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LECTURE NOTES ON THERMODYNAMICS

LECTURE 1: INTRODUTION

Content of Lecture 1
1.1. Some semantics

1.2. Historical milestones



1.3. Philosophy of science note
1.4. Some practical applications

1.5. Thermodynamics, statistical mechanics and kinetic theory

1.1. Some semantics

We introduce here classical thermodynamics. The word “thermo-dynamic,” used first by
W.Thomson (Fig.1.1) has Greek origin and is translated as the combination of

* Oopun *, therme: heat, and

* duvaulg ~, dynamis: power.

Fig 1.1. William Thomson (Lord Kelvin)
(1824-1907) is the first man used the word
“thermodynamic” in his 1849 work

The modifier “classical” is used to connote a description in which quantum mechanical
effects, the molecular nature of matter, and the statistical nature of molecular behavior
are not considered in any detail. These effects will not be completely ignored; however,
they will be lumped into simple averaged models which are valid on the macroscale. As
an example, for ordinary gases, our classical thermodynamics will be valid for systems
whose characteristic length scale is larger than the mean free path between molecular
collisions. For air at atmospheric density, this about 0.1 um (1 um = 107° m).

Additionally, “classical” also connotes a description in which the effects of finite
timedependency are ignored. In this sense, thermodynamics resembles the field of statics
from Newtonian mechanics. Recall Newton’s second law of motion,

md?%/dt? =3 F (1.1)

where mm is the mass, X is the position vector, t is time, and F is the force vector. In
the statics limit where Zlf = 0, inertial effects are ignored, as is time-dependency. Now,
a Newtonian would consider dynamics to imply motion, and so would consider
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thermodynamics to imply the time-dependent motion of heat. So a Newtonian would be
more inclined to call the subject of these notes “thermostatics.” However, if we return to
the earlier Greek translation of dynamics as power, we are actually truer to the classical
connotation of thermodynamics. For the fundamental interplay of thermodynamics is that
between so-called thermal energy (as might be thought of when considering heat) and
mechanical energy (as might be thought of when considering power, a work rate).

* Thermodynamics: the science that deals with heat and work and those properties of
matter that relate to heat and work.

One of the main goals of these notes will be to formalize the relationship between heat,
work, and energy.

Fig 1.2. Greek philosopher Aristotle (384 BC-322
BC) gives the first recorded use of the word
“energy” and whose method of logic permeates
classical thermodynamics

We close this section by noting that the concept of energy has evolved through time, but
has ancient origins. The word itself had its first recorded use by Aristotle (Fig 1.2). In the
Greek, the word , gvopyota *, “energeia,” connotes activity or operation. While the word
was known to Aristotle, its modern usage was not; it was the English polymath Thomas
Young (Fig 1.3) who first used the word “energy,” consistent with any sort of modern
usage, in this case kinetic energy, Finally, though she did not use the word “energy,” the
notion of what is now known as kinetic energy being related to the square of velocity was
first advanced by du Ch"atelet (Fig 1.4),

Fig 1.3. English natural philosopher Thomas
Young (1773-1829)




Fig 1.4. French physicist Gabrielle Emilie Le
Tonnelier de Breteuil, marquise du Chatelet

1.2. Historical milestones

Thermodynamics has a long history; unfortunately, it was not blessed with the crispness
of development that mechanics realized with Newton. In fact, its growth is filled with
false steps, errors, and debate which continues to this day. Some of the milestones of its
development are given here:

« first century AD: Hero of Alexandria documents many early thermal engines.

* 1593: Galileo develops a water thermometer.

* 1650: Otto von Guericke designs and builds the first vacuum pump.

* 1662: Robert Boyle develops his law for isothermal ideal gases.

* 1679: Denis Papin develops his steam digester, forerunner to the steam engine.

* 1698: Thomas Savery patents an early steam engine.

* 1710: Thomas Newcomen creates a more practical steam engine.

* 1760s: Joseph Black develops calorimetry.

* 1780s: James Watt improves the steam engine.

* 1798: Benjamin Thompson (Count Rumford) considers the mechanical equivalent of
heat from cannon boring experiments.

* 1824: Nicolas L'eonard Sadi Carnot discusses idealized heat engines.

* 1840: Germain Henri Hess considers an early version of the first law of
thermodynamics for work-free chemical reactions.

* 1840s: Julius Robert von Mayer relates heat and work.
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* 1840s: James Prescott Joule relates heat and work.

