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1. Important Sets

Before we start with the main topics, we need to review some notation:

Definition 1.1. (1) A set is just a collection of elements. We usually denote a set by enclosing

its elements in braces “{ }”. [So, {1, 2, 3, 4} is a set whose elements are the numbers 1, 2,

3, and 4.] Sets don’t need to have numbers as elements, but they likely will in this course.

Note that the order that we write the elements of the set does not matter, all that matters

is the content, i.e., what elements it has.

(2) An element of a set is said to belong to the set. We use the symbol “∈” for “belongs to”

and “ 6∈” for “does not belong to”, such as in:

1 ∈ {0, 1, 2} and 3 6∈ {0, 1, 2}.
1
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(3) We have that

N = {0, 1, 2, 3, 4, . . .},

denotes the set of natural numbers. [The ellipsis here means “continues in the same way”.]

Careful: Some authors exclude zero from the set of natural numbers. We will use instead

N∗ = {1, 2, 3, 4, . . .},

and refer to N∗ as the set of positive integers. [Note that zero is neither positive nor negative!]

(4) We define the set of integers as

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

(5) We define the set of rationals as

Q =
{

p

q
: p ∈ Z and q ∈ N∗

}
.

[The colon “ : ” above reads as “such that”. So, we read the set above as “the set of all

[fractions] p/q such that p is in Z and q is in N∗”.] This set includes then all fractions of

integers, such as 1
2 , − 3

7 , 7636524628
8745834838388 , etc. [Remember, we can never divide by zero!]

(6) The set of real numbers, which is studied in [pre]calculus is denoted by R. It contains Q
and all irrational numbers [which cannot be expressed as fractions of integers], such as

√
2,

17
√

31, π, e, etc.

Loosely speaking, [classical] number theory, the subject of this course, is the study of integers.

Sometimes, sets that are “similar” to the integers are also studied. But, for purists, the study of

those sets are only relevant if it yields results or ideas of importance to the integers. It is then

not very surprising that the rational numbers often show up in number theory, and it is also often

considered to have its own interest in the field.

Although it would seem that the set of real numbers is not very relevant to the study of integers,

it does show up often. Even more, the set of complex numbers [for those who have heard of them],

which is usually denoted by C, is quite important to number theory. [We will not deal with C in

this course.]

Problems.

1.1) Decide if each statement below is true or false:
(a) 2 ∈ Q.

(b) −2/3 ∈ Z.

(c) π ∈ Q.

(d) 0 ∈ N.

(e) 0 ∈ N∗.

(f)
√

2 ∈ R.

(g)
√

2 + 1 ∈ Q.

(h) e ∈ Z.

(i) −5 ∈ N.

(j) 5/4 ∈ Q.
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2. Long Division

We will deal mostly with integers in this course, as it is the main object of study of number

theory. We will need to know long division [also called division algorithm] of integers.

Example 2.1. Here is a quick example with 3812 divided by 15:

254
15

)
3812
3000
812
750
62
60
2

In this example, we call 3812 the dividend and 15 the divisor . We also call 254 the quotient and

2 is the remainder . [Remember that we stop the division when the remainder becomes less than the

divisor, in this case, less than 15.] This means that:

3812 = 15 · 254 + 2.

[You should remember how to perform these long divisions! If you forgot, review and practice!]

In general if we divide a positive integer m by another positive integer n [so, n is different from

zero, since, again, we can never divide by zero], we have that the quotient, say q, and remainder,

say r, are such that

m = n · q + r, with 0 ≤ r < n. (2.2)

We should observe also that the representation of formula (2.2) is unique! [The key factor is the

restriction on the size of the remainder.] This means that if we have, for instance, 312 = 15 ·20+12,

then, since 0 ≤ 12 < 15, this automatically means that the quotient of the division of 312 by 15 is

20 and the remainder is 12.

Example 2.3. Here is another example. If you know that:

377 = 12 · 31 + 5,

then, since 0 ≤ 5 < 12, we know that the remainder of the division of 377 by 12 is 5. And, since

0 ≤ 5 < 31, we also have that the remainder of the division of 377 by 31 is 5. [So, 12 can be seen in

the formula above as either the quotient or as the divisor.]

Now, what about if m, n, or both are negative? We can still perform the long division. Note

that, as specified in equation (2.2), the remainder is always either zero or positive. On the other

hand, the quotient might be negative.
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Probably, the best way to see how it works is to show it with examples:

Examples 2.4. (1) Division of −3812 by 15: We perform the long division of the positive num-

bers [as done above]. If we multiply what we get [i.e., 3812 = 15 · 254 + 2] by negative one,

we get:

−3812 = −(15 · 254) − 2

= 15 · (−254) − 2,

which is not yet what we want as we have now a “negative remainder”. To fix that, we

“borrow” 15 from the quotient, more precisely,

−3812 = 15 · (−254 − 1) + (15 − 2),

i.e.,

−3812 = 15 · (−255) + 13,

and so the new quotient and remainder are, respectively, −255 and 13. [Note that the

quotient is negative, but the remainder is positive and less than 15.]

This is how it works in general. The new quotient is the negative of the old minus one, and

the new remainder is the difference between the divisor [which is 15 in the above example]

and the old remainder.

(2) Division of 3812 by −15: We, again, perform the long division of the positive numbers [as

done above]. We then immediately get:

3812 = (−15) · (−254) + 2,

and so the new quotient and remainder are, respectively, −254 and 2.

This is, again, how it works in general. The new quotient is the negative of the old one,

and the new remainder equal to the old one.

(3) Division of −3812 by −15: We, yet again, perform the long division of the positive numbers

[as done above]. We then get [borrowing from the quotient again]:

−3812 = (−15) · (254 + 1) + (15 − 2),

i.e.,

−3812 = (−15) · 255 + 13,

and so the new quotient and remainder are, respectively, 255 and 13.

This is how it works in general. The new quotient is the old plus one, and the new

remainder is the difference between the old divisor [which is 15 in the above example] and

the old remainder.

[Note that we seldom try to divide by a negative number, but, as we have just seen, we can.]
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In summary: if the quotient and remainder of m divided by n are, respectively, q and r, then:

• the quotient and remainder of −m divider by n [the most important case for us] are, respec-

tively, (−q − 1) and (n − r);

• the quotient and remainder of m divider by −n are, respectively, −q and r;

• the quotient and remainder of −m divider by −n are, respectively, (q + 1) and (n − r).

One can also look at long division with a geometric point of view. For simplicity, I will use smaller

and easier numbers. Say I want to divide 19 by 5. We mark all multiples of 5 [the divisor] in the

real line [marked with circles in the picture below]. Then, we also mark 19 [the dividend] in the real

line [marked with an “×” in the picture below].

-r r r r r r×
19

4

−5
q

5 · (−1)

0
q

5 · 0
5
q

5 · 1
10
q

5 · 2
15
q

5 · 3
20
q

5 · 4

Now, we look for the multiple of 5 that comes just before [to the left of] the dividend. In this

case, the number just before 19 is 15 = 5 · 3. Then, 3 [taken from the “5 · 3”] is the quotient, and

the distance from this multiple of 5 on the left of 19 is the remainder. So, the quotient is 3 and the

remainder is 4. Indeed, 19 = 5 · 3 + 4, as one can see from the picture.

It also works for negatives. Say I want to divide −19 by −5. We proceed in the exact same

manner:

-r r r r r r×
−19

1

−20
q

(−5) · 4
−15

q
(−5) · 3

−10
q

(−5) · 2
−5
q

(−5) · 1
0
q

(−5) · 0
5
q

(−5) · (−1)

The multiple of −5 on the left of −19 is −20 = (−5) · 4, and the distance to −19 is 1. Hence, the

quotient is 4 and the remainder is 1, i.e., −19 = −5 · 4 + 1.

Finally, you can also use a simple calculator to perform long division. [Calculators perform

division with decimals.] To find the quotient and remainder of the division of m by n, here is what

you do:

(1) Divide m by n in your calculator.

(2) You get a result which might not be an integer, i.e., it can have decimals. Discard the

decimals [if you have any], and that is your quotient, say q.

(3) To find the remainder, we subtract m − nq in your calculator.
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Example 2.5. Here is an example: say you want find the quotient q and remainder r of 36459 when

divided by 764. When you compute 36459/764, [with your calculator] you get 47.7212041884817.

So, your quotient is q = 47. Now we compute 764 ·47, which is 35908, and subtract that from 36459,

i.e., the remainder is r = 36459 − 35908 = 551.

We finish this section with some more terminology:

Definition 2.6. (1) Given two integers m and n, we define m modulo n [sometimes said “m

mod n”] to be the remainder of the division of m by n. [So, as seen in the example above,

3812 modulo 15 is 2. Most scientific calculators have a “MOD” button for this operation.]

(2) We say that m divides n if n modulo m is zero, i.e., the long division has remainder zero,

which is then called an exact division. [So, we have that n = m · q, for some integer q.] In

that case, we say that m is a divisor of n, or that n is a multiple of m.

(3) We write n | m to say that “n divides m”, and n - m to say that “n does not divide m”.

[So, for instance, we have 2 | 14, but 2 - 13.]

Be careful: the symbol “|” is not the same as “/”. We have that n | m means “n divides

m”, while n/m means “n divided by m”.

(4) An integer is called even if it is divisible by 2. [Hence, even numbers are those of the form

n = 2q, where q is an integer.] They are {0,±2,±4,±6,±8,±10, . . .}.
(5) An integer is called odd if it is not divisible by 2. [Hence, even numbers are those of the

form n = 2q + 1, where q is an integer.] They are {±1,±3,±5,±7, . . .}.

Problems.

2.1) Use long division to find the quotient and remainder of the following divisions:

(a) 431 divided by 7.

(b) 1263 divided by 349.

(c) 364 divided by 365.

(d) 7388 divided by 12.

2.2) In the following long divisions, identify the divisor, dividend, quotient, and remainder:

(a)
147

31
)
4567
3100
1467
1240
227
217
10

(b) 423 = 42 · 10 + 3.

(c) 423 = 21 · 20 + 3.
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2.3) Use the geometric method to find the quotient and remainder of the following:

(a) 11 divided by 3.

(b) −5 divided by 4.

2.4) Use a hand calculator to find the quotient and remainder of 64378723 when divided by 273.

3. A Useful Theorem and Some Semantics

We will soon state a theorem. It might be useful to say a few words on what a theorem is.

A theorem is a statement [or proposition] whose validity can be deduced from its assumptions by

logical steps. So, it is something that you can deduce [the key word here] from other facts. On the

other hand, in mathematics often there is a hierarchy for theorems:

• The term Theorem is reserved for statements that have greater importance. You probably

know a few: Pythagoras’ Theorem, Fundamental Theorem of Arithmetic, Thale’s Theorem,

etc.

• When a theorem is useful to us, but is of limited universal importance, the term Proposition

is used. It is basically a “minor theorem”.

• A Lemma is a theorem whose main purpose is to help prove one or more statements [which

can be either full Theorems or mere Propositions].

• Finally, a Corollary is a result, which can be of some relative importance, but is an immediate

[or almost immediate] consequence of a previous Theorem or Proposition.

Note that we must always have a Proposition or Theorem, and never a Corollary, following a

Lemma. In the same way, a Corollary always comes after a Proposition or a Theorem, but never

after a Lemma.

So, here is a simple but useful theorem:

Theorem 3.1. Let a, b, and d be integers, and suppose that d | a. Then d divides (a + b) [and

(a − b)] if, and only if, d divides b.

[This might be too simple of a result to have the status of theorem. But, as you will see, we will

derive many results from it, and so it has great importance to this text.]

First, we should say a few words about the “if, and only if ” often used in mathematics: the

above statement means that [with the assumption that d | a] if d divides b, then d must also divide

(a + b), and, conversely, if d divides (a + b), then d must also divide b. Another way, equivalent to

this one, to read this statement is: if d | b [still assuming that d | a], then d | (a + b), and if d - b,

then d - (a + b).

The language in math has to be very precise, and sometimes, in everyday conversation, we are

not as careful. Here is an example. If someone says “if you don’t eat your meat, [then] you cannot
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have any pudding” [how can you have any pudding if you don’t eat your meat?], often one assumes

that this means that if you do eat your meat, you will be able to have pudding. [Wrong! Do it

again!] But, in fact, it means only that you will not have pudding if you don’t eat your meat, and it

doesn’t say absolutely anything about what happens if you do eat your meat! If the person saying

“if don’t eat your meat, [then] you cannot have any pudding” really means that you also do get to

eat pudding if you eat your meat, then he/she should have said “you can have pudding if, and only

if, you eat your meat”.

Observe that if one says “you can have pudding if, and only if, you eat your meat”, then, as in

the interpretation of the statement of Theorem 3.1, this means that if you eat your meat, you get to

eat the pudding. [This is the “if part” of the “if, and only if” statement above: you can eat pudding

if you eat your meat]. So, eating your meat is a sufficient condition for you to eat your pudding

[i.e., nothing else is needed]. It also means that you cannot eat pudding if you don’t eat your meat.

[This is the “only if part” of the “if, and only if”: you can have pudding only if you eat your meat].

So, eating your meat is a necessary condition to eat pudding. [You cannot eat pudding if you don’t

eat your meat.] So, an equivalent statement to “you can have pudding if, and only if, you eat your

meat” is “a necessary and sufficient condition for you to be allowed to eat pudding is that you eat

your meat”.

These “if, and only if” statements [or “necessary and sufficient conditions”] appear quite often in

mathematics, and it is crucial that you have a perfect understanding of its meaning! In the same

way, remember to not assume too much: “if” [by itself] does not mean the same as “if, and only if”.

Also, a mathematician is a skeptic by nature. Although in high-school, and very often in college

too, one accepts the validity of theorems on faith, we should try to see why they actually hold. A

mathematician always want to see a proof, that is, a precise argument which leaves no doubt about

the veracity of the theorem. We shall soon see a proof of the theorem above. Before that, let’s check

if the theorem works with a concrete example.

Example 3.2. Let a = 10, b = 7 and d = 5. So, these numbers satisfy the conditions asked by the

theorem, namely, these numbers are all integers, and 5 | 10 [corresponding to d | a]. Then, since all

these are satisfied, the theorem says that, since 5 - 7, we have that 5 - (10 + 7) [which is clearly true

in this case]. Now, if we change b from 7 to 15, then we have that 5 | 15, and the theorem then says

that 5 | (10 + 15) [which is also clearly true in this case, since 25 = 5 · 5]. [Note that the differences

also work, since 5 - (10 − 7) and 5 | (10 − 15), since −5 = 5 · (−1)].

Note that the above is not a proof ! This is a particular case only, which shows that the theorem

works when a = 10, b is either 7 or 15, and d = 5. This might be enough to convince you, but

it doesn’t really show that it works in general, or even for another case, like, say, d = 63827382,

a = 14935607388, and b = 487374833. [Note that a = 234 · d].

So, we now see an actual proof:
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Proof of Theorem 3.1. Since d | a, we have that a = dq [i.e., the remainder is zero]. Now, divide

b by d, so that b = dq′ + r′ with 0 ≤ r < |d|. [Here I am using the absolute value “| |”, since d

could be negative. But, if you want to think of only positive d, you can drop it.] So q′ and r′ are,

respectively, the quotient and remainder of the division of b by d.

Then, we have that a + b = (dq) + (dq′ + r′) = d(q + q′) + r′. So,

(a + b) = d(q + q′) + r′, with 0 ≤ r′ < |d| ,

and thus, by the uniqueness of the division algorithm [as in Example 2.3], the remainder of (a + b),

when divided by d is r′, i.e., it is the same as the remainder of the division of b by d.

Now remembering the the division is exact if, and only if, the remainder is zero, we have that, if

d | (a + b), then r′ = 0 and so d | b [since r′ is the remainder of the division of b by d]. Conversely,

if d | b, then r′ = 0, which means that d | (a + b) [since r′ is also the remainder of the division of

(a + b) by d].

The proof for a − b is left as an exercise. �

[Note that we use the symbol “�” to mark the end of a proof. Sometimes the letters “QED” are

also used. They stand for “quod erat demonstrandum”, which is Latin for “that which was to be

demonstrated”.]

