Algorithm Analysis
• Graph Algorithms
• Dynamic Programming
• String Processing Algorithms
• Theory of NP-Completeness
• Approximation Algorithms
• Parallel and Distributed Algorithms

The following topics will be covered in this semester:

The prerequisites are Discrete Mathematics (Combinotrics and probability theory),
Calculus, and Elementary Data Structures.

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/3

Reference Texts

• T.Cormen, E.Leiserson, L.Rivest, C.Stein Introduction to Algorithms, Prentice Hall

• S.Basse,V.A.Gelder,Computer Algorithms, Pearson Education Inc.

• A.Levitin, Introduction to Design and Analysis of Algorithms, Pearson Education Inc.

• R.E.Neapolitan, K.Naimipour, Fundamentals of Algorithms, Heath and Company

• R.Sedgewick , P.Flajot, Analysis of Algorithms, National Book Foundation

The course material will be based on, or adapted from, the following sources:

Introduction
to

Algorithm Analysis

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/5

Introduction to Algorithm Analysis

• Computer Algorithms

• Application Domains

• Algorithm notation

• Algorithm Analysis
- time efficiency
- space efficiency
- correctness

• Classification of time efficiencies
- Best case analysis
-Worst case analysis
- Average case analysis

• Case Study

Topics

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/6

Computer Algorithms

An algorithm is an orderly step-by-step procedure to solve a problem. A computer
algorithm has the following essential characteristics:

1) It accepts one or more inputs

2) It returns at least one output

3) It terminates after finite steps

Definition

The term algorithm is derived from the title Khowrizmi of ninth-century Persian
mathematician Abu Musa al-Khowrizmi , who is credited with systematic study and
development of important algebraic procedures.

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/7

Algorithm Applications

A large variety of problems in computer science, mathematics and other disciplines depend
on the use of algorithms for their solutions. The broad categories of applications types are:

• Searching Algorithms (Linear and non-linear)

• Sorting Algorithms (Elementary and Advanced)

• Strings Processing (Pattern matching, Parsing, Compression, Cryptography)

• Optimization Algorithms (Shortest routes, minimum cost)

• Geometric Algorithms(Triangulation, Convex Hull)

• Image Processing (Compression, Matching, Conversion)

• Data Mining Algorithms(Clustering, Cleansing, Rules mining)

• Mathematical Algorithms (Random number generator, matrix operations, FFT, etc)

Problem Domains

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/8

Algorithm Applications

• There are several classic problems in computer science for which efficient algorithms
are not known . Such problems are referred to as hard or intractable.

• Currently, over a thousand such problems have been identified. Two celebrated
examples are Hamiltonian Problem and Traveling Salesperson Problem

Hamiltonian Problem
A Hamiltonian circuit , also called tour, is path in a graph (network) that

starts and ends at the same vertex, and passes through all other vertices
exactly once. The Hamiltonian problem is to find whether or not a given
graph has Hamiltonian circuit.

Traveling Salesperson Problem
A salesperson has to travel to a given number of cities such that (1) tour starts

at one city and ends up at the same city, (2) each city is visited exactly once ,
(3) the tour consists of minimum total distance .

Hard Problems

Algorithm Notation

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/10

Specifying Algorithm Steps
Conventions

For the purpose of design and analysis the algorithms are often specified in either of
the two ways:

Natural Language Specification
In this representation English language words, phrases and terminology are used to

describe the crucial steps involved in an algorithm. This form is meant to highlight the
design features of the algorithm

Pseudo Code Specification
In this form symbol and phrases of some high level programming to state the working
of an algorithm. This form is more useful for the purpose of analysis.

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/11

Natural Language Specification

Step #1: Push tree root to stack

Step #2: Pop the stack. If stack is empty exit, else process the node

Step #3: Traverse down the tree following the left-most path, and pushing
each right child onto to the stack

Step #4: When leaf node is reached, go back to Step #2.

This example illustrates the natural language description of an algorithm for inorder traversal
of a binary tree.