* 1847: Hermann von Helmholtz publishes his theory of energy conservation.

* 1848: William Thomson (Lord Kelvin) postulates an absolute zero of temperature.

* 1850: Rudolf Julius Emanuel Clausius formalizes the second law of thermodynamics.
* 1865: Clausius introduces the concept of entropy.

 1871: James Clerk Maxwell develops the Maxwell relations.

* 1870s: Josiah Willard Gibbs further formalizes mathematical thermodynamics.

* 1870s: Maxwell and Ludwig Boltzmann develop statistical thermodynamics.

* 1889: Gibbs develops statistical mechanics, giving underlying foundations for classical
and statistical thermodynamics.

Much development continued in the twentieth century, with pioneering work by Nobel
laureates:

* Jacobus Henricus van’t Hoff (1901),
* Johannes van der Waals (1910),

* Heike Kamerlingh Onnes (1913),

* Max Planck (1918),

» Walther Nernst (1920),

* Albert Einstein (1921),

* Erwin Schr”odinger (1933),

* Enrico Fermi (1938),

* Percy Bridgman (1946),

* Lars Onsager (1968),

» Ilya Prigogine (1977), and



» Kenneth Wilson (1982).

Note that Sir Isaac Newton also considered the subject matter of thermodynamics. Much
of his work is concerned with energy; however, his theories are most appropriate only for
mechanical energy. The notion that thermal energy existed and that it could be equivalent
to mechanical energy was not part of Newtonian mechanics. Note however, that
temperature was known to Newton, as was Boyle’s law. However, when he tried to apply
his theories to problems of thermodynamics, such as calculation of the speed of sound in
air, they notably failed. The reason for the failure required consideration of the yet-to-be-
developed second law of thermodynamics.

1.3. Philosophy of science note

As with science in general, thermodynamics is based on empirical observation.
Moreover, it is important that those observations be repeatable. A few postulates, also
known as axioms, will serve as the foundation of our science. Following Occam’s razor,
we shall seek as few axioms as possible to describe this behavior. We will supplement
these axioms with some necessary definitions to describe nature. Then we shall use our
reason to deduce from the axioms and definitions certain theorems of engineering
relevance.

This approach, which has its foundations in Aristotelian methods, is not unlike the
approach taken by Euclid to geometry, Aquinas to theology, or Newton to mechanics.
Consider for example that Euclid (Fig 1.5) defined certain entities such as points, lines,
and planes, then adopted certain axioms such as parallel lines do not meet at infinity, and
went on to prove a variety of theorems. Classical thermodynamics follows the same
approach. Concepts such as system and process are defined, and axioms, known as the
laws of thermodynamics, are proposed in such a way that the minimum amount of theory
Is able to explain the maximum amount of data. Now, in some sense science can never be
formally proved; it can

Fig 1,5. Greek mathematician Euclid of Alexandria
(=325 BC-~265 BC) whose rational exposition of
geometry formed a model for how to present
classical thermodynamics

only be disproved. We retain our axioms as long as they are useful. When faced with
empirical facts that unambiguously contradict our axioms, we are required to throw away
our axioms and develop new ones. For example, in physics, the Michelson-Morely
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experiment forced Einstein to abandon the axioms of Euclid, Newton, and Clausius for
his theory of general relativity. It turns out that we can still use these axioms, as long as
we are considering problems in which the speed of our reference frame is far less than the
speed of light. In an example from biology that is the topic of a popular science book, it
was noted that it was once believed that all swans were white. This working hypothesis
was perfectly acceptable until 1697, when a black swan was discovered in Australia.
Thus, the “theory” (though it is not a highly profound theory) that all swans were white
was unambiguously discredited. It will be briefly seen in this course that non-classical
thermodynamics actually has a deep relation to probability and statistics and information,
a topic which transcends thermodynamics.

1.4. Some practical applications

It turns out that the classical approach to thermodynamics has had success in guiding the
engineering of devices. People have been building mechanical devices based on thermal
energy inputs for centuries, without the benefit of a cleanly enunciated theory. Famously,
Hero of Alexandria, perhaps the first recognized thermal engineer, documented a variety
of devices. These include an early steam engine known as the aolipile, pumps, and a
device to use fire to open doors. Hero and a nineteenth century rendition of his steam
engine are shown in Fig 1.6. While Hero’s contributions are a matter of some speculation
inspired by ancient artistry, the much later works of Denis Papin (1647-1712) are more
certain. Papin invented the so-called steam digester, which anticipated both the pressure
cooker and the steam engine. The device used steam power to lift a weight. Depictions of
Papin and his device are found in Fig 1.7. Significant improvements were led by James
Watt (1736-1819) of Scotland. An image of Watt and one of his engines is shown in Fig
1.8.