It takes some time to get used to reading proofs. It takes even more time to get used to writing

some yourself, but it is a very important part of mathematics. [Proofs are also quite important to

computer scientists, especially those interested in artificial intelligence, and to philosophers! Also,

many law schools like to admit math majors precisely because of their skills with proofs, which are

basically ironclad arguments, which are crucial to [good] lawyers.] I recommend you work on this

proof until you fully understand it. [Things should “click”, it should make “perfect sense”, you

should slap your forehead and say “of course!”...]

To help you understand, here is the proof being worked out with specific numbers: let, again,

a = 10, b = 7, and d = 5. Let’s follow the steps of the proof above. The long divisions by 5 give us

10 = 5 · 2 and 7 = 5 · 1 + 2. Then,

17 = 10 + 7

= (5 · 2) + (5 · 1 + 2)

= (5 · 2 + 5 · 1) + 2

= 5 · (2 + 1) + 2

= 5 · 3 + 2.

So, 17 = 5 · 3 + 2 [which we could have done directly, instead of following the proof, but the point is

exactly to see the proof “in action”] and so, as in the proof, we see that the remainders of (a+b) = 17
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and of b = 7 when divided by d = 5 are the same, in this case, both are 2. So, since this remainder

is not zero, neither is divisible by d = 5.

If we, again, replace b = 7 by b = 15, we can see it all working again:

25 = 10 + 15

= (5 · 2) + (5 · 3)

= 5 · (2 + 3)

= 5 · 5.

So, 25 = 5 · 5, and hence the remainder of 25 and 15 when divided by 5 are equal, and in this case

0, meaning that both 15 and 10 + 15 are divisible by 5.

Finally, we have to be careful when applying a theorem. Look at this example: let a = 3, b = 7,

and d = 5. Again d - b [since 5 - 7], and so it might seem that the theorem tells us that d - (a + b),

but 5 | (3 + 7)! So, what is wrong here? The problem is that for us to indeed be able to use the

theorem, the conditions asked by the theorem must be satisfied. In this case, we need a, b, and d to

be integers [which is true, since 3, 7, and 5 are integers] and we need d | a, which is not true here,

since 5 - 3. So, we cannot apply the theorem to this case! Hence, before applying a theorem, make

sure to check that all conditions are satisfied.

Before we end this section, let’s state and prove another basic fact about divisibility:

Proposition 3.3. Let a, b, and c be integers. If a | b and b | c, then a | c.

Proof. We have that a | b means that b = a · q1 for some integer q1, and b | c means that c = b · q2

for some integer q2. Combining these two equations, we have that c = (a · q1) · q2 = a · (q1 · q2), and

hence a | c. �

Problems.

3.1) Find if it is true or false [without computing!]:

(a) 3 | (3 · 3262 + 2)

(b) 7 | (14 · 407 − 21)

3.2) Suppose that a, b, c, d ∈ Z, and that d | a, d | b, and d | c. Does d divide a + b + c? Try to

justify your answer.

3.3) Suppose the following statement is true:

If the forecast says it will rain tomorrow, then it will rain tomorrow.

[I know this statement is not true in general. But, for the sake of this problem, let’s believe

it.] Assume further that the forecast either say “it will rain tomorrow” or “it will not rain

tomorrow”. [So, they don’t talk about “chance of rain”.]
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(a) Suppose that it did not rain today. Can you tell if the forecast of yesterday said if it

would rain or not?

(b) Suppose that it did rain today. Can you tell if the forecast of yesterday said if it would

rain or not?

(c) Suppose that the forecast said that it will not rain tomorrow? Can we be sure whether

or not it will rain tomorrow?

3.4) Prove the subtraction case of Theorem 3.1, i.e., suppose that d | a and prove that then d

divides (a− b) if, and only if, d divides b. [Hint: Try to copy the steps of the proof we gave

for the sum.]

4. Simple Divisibility Criteria

Here are a few divisibility criteria with which you might be familiar:

(1) A number is divisible by 2 [i.e., it is even] if, and only if, the last digit is even, i.e., the last

digit is among 0, 2, 4, 6, and 8. Example: 87459734659374597534 is even since it ends in

4, and 3456329657454832901 is odd, since it ends in 1.

(2) A number is divisible by 3 if, and only if, the sum of its digits is divisible by 3. Example:

942 is divisible by 3, since 9 + 4 + 2 = 15 is divisible by 3, and 725 is not divisible by 3 since

7 + 2 + 5 = 14 is not divisible by 3. Note that if the number is too large, we can repeat the

process until we get a number small enough to be easily decided if it is divisible by 3. For

instance: 989797798979897988 is divisible by 3 if, and only if, 9 + 8 + 9 + 7 + 9 + 7 + 7 + 9 +

8+9+7+9+8+9+7+9+8+8 = 147 is divisible by 3. To find out if 147 is divisible by 3,

we add the digits again, getting 1 + 4 + 7 = 12, and hence 989797798979897988 is divisible

by 3. In fact, a slick application of Theorem 3.1 simplifies things even more: you don’t have

to add the digits 0 [of course!], 3, 6 or 9 of the number. So, to find if 989797798979897988

is divisible by 3, we just need to check that 8 + 7 + 7 + 7 + 8 + 7 + 8 + 7 + 8 + 8 = 75 [so, I

omitted all 9’s in this sum] is divisible by 3. But since 7+5 = 12, it indeed is [as we already

knew].

(3) A number is divisible by 5 if, and only if, the last digit is either 5 or 0. Example:

8438746387835 is divisible by 5, since the last digit is 5, while 658374834873 is not, since

the last digit is neither 0 nor 5.

(4) A number is divisible by 6 if, and only if, it is divisible by both 2 and 3. [This needs a

little proof, but due to lack of time, we will skip it. The key factor here is that 2 and 3 are

relatively prime, as defined in Definition 6.11!] So, we use the criteria for 2 and 3 above.

Example: 443728198343 is not divisible by 6, since it is not divisible by 2 [since it ends

with 3, an odd number]. 4378823782 is not divisible by 6, since it is not divisible by 3, as
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4 + 7 + 8 + 8 + 2 + 7 + 8 + 2 = 46 [note we can skip the 3’s] is not divisible by 3. On, the

other hand, 93474628104 is divisible by 6, as it is divisible by 2 [since it ends in 4, an even

number], and 3 [as 4 + 7 + 4 + 2 + 8 + 1 + 4 = 30 is divisible by 3].

(5) A number is divisible by 9 if, and only if, the sum of its digits is divisible by 9. [Similar to

the case of divisibility by 3.] Example: 342 is divisible by 9, since 3 + 4 + 2 = 9 is divisible

by 9, and 725 is not divisible by 9 since 7 + 2 + 5 = 14 is not divisible by 9. Just as with 3,

you can also repeat the process for large numbers.

(6) A number is divisible by 10 if, and only if, the last digit is zero. Example: 48383748320 is

divisible by 10, but 9674629433425 is not.

If we let our mathematician’s nature take over [and we should!], we will be compelled to find out

why these criteria work. The truth is that they follow from our Theorem 3.1. But, I will fight my

own instincts here and, instead of giving a formal proof, I will just give you a couple of examples

that contain the heart of the proofs. These should be enough to convince you and give you an idea

of how the actual proof goes.

Let’s look at the case of divisibility by 2: consider the number 758x, where x is the last digit

[and so it’s a number between 0 and 9]. We can write it then as 758x = 758 · 10 + x [for instance,

7584 = 758 · 10 + 4]. So, we can write: 758x = 758 · 5 · 2 + x. Then, clearly 2 divides 758 · 5 · 2, and

by Theorem 3.1 [with a = 758 · 5 · 2 = 7580, b = x, and d = 2] we have that 2 divides 758x if, and

only if, 2 | x [as stated in the criterion]. The cases of divisibility by 5 and 10 are almost the same,

since 5 and 10 also divide 758 · 2 · 5 = 758 · 10.

The case of 3 and 9 are also similar. Let’s look at the number 8215. We can write it as 8215 =

8 ·1000+2 ·100+2 ·10+5. Now, here comes the trick: rewrite it again as 8215 = 8 ·(999+1)+2 ·(99+

1)+1 · (9+1)+5, and distribute and rearrange it to 8215 = (8 ·999+2 ·99+1 ·9)+(8+2+1+5) =

3 · (8 · 333 + 2 · 33 + 1 · 3) + (8 + 2 + 1 + 5). So, 8215 = 3 · (8 · 333 + 2 · 33 + 1 · 3) + (8 + 2 + 1 + 5), and

again by Theorem 3.1, since 3 | 3 · (8 · 333 + 2 · 33 + 1 · 3), we have that 3 divides 8215 if, and only if,

it divides 8 + 2 + 1 + 5, which is precisely the sum of the digits of 8215 [as stated in the criterion].

The case, of 9 is very similar. Just observe that 8215 = (8 · 999 + 2 · 99 + 1 · 9) + (8 + 2 + 1 + 5) =

9 · (8 · 111 + 2 · 11 + 1 · 1) + (8 + 2 + 1 + 5), and use Theorem 3.1 again.

Problems.

4.1) Check if each of the numbers below are divisible by 2, 3, 5, 6, 9, and 10:
(a) 11470260960

(b) 2531680491

(c) 11843893499

(d) 360900365

4.2) Decide, without adding the numbers, if the statements are true or false:

(a) 3 | (3 · 7483837283 + 94957291)

(b) 5 | (743872835 + 90472638231)

4.3) Can you guess a criterion for divisibility by 15?
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5. GCD and LCM

We now review the concepts of greatest common divisor , which we shall abbreviate by GCD , and

least common multiple, which we shall abbreviate by LCM . The names already tell us what they

mean: the GCD of two integers a and b is the largest integer that divides a and b [at the same time],

and the LCM is the smallest positive integer that is a multiple of a and of b [at the same time]. We

shall denote them gcd(a, b) and lcm(a, b) respectively. Note that for all positive integers a and b,

we have that gcd(a, b) ≥ 1 and lcm(a, b) ≤ ab. Moreover, since a divisor of a number is always less

than or equal to the number itself, and a multiple of a number is always greater than or equal to

the number itself, we can also conclude that gcd(a, b) ≤ min(a, b) [where min(a, b) is the minimum

between a and b] and lcm(a, b) ≥ max(a, b) [where max(a, b) is the maximum between a and b]. In

summary:

1 ≤ gcd(a, b) ≤ min(a, b) and max(a, b) ≤ lcm(a, b) ≤ ab.

Here are a few examples:

a b gcd(a, b) lcm(a, b)

5 7 1 35

6 12 6 12

18 27 9 54

364 53 1 1908

12 144 12 144

270 924 6 41580

So, how does one compute the GCD and LCM? We will see soon a simple way using factorization

of prime numbers, which is fine for small numbers, but not efficient enough for large numbers. One

better way, at least to compute the GCD, is to use a succession of long divisions. This method is

called the Euclidean Algorithm, since it had already appeared in Euclid’s celebrated series of books

Elements more than 2000 years ago. [The Elements is the book with the second largest number of

editions published of all time, the Bible being the first. It was still used in schools in Europe as

a text book in the recent past. The American publisher Dover still has it on print in the United

States. The Elements collects most of the mathematical knowledge of its time [around 300 BC].

Note then that Euclid [the author] collected all the work, he did not, necessarily, do it all himself.]

If you are unfamiliar with the word algorithm, it basically means a method that completely solves a

[usually computational] problem.

So, let me show you how the Euclidean Algorithm works by showing it in action.

Example 5.1. Say we want to compute the GCD of 134 and 52. We first divide 134 by 52, obtaining:

134 = 52 · 2 + 30



14 PROJECT GRAD 2009

[i.e., quotient 2 and remainder 30.] Then, we take the dividend [i.e., 52] and divide it by the

remainder [i.e., 30]:

52 = 30 · 1 + 22.

And we repeat: take the new dividend [i.e., 30] and divide it by the new remainder [i.e., 22]:

30 = 22 · 1 + 8.

And we repeat yet again:

22 = 8 · 2 + 6.

And again:

8 = 6 · 1 + 2.

If we repeat now, we get an exact division:

6 = 2 · 3.

This means that the algorithm is over and the GCD of 2732 and 134 is the last non-zero remainder,

i.e., 2. Here is the whole process:

134 = 52 · 2 + 30

52 = 30 · 1 + 22

30 = 22 · 1 + 8

22 = 8 · 2 + 6

8 = 6 · 1 + 2 −→ GCD

6 = 2 · 3



A GENTLE INTRO. TO N. THEORY AND CRYPTO. 15

The general case is exactly the same. If you want to find gcd(a, b), where a and b are positive

integers, you perform a series of long divisions:

a = b · q1 + r1

b = r1 · q2 + r2

r1 = r2 · q3 + r3

r2 = r3 · q4 + r4

...

rn−3 = rn−2 · qn−1 + rn−1

rn−2 = rn−1 · qn + rn −→ GCD

rn−1 = rn · qn+1 [exact division]

[So, basically you divide the previous dividend by the previous remainder, until we get a zero

remainder. The last non-zero remainder is the GCD. But be careful to always take the dividend of

the division not the quotient !] This process might seem long and tedious, but computers can perform

it very quickly, and it’s quite efficient.

One question that you may ask is if we indeed always get to the point where we get an exact

division. If you think about it for a second, you will see that we must, since the remainders keep

decreasing [since they are remainders, we have b > r1 > r2 > · · · ] and they are positive integers, at

one point we must get to zero.

Another question, which is a bit harder to answer, is why this procedure indeed gives us the GCD.

What is really behind this is Theorem 3.1. Let d denote the GCD of a and b. Then, of course, d | a

and d | b. If long division gives us a = bq1 + r1, clearly also d | (b · q1) [in fact, d divides any multiple

of b]. Since r1 = a − bq1, Theorem 3.1 gives us that d | r1. In the same way, if b = r1q2 + r2, we

have that r2 = b− r1q2. We have established that d divides b and r1, and by Theorem 3.1 again, we

have that d divides r2. And, in the same way, d must divide r3, r4, etc., until rn.

Now, going backwards, rn divides rn−1 [from the last [exact] division]. Hence, rn divides rn−2 =

rn−1 · qn + rn, yet again by Theorem 3.1. So, since rn divides rn−1 and rn−2, and we have rn−3 =

rn−2 · qn−1 + rn−1, we have that rn also divides rn−3. Proceeding this way, we get finally that rn

divides a and b. So, rn is a common divisor of a and b. Since d [remember d = gcd(a, b)] divides

rn [as seen in the previous paragraph], we have that rn ≥ d. But since d is the greatest common

divisor of a and b [and rn is a common divisor of a and b], we have that rn ≤ d. Therefore, the only

possibility is that d = rn, i.e., the last non-zero remainder is indeed the GCD.
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How about the LCM? How does one compute it efficiently? As with the GCD, factorization into

primes works well for small numbers, or numbers that can be factored easily. But, if not, one can

use the fact that

lcm(a, b) =
a · b

gcd(a, b)
.

The proof of this will come in Section 7, but assuming for the moment that this formula holds, we

can compute the LCM by first computing the GCD using the Euclidean Algorithm [which is fast!],

and then divide the product of the numbers by this GCD. This is also a very efficient way of doing

it.

One final note on the case of GCD and LCM of integers which might be negative: the signs do

not matter. In other words, we have that

gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b)

and

lcm(a, b) = lcm(−a, b) = lcm(a,−b) = lcm(−a,−b).

This is easy to see, as the divisors of a number and its negative are the same.

Problems.

5.1) Use the Euclidean Algorithm to compute the GCD of the following numbers:

(a) 300 and 222

(b) 1234 and 4321

5.2) Compute the LCM of 300 and 222.

6. The Extended Euclidean Algorithm

The computations performed in the Euclidean Algorithm can be used to prove the following result:

Theorem 6.1 (Bezout’s Theorem or the Extended Euclidean Algorithm). Let a and b be integers,

and d = gcd(a, b). Then, there are x, y ∈ Z such that ax + by = d.

This Theorem is sometimes called [at least in France] Bezout’s Theorem, but I haven’t seen it

referred to this way in America, so I will avoid calling it that, and refer to it simply as the Extended

Euclidean Algorithm, or EEA. [Also, there is already another theorem in algebraic geometry often

referred to as Bezout’s Theorem.]
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Let’s illustrate the theorem with some examples:

gcd(5, 7) = 1 and 5 · (−4) + 7 · 3 = 1,

gcd(6, 12) = 6 and 6 · 1 + 12 · 0 = 6,

gcd(18, 27) = 9 and 18 · (−1) + 27 · 1 = 9,

gcd(364, 53) = 1 and 364 · 15 + 53 · (−103) = 1,

gcd(270, 924) = 6 and 270 · (−65) + 924 · 19 = 6.