The phrases and words used in natural language are not formalized. The style and
choice of words vary with the algorithm design. However, all important steps and
branching points must be specified unambiguously

Example

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/12

Pseudo Code

•Procedures: Name followed by input parameters enclosed in parentheses FIND-MAX (A, n)
• Assignments to variables: left arrows (←) e.g j← k ← p
• Comparisons of variables : symbols x ≤ y, x ≥ y, x ≠ y, x = y, x > y, x < y
• Logical expressions: connectives exp1 AND exp2 , exp1 OR exp2, NOT exp
• Computations: arithmetic symbols +, -, *, /
•Exchanges (Swapping) : symbol ↔ e.g A[i] ↔ A[k]
• Loops and iterations: Words for, do, repeat, while, until are used to describe loops, such as

for ---- do ----, for-----downto ---do---
while ---- do---
do ----- until---

• Conditionals: Words if and then are used to specify conditional statements, such as
if ---- then-----else-----

• Block structure: Using indentation ie an inner block is displaced with respect to the outer
block, as depicted below

do--- (start of outer most blob)
do---- (start of next block)

if--- else ---- (start of a new block)

• Comments: symbol ► (Different from the one used in the book)
• Array : Name followed by size in brackets, e.g A[1..n]

There is no standardized notation used for the pseudo code. The following notation, based on
T . Cormen et al, will be followed .

Notation

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/13

Pseudo Code Notation

1 for j ← 2 to n
2 do key ← A[j]
3 ►Insert A[j] into sorted sequence A[1..j-1]
4 i ← j - 1
5 while i > 0 AND A[i] > key
6 do A[i+i] ← A[i]
7 i ← i-1
8 A[i+1] ← key

Figure (i) shows an example of pseudo code for insertion sort algorithm . Figure (ii)
shows the corresponding code in C++ / Java

for (j=2; j <= n; j++)
{ key = A[j];

// Insert A[j] into sorted sequence A[1..j-1]
i =j-1;
while (i > 0 && A[i] > key)

{ A[i+i] = A[i]; i--; }
A[i+1]= key;

}

(i) Pseudo code for insertion sort

(ii) C++/Java code for insertion sort

Example

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/14

Algorithm Analysis

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/15

Algorithm Analysis

• The purpose of algorithm analysis is, in general , to determine the performance of
the algorithm in terms of time taken and storage requirements to solve a given
problem.

• An other objective can be to check whether the the algorithm produces consistent,
reliable, and accurate outputs for all instances of the problem .It may also ensured
that algorithm is robust and would prove to be failsafe under all circumstances.

• The common metrics that are used to gauge the performance are referred to as time
efficiency, space efficiency, and correctness.

Objectives

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/16

Algorithm Analysis

i. Count of data items in data collections such as arrays, queues

ii. Number of nodes in trees and linked lists

iii. Number of vertices and number of edges in a graph

iv. Number of rows and columns in an input table

v. Character count in an input text block

Input Size
• The performance is often expressed in terms problem size, or more precisely, by the
number of data item items processed by an algorithm.

• The key parameters used in the analysis of algorithms for some common application
types are:

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/17

Analysis of Algorithm

• The time efficiency determines how fast an algorithm solves a given problem.
Quantitatively, it is the measures of time taken by the algorithm to produce the output
with a given input. The time efficiency is denoted by a mathematical function of the input
size.

• Assuming that an algorithm takes T(n) time to process n data items. The function T(n) is
referred to as the running time of the algorithm. It is also known as time complexity. The
time complexity can depend on more than one parameter. For example, the running time of
a graph algorithm can depend both on the number of vertices and edges in the graph.

• The running time is an important indicator of the behavior of an algorithm for varying
inputs. It tells, for example, whether the time taken to process would increase in direct
proportional to input size, would increase four fold if size is doubled, or increase
exponentially.

• It would be seen that that time efficiency is the most significant metric for algorithm
analysis. For this reason, the main focus of algorithm analysis would be on determining
the time complexity.

Time Efficiency

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/18

Time Efficiency
Approaches

The time efficiency can be determined in several ways . The common methods are
categorized as empirical, analytical, and visualization

• In empirical approach , the running time is determined experimentally. The
performance is measured by testing the algorithm with inputs of different sizes

• The analytical method uses mathematical and statistical techniques to examine the
time efficiency. The running time is expressed as mathematical function of input size

• The visualization technique is sometimes used to study the behavior and
performance of an algorithm by generating graphics and animation, based on
interactive inputs .