These engines were adopted for transportation. In 1807, the American engineer Robert

Fulton (1765-1815) was the first to use steam power in a commercial nautical vessel, the
Clermont, which was powered by a Boulton and Watt steam

Fig 1.6. Hero of

Alexandria (10-
70AB), Greek
engineer and

mathematician  who
devised some early
ways to  convert
thermal energy into
mechanical  energy




and his &olipile

Fig 1.7. French-born
inventor Denis Papin
(1647-1712) and his
steam digester

Fig 1.8. a) Scottish engineer
James Watt (1736-1819); Db)
Sketch of one of Watt’s steam
engines

engine. Soon after, in 1811 in Scotland, the first European commercial steam vessel, the
Comet, embarked. We have a sketch of the Comet and its steam power plant in Fig 1.9.
On land, steam power soon enabled efficient rail transportation. A famous early steam
locomotive was the English engineer Robert Stephenson’s (1803-1859) Rocket, sketched
in Fig 1.10.

Fig 1.9. Sketch of the
Comet and its steam
sngine




Fig 1.10. Sketch of the Rocket

The effect of steam power, a contribution driven by engineers, on the development of the
world remains remarkable. It is what is commonly known as a disruptive technology as
its widespread adoption displaced other well-established technologies. While it is
difficult to quantify historical pronouncements, it is likely that the effect on the world
was even more profound than the introduction of networked computers in the late
twentieth century. In short, steam power was the linchpin for the industrial revolution.
Steam power replaced animal power as a prime mover throughout much of the world and,
where implemented, enabled rapid development of broad economic segments: mining,
manufacturing, land and sea transportation, among others. Large scale population
movements ensued as opportunities in urban manufacturing centers made industrial work
more appealing than agricultural work. Certainly, changes precipitated by the advent of
steam power were contributing factors in widespread social unrest in the nineteenth
century, ranging from labor strife to war between nation states.

The text of BS has an introduction to some more modern devices, listed here:
* simple steam power plant,

* fuel cells,

* vapor-compression refrigeration cycle,

* air separation plant,

« the gas turbine, and

* the chemical rocket engine

Additionally, one might consider the following topics to have thermodynamic relevance:
» gasoline and Diesel engines,

* the weather,

10



* cooking,
* heating, ventilation, air conditioning, and refrigeration (HVAC&R), or
* materials processing (metals, polymers, etc.)

We close with an image of Sir Isaac Newton in Fig 1.11, who began to study issues

related to thermodynamics and whose scientific methods imbue its development.

Fig 1.11. English genius Sir Isaac
Newton (1643-1727) whose classical
mechanics  broadly influenced the

development of thermodynamics

1.5. Thermodynamics, statistical mechanics
and kinetic theory
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From experience, we know that a macroscopic body generally settles down, or “re-
laxes” to a stationary state after a short time. We call this a state of f thermal nghgm/
When the external condition is changed, the existing ethbnum state will change,
and, after a relatively short relaxation time, settles down to another equilibrium state.
Thus, a macroscopic body spends most of the time in some state of equilibrium,
@ﬁ;_ by almost sudden transitions. In our study of macroscopic phenomena,
we divide the subject roughly under the following headings:

* Thermodynamics is a phenomenological theory of equilibrium states and tran-_
sitions among them. ‘

. Statzstzcal.mchamcs 18 conoerned thhdeducmg the _l_hg,rgp_gdynammpxggemes

. Kmenc theory aims at a microscopic dcscnptlon of thc mansxnomptoces&be;
twecmcqnﬂlbnum states.

The theoretical description of systems consisting of very many particles is the center of
interest in this volume of the series of lessons in Theoretical Physics. Such many-particle
systems can be found everywhere in nature: on the one hand, e.g., the atoms and molecules
in gases, fluids, solids or plasmas (with most of which one has daily experience) or on the
other hand, the quantum gas of electrons in semiconductors or metals.

In burnt-out suns (white dwarfs) one finds the electron gas and nuclear matter (in the
center of neutron stars and in supernova explosions), which consists of many neutrons and
protons. Our universe was created in the “big bang” from a many-particle system of leptons,
quarks and gluons.