Before we discuss the idea of the proof, let me make one observation: this is a “if” statement

only, not an “if, and only if”, which means that even though 5 · (−8) + 7 · 6 = 2, the GCD of 5 and

7 is 1 [as seen above], not 2. So, be careful!

As mentioned before, the proof comes from the Euclidean Algorithm, and in fact gives the way

to actually compute x and y [as in the statement].

Example 6.2. Let’s use our example of the Euclidean Algorithm for 134 and 52 to illustrate the idea.

The actual proof will be omitted, but hopefully one will be able to see that the idea works in general

just from this particular example.

Remember we had:

134 = 52 · 2 + 30

52 = 30 · 1 + 22

30 = 22 · 1 + 8

22 = 8 · 2 + 6

8 = 6 · 1 + 2 −→ GCD

6 = 2 · 3

The idea is to write each remainder of the successive long divisions of the algorithm as a sum

of products of 134 and 52. So, the first long division gives us 134 = 52 · 2 + 30. We solve for 30,

obtaining:

30 = 134 + 52 · (−2). (6.3)

[Note that we never multiply out the 134’s and 52’s.] Now, we solve the second equation for the

remainder again [22 in this case], and then replace 30 by what we’ve got in the previous step [i.e.,
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equation (6.3)]:

22 = 52 − 30 · 1

= 52 − (134 + 52 · (−2))

= 134 · (−1) + 52 · 3.

So, we have:

22 = 134 · (−1) + 52 · 3. (6.4)

Now, we again solve for the next remainder [i.e. 8], and now replace 22 by what we just found [i.e.,

equation (6.4)] and 30 again by what we’ve got in equation (6.3):

8 = 30 − 22

= (134 + 52 · (−2)) − (134 · (−1) + 52 · 3)

= 134 · 2 + 52 · (−5).

So,

8 = 134 · 2 + 52 · (−5) (6.5)

Proceeding as before [using equations (6.4) and (6.5)] we get

6 = 22 − 8 · 2

= (−134 + 52 · 3) − (134 · 2 − 52 · 5) · 2

= 134 · (−5) + 52 · 13,

i.e.,

6 = 134 · (−5) + 52 · 13, (6.6)

and finally, with the next equation [using equations (6.5) and (6.6)], we get

2 = 8 − 6

= (134 · 2 + 52 · (−5)) − (134 · (−5) + 52 · 13)

= 7 · 134 + 52 · (−18),

giving us what we were looking for:

2 = 7 · 134 + 52 · (−18).

[since gcd(134, 52) = 2].

The EEA gives us many nice results. We will now show a few of its applications.

Corollary 6.7. Let a and b be integers. Then, gcd(a, b) = 1 if, and only if, there are integers x and

y such that ax + by = 1.
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We had just noted that the EEA is not an “if, and only if” statement, but the corollary above

tells us that it is when the GCD is 1 [and only then]. So, if we have, for instance,

432 · 84 + 131 · (−277) = 1,

we know that gcd(432, 131) = 1.

Proof of Corollary 6.7. If gcd(a, b) = 1, then the EEA already gives us the existence of x and y as

in the statement.

Now, suppose that there are x and y such that ax + by = 1. [We must show that gcd(a, b) = 1.]

Suppose that d is positive integer that divides a and b. Then, it clearly divides ax and by also.

Then, by Theorem 3.1, we have that d | (ax+ by) = 1. Since the only positive divisor of 1 is 1 itself,

we have that the only possibility for d is 1. Hence, the GCD of a and b is 1 [as it is the only common

divisor]. �

Here is another corollary:

Corollary 6.8. If a and b are integers and d = gcd(a, b), then gcd(a/d, b/d) = 1. [Note that a/d

and b/d are integers!]

Proof. By the EEA, there are integers x and y such that

ax + by = d.

Dividing this equation by d, we have: (a

d

)
x +

(
b

d

)
y = 1.

Hence, by Corollary 6.7, we have that gcd(a/d, b/d) = 1. �

Here is yet another consequence of the EEA:

Proposition 6.9. Let a and b be positive integers and d = gcd(a, b). If n divides a and b, then n

divides d.

Proof. By EEA, we can write ax + by = d, for some integers x and y. Then, since n divides a and

b, it divides ax and by, and hence it divides d = ax + by. �

One last observation about GCD is that we can naturally define it for any number of integers

[rather than just a pair]. For instance, gcd(a, b, c) is just the largest common divisor of all three

integers a, b, and c. Now, how do we compute this GCD? We first compute the GCD of a and b, say

d1 = gcd(a, b), and then we compute gcd(d1, c). That is the GCD of a, b, and c. So, in summary,

we have

gcd(a, b, c) = gcd(gcd(a, b), c).
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Indeed, let’s denote by d the gcd(a, b, c), by d1 the gcd(a, b), and by e the gcd(d1, c). [We want to

show that e = d.] Since d divides a, b [and c], by Proposition 6.9, we have that d | d1. Since d also

divides c, we have that d is a common divisor of d1 and c, and hence d ≤ e [as e is the greatest

common divisor of d1 and c].

Now, since e | d1 and d1 | a, by Proposition 3.3, we have that e must also divide a. In the same

way, e must also divide b. Therefore e is a common divisor of a, b, and c, and hence e ≤ d [as d is

the greatest common divisor of a and b].

Thus, since we have just seen that d ≤ e and e ≤ d, the only possibility is that e = d, i.e.,

gcd(gcd(a, b), c) = gcd(a, b, c).

This generalizes in the following way:

Proposition 6.10. Let a1, a2, . . . , an be integers. Then,

gcd(a1, a2, . . . , an) = gcd(gcd(a1, a2, . . . , an−1), an).

Finally, here is some more terminology:

Definition 6.11. If a and b are integers such that gcd(a, b) = 1, then we say that a and b are

relatively prime. More generally, if gcd(a1, a2, . . . , an) = 1, we say that a1, a2, . . . , an are relatively

prime.

Problems.

6.1) Use the EEA to find integers x and y such that:

(a) 17 · x + 22 · y = 1;

(b) 300 ·x+222 ·y = 6. [Hint: You have already computed the GCD of 300 and 222 in the

previous section. If you still have the calculations, you can use it instead of repeating

it all here.]

6.2) Compute the GCD of 81, 36 and 45.

7. Prime Numbers

Prime numbers are one of the most important concepts in mathematics, and one of the main

interests of number theory. [More on both later.] Let’s start by giving a precise definition:

Definition 7.1. A positive integer is called prime if it has exactly two positive divisors: 1 and the

number itself. [Note that 1 is not prime, since it has only one divisor. But 2 is a prime.] Also, a

positive integer that is not 1 nor prime is called composite.

A word, again, about semantics. If we had defined that a prime is a number with two positive

divisors, without quantifying with the word “exactly”, we would have that, for instance, 6 = 2 · 3
would also be prime, as it has indeed two divisors. [For instance, 2 and 3 are two divisors.] It has,
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in fact, four positive divisors in total, namely 1, 2, 3, and 6, but if it has four, in particular it also

has two. Again, we see the need of being precise, as sometimes in day-to-day conversations, the

“exactly” might be left out when we actually mean it.

Here are all primes less than 100: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,

67, 71, 73, 79, 83, 89, 97. Note that, for instance, 32 is not prime, since 16 divides 32 [as 32 = 16 ·2].

Here is another defining property of prime numbers:

Theorem 7.2. An integer p > 1 is prime if, and only if, whenever p = a · b, with a, b ∈ N, then

either a = 1 [and b = p], or b = 1 [and a = p].

So, for instance, since 43763 = 107 · 409, the theorem says that 43763 is not prime. On the other

hand, if you look at 7, and 7 = a · b, we can see that the only way a · b = 7 is if either a = 1 and

b = 7, or a = 7 and b = 1.

The actual proof is easy enough to see it here.

Proof. Suppose that p is prime and p = a · b. Then, both a and b are clearly divisors of p. Since p

is prime, then the only divisors are 1 and p. Hence, a and b can be either 1 or p.

Now, suppose that p is not prime. Then, it has a divisor not equal to 1 and p, say a. Then,

p = ab. Since a 6= 1, p, we have that b 6= 1, p. �

So, how does one check if a number is prime? How “difficult” is it? The answer depends on

whether or not you are interested in efficiency. It is quite easy to find if small numbers are prime.

[We shall see a way below.] But, even with modern computers, deciding whether or not a number

is prime can be very difficult [i.e., it can take a long, long time.] These days, the most powerful

supercomputer in the world [in Oak Ridge??] would take many years to verify that a prime number

with a few million digits is in fact prime. [If you are too naive in how you program this computer

to do it, it would take millions and millions of years!] Of course, sometimes even with millions, or

even billions of digits, it can be easy. For instance, if the last digit is even, it is not prime [as it is

divisible by 2].

The most natural way to determine if a number is prime is to test its divisors. If we find a divisor

different from 1 and the number itself, then the number is not prime. Otherwise, it is.

Example 7.3. Let’s check if 149 is prime. We check whether or not 2, 3, 4, 5, etc., divide 149. But,

when do we stop trying? Of course, if we find a divisor different from 1 and 149 we immediately

stop and conclude that 149 is not prime. What if we don’t find a divisor? Of course, we don’t need

to check that any number above 149 divides it, since a divisor is always less than the number itself.

Hence, the process is finite: you perform at most 149 divisions.

But, we can still improve it. It is not necessary to go all to way to 148! What happens if we get to

13 and we haven’t found any divisor besides 1? Then, any divisor of 149 that is not 1 has to be larger

then 13. If it is not prime, by Theorem 7.2, we have 149 = a · b, with a and b both greater than 1.

Then, since both a and b are divisor of 149, they need to be greater than or equal to 13 [since we’ve
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checked that no number smaller than 13 divides 149], we would have then, 149 = a ·b ≥ 13 ·13 = 169.

So, this would mean that 149 ≥ 169, which is absurd. So, this cannot happen, in other words, we

cannot write 149 as a product of two numbers different from 1 and 149, and thus 149 must be prime

[by Theorem 7.2 again]. [This is called a proof by contradiction: if we make an assumption that

leads to a contradiction, i.e., something that cannot be true, then this assumption must be false.]

So, in general, when deciding if n is prime, we keep trying dividing by 2, 3, 4, etc., until either

we find a divisor different from 1 and n [and the number is not prime], or until we reach the first

number d for which d2 > n. In this latter case, as with n = 149 and d = 13, we can conclude that

n is prime.

Back to the case of 149, we would have to try to see if one of 2, 3, . . . , 12 is a divisor of 149. The

criteria from the previous section gives us that 149 is not divisible by 2 nor 3. The next step is to

see of it would be divisible by 4. But do we need to really check 4? Note that if 4 | n, then 2 | n

by Proposition 3.3. So, we don’t have to try 4 [as we already know that 2 - 149], and in the same

way, neither 6, nor 8, nor 10, nor 12, i.e., no multiples of 2. In the same way, we don’t need to try

multiples of 3 either, which excludes 6, 9, and 12. This leaves 5, 7, 11. For 5 we can check easily

that 5 - 149, since the last digit is neither 5 nor 0. The other two we check by long division. We

have that 149 = 7 · 21 + 2 and 149 = 11 · 13 + 6, so 7 - 149 and 11 - 149, and we can conclude the

149 is prime.

Note that in the end, the numbers by which we had to really try to divide 149 were 2, 3, 5, 7,

and 11, all primes! In fact, Proposition 3.3 tells us that it suffices to check divisibility by other

primes only, saving us some divisions. But note that this method has one catch: if the number you

are checking is large, you might run out of known primes. For example, say you want to check if

10007 is prime. You try 2, 3, 5, 7, 11, 13, 17, and all of them fail to divide 10007. So, now you need

to check the next prime after 17. You might not know whether or not 19 is prime. [Clearly 18 is

not, since it is divisible by 2.] So, you might need to check if 19 is prime itself! Well, this is quick,

and you can see that 19 is prime [since neither 2, nor 3 divide 19]. But then, comes the next odd

number, namely 21, and you might need to check if it is prime again. Well, again, this is quick, but

if your number is really large, it might turn out to be way too much work to keep doing this. In

fact, at that point, it might be easier to just divide by the next odd number, even if you don’t know

if the number is prime, since this division might be quicker then checking primality.

So, finally, we give the general method:

General Method: To find if a positive integer n > 1 is prime, we successively try to divide by 2

and odd numbers 3, 5, 7, 9, 11, . . ., in order. If you know that an odd number is not prime, you may

skip it. If you don’t know whether or not the next odd number is prime, you can check if it seems

it would be quicker than just dividing by it. This process continues until either:

• 2 or one of those odd numbers [or primes] divide n, in which case we can stop and conclude

that n is not prime;
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• or until try to divide by an odd number [or prime] whose square is greater than n, in which

case we can stop and conclude that n is prime.

Here is one of the most basic, and yet important, properties of natural numbers, which shows the

importance of primes.

Theorem 7.4 (Fundamental Theorem of Arithmetic). Any integer n > 1 can be written as a product

n = pr1
1 · pr2

2 · · · · · prk

k ,

where p1, p2, . . . , pk are all primes with p1 < p2 < · · · < pk, and r1, r2, . . . , rk are positive integers.

Moreover, this factorization is unique, and it’s called the prime factorization of n.

Let’s illustrate this important theorem with a few examples:

n prime factorization

12 22 · 3
71 71

105 3 · 5 · 7
144 24 · 32

2513 7 · 359

327112 22 · 31 · 1319

76434751 76434751

[Note that 71 and 76434751 are prime!]

The statement about uniqueness says that we cannot factor the same number as two different

products of primes. We can change the order, like 12 = 22 ·3 = 3 ·22 = 2 ·3 ·2, but nothing else. [But,

since we asked in the statement that the primes are in increasing order, we exclude any possible

change in the order of the primes, and hence have uniqueness.]

The Fundamental Theorem of Arithmetic shows us that prime numbers are the “building blocks”

of all natural numbers. Since, natural numbers can be seen as the most basic elements of algebra,

on which almost all else is built, prime numbers are then of great importance.

If you’ve seen the science fiction movie “Contact” [from 1997, based on a novel by the astronomer

Carl Sagan, directed by R. Zemeckis, staring Jodie Foster], or read the book, aliens try to communi-

cate with other life forms by sending pulses in prime numbers. The rational behind the author’s idea

is that any civilization who has any understanding of mathematics, a prerequisite for technology,

must know of prime numbers. The important aspect here is that mathematics is universal. It is the

same anywhere! To quote Galileo Galilei:

“Mathematics is the language with which God has written the universe.”
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A hypothetical technologically capable alien civilization might have discovered a different set of

theorems than us, but the basics have to be the same, and prime numbers are at the very core of

mathematics.

Back to the technical aspects, you might be asking how does one prove the Fundamental Theorem

of Arithmetic. We will again avoid giving a formal proof, but give the general idea. First, one can

observe that if a = bc, where a, b, and c are positive integers, with b, c 6= 1, then we have that b

and c are both [strictly] less than a. [To be completely formal, we’d need to prove this statement.

But let’s just assume this to save some time.] Now, take a number n. If it is prime, then it has the

trivial prime factorization n = n. If is not, by Theorem 7.2, we have that n = ab, with a, b 6= 1.

Then, we look at a and b, and check if they are prime or not. If both are prime, then n = ab is its

prime factorization. Suppose that a is not prime. We repeat the argument for a: we can write it

as a = cd. And we repeat with c and d if necessary. Since the numbers keep decreasing [we have

c < a < n], this process must stop eventually, i.e., we must reach a prime number. We have to

continue now with the other “branches”.

Well, I admit that that was sketchy at best. So, let’s look at a specific example.

Example 7.5. Let n = 13860. It is not prime, since, for instance, 13860 = 36 · 385. We now repeat

for 36 and 385. Also, 36 is not prime, since 36 = 4 · 9, etc. Here is a picture of the process:

13860
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So, we finish a branch when we get a prime number. The above process then gives us 13860 =

2 · 2 · 3 · 3 · 5 · 7 · 11 = 22 · 32 · 5 · 7.