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/19

Empirical Analysis
Methodology

1) The algorithm is coded and run on a computer. The running times are measured, by
using some timer routine , with inputs of different sizes..

2) The output is logged and analyzed with the help of graphical and statistical tools to
determine the behavior and growth rate of running time in terms of input size.

3) A best curve is fitted to depict trend of the algorithm in terms input sizes

The empirical methodology broadly consists of following steps

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/20

Empirical Analysis

• The graph illustrates the results of an empirical analysis. The running times of a sorting
algorithm are plotted against the number input sort keys. The measured values are shown in
red dots. The graph shows the best-fit curve to scattered points.

Sorting Time

Example

• The analysis indicates that time increases roughly in proportion to the square of input
size, which means that doubling the input size increases the running time four fold.

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/21

Empirical Analysis
Limitations

The empirical analysis provides estimates of running times in a real life situation. It has,
however, several limitations, because the running time crucially depends on several
factors. Some key factors that influence the time measurements are:

• Hardware types (CPU speed, IO throughput, RAM size etc.)

• Software environment (Compiler, Programming Language etc.)

• Program design (Conventional, Structured, Object Oriented)

• Composition of data set sets (Choice of data values and the range of input)

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/22

Analytical Analysis

In analytic approach the running time is estimated by studying and analyzing the basic or
primitive operations involved in an algorithm. Broadly, the following methodology is
adopted:

Methodology

• The code for the algorithm is examined to identify basic operations

• The number of times each basic operation is executed, for a given input,
is determined.

• The running time is estimated by taking into consideration the frequency
and cost of significant operations

• The total time is expressed as a function of the input size

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/23

Analytical Analysis

i. Assigning value to a variable

ii. Comparing a pair of data items

iii. Incrementing a variable

iv. Performing arithmetic and floating point operations

v. Moving a data item from one storage location to another location

vi. Calling a procedure

vii. Returning a value

viii. Accessing an array element

Basic Operations
• The code for an algorithm, generally, consists of a mix of following basic operations:.

• The time taken by the basic operation to complete a single step is often referred to as the cost
of the operation. Some operations are relatively more expensive than others. For example,
operations involving data movement and arithmetical computations are costly compared to
logical or assignment operations .

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/24

Running Time Classification

• Let k denote all possible orderings of input of size n, and T1(n),T2(n),..Tk(n)) be the
running times for each instance . We can formally, define the best, worst and average
running times, Tbest(n), Tworst(n), Taverage(n), as follows

Best Case: In this case the algorithm has minimum running time.
: Tbest(n) = minimum(T1,T2,…Tk)

This is also called the optimistic time

Worst Case: In this case the algorithm has maximum running time
Tworst(n) = maximum(T1,T2,…Tk)

This is also known as pessimistic time

Average Case: The average running time is the average of running times for all
possible ordering of inputs of the same size:

Taverage(n) = (T1+T2+….+Tk) / k

Worst, Best, Average Cases
• We have seen that the running time of an algorithm depends on the input size. For some
applications, the running time also depends on the order in which the data items are input
to the algorithm.

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/25

Best, Worst, Average Cases

• The graph shows best, worst, and average running times of an algorithm. In this example,
times are shown for 20 inputs of same size but in different order. The algorithm takes
minimum time to process Input #6 , and maximum time to process Input #17 , which are
referred to as best and worst times. The average of all the running times for 20 inputs is also
shown.

• For an accurate analysis , all possible arrangements of input should be considered to
identify the best, worst, and average running times

Example

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/26

Algorithm Analysis
Space Efficiency

• The space efficiency determines total memory requirement of RAM and disk storage to
run an algorithm with given input.

• The space requirement consists of the amount of real storage needed to execute the
algorithm code and the storage to hold the application data. The algorithm code occupies a
fixed amount of space, which is independent of the input size. The storage requirement for
the application depends on the nature of data structure used to provide faster and flexible
access to stored information . For an arrays and linked lists, for example, the space
requirement is directly proportional to the input size.