In the following we will see that all these completely different systems obey com-
mon and very general physical laws. In particular, we will discuss the properties of such
many-particle systems in thermodynamic equilibrium. Special emphasis will be laid on
the microscopic point of view of statistical mechanics. Nevertheless, classical macroscopic
thermodynamics shall not fall short, since it is of great importance: the concepts of ther-
modynamics are very general and to a great extent independent of special physical models,
so that they are applicable in many fields of physics and the technical sciences.

The task of thermodynamics is to define appropriate physical quantities (the stafe
quantities), which characterize macroscopic properties of matter, the so-called macrostate,
in a way which is as unambiguous as possible, and to relate these quantities by means
of universally valid equations (the equations of state and the laws of thermodynamics).
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Thermodynamics:

— Describes macroscopic properties of
equilibrium systems

— Entirely Empirical

— Built on 4 Laws and "simple” mathematics

0™ Law = Defines Temperature (T)

1*" Law = Defines Energy (V)

2" Law = Defines Entropy (S)

3" Law = Gives Numerical Value to Entropy

These laws are UNIVERSALLY VALID, they cannat be circumvented.

Thermo : heat
dynamics : motion
Thermodynamics is the study of motion of heat.

@ Thermodynamics is about MACROSCOPIC properties.

13




A beardy equation

For each degree of freedom
Boltzmann's * Kelvins = Joules

Thermodynamic equilibrium, ideal gas and kinetic energy “Temperatures”
are the same thing

Fig 1.12.

Thermodynamics allows you to learn

Only thermodynamics breaks time-reversal symmetry.
(strictly CPT(i) )

Thermodynamics
drove the modern
world
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Einstein’s Opinion

Thermodynamics is the only physical
theory of universal content which |
am convinced, within the areas of
applicability of its basic concepts,
will never be overthrown.

A. Einstein 1949

Fig 1.13

How Planck discovered his law of black-body radiation

I had no alternative but to tackle the problem again ... from

TRECHSE the side of thermodynamics. In fact, my previous studies of
[LEMEDIE e the Second Law of Thermodynamics came to stand me in

good stead now, for at the very outset | hit upon the idea of
correlating not the temperature of the oscillator but its
entropy with the energy... While a host of outstanding
physicists worked on the problem of the spectral energy
distribution both from the experimental and theoretical

aspect, every one of them directed his efforts solely towards
exhibiting the dependence of the intensity of radiation on the
temperature. On the other hand, | suspected that the
fundamental connection lies in the dependence of entropy
with the energy ... Nobody paid any attention to the method
which | adopted and | could work out by calculations
completely at my leisure, with absolute thoroughness,
without fear of interference or competition.

Fig 1.14
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LECTURE 2: SOME CONCEPTS AND DEFINITIONS

Content of Lecture 2
2.1. Thermodynamic system and control volume
2.2. Macroscopic versus microscopic
2.3. Properties and state of a substance
2.4. Processes and cycles
2.5. Fundamental variables and units
2.6. Zeroth law of thermodynamics

2.7. Secondary variables and units

2.1. Thermodynamic system and control

volume

We take the following definitions:
¢ THERMODYNAMIC SYSTEM: a quantity of fixed mass under investigation,
* SURROUNDINGS: everyvthing external to the system,
e SYSTEM BOUNDARY: Interface separating system and surroundings, and

o UNIVERSE: combination of system and surroundings.

The system, surronndings, system-boundary for a universe are shown for a potato-shaped
system in Fig. 2.1 We allow two important interactions between the system and its sur-
roundings:

e heat can cross into the system (our potato can get hot), and
e work can cross out of the system (our potato can expand).

Now, the system boundaries can change, for example the potato might expand on heating,
but we can still distinguish the system and the surroundings. We now define an

® [SOLATED SYSTEM: a syvstem which is not influenced by its surroundings.

Note that a potato with thick and inelastic skin will be isolated. We distinguish the system.
which has constant mass, but possible variable volume, from the

e CoNTROL VOLUME: fixed volume over which mass can pass in and out of its boundary.

The control volume is bounded by the
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work out

system boundary

heat in

universe

Figure 2.1: Sketch of a universe composed of a system, its surroundings, and the syvstem
boundary.

e CONTROL SURFACE: boundary of the control volume.