I should observe here that I omitted the statement about uniqueness here. The proof of uniqueness

relies on the following theorem, which also characterizes primes numbers:

Theorem 7.6. If p is a prime integer and p | (a · b), then either p | a or p | b.

We need to make another observation on semantics here. In mathematics, unlike how we often

do in our day-to-day, the term “or” is non-exclusive. So, in the theorem above, it could happen that

p divides both a and b. [So, one possibility does not exclude the other.] If we wanted to exclude the
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other, we would have to phrase it accordingly. For instance, we would say “if p is a prime integer

and p | (a · b), then either p | a and p - b, or p | b and p - a”.

Note also that the statement is clearly false if we don’t ask for the primality of p. For instance,

6 | 2 · 3, but 6 - 2 and 6 - 3. It works for primes since they are “indivisible”: if p is a part of a · b,
it must be itself either a part of a or a part of b, unlike 6, of which part goes with 2 and part goes

with 3.

Proof of Theorem 7.6. If p | a, there is nothing to be done, as the statement is immediately true.

So, assume that p - a. Hence, since p is prime [i.e., 1 and p are the only divisors of p] and p - a, we

have that gcd(a, p) = 1. By the EEA [i.e., Theorem 6.1], we have that there are x, y ∈ Z such that

ax + py = 1.

Multiplying by b we have that

(ab)x + p(yb) = b.

Now, since by assumption p | ab, we also have that p | (ab)x. Since clearly also p | p(by), we have

that p | ((ab)x + p(by)) = b.

So, if p - a [as we’ve assumed here], we must have that p | b. �

This theorem can be easily extended for a product with more terms, by repeating the same

argument.

Corollary 7.7. Let p be a prime. If p | a1 · a2 · · · an, then p | ai for some i in {1, 2, . . . , n}.

This helps us prove uniqueness in the following way: suppose that the number n has two fac-

torizations into primes, say n = pr1
1 · · · prk

k and n = qs1
1 · · · qsl

l . Then clearly p1 | n [from the first

factorization]. By Corollary 7.7, then p1 divides some qi. But since p1 and qi are primes, they must

be equal. What we can do then is divide n by p1, and repeat the argument. Eventually we get that

each pi is equal to a qj and the factorizations are the same. [Again, for sake of time and simplicity,

this is just a very rough sketch of the proof.]

The Fundamental Theorem of Arithmetic is quite useful, even though computationally speaking,

it can be quite hard to use it, i.e., it might take a very long time to factor a very large integer. [As

we shall see later, this difficulty in factorization is the heart of the RSA cryptosystem.]

So, how does one compute the prime factorization of a [small] number? Basically, you can just

keep trying to divide it by all primes, as shown in the following example.

Example 7.8. Let’s try to factor 504.

• We start with 2. We have that 2 divides 504, and we get 504 = 2 · 252. Now, we see if 2

divides 252. It does, and it gives 252 = 2 · 126. We now try to see if 2 divides 126. It, again,

does, and we get 126 = 2 · 63. Now we would see if 2 divides 63, but it does not. [So, 2

divided 504 three times, giving us the factor 23.]
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• So, we go to the next prime, namely 3. Does 3 divide 63? Yes, giving us 63 = 3 · 21. We

now try to see if 3 divides 21. It does, and we get 21 = 3 · 7. Next, we try to see if 3 divides

7, and it does not. [So, 3 divides 504 twice, and hence we have a factor of 32.]

• Next we would check 5 [the next prime]. Clearly 5 does not divide 7, and hence 504 has no

factor of 5.

• The next prime is 7 itself, and of course, 7 divides 7, as 7 = 7 · 1. Since we got to 1, we are

done, as no prime divides 1. [Then, since 7 divided only once, we get only one factor of 7 in

504.]

So, we get 504 = 23 · 32 · 7. We can do it like the picture below:

504 2

252 2

126 2

63 3

21 3

7 7

1

[So, we divide the numbers on the left by the primes on the right, putting the result below on the

left, and trying then another prime. We finish when we get to 1. Then we see we have three 2’s,

two 3’s, and one 7, giving us 504 = 23 · 32 · 7.]

Problems.

7.1) Which of the following numbers are prime:
(a) 111

(b) 259

(c) 367

(d) 541

7.2) Suppose a, b, and d are positive integers such that d | a · b, but d - a and d - b. Can d be

prime? Justify.

7.3) Give the prime factorization of the following numbers:
(a) 90

(b) 231

(c) 875

(d) 1573

8. GCD and LCM Again

We now revisit the GCD and LCM, from the point of view of prime factorization. We first observe

that if a and b are integers, we can write:

a = pr1
1 · · · prk

k and b = ps1
1 · · · psk

k ,

where the pi’s are distinct primes [and we can even assume that p1 < p2 < · · · < pk if we want to,

but it’s not necessary], and with ri, si ∈ N. So, this is similar to the prime factorizations of a and b,



A GENTLE INTRO. TO N. THEORY AND CRYPTO. 27

but not quite, since some of the ri’s or sj ’s might be zero. On the other hand, this allows us to use

the same primes for two different numbers.

Maybe this is better understood with an example.

Example 8.1. The prime factorizations of 140 and 6776 are:

140 = 22 · 5 · 7 and 6776 = 23 · 7 · 112.

The factorization using the same primes [as above] is then:

140 = 22 · 5 · 7 · 110 and 6776 = 23 · 50 · 7 · 112.

[Remember that for any number a 6= 0, we have that a0 = 1.] The advantage again is that we have

the same primes showing up in both factorizations, even if with exponent zero.

With that observation we state the following proposition:

Proposition 8.2. Let a and b be positive integers with

a = pr1
1 · · · prk

k and b = ps1
1 · · · psk

k ,

where the pi’s are distinct primes and with ri, si ∈ N [just as above]. Then, a | b if, and only if,

ri ≤ si for all i in {1, 2, · · · , k}.

Sketch of the Proof. If a | b, then, since pr1
1 | a and a | b, we have that pr1

1 | b [by Proposition 3.3].

So, p1 must divide b at least r1 times, and hence s1 ≥ r1 [so that I have “enough p1’s” in b to divide

by pr1
1 ].

The converse is easy, since we have that if si ≥ ri, we have that si − ri ≥ 0, and so

b = a · (ps1−r1
1 · · · psk−rk

k ).

[Note that it’s crucial that si − ri ≥ 0 in order to have that (ps1−r1
1 · · · psk−rk

k ) is an integer. �

This proposition gives us a new way to compute the GCD and LCM, stated in the theorem below:

Theorem 8.3. Let a and b be positive integers with

a = pr1
1 · · · prk

k and b = ps1
1 · · · psk

k ,

where the pi’s are distinct primes and with ri, si ∈ N [just as above]. Then,

gcd(a, b) = p
min(r1,s1)
1 · · · pmin(rk,sk)

k and lcm(a, b) = p
max(r1,s1)
1 · · · pmax(rk,sk)

k .

Proof. If d | a and b, we must have, by Proposition 8.2, that

d = pt1
1 · · · ptk

k ,
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with ti ≤ ri [for d | a], and ti ≤ si [for d | b] for all i’s. Hence, ti ≤ min(ri, si), and so the most

that d can be [which gives us the greatest common divisor] is attained when all ti’s are equal to

min(ri, si), giving us the first part of the theorem.

For the second part, if m is a common multiple of a and b, we have that a | m and b | m. This

tells us that [again by Proposition 8.2]

m = pt1
1 · · · ptk

k · ptk+1
k+1 · · · ptl

l .

[Note that we had to add some extra primes in here, namely pk+1, . . . , pl, that may appear in m but

not in a or b.] Then, for i in {1, . . . , k}, we must have that ti ≥ si [since a | m], and ti ≥ si [since

b | m], and thus, ti ≥ max(ri, si). Hence, the least that m can be [which gives us the least common

multiple] is attained when ti = max(ri, si) for i in {1, . . . , k}, and ti = 0 for i in {(k +1), . . . , l}. �

Example 8.4. So, with 140 and 6776 as in Example 8.1 above, we have:

gcd(140, 6776) = 2min(2,3) · 5min(1,0) · 7min(1,1) · 11min(0,2)

= 22 · 50 · 71 · 110

= 28,

and

lcm(140, 6776) = 2max(2,3) · 5max(1,0) · 7max(1,1) · 11max(0,2)

= 23 · 51 · 71 · 112

= 33880.

Theorem 8.3 gives us the following result [which has been mentioned previously]:

Proposition 8.5. If a and b are positive integers, then

gcd(a, b) · lcm(a, b) = a · b.

We can see that it works with all examples of GCD and LCM we have already computed. As an

easy one, note that gcd(5, 7) = 1, lcm(5, 7) = 35, and 1 · 35 = 5 · 7.

The idea of the proof is that if

a = pr1
1 · · · prk

k and b = ps1
1 · · · psk

k ,

where the pi’s are distinct primes and with ri, si ∈ N, then if r1 ≤ s1, then the GCD has the factor

pr1
1 while the LCM has the factor ps1

1 . If not, i.e., if r1 > s1, we have the other way around, i.e., the

LCM now has pr1
1 and the GCD has ps1

1 . But in either case, when we multiply the GCD and LCM,

we get pr1+s1
1 , the same power of p1 that we get when multiplying a and b. The same is true for all

other primes pi’s, and one can then see why the proposition holds.
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Example 8.6. Here is a numerical example [using the factorizations of 140 and 6776 shown above]:

gcd(140, 6776) · lcm(140, 6776) = (22 · 50 · 71 · 110) · (23 · 51 · 71 · 112)

= 22+3 · 50+1 · 71+1 · 110+2

= (22 · 51 · 71 · 110) · (23 · 50 · 71 · 112)

= 140 · 6776.

An immediate consequence is the following:

Corollary 8.7. If a and b are relatively prime positive integers, then lcm(a, b) = ab.

We also can prove now an analogue of Proposition 6.9 [which deals with GCD] for the LCM:

Proposition 8.8. Let a and b positive integers and m = lcm(a, b). If n is a multiple of a and b,

then n is a multiple of m.

Proof. As in the second part of the proof of Theorem 8.3 if we write

a = pr1
1 · · · prk

k and b = ps1
1 · · · psk

k ,

where the pi’s are distinct primes and with ri, si ∈ N, then, since n is multiple of a and b, it is of

the form

n = pt1
1 · · · ptk

k · ptk+1
k+1 · · · ptl

l ,

with ti ≥ max(ri, si) for i in {1, . . . , k}. Then, by Proposition 8.2, we see that m | n. �

Problems.

8.1) Compute the GCD and LCM of the following numbers by means of the prime factorization:

(a) 81 and 90

(b) 22 · 3 · 113 and 2 · 33 · 5 · 11

8.2) Check if it is true or false:

(a) (22 · 511 · 136) | (23 · 3 · 511 · 135)

(b) (2 · 5 · 11 · 17) | (2 · 3 · 5 · 7 · 11 · 13 · 17 · 19)

(c) (52 · 113) | (2 · 52 · 711 · 115)

8.3) If a and b are integers such that gcd(a, b) = 6 and lcm(a, b) = 18, then what is a · b?

8.4) If a and b are positive integers with gcd(a, b) = 12, can lcm(a, b) = 30? Justify your answer.

9. Some Problems in Number Theory

So what is number theory? As we mentioned before, classical number theory studies properties

of integers. On the other hand, modern number theory deals with many ramifications of this initial
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idea. And even in questions about integers, sometimes the tools necessary to solve the problems are

quite sophisticated, and although the statements might be accessible to a “layperson”, the proofs

are far beyond the reach of non-specialists. [A typical example is Fermat’s Last Theorem stated

below.]

Number theory has always fascinated [and eluded] mathematicians and amateurs. Today still it

has great importance and there is a great deal of research being done on its many beautiful problems.

In fact, according to Gauss:

“Mathematics is the queen of the sciences and number theory is the queen of math-

ematics.”

[Gauss is certainly one of the greatest mathematicians who ever lived. If you study math long

enough, you will hear his name many, many times. He is so important that his picture appears on

the ten [German] mark bill.] Also, Kronecker, another great German mathematician, said:

“Number theorists are like lotus-eaters – having tasted this food, they can never give

it up.”

To give you a better idea of the kind of questions of interest to number theorists, we will now

state some theorems and some conjectures [i.e., statements which are believed to be true, but no

one has found a proof yet]. Most of these theorems have very complex proofs, which are far beyond

the scope of this course, and therefore will be omitted.

Let’s start with an observation about the Pythagoras’ Theorem. In geometry we have the well-

known 3-4-5 right triangle:
�

�
�

�
�

�
�

�
�

��

4

3
5

By Pythagoras, this is a right triangle since

32 + 42 = 52.

In general we have that the equation of Pythagoras’ Theorem, namely x2+y2 = z2, have non-integral

solutions, as we often have non-exact square roots: 12 + 12 = (
√

2)2, 32 + 52 = (
√

34)2, etc. As

number theorists, we are interested in integral solutions only, i.e., we want to find x, y, and z all

integers, such that x2 + y2 = z2, as with x = 3, y = 4, and z = 5 above. So, can we find other

solutions? Are there infinitely many, or just a few? Can we find all solutions?
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Some of the answers are not too hard. For instance, observe that for any integer n that you pick,

we have (3n)2 + (4n)2 = (5n)2. It seems like cheating, but we were able to use one solution to

produce infinitely many others! But the question now is whether or not there are integral solutions

which are not like those above.

It turns out that there are. For instance x = 5, y = 12, z = 13. [Note that there is no number n

such that 5 = 3n, 12 = 4n, and 13 = 5n at the same time.] The answer to this problem is known,

and although the proof is very clever, it’s not difficult at all. But, since its proof is unrelated to the

mains goals of this text, we shall omit it.

To state the complete answer, first observe that we don’t care about solutions that contain zero(s),

since they are trivial. Moreover, because of the squares, signs can be changed still yielding solutions.

So, we really want to look for solutions in N∗.

Also, note that, just as with the 3-4-5 solution, taking multiples of any solution gives us infinitely

many others. Conversely, suppose that x2 + y2 = z2, with x, y, z ∈ N∗, and let d = gcd(x, y, z).

Then, we have that gcd(x/d, y/d, z/d) = 1 [similarly to Corollary 6.8] and (x/d)2 + (y/d)2 = (z/d)2

[by dividing the original equation by d2]. Thus, the solution (x, y, z) is just a multiple of the solution

(x/d, y/d, z/d).

This shows us that all solutions involving positive integers can be obtained as multiples of solutions

that are relatively prime.

Here is the theorem:

Theorem 9.1. If

x = st, y =
s2 − t2

2
, z =

s2 + t2

2
with 1 ≤ t < s, and both s and t relatively prime odd integers, then x2 + y2 = z2, and in this case,

x, y, and z are also relatively prime. Moreover, every solution of x2 + y2 = z2, with x, y, z ∈ N∗ is

a multiple of a solution as above.

So, for instance, x = 3, y = 4, and z = 5 is obtained by taking s = 3 and t = 1, and x = 5,

y = 12, and z = 13 is obtained by taking s = 5 and t = 1.

Now, one might ask about higher powers in the same equation. In other words, does the equation

x3 + y3 = z3

have an integral solution with x, y, z 6= 0. [It clearly has real solutions, like, x = y = 1, and z = 3
√

2.]

How about x4 + y4 = z4? And, in general, how about xn + yn = zn, for some integer n ≥ 3? If

there are integral solutions, can we find them all again?

In 1637, Pierre Fermat, a French amateur mathematician, asked that same question while reading

[Bachet’s translation of] Diophantus’s Arithmetica, an ancient Greek text from the 3rd century.

[Don’t let Fermat’s amateur status deceive you. He was a truly great mathematician.] He [seemed

to have] found that the answer was no, i.e., he stated:
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Theorem 9.2 (Fermat’s Last Theorem). For any integer n ≥ 3, the equation xn + yn = zn has no

integral solution unless at least one among x, y, and z, is zero.

He then wrote at the margin of the Arithmetica:

“I have discovered a truly remarkable proof which this margin is too small to con-

tain.”

Many among the greatest mathematicians tried to find a proof of this fact, but failed. It is now

widely believed that Fermat’s claimed proof was incorrect, although it is impossible to be sure.