• For most algorithms, the space efficiency is not of much concern. However, some
algorithms require extra storage to hold results of intermediate computations. This is the
case, for example, with merge sort and dynamic programming techniques.

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/27

Algorithm Correctness

A loop invariant is set of conditions and relationships that remain true prior to, during ,
and after the execution of a loop.

The loop invariant condition / statement depends on the nature of problem being analyzed
In a sorting problem, for example, the condition might be the order of keys in a sub-array,
which should remain in ascending/descending order ,prior to, and after the execution of each
iteration

Loop Invariant Method
There are no standard methods for proving the correctness of a given algorithm. However,

many useful algorithms consist of one or more iterative computations, using loop
structures. The correctness of such algorithms can be formally established by a technique
called Loop Invariant Method .

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/28

Algorithm Correctness

The loop invariant method establishes the correctness of algorithm in three steps, which
are known as initialization, maintenance, and termination (Reference: T. Cormen et al)
At each step, the loop invariant is examined. If the loop conditions at each of the steps
hold true, then algorithm is said be correct.

Initialization: Loop invariant is true prior to execution of first iteration of the loop

Maintenance: If loop invariant is assumed to be true at some iteration, it remains true
after the next iteration

Termination: After the termination of the loop, the invariant holds true for the problem
size

Formal Proof

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/29

Algorithm Analysis
Algorithm visualization techniques are used to study

• Studying inner working of an algorithm through trace of basic operations

• Illustrating algorithm steps with animations

• Studying algorithm performance with interactive inputs

• Counting primitive operations for analysis

• Doing simulations with a variety of data sets

• Reporting on the performance

Visualization

Case Study
Algorithm Analysis

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/31

Case Study

This case study is meant to demonstrate the salient features of algorithm design and
analysis, as discussed previously. A simple example is used to systematically describe the
following steps.:

Algorithm Analysis

• Problem statement

• Algorithm design

• Implementation using pseudo code

• Analysis of best, worst and average running times

• Space complexity

• Correctness of algorithm

• Visualization of Analysis

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/32

Case Study

Design an algorithm to find maximum element in an array of size n

Analyze the algorithm to determine :

• Time efficiency

• Space efficiency

• Correctness

Problem Statement

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/33

Case Study

The design features are expressed in plain language. The algorithm for the solution of
the problem consists of the following steps:

Step #1: Store the first array element in variable max

Step #2: Scan array to compare max with other elements

Step #3: Replace max with a larger element, when found during the scan

Step #4: Return value held by max

Algorithm Design

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/34

Algorithm Analysis

FIND-MAX (A, n)

1 max ←A[1] ►Store first array element into variable max

2 for j←2 to n do ► Scan remaining elements

3 if (A[j] > max) ►Compare an element with max

4 then max ← A[j] ► Replace max with a larger element

5 return max ► Return maximum element

The procedure FIND-MAX returns maximum element in an array. The array A and its
size n, are passed as arguments. The following pseudo code describes the essential steps,
together with comments which are identified by the symbol ►:

Pseudo Code

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/35

Running Time
Costs of Basic Operations

Cost of returning maximum elementCrreturn max5

Cost of accessing A[j]
Cost of storing A[j] into max

Ca
Cs

then max ← A[j]4

Cost of accessing A[j]
Cost of comparing A[j] with max, and branching

Ca
Cc

if (A[j] > max)3

Cost of storing 2 into j
Cost of comparing index j with n, and branching
Cost of incrementing j

Cs
Cc
Ci

for j←2 to n do2

Cost of accessing A[1]
Cost of storing A[1] into max

Ca
Cs

max ←A[1]1

RemarksUnit costsStatement#

First, we identify basic operations and their associated costs . The table below lists various
operations and costs. Here the term ‘cost’ refers to the time consumed in executing an
operation.