The mass within a control volume may or may not be constant. If there is fluid flow in
and out there may or may not be accumulation of mass within the control volume. We will
mainly study cases in which there is no accumulation, but this need not be the case. A
sketch contrasting scenarios in which a fluid is compressed in which the system approach
wolld be used against those where the control volume approach would be used is shown in

Fig. In summary,
e system — fixed mass, closed, and

e control volume — potentially variable mass, open.

2.2. Macroscopic versus microscopic

In principle, we could solve for the forces acting on every molecule and use Newton's laws
to determine the hehavior of systems. This is difficult for even modestly sized systems.

o If we had a volume of 1 m* of gas at atmospheric pressure and temperature, we would
find that it was composed of 2.4 x 10% molecules.

o We would need six equations of motion for each molecule, three for x.y. z, position,
and three for u, v, w velocity. This would require then a total of 1.4 x 10 differential

equations to solve simultaneously.
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system approach control volume approach

" - -1
[ ]
I - |
i
[ it | i i
: : - v control )
' . flow in —— flow out
: ' ' volume !
1 [ ] 1] ]
H H '
' system H [
1 n
1 | ]
H
H
piston-eylinder COMPECeSSOT

Figure 2.2: Comparison of system (fixed mass) and control volume (fixed volume) approaches
in thermodynamics for two common scenarios: piston-cylinder compression (left) and com-
pression in a flow device whose details are not shown (right).

s Even with our largest computers, this is impossible today. Note most desktop com-
puters only can store roughly 10° bytes of data in Random Access Memory (RAM).

¢ We can however model the average behavior of the molecules statistically.

e We can also use simple empirical relations which can be formally proved to capture
the statistical nature of the flow. This will be our approach.

s classical thermodynamics will treat macroscopic effects only and ignore individual
molecular effects. For example molecules bouncing off a wall exchange momentum
with the wall and induce pressure. We could use Newtonian mechanics for each par-
ticle collision to calculate the net force on the wall. Instead our approach amounts to
considering the average over space and time of the net effect of millions of collisions on

a wall.

We will in fact assume that matter can be modelled as a

o CONTINUUM: the limit in which discrete changes from molecule to molecule can be
ignored and distances and times over which we are concerned are much larger than
those of the molecular scale. This will enable the use of calculus in our continuum
thermodynamics.

The continuum theory can break down in important applications where the length and time
scales are of comparable magnitude to molecular time scales. Important applications where
the continnum assumption breaks down include

e rarefied gas dynamics of the outer atmosphere (relevant for low orbit space vehicles),
and
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o nano-scale heat transfer (relevant in cooling of computer chips).

To get some idea of the scales involved, we note that for air at atmospheric pressure and
temperature that the time and distance between molecular collisions provide the limits of
the continnum. Under these conditions, we find for air

e length > (.1 ym, and
e time > (.1 ns,

will be sufficient to use the continuum assumption. For denser gases, these cutoff scales are
smaller. For lighter gases, these cutoff scales are larger. Details of collision theory can be
found in advanced texts such as that of Vincenti and Kruger They show for air that the
mean free path A is well modeled by the following equation:

N
V2rNpd?

Here. M is the molecular mass, N is Avogadro’s number, and d is the molecular diameter.

1)

2.3. Properties and state of a substance
We define

e PHASE: a quantity of matter that is homogeneous throughout, and

e PHASE BOUNDARIES: interfaces between different phases.

An example of a single phase 1s ice. Another single phase i1s liquid water. A glass of ice
water is a two-phase mixture with the phase boundaries at the edge of each ice cube.
We next define (circularly)

e STATE: condition described by observable macroscopic properties, and

¢ PROPERTY: quantity which only depends on the state of the system and is independent
of the history of the system.

Examples of properties include temperature and pressure. Two states are equivalent if they
have the same properties. So if state 1 i1s defined by temperature T} and pressure P, and

state 2 is defined is by temperature T, and P,, state 1 is equivalent to state 2 iff (that is, if

and only if) Ty =T, and P, = P,.
There are two important classes of properties we consider in thermodynamics:
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s EXTENSIVE PROPERTY: a property which depends on the mass (or the ertent) of the
system, example extensive properties include mass, total volume, total energy, and

e INTENSIVE PROPERTY: a property which is independent of the mass of the system.
Example intensive properties include temperature and pressure.

