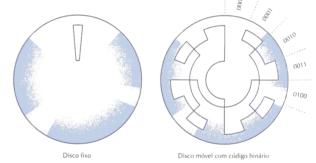


Sensores em robótica

Como é que os robots sentem o ambiente envolvente?

Um sensor é um dispositivo que mede o valor de uma grandeza física, como por exemplo a temperatura, a velocidade, a distância, a pressão. Os *robots* que trabalham inseridos em ambientes reais, estáticos ou dinâmicos, estão dotados de sensores que lhes permitem adquirir informação sobre o modo como interactuam com o mundo em que operam e sobre o seu próprio estado interno.

1. Sensores internos e externos.

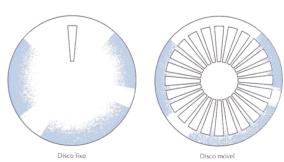

Os sensores podem ser classificados como:

- sensores internos que fornecem informação sobre os parâmetros internos do *robot*, por exemplo, avaliam o nível de carga das baterias, a posição ou velocidade de uma roda, ou o ângulo de uma junta num manipulador ou num *robot* móvel com patas. Potenciómetros, codificadores (*encoders* na designação anglo-saxónica), taquímetros, sensores inerciais (incluindo acelerómetros, giroscópios, inclinómetros e bússolas), são exemplos de sensores internos.
- sensores externos que lidam com a observação de aspectos do mundo exterior ao *robot*. Sensores de contacto, sensores de proximidade, sensores de força, visão, sensores de distância, *laser*, sensores de ultra-som ou de infravermelhos e sensores químicos, são exemplos de sensores externos.

2. Encoders.

Os encoders medem a posição angular ou a velocidade angular de um eixo em rotação (por exemplo associado a um motor), pelo que o seu uso em robótica móvel é generalizado. Por exemplo, medindo a velocidade de rotação de cada uma das rodas de um robot e sabendo o seu tipo e disposição é possível avaliar as velocidades de translação e de rotação do robot e estimar a sua posição ao fim de um certo período de operação.

2a. O *encoder* **absoluto** fornece a posição angular de um eixo de rotação. O princípio de funcionamento é baseado num par de discos opacos, um fixo e outro móvel (solidário com o eixo de rotação), uma fonte de luz de um lado e um conjunto de fotossensores do outro. O


Encoder absoluto.

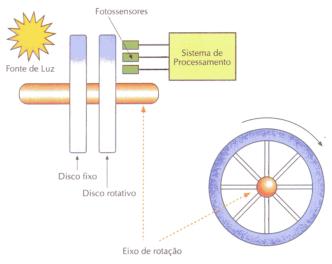
disco fixo tem uma ranhura radial e o disco móvel tem padrões de ranhuras dispostos radialmente. A cada padrão corresponde uma posição angular diferente. À medida que o disco móvel roda, solidário com a rotação do eixo, os fotossensores vão detectando diferentes padrões de luz. Como a cada padrão de luz corresponde um padrão de ranhuras particular e estas estão associadas a uma posição angular, a determinação da posição do veio do motor é imediata.

2b. Os encoders incrementais têm um princípio de funcionamento idêntico, mas fornecem à saída um sinal periódico cujo período é inversamente proporcional à velocidade de rotação do eixo. Velocidades de rotação elevadas determinam que o sinal fornecido pelo encoder varie muito rapidamente, ou seja, tenha uma frequência elevada e um período pequeno. Neste caso, as ranhuras do disco móvel não estão associadas a nenhuma posição angular, mas dispostas de modo a gerarem à saída um sinal periódico. É o aumento ou a diminuição da velocidade de rotação que diminui ou aumenta o período do sinal à saída. Medindo esse período fica-se a conhecer a velocidade de rotação do eixo.

3. Sensores activos e passivos.

Os sensores também podem ser classificados de acordo com o modo como gerem a energia envolvida no processo de sensoriamento.

Encoder relativo.



3a. Sensores activos. Medem através da emissão de energia para o ambiente ou por modificarem o ambiente, como por exemplo sensores *laser*, sensores de ultra-som, sensores de contacto.

3b. Sensores passivos. Não emitem energia mas, pelo contrário, recebem energia do ambiente. O exemplo mais comum de sensor passivo é uma câmara de visão em que cada imagem adquirida é uma matriz de pontos. Cada ponto está associado à intensidade luminosa do elemento correspondente do ambiente.

4. Sensores de distância, de posicionamento absoluto, ambientais e inerciais.

Uma outra classificação agrupa os sensores pelo tipo de grandeza que avaliam. Assim, há sensores de distância (laser, ultra-som), sensores de posicionamento absoluto (que avaliam a localização absoluta do robot, por exemplo os sistemas de GPS – Global Positioning System), sensores ambientais (que indicam temperatura, humidade), sensores inerciais (que indicam componentes diferenciais da posição do robot, como por exemplo aceleração ou velocidade).

Princípio de funcionamento dos encoders.

5. Sensores de ultra-som e laser.

Muitos *robots* móveis, em particular *robots* terrestres, usam sensores de ultra-som para detectar obstáculos inesperados e deles se desviarem. Também há automóveis comerciais dotados deste tipo de sensores para auxiliar o estacionamento em zonas apertadas. Os sonares (acrónimo de *Sound Navigation And Ranging*), como são vulgarmente conhecidos, são sensores externos, activos e que avaliam distâncias. O princípio de funcionamento é a avaliação do tempo de voo de uma onda acústica, gerada pelo sensor em rajadas curtas, e que se propaga no meio

Sensores sonares e princípio de funcionamento.

ambiente. Quando existem obstáculos a onda é reflectida e a energia reflectida é detectada pelo sensor. O tempo que medeia entre a emissão e a detecção depende da velocidade de propagação do som no ar (em robots terrestres) e é proporcional ao dobro da distância percorria pela onda sonora. Na água, os golfinhos usam impulsos ultra-sónicos para localizar e apanhar peixe, para comunicar e para navegar.

À semelhança dos sonares, também a

maioria dos *lasers* calcula a distância aos obstáculos pelo tempo de voo entre a emissão e a recepção de um feixe de luz. A diferença relativamente aos sonares reside na velocidade de propagação (que é de 340 m/s para as ondas sonoras no ar e de 300 000 km/s para a luz) e na largura do feixe correspondente. O feixe do sonar pode ser, aproximadamente, considerado como cónico, com largura da ordem dos 10°-15° (para os correntes sonar *Polaroid*). O feixe *laser* pode ser aproximadamente considerado como cilíndrico com um diâmetro da ordem dos milímetros. Os emissores *laser* estão muitas vezes associados a mecanismos de varrimento que permitem cobrir uma larga área à frente dos *robots*. Designam-se, então, como *laser scanners*.

Glossário

Giroscópio: sensor inercial que avalia a orientação de um objecto relativamente a um eixo de referência.

Sensores inerciais: transdutores que exploram a propriedade da inércia, i.e., a resistência a alterações de momento, para avaliar o movimento angular e as variações em movimento linear

Taquímetro: instrumento que indica a velocidade, usualmente expressa em revoluções por minuto, a que roda um eixo associado a um motor.

Referências: Aplicações dos *robots*; Navegação em robótica autónoma; *Robots*; *Robots* móveis; Visão robótica.

Autora: Maria Isabel Ribeiro