Table of costs of basic operations

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/36

Running Time
Counts of Basic Operations

1

k
k

n-1
n-1

1
n-1
n-1

1
1

Operations
Count

CrCrreturn max5

(Ca + Cs). k, where k depends on
condition in statement 3 . In general, 0≤ k
≤ n -1

Ca
Cs

then max ← A[j]4

(n-1).Ca + (n-1).Cc Ca
Cc

if (A[j] > max)3

Cs + (n-1).Cc +(n-1).CiCs
Cc
Ci

for j←2 to n do2

Ca + CsCa
Cs

max ←A[1]1

Total CostUnit CostStatement#

Next we count the number of the basic operations, and total cost of executing each
statement. The frequency of execution of statement 4 depends on the outcome of statement
3; it will be executed when the condition A[j]>max turns out to be true. This condition ,in
turn, depends on the order of data in the array A. For the purpose of analysis, we assume
that statement 4 is executed k times, where 0 ≤ k ≤ n-1.

Table of frequency and total cost of basic operations

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/37

Running Time
Aggregate Cost

• The running time T(n) is obtained by adding the costs in the last column of the table
Tn) = Ca + Cs

+ Cs + (n-1).Cc
+ (n-1).Ci+ (n-1).Ca
+ (n-1).Cc + (Ca + Cs). k
+ Cr

• Simplifying and rearranging, we get following expression .
T(n) =A + B.k + C.n,

where A = 2Cs – 2Cc – Ci + Cr,
B = Ca + Cs,
C = 2Cc + Ci + Ca

• The constants A, B, C depend on the computing environment

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/38

Running Time Classification
Best, Worst, Average Cases

The running time T(n) of the algorithm for finding the maximum element of array of size n is given by
T(n) = A + B.k + C.n, where 0 ≤ k ≤ n-1

Here k is the number of times the statement max ← A[j] will be executed. The following possibilities
can arise:

Best Case: Best case occurs when the statement is not executed at all. This happens when
the array maximum element occurs in the first cell. In this case k = 0, and best (minimum) running time

is given by

Tbest (n)=A + C.n

Average Case: In this case, the statement is executed on an average n / 2 times so that k = n / 2. Thus,
average time running time is given by

Taverage(n) = A + (B / 2 + C).n

Worst Case: In this case, the statement is executed n-1 times; so k = n-1. This happens
when the array is sorted in ascending order .Thus, worst (maximum) running time is given by

Tworst(n) = A-B + (B + C).n

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/39

Running Time Classification
Plot of Best Worst and Average Cases

A plot of running times for different cases is shown below. The running time in all of
the three cases increases linearly. However, the slope of line (rate of increase) is different.
In the case of worst time, for example, the running time increases at a greater rate.

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/40

Algorithm Analysis

FIND-MAX(A)
1 max ← A[1]
2 for j←2 to n do
3 if(A[j] > max)
4 then max ← A[j]
1 return max

The correctness of FIND-MAX algorithm, listed below, is established by the
loop invariant method.

First, we define the loop invariant S as the following statement:

Variable max holds the largest value at all stages of loop execution

• Next, we consider the steps of initialization, maintenance, and termination
.

Correctness

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/41

Algorithm Analysis
Correctness

• The Initialization condition requires that prior to first iteration the statement S should be
true. This is trivially (also called vacuously) true, because at this stage max contains the
single element A[1].

• The Maintenance condition requires that if S is true before an iteration of loop, it should
remain true after the iteration It can be easily verified that if max holds the largest of k
elements, after kth iteration, then it holds largest of k+1 elements after the next iteration.
ie.(k+1)st iteration

• The Termination condition requires that post-condition should be true for problem size
i.e, max should return maximum array element. The loop terminates when index j exceeds
n. This implies that just after the last iteration max holds the largest of the first n elements
of the array. Since array has size n, it means that max returns the largest of array elements.

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/42

Analysis of Algorithm

The space analysis of algorithm for finding maximum element is simple and
straightforward. It amounts to determining space utilization as function of data structure size.

• The total space requirement consists of memory used by the program statements
and array element. The former is a fixed and does not depend on array size.

• The amount of storage requirement for the array depends on the nature of data
type (integer, floating point, strings). It increases in direct proportion to the array size

• Thus, space efficiency is given by

S(n) = A + B.n

Space Efficiency

Array space
requirement

Program space
requirement

Visualization

Introduction to Algorithm Analysis / IIU 2008/Dr.A.Sattar/43

Visualization