Fermat’s Last Theorem therefore became a great challenge to mathematicians. Many special

cases were proved for specific values of n, but the full statement was proved only in 1995 by the

A. Wiles, a British mathematician in Princeton, 357 years after Fermat’s claim. [Wiles first claimed

it in 1993, but there was a gap in his proof. He and his student, R. Taylor, fixed the gap in 1995,

completing the proof.]

This was likely the most celebrated proof in mathematics to date. It brought the attention of

the whole media [which is usually not very interested in developments in mathematics], receiving

worldwide newspaper coverage, generating various popularizations in books, and even a BBC Horizon

program, which aired in the United States as a PBS NOVA special entitled “The Proof”.

Also in 1995, “The Simpsons” aired “Treehouse of Horror VI”, a special Halloween episode,

containing a segment called “Homer 3D” [in which Homer goes to the third dimension]. This

segment, made with computer graphics, is a spoof on science fiction movies, and floating in the “third

dimension” are formulas, like the famous Einstein’s formula “E = m · c2”, or Euler’s “e2πi = −1”,

among many others. One of then, is the following:

78212 + 184112 = 192212,

[check http://www.youtube.com/watch?v=3uQwjgZ0kQM] which would be an integral solution to

x12 + y12 = z12, contradicting Fermat’s Last Theorem. Of course, this formula is not really correct.

We have that the left-hand-side is

1515864720504975480951965871121900910657,

while the right-hand-side is

2541210259314801410819278649643651567616.

On the other hand, I’ve read that if you try this in an old [or cheap] calculator with low precision,

since these number are so large, the results will appear to be the same. [I haven’t tried it, though.]

In any event, this seems to have been just a “tribute” to this much celebrated problem.

The proof of Fermat’s Last Theorem took not only many years, but also the effort of many great

mathematicians, who paved the way for Wiles’s final and crucial step. The proof is quite deep and

complex, involving, despite the simplicity of the theorem’s statement, quite advanced mathematics.

http://www.youtube.com/watch?v=3uQwjgZ0kQM
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In fact, the truth of the matter is that more important than whether or not there is a solution for

the equation xn + yn = zn, is that all the mathematics generated to solve this problem could be

used to solve many other problems.

Another interesting theorem in number theory is the following, due to Lagrange:

Theorem 9.3 (Lagrange). Every positive integer is a sum of four squares, but not every integer is

a sum of three squares.

It is easy to see that not all integers are a sum of three squares. For instance, 7 is not. Indeed, if

7 = x2
1 + x2

2 + x2
3, with x1, x2, x3 ∈ N, then clearly xi ≤ 2. So, we can try all possibilities, and check

that no such sum exist. [But note that 7 = 22 + 12 + 12 + 12.]

The real problem is to show that all integers are indeed sum of four squares. Here is some random

examples:

31 = 52 + 22 + 12 + 12

54 = 72 + 22 + 12 + 02

101 = 102 + 12 + 02 + 02

1012 = 312 + 72 + 12 + 12

3647 = 592 + 112 + 62 + 32

223729 = 4732 + 02 + 02 + 02

765743 = 8752 + 102 + 32 + 32

19293842 = 43922 + 642 + 92 + 12

[Note that we allow zeros!] Observe also that the representation is not necessarily unique. For

instance, 4 = 22 + 02 + 02 + 02 = 12 + 12 + 12 + 12.

The proof is quite ingenious, and not too complex, but beyond the scope of this course.

Another “hot topic” in number theory is, of course, prime numbers, as they are the building

blocks of integers. As we shall see, prime numbers are more elusive than they might appear. Even

determining if a large number is prime, with all of the computer power we have today, can be quite

difficult. There are, though, much more efficient ways than the naive one described previously in

Section 7, which involve some very clever ideas. Also, some probabilistic methods, which can tell

within a small margin of error if a number is prime, are even faster, but still, primality testing is a

quite difficult problem, and people keep working on it to find better algorithms.

Also, it’s worth mentioning that there is no efficient enough way to generate primes known today,

which is also something that many have sought.

So, let’s start with something easy:
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Theorem 9.4. There are infinitely many primes.

Proof. Suppose that p1, p2, . . . , pn are all prime numbers, and let n = p1 · p2 · · · pn + 1 By the

Fundamental Theorem of Arithmetic, we have that n is divisible by some prime, i.e., some pi. But

pi | p1 · · · pn, while pi - 1. Thus, by Theorem 3.1, we have that pi cannot divided n. So, this cannot

happen, i.e., there has to be infinitely many primes. �

The proof above appears already in Euclid’s Elements. Another proof, more complicated, but

groundbreaking and pregnant with new possibilities, was given by Euler in 1737. It was one of the

first examples of the use of calculus tools in an arithmetic question. [Today we call this area of

number theory studied with “calculus” analytic number theory.] In fact, this proof led Riemann to

make a conjecture in 1859, which is still unproven and known today as Riemann Hypothesis. Even

the statement of this conjecture is too complex for this text, but it suffices to say that it tells us,

among other things, something about how primes are distributed among the integers. To give you an

idea of the importance of this problem, the Clay Mathematics Institute offered a prize of one million

dollars to whoever solves it first. [The Riemann Hypothesis is one of the seven Millennium Prize

Problems, which are believed to be among the most important problems for this new millennium.

Only one of them apparently has been solved. This problem is called the “Poincaré Conjecture” and

a possible proof was given by the Russian mathematician G. Perelman. Although it seems to be a

valid proof, it is still, by the time of this writing being investigated. Each one of these seven problems

carry a million dollar prize. Number theory has a second problem among those, called the Birch and

Swinnerton-Dyer Conjecture, whose statement is also beyond the scope of this introductory text.

For more details on all these problems, visit http://www.claymath.org/millennium/. They have

videos of talks given at The University of Texas at Austin that discuss each one of these problems.

[And you can even spot yours truly in the audience.]]

The Riemann Hypothesis is also mentioned in the 2001 movie “A Beautiful Mind”, based on the

biography of the mathematician [gone schizophrenic] John Nash, written by S. Nasar. The movie

was directed by Ron Howard, and starred Russel Crowe, as Nash, and Jennifer Connelly. [Spoiler

alert: Nash could not prove it.]

So, this Riemann Hypothesis tells us something about how primes numbers are distributed. Let’s

see what else is known about this. First we can look at the density of primes, i.e., give an integer

n, we look at the proportion of primes among all integers between 1 and n. The usual notation is:

π(x) = number of primes less than or equal to x.

So, we want to look at the proportion π(n)/n. Here is a table:

x 10 25 50 100 500 1000 10000 100000

π(x) 4 9 15 25 95 168 1229 9592

π(x)/x 0.400 0.360 0.300 0.250 0.190 0.168 0.123 0.096

http://www.claymath.org/millennium/
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As you can see, the primes become less and less frequent as we consider longer stretches: among

the first ten positive integers, 40% of them are prime, and if we consider the first ten thousand

positive integers, only 9.6% of them are prime. In fact, one can be much more precise:

Theorem 9.5 (Prime Number Theorem). For large values of x, the number of primes less than or

equal to x is approximately x/ ln(x).

If you are not too familiar with natural logs [even though you should be!], don’t worry too much

about it now. The point is that we have a precise way to see how this density of primes behaves for

very large x.

Both Gauss and Legendre independently conjectured this statement [great minds think alike]

around 1800, but the proof only came in 1896, when Hadamard and Poussin also independently

found proofs [ditto]. This proof, again, involves calculus.

So, primes become more rare if we restrict ourselves to larger numbers. In fact we have the

following easy proposition:

Proposition 9.6. Given any positive integer N [which can be as large as you want], there are N

consecutive integers, say {k, k + 1, k + 2, . . . , k + (N − 1)}, with no primes among them.

Proof. Let p1, p2, . . . , pr be all primes that are less than or equal to N + 1 [for whatever N was

chosen], and take k = p1 · p2 · · · pr + 2. Let’s look at k + i, for some i in {0, 1, 2, . . . , (N − 1)}. We

have that i + 2 is in {2, 3, 4, . . . , (N + 1)}, and so, whatever i is, we have that i + 2 is divisible by

one of the primes pj , for some j in {1, 2, . . . , r}. Now,

k + i = p1 · · · pr + (i + 2).

Since pj also clearly divides p1 · · · pr, Theorem 3.1 tells us that pj | (k + i). Since clearly 1 < pj <

(k + i), we have that k + i cannot be prime. �

So, we have gaps as large as you might want, with no primes in it. Notice, though, that to get a

large gap following the proof of the proposition above, we have to go really far down the real line.

For instance, to get ten consecutive composite numbers [i.e., non-primes], we have to start at 212,

to get fifty consecutive composite numbers, we need to start at 614889782588491412. The number

at which we would have to start to get a thousand consecutive integers that are composite has 416

digits!

So, it seems that if we go far enough, some primes become very far apart. On the other hand,

one might try to find if we also get primes that are very close together. Note that the only pair of

primes that are consecutive are 2 and 3, as if p and p + 1 are both primes, one of then must even,

and the only even prime is 2. Hence, if p is not 2, the closest that the next prime can be is p + 2.

If indeed p and p + 2 are prime, we call them twin primes. Early on, we have many twin primes: 3

and 5, 5 and 7, 11 and 13, 17 and 19, etc. [So, there are four pairs of twin primes between 2 and

20.] But, as we go farther, they seem to get more rare. For instance, between 20 to 100, there are
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also only four pairs of twin primes: 29 and 31, 41 and 43, 59 and 61, and 71, 73. Between 1 and 100

there are 35 pairs of twin primes, while between 1000 and 2000 there are only 26. So, it seems that

they become rarer, but we still always seem to find a pair of twin primes, not matter how far down

the real line we go. This is in fact a known conjecture:

Conjecture 9.7 (Twin Primes Conjecture). There are infinitely many primes p such that p + 2 is

also prime.

Note that this means that given any positive integer N [which can be as large as you want], there

exists a prime p > N such that p + 2 is also prime. [Hence, p and p + 2 are twin primes larger than

N .]

This conjecture, likely due to its simple statement [and evasive proof], is mentioned in the 1996

movie “The Mirror Has Two Faces”, directed and starred by Barbra Streisand [sic!], and also starring

Jeff Bridges, who plays a math professor from Columbia University. [He actually mentions it on

their first date! I don’t recommend talking about math on a first date unless you are dating a

mathematician.]

As mentioned before, the term “conjecture” is only used when the statement is believed to be true.

[Otherwise, one should call it an “open question”, or “open problem”.] So, as you can imagined,

this conjecture has been widely tested with the use of the most powerful computers. For instance,

we know that the humongous numbers

242206083 · 238880 − 1 and 242206083 · 238880 + 1

are twin primes. [Just a quick detour. You might not realize how large these numbers actually are,

as powers can be deceiving. But, just to give you an idea, if you pile 263 quarters, the tower will go

far beyond the bounds of the solar system, the top being over one light-year away from the bottom.

[That’s over 5.8 million [times one] million miles!] These number are much larger. They have 1177

digits, while 263 has only 19 digits!]

So, it seems [if the conjecture is indeed true] that we have primes that are very far apart and, at

the same time, primes that are very close together when we deal with very large numbers.

Here is yet another conjecture concerning prime numbers:

Conjecture 9.8 (Goldbach Conjecture). Every even number greater than two is a sum of two

primes.
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The question was posed by Goldbach to Euler in 1742, and there is still no proof, although there

is plenty of evidence. Here are the first few numbers:

4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7,

12 = 5 + 7, 14 = 7 + 7 16 = 5 + 11, 18 = 5 + 13,

20 = 3 + 17, 22 = 11 + 11, 24 = 5 + 19, 26 = 13 + 13

28 = 5 + 23, 30 = 7 + 23, 32 = 3 + 29, 34 = 5 + 29.

It also works for very large numbers:

1000000 = 17 + 999983,

758436384732 = 23 + 758436384709,

217837643716218 = 67 + 217837643716151,

329873854787429387236 = 3 + 329873854787429387233.

We end this section with a final result on prime numbers:

Theorem 9.9 (Dirichlet’s Theorem of Primes in Arithmetic Progressions). If a and m are relatively

prime positive integers, then there are infinitely many primes in the set

{a, a + m,a + 2m,a + 3m,a + 4m, . . .}.

[A note on terminology: an arithmetic progression is a sequence

a, a + m,a + 2m,a + 3m, . . . ,

i.e., a sequence that changes by always adding a same amount.]

First observe that the hypothesis that a and m are relatively prime is crucial. If not, say that

d is a common divisor greater than one, then, by Theorem 3.1, we have that d | (a + k · m) for all

integers k, and hence there can be only one prime in the progression, namely a itself [and in that

case we must have a = d, i.e., a a prime divisor of m].

Here are a few examples. The sequence

2, 35, 68, 101, 134 . . .

is an arithmetic progression, namely, we have

2, 2 + 33, 2 + 2 · 33, 2 + 3 · 33 + 24 · 33, . . . .

So, with notation of the theorem, we have that a = 2 and m = 33. Since gcd(2, 33) = 1, by the

theorem, we have infinitely many primes in the sequence.
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On the other hand, if we consider the sequence,

7, 28, 49, 70, 91, 112, . . .

we have an arithmetic progression with [using again the notation from the theorem] a = 7 and

m = 21. Now, we have gcd(7, 21) = 7. So, the theorem does not say anything, but as we’ve observed

above, this means that all terms in this sequence are divisible by this GCD. So, there is only one

prime in this sequence, namely 7.

Finally, the sequence

6, 21, 36, 51, 66, 81, . . .

has [using again the notation from the theorem] a = 6 and m = 15. Now, we have gcd(6, 15) = 3,

and hence all terms in the sequence are divisible by 3. Since 3 itself is not in the sequence, there is

no prime in the sequence.

I hope this section gave you a little taste of number theory. [Although I must say that it is a bit

of an artificial flavor, as the real flavor is in the proofs!]

Problems.

9.1) How many solutions with x, y, z ∈ N∗ does x2 + y2 = z2 have? How about x5 + y5 = z5?

9.2) Can every positive integer be written as a sum of three squares? How about four squares?

How about five?

9.3) Write the following numbers as the sum of four squares:
(a) 81

(b) 12

(c) 53

(d) 105

9.4) Is there a prime larger than one million?

9.5) State the Twin Primes Conjecture.

9.6) Write the following even numbers are as sum of two primes:

(a) 36

(b) 50

9.7) How many primes do we have in the following arithmetic progressions:

(a) 4, 10, 16, 22, 28, 34, . . .

(b) 22, 25, 28, 31, 34, 37, . . .

(c) 3, 18, 33, 48, 63, 78, . . .
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10. So, What’s Number Theory Good For?

You might be wondering at this point, why should you care whether or not a positive integer can

be written as the sum of four squares? Let me answer it with another question: why should you care

if someone can run one hundred meters in less than ten seconds? Or why should you care if someone

can throw a ball through a hoop from three meters away? The point is, like sports, mathematics is

humanity pushing its limits, but its intellectual, rather than physical limits.

Well, someone might complain that sports might be pointless [why should any one try to throw a

ball through a hoop?], but they are fun to watch. Well, math is a lot of fun to watch! But, as with

sports, where you have to understand the rules to fully enjoy it, the same is true for mathematics.

The difference is that the rules are much more complicated. But, you can take my word that if you

do understand them, it can be a lot of fun to read a nice proof. [Like, for instance, Lagrange’s proof

that every positive integers is the sum of four squares.] When you see someone come up with a really

brilliant idea, it is like seeing your team hit a home run! In the same way it can be exhilarating

to watch some one run one hundred meters in less than ten seconds, which would seem impossible

[have you ever tried it?!], it is just as breathtaking to see that someone could solve a problem that

appeared to be too difficult to ever be solved! [And imagine how much more thrilling it would be if

that someone is you!]

And if you don’t like sports, think that math is like art. It might not have any concrete usefulness,

but it has beauty. When you read a well written poem or a look at a well painted canvas, it touches

you. Math also has beauty. It is hard to explain, just as it is hard to explain why or how a poem

or painting can touch you, but believe me, it does, and it can send shivers down your spine.

Now, you might ask what is so special about mathematics? Aren’t all sciences like that too?

Well, certainly other sciences have beauty and challenge your intellect. But the difference is that

they all depend on “external factors”. They depend on measurements, labs, quality of materials and

equipment, etc. Mathematics does not depend on anything but itself. It is all in the realm of ideas

[it is all in your head, but in a good way], and does not have any need to relate to the real world!