In general, if you cut a system in half and re-measure its properties. intensive properties
remain unchanged, while extensive properties are cut in half. Properties are defined for
svstems which are in

o EQUILIBRIUM: state in which no spontaneous changes are observed with respect to
time.

We actually never totally achieve equilibrium, we only approximate it. It takes infinite time
to achieve final equilibrium. In this class we will mainly be concerned with two types of
equilibrium:

o MECHANICAL EQUILIBRIUM: characterized by equal pressure, and
o THERMAL EQUILIBRIUM: characterized by equal temperature.

A third type of equilibrium is chemical equilibrium, which we will not consider here. and is

characterized by equal chemical potentials.

A difficult conceptual challenge of thermodynamics is to reckon with two systems initially
at their own equilibria, to bring them into contact so that they find a new equilibria. How to
do this without consideration of time can be difficult. Another branch of thermodynamics,

which we will consider only briefly in this course is

s NON-EQUILIBRIUM THERMODYNAMICS: branch of thermodynamics which considers
systems often far from equilibrinm and the time-dynamics of their path to equilibrium.

We will go to great effort to construct a thermodynamics which is generally not burdened
with time. Occasionally we will bring time into our problems. Unfortunately, ignoring time
occasionally requires some mental contortions, as seen in the next section.

2.4. Processes and cycles

Often systems undergo a
o CHANGE OF STATE: implies one or more properties of the system has changed.

How these properties would change outside of time is curiously outside the framework of
equilibrium thermodynamics! The best way to think of them is that the changes are slow
relative to the underlying molecular time scales. Fortunately, this will allow us to do a wide
variety of problems of engineering relevance.

We also define a
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e PROCESS: a succession of changes of state.

We assume our processes are all sufficiently slow such that each stage of the process is near
e L . . " ."
equilibrium. Certain common processes are given special names, based on the Greek tgog,

is0s, meaning “equal”:
® ISOTHERMAL: constant temperature,
¢ ISOBARIC: constant pressure, and
¢ ISOCHORIC: constant volume.
An important notion in thermodynamics is that of a
® CYCLE: series of processes which returns to the original state.

The cycle is a thermodynamic “round trip.”

2.5. Fundamental variables and units

We will mainly use the Systéme International (SI) units in this course. Occasionally, we
will use the English Engineering system of units. As found in US National Institute of
Standards and Technology (NIST) documents, the important fundamental base SI units,
and corresponding English units are

e NASS:

— KILOGRAM (kg): a mass equal to the mass of the international prototype of the
kilogram (a platinum-iridium bar stored in Paris), roughly equal to the mass of
one liter of water at standard temperature and pressure, and

— POUND MASS: (Ibm),
® LENGTH:

— METER (m): the length of the path traveled by light in vacuum during a time
interval of 1/299792458 of a second, and

— FOOT (ft),
® TIME:

— SECOND: (s) the duration of 9192631770 periods of the radiation corresponding to
the transition between the two hyperfine levels of the ground state of the cesium
133 atom, and

— SECOND: (s) English time units are identical to those of SI,
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¢ TEMPERATURE: an equilibrium property which roughly measures how hot or cold an
object is. Note our senses are poor judges of temperature. Consider snow and air in
thermal equilibrium at 20 °F. Usually, it is possible to keep your bare hands warm
for many hours at 20 °F if you are otherwise dressed warmly. However, if you place
vour bare hand in a snow bank you for a few minutes, you have a danger of frosthite.
Yet bhoth are at the same temperature. Why the difference in sense? Our bodies
actually have more sensitivity to heat fluxes instead of temperature; heat leaves our
body more rapidly when in contact with high density objects like snow relative to that
of low density objects like air. More fundamental than common units such as °F are
so-called absolute temperature units:

— KELvin: (K) the fraction 1/273.16 of the thermodynamic temperature of the
triple point of water, and

— RANKINE: (°R).

2.6. Zeroth law of thermodynamics

In this class we are taking the axiomatic approach. Recall that an axiom cannot be proven.
It is a statement whose truth can be ascertained only by comparison with experiment.
The axiom can be disproved by a single negative experiment. The so-called zeroth law of
thermodynamics is the axiom which is probably most fundamental. It was formalized after
the so-called first and second laws, and so it is called the zeroth law. Perhaps if a more
fundamental axiom were discovered, it would be called the =1% law of thermodynamics?

¢ ZEROTH LAW OF THERMODYNAMICS: When two bodies have equality of temperature
with a third body, then they have equality of temperature.