[Although it certainly can.] So, to keep the analogy with sports, you might think of other sciences

as car races: you need skills, but you also need a good car.

In fact, mathematics is closer to philosophy than it is to any [experimental] science. Some might

even say that mathematics is a branch of philosophy [gone wild]. The famous Greek philosopher

Plato hung over the entry to his school the words “Let no one unversed in geometry enter”. [At

Plato’s time, geometry was the most regarded form of mathematics.]

Of course, math in general, has many applications. In fact, it’s everywhere, and all other sciences

use and depend on it. The point I am trying to make is that there is more to math than its

applications. As teachers we are often pressured to emphasize these applications, but I think it

would be a disservice to the students if we would not help them realize that math is so much more

than its applications, and that there is nothing wrong with pure and abstract mathematics, even if
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you are pragmatic. Studying math, even abstract math, is the best way to improve your problem

solving skills. And don’t think that if you work on math you will only be good at math. This is the

same as saying that if you lift [gym] weights you are only going to be able to lift [gym] weights! In

fact, in my own experience [and of some to whom I’ve spoken], when you become more proficient in

math, you change the way you think about everything. You analyze matters in a more methodical

way, you become more precise in your thinking, and you start to question more. To give you an idea,

some countries under dictatorship have diminished the roll of mathematics in schools to prevent the

development of critical thinking. [All the propaganda in the world is not enough if the citizens are

capable of critical thinking!]

So, mathematics has many applications, but does number theory in particular have applications?

Let me start with an evasive answer. The truth is that we never know when something might someday

become applicable. For instance, Einstein’s Theory of Relativity heavily relies on Riemann’s theory

of curved spaces. Until Einstein realized the need for this new kind of geometry in physics, this

theory of curved spaces was considered totally abstract! In fact, Einstein was extremely fortunate

to have found the math that he needed for this own theory already done for him, mostly in the

[until then purely abstract] works of Riemann. [The physicists working in string theory [the new

“hot topic” in physics] were not as lucky, and much of the mathematics that they need still have to

be developed.]

But, back to applications of number theory, here is a quote from the British number theorist

G. H. Hardy:

“The Theory of Numbers has always been regarded as one of the most obviously

useless branches of Pure Mathematics.”

But, he goes on to explain the term “useless”:

“A science is said to be useful if its development tends to accentuate the existing

inequalities in the distribution of wealth, or more directly promotes the destruction

of human life. [...] I have never done anything ‘useful’. No discovery of mine has

made, or is likely to make, directly or indirectly, for good or ill, the least difference

to the amenity of the world...”

So, Hardy was proud of the fact that number theory was not applicable, as it seems that all that

mankind can use for good, it also can use for harm. But, alas, he was wrong. [As observed above,

what might seem “useless” today, might become “useful” tomorrow.] Number theory has applications

today, most notably cryptography and coding theory.

We should clarify what those terms mean. Cryptography is the practice and study of hiding

information, i.e., codifying a message to preserve its content from unwanted eyes. These are widely

used today on the Internet: when you send your credit card number, you don’t want anyone besides
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the merchant to be able to read it. So, cryptography is used to encode it, and [supposedly] only the

merchant can decode it.

We will deal with a particular cryptosystem [i.e., a particular way to encode and decode messages

in the context of cryptography] in Section 13.

But be careful that in math the term coding theory should be distinguished from cryptography.

Coding theory studies ways to preserve messages [likely sent through less than ideal channels] from

interference not due to malicious attacks, but due to noise. Maybe it would be clearer with an

example: a mission in space has to communicate with earth. The message sent is subject to interfer-

ence due to radiation and electromagnetic waves in space, which may corrupt parts of the message.

Coding theory tries to encode this message in such a way that when earth receives the corrupted

message, it is still able to read it clearly. Coding theory is widely used in communications [such as

cell phones] and digital data storage [like CDs].

We will not discuss coding theory here, but if you are wondering how can one correctly read a

corrupted message, here is an idea: send the message three times. Unless you are very unlucky,

different pieces of each copy will be corrupted by interference. When reading, you look at the three

messages, which should be equal. If there is one message which is not equal to the other two, this

one is corrupted, but the other two allow you to know which was the correct message.

Note that only two copies would not have been enough: in that case if you see two different

messages, you don’t know which one is the correct. So, this method works, but requires three times

more information to be sent! The main idea of coding theory is to be able to detect and correct

errors while minimizing the amount of extra data that has to be sent.

11. Integers Modulo n

In this section we introduce a new set of numbers. We can perform operations like addition and

multiplication in a similar manner as we do with our familiar real numbers or integers.

Definition 11.1. Given a positive integer n we define the set of integers modulo n, which we shall

denote by Z/nZ, to be the set with n elements

{0, 1, 2, . . . , n − 1}.

[The bars over the numbers are introduce to make a distinction between the usual integer, say 2 ∈ Z,

and the elements in Z/nZ, such as 2 ∈ Z/nZ.]

We refer to k̄ as the class of k in Z/nZ. Also, we call n [from Z/nZ] the modulus.

We can perform sum, products, and differences in this set in following manner: perform the

operation as if the elements were integers [i.e., forget about the “bar” for a second], and compute

the remainder of the resulting integer when divided by n [i.e., the modulus]. The result of the

operation is then the class of this remainder in Z/nZ. [In fact, one can think of Z/nZ as the set

of possible remainders from a division by n. Even the notation, Z/nZ was designed to indicate the

“divided by n”.]
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The set Z/nZ can be quite helpful in answering questions about divisibility and remainders when

dividing by n, and hence the term “modulo n” in its name. We will not deal with this aspect here,

though, as our actual goal is to use Z/nZ in cryptography.

The definition of Z/nZ is better understood with an example.

Example 11.2. Let’s take n = 5. Then,

Z/5Z = {0, 1, 2, 3, 4}.

Then, what is 2 · 4? We compute the operation as if with usual integers: 2 · 4 = 8. Then, we take

the result [i.e., 8 in this case] and compute the remainder of its division by 5 [as we are in Z/5Z]:

8 = 1 · 5 + 3. Since the remainder is 3, we have 2 · 4 = 3.

Here are other computations in Z/5Z [verify them yourself!]:

2 + 3 = 0

2 − 3 = 4

2 · 3 = 1

Note that we have to be very careful here about where the operations are occurring, as for instance

2 · 4 = 3 in Z/5Z [as seen above], but 2 · 4 = 1 in Z/7Z [as now we divide by 7 instead of 5]. This

is one of the shortcomings of this “bar notation”, as it does not indicate to which set exactly the

elements belong. But this is standard notation, and notation could become a bit too heavy if we

were to specify the modulus with it. We just have to be careful to clarify in which set we are working.

There is another way see this set with its operations: we can say that a = b in Z/nZ if the

remainders of a and b when divided by the modulus n are equal. [Remember, the set Z/nZ deals

with remainders when dividing by n, and hence it makes sense that numbers with same remainder

are to be considered equal in this set.] So, in Z/5Z we would have:

· · · = −15 = −10 = −5 = 0 = 5 = 10 = 15 = · · ·

· · · = −14 = −9 = −4 = 1 = 6 = 11 = 16 = · · ·

· · · = −13 = −8 = −3 = 2 = 7 = 12 = 17 = · · ·

· · · = −12 = −7 = −2 = 3 = 8 = 13 = 18 = · · ·

· · · = −11 = −6 = −1 = 4 = 9 = 14 = 19 = · · ·

So, we are not introducing new elements to Z/5Z [it still has only 5 elements], we are only introducing

new ways to write the same elements. [This is similar to what happens in Q, where 1/2 and 2/4 are

two representations of the same number.]
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In the same way, for a general modulus n, we would have:

· · · = −3n = −2n = −n = 0 = n = 2n = 3n = · · ·

· · · = −3n + 1 = −2n + 1 = −n + 1 = 1 = n + 1 = 2n + 1 = 3n + 1 = · · ·

· · · = −3n + 2 = −2n + 2 = −n + 2 = 2 = n + 2 = 2n + 2 = 3n + 2 = · · ·

...

· · · = −3n + k = −2n + k = −n + k = k = n + k = 2n + k = 3n + k = · · ·

...

· · · = −2n − 1 = −n − 1 = −1 = n − 1 = 2n − 1 = 3n − 1 = 4n − 1 = · · ·

The benefit of this new representation of the elements of Z/nZ is that we can then perform these

operations by simply observing that if 0 ≤ a, b ≤ (n − 1), then:

a + b = a + b

a − b = a − b

a · b = a · b

For example, we can write in Z/5Z that 2 · 4 = 8, and this is the same result we obtained before, as

8 = 3.

The only thing is that we want to represent the results with smaller numbers. For instance, in

Z/6Z we have 4 · 5 is then 4 · 5 = 20. But we don’t want to deal with 20, as 20 = 2 in Z/6Z [as the

remainder of 20 when divided by 6 is 2]. So, we want to say that the result is 2, and not 20 [even

though they are equal]. In the end we are doing the same as above, as we have to take the result

and compute its remainder when divided by the modulus.

It should be clear now that this gives the same operation as we initially defined. There is only

one catch: initially we only had n elements, namely 0, 1, . . . , n − 1. But now we can put bars over

all integers. We had before 2 · 4 = 2 · 4 = 8 = 3 in Z/5Z [as seen above]. But we have, for instance,

2 = 7 and 4 = −1. So, one can ask if we can use those when performing the computations, i.e., can

we write [in Z/5Z] 2 · 4 = 7 · −1 = −7? In this case it does seem to work, as −7 = 3 in Z/5Z. In

fact, this works in general:

Proposition 11.3. In Z/nZ, we always have

a + b = a + b

a − b = a − b

a · b = a · b,

even if a or b are not in {0, 1, 2, . . . , (n − 1)}.
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Before we prove this proposition, we need the following lemma, which gives a new way to see if

a = b.

Lemma 11.4. We have a = b in Z/nZ if, and only if, n divides a − b.

Proof. With the division algorithm, write a = q1n+r1 and b = q2n+r2, where r1, r2 ∈ {0, 1, . . . , (n−
1)}. Suppose also that r1 ≥ r2. If not, we can switch the places of a and b. Then, (a − b) =

(q1n + r1) + (q2n + r2) = (q1 − q2)n + (r1 − r2). Since r1 ≥ r2 [and hence r1 − r2 ≥ 0], and

r1, r2 ∈ {0, 1, . . . , (n − 1)}, we have that r1 − r2 ∈ {0, 1, . . . , (n − 1)}. Hence, by the uniqueness in

the division algorithm [as in Example 2.3], the remainder of the division of a − b by n is (r1 − r2).

Hence, n divides a − b if, and only if r1 − r2 = 0, i.e., r1 = r2. By definition, r1 = r2 is the same as

to say a = b. �

Proof of Proposition 11.3. Remember that to perform the operation as we defined, we need to find

numbers a′, b′ ∈ {0, 1, . . . , (n− 1)} such that a = a′ and b = b′ [as we have only defined how to add,

subtract, and multiply with {0, 1, . . . , n − 1}]. To do that we just compute a and b modulo n, i.e.,

find the remainders of a and b when divided by n. Thus, we have

a = q1n + a′, b = q2n + b′, a′, b′ ∈ {0, 1, . . . , (n − 1)}.

Then, by definition,

a + b = a′ + b′

a − b = a′ − b′

a · b = a′ · b′.

We then need to show that a + b = a′ + b′, a − b = a′ − b′, and a · b = a′ · b′. To do this, we use the

lemma above:

(a + b) − (a′ + b′) = (q1n + a′ + q2n + b′) − (a′ + b′)

= (q1 − q2)n.

Hence, n divides (a+ b)− (a′ + b′), and therefore the lemma tells us that a + b = a′ + b′. The case of

differences follows from the same steps, and so we leave it as a [very simple] exercise for the reader.

Now, for products:

(a · b) − (a′ · b′) = (q1n + a′) · (q2n + b′) − (a′ · b′)

= q1q2n
2 + b′q1n + a′q2n + a′ · b′ − a′ · b′

= (q1q2n + b′q1 + a′q2)n.

Hence, n divides (a · b) − (a′ · b′), and therefore the lemma tells us that a · b = a′ · b′. �

Problems.
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11.1) Mark true or false:

(a) 3 = −11 in Z/7Z.

(b) 3 = −11 in Z/8Z.

(c) 21821 = 9303 in Z/3Z.

(d) 43847833 = 8437898 in Z/5Z.

11.2) Compute:

(a) 7 + 8 in Z/9Z.

(b) 7 · 8 in Z/11Z.

(c) 24 · 13 in Z/5Z.

(d) 369303 · 172647183 in Z/3Z.

(e) (2 + 5) · 7 2 in Z/8Z.

(f) (31 − 44) · (33 + −13) in Z/7Z.

12. Exponents and Divisions in Z/nZ

Definition 12.1. We define exponentiation of elements of Z/nZ by nonnegative integers in the

usual way: given a ∈ Z/nZ and r a nonnegative integer we define:

a 0 = 1,

a 1 = a,

ar = a · a · · · a︸ ︷︷ ︸
r factors

[if r > 1].

The problem of division is a bit harder, as in general we cannot divide two integers [if we also

want to get an integer as a result]. The same is true for Z/nZ. But the idea of division is the same:

b divides a in Z/nZ if there is k in Z/nZ such that a = bk. So, 2 divides 3 in Z/5Z [as weird as this

might sound], since 3 = 2 · 4 [as seen in Example 11.2]. On the other hand, 2 does not divide 3 in

Z/6Z, as

2 · 0 = 0

2 · 1 = 2

2 · 2 = 4

2 · 3 = 6 = 0

2 · 4 = 8 = 2

2 · 5 = 10 = 4

So, there is no k ∈ Z/6Z such that 2 · k = 3.

So, one might ask now when does k divide 1 in Z/nZ.

Definition 12.2. A divisor of 1 in Z/nZ is called a unit of Z/nZ. We denote the set of units in

Z/nZ by (Z/nZ)×.

The following proposition tells us exactly what are the units of Z/nZ.
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Proposition 12.3. An element k ∈ Z/nZ is a unit if, and only if, gcd(k, n) = 1. In other words,

(Z/nZ)× = {k : gcd(k, n) = 1}.

Proof. Saying that k is a unit is the same [by definition] as saying that k a divisor of 1 in Z/nZ. On

the other hand, that is equivalent to saying that there is x in Z/nZ such that 1 = k · x. This says

that k · x = xk = 1. By Lemma 11.4, this is the same as to say that n divides 1 − xk, i.e., there

is an integer y such that 1 − xk = yn, or 1 = xy + yn. By Corollary 6.7, this last condition is the

same as to say that gcd(k, n) = 1. �

Note that if k divides 1, then it divides a for all a ∈ Z/nZ: if 1 = x · k, then a · 1 = a · x · k, and

hence a = a · 1 = a · x · k.

Also, if x ·k = 1 [in Z/nZ], we can write x = k
−1

, and thus define negative exponents to elements

of (Z/nZ)×: with k and x as above [which implies that k ∈ (Z/nZ)×], and if r is a nonnegative

integer, we define k
−r

= xr. [We will not need negative exponents here, though.]

Definition 12.4. Given a positive integer n, define the Euler phi function of n, denoted by ϕ(n),

as the number of elements in (Z/nZ)×. [“Phi” is the name of the Greek letter ϕ.]

Example 12.5. Let’s find (Z/5Z)× and ϕ(5). To find (Z/5Z)×, we just have to find all elements in

{0, 1, 2, 3, 4} which are relatively prime to 5. Since 5 is prime, this is an easy task, and we can easily

see that (Z/5Z)× = {1, 2, 3, 4}, and hence ϕ(5) = 4.

In fact, we have in general that for all primes p that (Z/pZ)× = {1, 2, · · · , p − 1}, as the the

only [positive] divisors of p are 1 and p [since p is prime], no positive number less that p can have a

common divisor with p greater than 1. Hence, we also have ϕ(p) = p − 1.

Example 12.6. Let’s find (Z/12Z)× and ϕ(12). Again, to find (Z/12Z)×, we just have to find all

elements in {0, 1, 2, . . . , 11} which are relatively prime to 12. Here we just check:

gcd(0, 12) = 12, gcd(1, 12) = 1, gcd(2, 12) = 2,

gcd(3, 12) = 3, gcd(4, 12) = 4, gcd(5, 12) = 1,

gcd(6, 12) = 6, gcd(7, 12) = 1, gcd(8, 12) = 4,

gcd(9, 12) = 3, gcd(10, 12) = 2, gcd(11, 12) = 1.

Hence, (Z/12Z)× = {1, 5, 7, 11}, and ϕ(12) = 4.

We now state a couple of simple results about (Z/nZ)×.

Proposition 12.7. Let n be a positive integer.

(1) If a, b ∈ (Z/nZ)×, then a · b ∈ (Z/nZ)×. [I.e., the product of two units of Z/nZ is also a

unit.]

(2) Let k ∈ (Z/nZ)× and a, b ∈ Z/nZ. We then have that k · a = k · b if, and only if, a = b.

[I.e., we can “cancel units”.]
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Before proving the proposition, we should make a quick remark about its second item: it is not

necessary true that k · a = k · b implies that a = b [i.e., we can cancel k] when k is not a unit! For

example, in Z/4Z, we have that 2 · 2 = 4 = 0, and also 2 · 0 = 0. So, we have 2 · 2 = 2 · 0, but 2 6= 0

[as 4 does not divide 2 = 2− 0], i.e., we cannot cancel the 2 [in Z/4Z]. [Observe that 2 is not a unit

of Z/4Z, as gcd(2, 4) = 2 6= 1.]

Proof of Proposition 12.7. Suppose that a, b ∈ (Z/nZ)×. Then, by definition, both are divisors of 1.

So, there are x, y ∈ Z/nZ such that x·a = xa = 1 and y ·b = yb = 1. Then, xy ·ab = xa·yb = 1·1 = 1.

Then, ab ∈ (Z/nZ)×. Since, a · b = ab, we have that a · b ∈ (Z/nZ)×, proving item 1.

Now suppose that k ∈ (Z/nZ)× and a, b ∈ Z/nZ. Since k is a unit, there is x ∈ (Z/nZ)× such

that xa = 1. If k · a = k · b, then x · k · a = x · k · b, and so 1 · a = 1 · b, and thus a = b.

Note that the converse, i.e., if a = b, then k · a = k · b is true even if k is not a unit. [In fact, we

just used that above, when we multiplied an equation by x.] �

Here is a beautiful theorem due to Euler which allows us to compute powers of elements in

(Z/nZ)× more efficiently.

Theorem 12.8 (Euler). If k ∈ (Z/nZ)×, then k
ϕ(n)

= 1.

Proof. [This is likely the most ingenious proof on these notes!] Let’s write, to make the notation

simpler, m = ϕ(n). Then, (Z/nZ)× has m elements [by definition of ϕ], and we can label them as:

(Z/nZ)× = {a1, a2, . . . , am}.

Multiplying all these elements by k, we have:

k · (Z/nZ)× = {k · a1, k · a2, . . . , k · am}.

What can we say about this set k · (Z/nZ)×? First, by Proposition 12.7(1), we have that all k · ai

are units. Second, by Proposition 12.7(2), if ai 6= aj , then k · ai 6= k · aj [for if k · ai = k · aj , we

could cancel k obtaining ai = aj ].

Hence, all elements k · ai’s are distinct, which means that k · (Z/nZ)× has m elements [which

is the number of elements of (Z/nZ)×] and it is contained in (Z/nZ)×. Therefore we have that

k · (Z/nZ)× = (Z/nZ)×, and {k · a1, k · a2, . . . , k · am} is just a reordering of {a1, a2, . . . , am}. [See

Example 12.9 below for a concrete example.]

So, if we multiply all elements of (Z/nZ)×, we get some element of Z/nZ, say b:

a1 · a2 · · · am = b.

What happens if we multiply all elements of k · (Z/nZ)×? On the one hand, we are multiplying

exactly the same elements in a different order, so we get b again. On the other hand, if we collect

all the k’s, we get:

(k · a1) · (k · a2) · · · (k · am) = k
m · (a1 · a2 · · · am) = k

m · b.
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Since the same product results in b and in k
m · b, these must equal, i.e., k

m · b = b. But, since

b ∈ (Z/nZ)× [which follows from Proposition 12.7(1), as b is a product of units], we can cancel b [by

Proposition 12.7(2)] to obtain k
m

= 1, which is what we needed to prove. �

Example 12.9. Here we look how the proof above works in a particular example. Take, for instance,

n = 5 and k = 3. Then,

3 · (Z/5Z)× = {3 · 1, 3 · 2, 3 · 3, 3 · 4}

= {3, 1, 4, 2},

so, it is indeed just a reordering of (Z/5Z)× = {1, 2, 3, 4}. Now, let’s find the product of all terms

in (Z/5Z)×:

1 · 2 · 3 · 4 = 1 · 2 · −2 · −1

= 4 = −1.

So, since we are just changing the order, we have:

(3 · 1) · (3 · 2) · (3 · 3) · (3 · 4) = 3 · 1 · 4 · 2

= 1 · 2 · 3 · 4

= −1,

while when collecting the 3’s together we obtain

(3 · 1) · (3 · 2) · (3 · 3) · (3 · 4) = 3 4(1 · 2 · 3 · 4)

= 3 4 · −1.

But since those represent exactly the same product, only performed in different orders [which do

not matter anyway], we must have 3 4 · −1 = −1, and thus 3 4 = 1 [by canceling the −1].

[Of course, we did not have to work this hard to check that 3 4 = 1, we could just check it, as

3 4 = 34 = 81 = 1. The point here is really to illustrate how the proof works.]

In the example above we saw that

1 · 2 · 3 · 4 = −1 in Z/5Z.

This is in fact true for all primes, i.e., if p is a prime, then we have

1 · 2 · · · p − 2 · p − 1 = −1 in Z/pZ.

This result is called Wilson’s Theorem. Its proof is not difficult, but since it is not important to our

application in cryptography, we shall omit it.

Now, observe that Euler’s Theorem gives us a quick way to compute powers in (Z/nZ)×.
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Example 12.10. Let’s compute 5 1001 in Z/12Z. If we were to compute 51001, it would take a lot of

time [we have to perform a thousand products!] and the resulting number [before computing the

remainder when divided by 12] would be huge! [It has 700 digits!] So, we do it in a smarter way.

Since gcd(5, 12) = 1, we have that 5 ∈ (Z/12Z)×. As we have seen in Example 12.6, we have that

ϕ(12) = 4, and therefore Euler’s Theorem tells us that 5 4 = 1.

Now, we have that the division algorithm gives us that 1001 = 250 · 4 + 1. Therefore,

5 1001 = 5250·4+1

= 5250·4 · 5 1
[as ax+y = ax · ay]

= (5 4)250 · 5 [as ax·y = (ax)y]

= 1 250 · 5 [as 5
4

= 1]

= 5.

The example above contains the idea of the proof of the following:

Corollary 12.11. Let k ∈ (Z/nZ)× and m be an integer. If the remainder of m when divided by

ϕ(n) is r, then k
m

= k
r
.

[We called it a corollary as it is an almost immediate consequence of Euler’s Theorem above.]

We need one more result before applying these concepts to cryptography.

Proposition 12.12. Let p and q be two distinct primes. Then, ϕ(p · q) = (p− 1) · (q − 1) [where ϕ

is the Euler phi function].

Proof. We need to count how many elements in {1, 2, 3, . . . , pq} are relatively prime to pq. Since this

set has pq elements, we can also how many are not relatively prime to it, and subtract this number

from pq [the total number of elements in the set]. [This is the same as if you want to see how many

people are married in a group of say, 5 people. If you find out the exactly 2 people are not married,

then we must have 5 − 2 = 3 people married.]

If k is not relatively prime to pq, it must have a common divisor greater than one. But, since p

and q are primes, the only divisors of pq which are greater than one are p, q, and pq itself. Hence,

if k is not relatively prime to pq, then it is divisible by either p or q [or both].

So, let’s take out the multiples of p from {1, 2, 3, . . . , pq}. How many of those do we have? Well,

it should be clear that they are {p, 2p, 3p, . . . , qp}, and thus we have q of those. Now, in the same

way, we have that the multiples of q in that set are {q, 2q, 3q, . . . , pq}, and we have p of those. By

the remarks in the previous paragraph, taking out both multiples of p and q leaves only the terms

which are relatively prime to pq.

So, at first one might think that the number of elements of {1, 2, . . . , pg} which are relatively

prime to pq [which is the ϕ(pq) which we are looking for] is pg − q − p [i.e., the total number, minus

multiples of p, minus multiples of p]. But there is a catch! If there are elements that are multiples
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of both p and q, we are “taking it out twice”: once when we take out multiples of p and again when

we take out multiple of q. [See Example 12.13 below to see how it goes in a concrete example.] But,

since p and q are distinct [by assumption], we have that the first element which is divisible by both

p and q is pq [since both p and q should appear in the decomposition of this number as products of

primes], and hence this is the only one that we took out twice [while we should have taken out only

once]. To compensate for this, we have to only take out (p− 1) instead of p multiples of q [as pq has

been taken out already], giving

ϕ(pq) = pq − q − (p − 1) = (p − 1)(q − 1),

as we needed to prove. �

Let’s again illustrate how this prove works with a concrete example:

Example 12.13. Let’s compute ϕ(15). Now, 15 = 3 · 5, and 3 and 5 are primes. Let’s cross out

number in the list

1, 2, 3, 4, 5,

6, 7, 8, 9, 10,

11, 12, 13, 14, 15,

which are not relatively prime to 15. These must be multiples of 3 or multiples of 5. Let’s cross out

the multiples of 5 first:

1, 2, 3, 4, �5,

6, 7, 8, 9, ��10,

11, 12, 13, 14, ��15.

This leaves 15 = 3 = 12 elements left. Now, let’s cross out multiples of 3:

1, 2, A3, 4, �5,

A6, 7, 8, A9, ��10,

11, ZZ12, 13, 14, ZZ��15.

This seems to take out another 5 elements, but 15 was already out [it’s the only one crossed twice],

so we actually subtract only 4. So, ϕ(15) = 15 − 3 − 4 = 8 = (3 − 1) · (5 − 1).

There is a general formula for ϕ(n) that can be used when we know how n factors as product of

primes. If n = pr1
1 · · · prk

k , then

ϕ(n) = ϕ(pr1
1 · · · prk

k ) = (p1 − 1)pr1−1
1 · · · (pk − 1)prk−1

k . (12.14)
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But remember that, as we mentioned before, it’s sometimes difficult to factor a [very large] number.

Again, since we won’t need this general formula, but only the particular case of Proposition 12.12,

we won’t prove it here.

Problems.

12.1) Find (Z/nZ)× for n = 13, 18, 36.

12.2) Compute ϕ(n) for n = 36, 131, 1457. [Hint: 131 is prime and 1457 = 31 · 47.]

12.3) Compute:

(a) 6 1000 in Z/7Z.

(b) 31 12 in Z/36Z.

(c) 3 4 in Z/12Z.

(d) 7 4632726732 in Z/11Z.

13. The RSA Cryptosystem

We’ve already briefly mentioned what cryptography means in section 9. Again, the idea is to

send a secret messages in a secure way: a person who can somehow obtain this message should not

be able to read it unless he possesses some extra information, usually called the decoding key , on

how to decode it.

One can think of many ways to do this, and it’s been done since ancient times. One of the most

natural ways is the Caesar Cipher : you just permute the letter in some random way. Say, replace

A by T, B by S, C by K, etc. [There is no pattern in my example. You just have to be careful to not

replace two different letters by the same one.] This is flawed, as one can break with some statistical

analysis of the message: if the message is long enough [or if someone obtains enough messages] one

can look for the letter the appears the largest number of times. Since the letter that shows up more

often in English is E, one could guess that this letter is E. And, since one can find what are the

most common letters, one can start to break this code. The ones who have seen the 1983 movie

“A Christmas Story”, written by Jean Shepherd and directed by Bob Clark, might remember that

the main character, Ralph, uses a decoder pin from the Orphan Annie’s Secret Society to decode

secret messages from its radio show. That was a Caesar’s Cipher and the pin just gave the correct

replacement of the letters.

There are other ways of doing it. One might, for instance, use a Block Cipher, where you replace

say, a set of two letters instead of a single letter. For instance, replace AA by RT, AB by XI, AC by

YQ, etc. [Again, there is no patter here.] This makes it much harder, but still one can try statistical

analysis. Moreover, it becomes much more difficult to encode and decode messages. [The conversion

table has 262 = 676 entries instead of 26.]

And, of course, there are many other ways. But let’s think of one particular problem: sending your

credit card over the Internet. It’s widely known that the Internet is not safe, as communications can

be intercepted. So, you need some strong method to keep your credit card number secure. Suppose
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that the merchant actually has a such a method. He needs to tell you how to encode your message

so that you can send your number safely. The problem with many methods, including the two

mentioned above, is that if one knows how to encode, then he/she also knows how to decode it. So,

if you intercepted some other customer’s encoded credit card number to this merchant, you’d be able

to decode it. Well, it might not be too difficult, depending on the method, for the merchant to come

up with a different encoding system for each customer, and this might seem to solve the problem.

But there is another catch! Remember that the merchant needs to tell you how to encode. How is

he going to do that? He cannot send you encoded, as the two of you haven’t agreed on a method yet,

and if some one is reading your communications, this person might get both the encoding method,

which gives the decoding method also, and your encoded credit card number. Hence, he will have

access to your correct credit card number.

The way to fix this would be to have an encoding method, or encoding key , that does not give

away the decoding method, or decoding key. Then, the merchant could tell the whole world how to

send him credit card numbers, by making the encoding key available to all, but still only he would

be able to decode the information, by keeping the decoding key secret. This is called Public Key

Cryptography .

We shall now describe one such method: the RSA Cryptosystem. The name RSA comes from

the last names of the people who first described it in 1977: Ron Rivest, Adi Shamir, and Leonard

Adleman. [Apparently, another mathematician, named Clifford Cocks, found this method in 1973,

but it was classified by the British government, and hence it was not known. In fact this was only

announced in 1997.]

We will describe the basic method now.

(1) The merchant chooses two very large primes, say p and q. [See some comments below about

some restrictions that should be made this choice.] Then, compute the product and call it

n. [I.e., n = pq.] The number n will be made public, but p and q must remain secret!

(2) The merchant now computes also ϕ(n). By Proposition 12.12, this number is simply (p −
1)(q − 1). Then, he choose some integer e such that 1 < e < ϕ(n) and gcd(e, ϕ(n)). [See

some comments on some restrictions on this choice below.] If p and q are chosen well, it’s

quite likely that random guesses of e will automatically satisfy gcd(e, ϕ(n)) = 1.

(3) When checking that gcd(e, ϕ(n)) = 1, the merchant uses the EEA to find x, y ∈ Z such that

xe + yϕ(n) = 1. Let d be the remainder of the division of x by ϕ(n).

(4) The merchant makes available the numbers e and n [while, p, q, ϕ(n), x, and d are all kept

secret!], and tells his customer that to send their credit card number, say m, they should

send him the result of m e in Z/nZ. Here it is necessary that the number m is less than n.

[We will discuss how we can deal with larger numbers below.]

(5) The merchant receives the result, i.e., the encoded credit card number, say r. [So, r = m e,

but he cannot see m, only r. The number m is what he needs to find.] To get m, he
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computes r d, as m = r d. Since 1 ≤ m < n, if we know m, we know m. [Since d is secret,

no one knows how to decode r.]

Why does this work? In other words, why r d = m? We have:

r d = (m e)d = m de [as r = m e and (ax)y = ax·y].

But also, the remainder of de when divided by ϕ(n) is 1: first, we can write [by the division algorithm]

x = kϕ(n) + d. Now, replacing x by this formula in the equation from item 3 above, we obtain

1 = (kϕ(n) + d)e + yϕ(n) = (k + y)ϕ(n) + de.

So, de = (−k − y)ϕ(n) + 1, and thus, by the uniqueness in the division algorithm, we must have

that the remainder of de when divided by ϕ(n) is indeed 1. Thus, by Corollary 12.11, we have that

m de = m 1 = m. Hence, r d = m.