The origins of the zeroth law are murky. Sr:rmmerfel attributes the notion to R. H. Fowler
m a 1931 review of a thermodynamics book. Fowler and Guggenheim explicitly introduce
the term “zeroth law of thermodynamics™ laterH The equivalent statement in mathematical
logic is that if x = y and = = 2, then y = z; this is in fact equivalent to the first of Euclid’s
common notions: things that are equal to the same thing are also equal to each other.

Defimition of the zeroth law enables the use of a thermometer as a measurement device.
A scale however needs to be defined. The old metric temperature scale, Celsius (°C), was
defined so that

e () °C 1s the freezing pomnt of water, and

e 100 °C is the boiling point of water.
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These quantities varied with pressure however, so that different values would he obtained
on top of a mountain versus down in the valley, and so this is not a good standard. The
modern Celsius scale is defined to be nearly the same, but has

e (.01 °C’ as the so-called triple point of water, and
e =273.15 2 as absolute zero in K.

The triple point of water is defined at the state where three phase of water (solid, liquid, and
gas) are observed to co-exist. The transformation between the absolute Kelvin scale and the
Celsius scale is given by

K = °C +273.15. (2.9)

The English equivalents are degrees Fahrenheit (°F) for relative temperature and degrees
Rankine (°R) for absolute temperature. The conversions are

T(°R) = 18T(K), T(°F)=18T(°C)+32, T(°F)=T(°R)-459.67. (2.10)

2.7. Secondary variables and units

Many units can be derived from the base units. Some important units for thermodynamics

include
e FORCE: This unit is defined from Newton's second law, m dy/dt* =Y F.

— NEWTON: (N), 1 N =1%" and

— POUND FORCE: (Ibf).

Force is straightforward in SI units. It is more confusing in English units, where the
so-called gravitational constant g, is often introduced. In SI units, g. = 1. However in

English units, the law for force is better stated as

1 d :
P Y F (2.11)

Moreover, a gravitational body force is better stated as mg/g. in English units. Now,
1 Ibf is induced by a mass of 1 Ibm in places where local gravitational acceleration is

g = 32.1740 ft/s*. Let us consider two important types of problems
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— acceleration of a particle in a uniform gravitational field: Here the only force
acting on the particle is the body force, —mg/g., and Eq. (2.1I)) reduces to

1 dzy
T
d*y
a2
dy
dt

y:

-4,

g

. (2.12)
(2.13)

—gt + O, (2.14)
—%ng + Oyt + O (2.15)

Note that g. plays no role whatsoever in determining the position of the particle.

— static force balance: Here one wants to determine the force necessary to hold

a particle stationary in a uniform gravitational field. In such a problem the
acceleration is zero, but there are two forces, the gravitational force —mg/g., and
the counter-balancing force which we will call F. Eq. (Z.11I) reduces to

1 dy
g, . dt?
—_

=

0

F

F-"9 (2.16)
Ge

| (2.17)
G

”;-q . (2.18)

If we are at a location where g = 32.1740 ft/s*, we can consider the counter-balancing
force necessary to hold 1 Ibm stationary, via Eq. (2.18):

(1 1bm) (32.1740 §)

e
Thus,
lbm ft o
g. = 32.1740 Ibf T (2.20)

o ENERGY: roughly speaking, the ability to do work, found from the product of force

and distance.

- JouLk: (J),1.J=1(Nm), and

— FOOT-POUND FORCE: (ft Ibf).
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e SPECIFIC VOLUME: the volume per unit mass, known as v = V/m.

— (T—;) and
_ (ﬂ_)
b J °
e DENSITY: the mass per unit volume, the inverse of specific volume p = m/V.

— (3%), and

- (=)
e )
MNote also that

v=—, p=—. (2.22)

e PRESSURE: the limy_.q F/A where A is the cross-sectional area and F is the compo-
nent of force acting normal to that area. In thermodynamics, we are almost always
concerned with the absolute pressure as opposed to the gauge pressure. Most common
pressure gauges do not measure the absolute pressure: instead they measure the differ-
ence between the absolute pressure and the atmospheric pressure. The two are related
via the formula

Pguuge = Pﬂbaodute - Pﬂim‘ (223}

We nearly always interpret F as an absolute pressure, so we could also say
Pgnuge =P - P&tm- {224}

— PascaL: (Pa), 1 Pa = 1 N/m?; note other common units are 1 bar = 10° Pa,
1 atm = 1.01325 x 10° Pa = 101.325 kPa = 0.101325 M Pa, and

— (psia): 1 psia = 1 Ibf/in*. 1 atm = 14.696 psia. The a denotes the “absolute”
pressure as opposed to the “gauge” pressure. The units psig refer to a gauge
pressure.