We need to make an observation here: we’ve used Corollary 12.11 above, and this would require

m to be relatively prime to n = pq, so we would need that neither p nor q divides m. The actual

probability of either happening in practice is relatively small, but in fact this computation also does

work in those cases, as still mde = m when m is not a unit, even thought it does not follow directly

from the corollary anymore. [The key fact here is that n is a product of two distinct primes.] The

proof that it still works is in fact simple, but we shall omit it here to not stretch the discussion too

much.

Let’s see an example:

Example 13.1. We will use small primes just to keep the numbers easy. Let’s pretend we are the

merchant here. We choose, say, p = 23 and q = 37. Then, we compute n, which is n = 23 · 37 = 851

and ϕ(n) = 22 · 36 = 792.

Now, we need to choose e. We can try e = 7. Then, the EEA gives us that the GCD is 1 and:

1 = (−113) · 7 + 1 · 792

So, since the GCD is 1, the choice works and we have x = −113. We then find d as the remainder

of the division of −113 by ϕ(n) [i.e., by 792 in this case], and so d = 679.

Say that some one now wants to send us a secret number, say 311. The person needs to compute

311 7 in Z/851Z. The result is 775. So, the person sends us that.

When we receive the 775, we compute the d-th power, i.e., 775 679, obtaining 311, and so we know

that the number sent was 311.

Of course the primes used in the example are way too small for real application in encryption. The

security of this system is based on the difficulty on factoring n. Indeed, if one factors n, i.e., finds the

primes p and q such that n = pq, then one can compute ϕ(n), and then compute d. With such small

numbers a computer can factor in less than a hundredth of a second! But, observe that even with

such small numbers, we had to compute 775 679 in Z/851Z. [Note that since 1 < 679 < ϕ(n) = 792,
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Corollary 12.11 does not help with this computation.] The naive way of doing this would be to

compute 678 products. Using a method called Successive Squares Exponentiation, one can compute

that power with only 19 [or less] products! If there were no fast way to compute exponents, this

method would be too time consuming to actually be used in real life.

One should also observe that many of the other computations in this process, such as division

algorithm and extended Euclidean algorithm, are fast [when using a computer], even with huge

numbers.

The part of the process that take the longest is finding the primes p and q. Even though primality

testing is much faster than factorization, it might take a few minutes, perhaps even hours, depending

on the size of the numbers with which you are dealing. Usually probabilistic algorithms are used,

which can give numbers that are likely prime, with a probability over 99.99% or more if you need,

quite quickly [in relative terms].

Here are some important considerations on the choices made in this method. If any of these are

not satisfied, there are some specific methods for someone to find the private key.

(1) The primes p and q should be generated in a random manner, so that they don’t become

predictable.

(2) In order to make the factoring of n = pq take long enough for the key to be secure, the

primes p and q should be greater than 21024, and some suggest that they should be greater

than 22048. [The sizes can be smaller if you change your keys frequently, as it would take, at

the very least, a few months to factor n if the primes are larger than 21024.] For truly high

security, it is suggested to use primes larger than 24096. [Note that 24096 has 1233 digits!]

(3) The primes p and q should not be [relatively] close to each other. For instance, if p < q,

then you need that q − p > 2 4
√

pq, and you’d probably want it much larger than that.

(4) Neither (p − 1) nor (q − 1) should have only small primes in their prime factorization.

(5) The private key d should not be small. At the very least it should be larger than 4
√

n/3.

(6) It’s suggested to add some padding to the message. In a text message this can be done by

adding some white spaces or phrase like “The message starts here.” and “The message ends

here.” The point is to not let the number to be sent be too small. Therefore, anything that

adds something to the message that does not interfere with the reading can be added. [We

talk about how to deal with texts rather than numbers below.]

(7) With padding, there is no known problem with taking e small, but apparently people are

reluctant to do so, and e = 65537 is a common choice.

One other thing we should observe: as stated we need that the number to be sent, say m, should

be less than n. What if we need to send a number larger than n? One just break it into pieces. One

can always write m as

m = m0 + m1 · n + m2 · n2 + · · · + mk · nk, with 0 ≤ m0,m1, . . . ,mk < n (13.2)
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[for some k large enough], where each mi is an integer in {0, 1, 2, . . . , (n − 1)}, in a unique way.

The method of doing this is simple enough: m0 is the remainder of m when divided by n, m1

is the remainder of (m − m0)/n [which is an integer] when divided by n, m2 is the remainder of

(m − m0 − m1 · n)/n2 [which is an integer] when divided by n, m3 is the remainder of (m − m0 −
m1 · n−m2 · n2)/n3 [which is an integer] when divided by n, and so on until we obtain a difference

m − (m0 + m1 · n + m2 · n2 + · · · + mk · nk)

which is zero. [This is to put m on base n.]

Example 13.3. We will use the same data as Example 13.1, except that now someone wants to send

us the number m = 1745291. First, as 1745291 > 851, it needs to be broken as described above:

1745291 = 741 + 348 · 851 + 2 · 8512.

So, m0 = 741, m1 = 348, and m3 = 2. So, the person should send the three values [in Z/851Z]

741 7 = 408, 348 7 = 738, and 2 7 = 128, in that order. [Note that some padding should be used in

practice to avoid small numbers like the 2 above.] We can then decode each piece with the private

key and put them together again to obtain the original number.

Now, how does one send texts instead of number? One can use the American Standard Code

for Information Interchange (ASCII) to replace characters with numbers. This particular method

represents 256 different characters, including letters [lower and upper case], numbers, brackets,

punctuation, and other symbols, by numbers from 0 to 255. [See http://www.asciitable.com/,

for instance.] For instance, the ASCII code for A is 65, for B is 66, and so on. Then, let’s say you

have a text with k characters, with ASCII codes m1,m2, . . . ,mk respectively. To convert this to a

single number, we use Formula (13.2) again, with n = 256 [the number of different ASCII values],

i.e., we use the number m defined by:

m = m0 + m1 · 256 + m2 · 2562 + · · · + mk · 256k.

When decoding, we receive m and break it as above, then finding the mi’s, which we can then

translate to characters using the ASCII table.

Example 13.4. Let’s do a simple example now using the data of Example 13.1, but say some wants

to send us the text YES. The ASCII codes for the letters are 89, 69, and 83 respectively. So, this

text leads to the number

m = 89 + 69 · 256 + 83 · 2562 = 5457241.

Since m > 851 = n, this has to be broken in parts as in the previous example:

5457241 = 629 + 455 · 851 + 7 · 8512.

Then, the person should send us the three values 629 7 = 518, 455 7 = 788, and 7 7 = 626.

http://www.asciitable.com/
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Example 13.5. Let’s see an example on decoding, again with n = 851, e = 7, and d = 679. Suppose

we receive 686, 737, 84, and 1 in this order. We first find the number using the private key:

686 679 = 405, 737 679 = 599, 84 679 = 824, and 1 679 = 1 [which in real applications should have been

avoided with the use of some padding]. So, the number sent was:

m = 405 + 599 · 851 + 824 · 8512 + 1 · 8513 = 1213546829

Now, let’s recover the text using the ASCII code. We have that

1213546829 = m = 77 + 65 · 256 + 85 · 2562 + 72 · 2563.

So, the message is a four letter word with codes 77, 65, 85, and 72. These are the ASCII codes for

the letters M, A, T, and H, and thus the text sent was MATH.

We finish this text with a few remarks on the security of the RSA cryptosystem. As we have

already pointed out, it depends exclusively on the difficulty in factoring numbers which are products

of two very large primes. But why is this problem difficult? Well, the truth is that we think it is

difficult because no one could find a quick way of doing it so far [which does not mean that there

isn’t one]. Thus, perhaps some one will come up with a new and smart way of doing it tomorrow,

and this method will not be secure anymore. [By the way, this RSA method is used in the real

world. This is not just something theoretical!] Although it seems that this would be unlikely, it

could happen. So, there is no real guarantee it this method will be safe in the future.

On the other hand, it is likely [although not certain] that only a professional mathematician could

come up with a better way to factor these numbers. It would be a true accomplishment, and hence

this person, likely being an academic, would welcome all the praise and recognition that would come

from it. Thus, this result would be immediately made public [as maybe someone will do it before

you if you wait], at which point every one who uses the RSA method should move to another one.

[There are many different public key cryptosystems whose security would not be compromised by a

fast factorization algorithm.] So, attaching the security of a cryptosystem to a famous math problem

has two advantages: solving this problem [and hence breaking the code] should be truly difficult [or

some would have done it] and you will know when the method is not secure anymore.

14. Solutions

1.1) (a): T, (b): F, (c): F, (d): T, (e): F, (f): T, (g): F, (h): F, (i): F, (j): T.

2.1) (a): quotient: 61; remainder: 4.

(b): quotient: 3; remainder: 216.

(c): quotient: 0; remainder: 364.

(d): quotient: 615; remainder: 8.

2.2) (a): dividend: 4567; divisor: 31; quotient: 115; remainder: 2.

(b): dividend: 423; divisor: 42; quotient: 10; remainder: 3, or dividend: 423; divisor: 10;

quotient: 42; remainder: 3.
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(c): dividend: 423; divisor: 21; quotient: 20; remainder: 3, or dividend: 423; divisor: 20;

quotient: 21; remainder: 3.

2.3) (a): quotient: 3; remainder: 2.

(b): quotient: −2; remainder: 3.

2.4) quotient: 235819; remainder: 136.

3.1) (a): False. We use Theorem 3.1 and observe that 3 | (3 ·3262) and 3 - 2. So, 3 - (3 ·3262+2).

(b): True. We use Theorem 3.1 again and observe that 7 | (14 · 407) [since 7 | 14 and

14 | (14 · 407), we can conclude that 7 | (14 · 407)] and 7 | 21. So, 7 - (14 · 407 − 21).

3.2) Yes! By Theorem 3.1, we have that d | (a + b), since d | a and d | b. Now, we have that

d | (a+ b) and d | c, and we apply the same theorem again, obtaining that d | ((a+ b)+ c) =

(a + b + c).

3.3) (a): Yes! They said it would not rain, for if they said it would, by the above statement, it

would have rained.

(b): No! The statement does not say what happens if they say it will not rain. In that

case, it might rain or not. So, they might have said it would rain or they might have said it

wouldn’t.

(c): No! The statement does not say anything about what happens if the forecast says it

will not rain.

4.1) (a): 2: yes; 3: yes; 5: yes; 6: yes; 9: yes; 10: yes.

(b): 2: no; 3: yes; 5: no; 6: no; 9: no; 10: no.

(c): 2: no; 3: no; 5: no; 6: no; 9: no; 10: no.

(d): 2: no; 3: no; 5: yes; 6: no; 9: no; 10: no.

4.2) (a) Since 3 | (3 · 7483837283) and, using the criterion for divisibility by 3 we can see that

3 - 94957291, by Theorem 3.1, we have that 3 - (3 · 7483837283 + 94957291).

(b) Since 5 | 743872835 [since it ends with 5] but 5 - 90472638231 [since it does not end with

0 or 5], Theorem 3.1 tell us that 5 - (743872835 + 90472638231).

4.3) We have that a number is divisible by 15 if, and only if, it is divisible by both 3 and 5.

5.1) (a): 6. (b): 1.

5.2) 11100.

6.1) (a): x = −9 and y = 7.

(b): x = 20 and y = −27.

6.2) 9.

7.1) (a): No, as 3 | 111. (b): No, as 7 | 259. (c): Yes, it is prime. (d): Yes, it is prime.

7.2) No, as by Theorem 7.6, if it were prime, then either d | a or d | b.

7.3) (a): 90 = 2 · 32 · 5. (b): 231 = 3 · 7 · 11. (c): 875 = 53 · 7. (d): 1573 = 112 · 13.

8.1) (a) gcd(81, 90) = 32 = 9, and lcm(81, 90) = 2 · 34 · 5 = 810. (b): the GCD is 2 · 3 · 11 and the

LCM is 22 · 33 · 5 · 113.

8.2) (a); False. (b): True. (c): True.
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8.3) a · b = 6 · 18 = 108.

8.4) No, since the GCD must divide the LCM [as, for instance, the GCD divides a, and a divides

the LCM], and 12 - 30.

9.1) By Theorem 9.1, there are infinitely many solutions in the case x2 + y2 = z2. By Fermat’s

Last Theorem, there is no solution x, y, z ∈ N∗ for x5 + y5 = z5, since the only solutions

involve zero [and 0 6∈ N∗].

9.2) 7 cannot be written as a sum of three integers. But Theorem 9.3 tells us that all positive

integers can be indeed written as sum of four integers. Then, all positive integers can also

be written as sum of five integers, as we can take one them to be zero.

9.3) (a) 81 = 92 + 02 + 02 + 02. (b) 12 = 33 + 12 + 12 + 12. (c) 53 = 72 + 22 + 02 + 02. (d)

105 = 102 + 22 + 12 + 02.

9.4) Yes, since there are infinitely many primes, there must be a prime larger than a million

[otherwise there would be at most a million primes].

9.5) You could just copy the statement from Conjecture 9.7. [The point is to make sure you

remember these statements.] It is: “There are infinitely many primes p such that p + 2 is

also prime.”

9.6) (a): 36 = 5 + 31. (b): 50 = 3 + 47.

9.7) (a) Since all the numbers are even, and none of them is 2, there is no prime in the sequence.

(b) We use Theorem 9.9: since gcd(22, 3) = 1, we have that there are infinitely many primes

in this sequence.

(c) We have that 3 is prime, and since all numbers are multiples of 3, there is only one prime

in the sequence.

11.1) (a): True, as 3 − (−11) = 14 is divisible by 7. [We are using Lemma 11.4 here.]

(b): False, as 8 - 14 = 3 − (−11).

(c): False. There are many ways to do it, but here is a smart one: observe that 3 | 9303

[use, for instance the criterion from Section 4, or just observe that 9303 = 3 · 3101]. Then,

9303 = 0. Also, 3 - 21821 [use the criterion from Section 4 again] and thus 21821 6= 0 = 9303.

(d) True. We reduce the numbers to actual remainders, as the remainder of the di-

vision by 5 is easy. We have that 43847833 = 4384783 · 2 · 5 + 3 = 3, and 8437898 =

843789 · 2 · 5 + 8 = 8 = 3. So, they are equal as both are 3.

11.2) (a) 7 + 8 = 15 = 6.

(b) 7 · 8 = 56 = 1.

(c) 24 · 13 = −1 · 3 = −3 = 2.

(d) Using the criterion from Section 4 again, we see that 369303 = 0, and so 369303 ·
172647183 = 0 · 172647183 = 0.

(e) (2 + 5) · 7 2 = 7 · 7 2 = 7 3 = −13 = (−1)3 = −1 = 7.

(f) (31 − 44) · (33 + −13) = (3 − 2) · (5 + 1) = 1 · 6 = 6.
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12.1) For n = 13 we can use the comments of Example 12.5 [as 13 is prime], and so

(Z/13Z)× = {1, 2, . . . , 10}.

For n = 18 = 2 · 32, we need to exclude the multiples of 2 and 3. Hence, we get

(Z/18Z)× = {1, 5, 7, 11, 13, 17}.

For n = 36 = 22 · 32, we also need to exclude the multiples of 2 and 3. Hence, we get

(Z/36Z)× = {1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, , 35}.

12.2) For n = 36 we can use the previous problems and obtain ϕ(36) = 12.

Since 131 is prime, the comments in Example 12.5 tells us that ϕ(131) = 131 − 1 = 130.

Since 31 and 47 are primes, Proposition 12.12 tells us that ϕ(1457) = ϕ(31·47) = 30·46 =

1380.

12.3) (a) We can use Corollary 12.11, or just observe that 6 1000 = −11000 = (−1)1000 = 1.

(b) As we have seen in Problem 12.2, ϕ(36) = 12. Then, since gcd(31, 36) = 1, by Euler’s

Theorem [i.e, Theorem 12.8], we have 31 12 = 1.

(c) Note that although ϕ(12) = 4 [as seen in Example 12.6], we cannot use Euler’s

Theorem here, as gcd(3, 12) = 3 6= 1. Indeed, 3 4 6= 1 in this case. We just really compute it

3 4 = 81 = 9.

(d) We use Corollary 12.11, as gcd(7, 11) = 1. We have that ϕ(11) = 10, and hence,

the remainder of 4632726732 when divided by 10 is 2. [This is easy, as 4632726732 =

463272673 · 10 + 2.] So, 7 4632726732 = 7 2 = 49 = 5.
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