The SI unit is named after Blaise Pascal, see Fig. [2.4] the French polymath who
conducted early scientific experiments with manometers, a common measuring device
for pressure, see Fig. [2.5] There are a variety of styles of manometers. Here, a pipe
containing fluid at pressure P and density p has a small tube with cross sectional area
A connecting it to the outside atmosphere at a different pressure Fuey. The length H is
easily measured. The gravitational acceleration is g and is in the negative y direction.
Because P > F,;,,, the manometer fluid is pushed up. However, it finds a mechanical
equilibrinm where the weight of the manometer Huid balances the net force induced
by the pressure differential.
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Fig 2.4. Blaise Pascal (1623-
1662) French scientist and
philosopher who considered

manometry
Puh
Fig 2.5. Manometer sketch -
- i mg = ply=pAiy
g I Pl
rf
T
fluid at P, p

PA

The figure includes a cutaway with a free body diagram. The interior fluid exerts a
positive force of PA on the manometer Huid in the cutaway. The atmosphere exerts
another force of P, A in the negative direction. The third force is the weight of the
fluid: mg. Thus, Newton’s second law tells us

d*y .
T 7 = PA— FPuymA —mg. (2.25)
‘h-h’._!"

=0

Now., we are concerned with cases which are static, in which case the acceleration

d?y/dt* = 0. Thus, we require a force balance, i.e. mechanical equilibrium, which is
achieved when

0 = PA— P, A—mg, (2.26)
PA = PumA+mg. (2.27)

Now. mg = pV'g. where V' is the volume of the Huid in the cutaway. Obviously from
the geometry. we have V = AH, so mg = pAHg. Thus,

PA = P&tln‘q‘ + }'JHHQ' (228}
P = Fum+pgH. (qu}

Or
&P = P — Pﬂ!ln = Pyuu_qle = ng, (2.3“}
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NOTES

A thermodynamic system is any macroscopic system.

Thermodynamic parameters are measurable macroscopic quantities as-
sociated with the system, such as the pressure P, the volume V, the
temperature 7, and the magnetic field H. They are defined experimen-
tally.

A thermodynamic state is specified by a set of values of all the
thermodynamic parameters necessary for the description of the system.

Thermodynamic equilibrium prevails when the thermodynamic state of
the system does not change with time.

The equation of state is a functional relationship among the thermody-
namic parameters for a system in equilibrium. If P, V, and T are the
thermodynamic parameters of the system, the equation of state takes
the form

f(P,V,T)=0
Z‘ An equilibrium
state
Surface of
equation
of state
-V

P
Fig 2.6. Geometrical representation of the equation of state

A thermodynamic transformation is a change of state. If the initial state
is an equilibrium state, the transformation can be brought about only
by changes in the external condition of the system. The transformation
is quasi-static if the external condition changes so slowly that at any
moment the system is approximately in equilibrium. It is reversible if
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the transformation retraces 1its history in time when the external
condition retraces its history in time. A reversible transformation is
quasi-static, but the converge is not necessarily true. For example, a
gas that freely expands into successive infinitesimal volume elements
undergoes a quasi-static transformation but not a reversible one.

The P-V diagram of a system is the projection of the surface of the
equation of state onto the P-V plane. Every point on the P-¥ diagram
therefore represents an equilibrium state. A reversible transformation
is a continuous path on the P-V diagram. Reversible transformations
of specific types give rise to paths with specific names, such as
isotherms, adiabatics, etc. A transformation that is not reversible
cannot be so represented.

The concept of work is taken over from mechanics. For example, for a
system whose parameters are P, V, and T, the work dW done by a
system in an infinitesimal transformation in which the volume in-
creases by 4V is given by '

dWw = PdV

Heat is what is absorbed by a homogeneous system if its temperature
increases while no work is done. If AQ is a small amount of the heat
absorbed. and AT is the small change in temperature accompanying
the absorption of heat, the heat capacity C is defined by

AQ = CAT

The heat capacity depends on the detailed nature of the system and is
given as a part of the specification of the system. It is an experimental
fact that, for the same AT, AQ is different for different ways of heating

up the system. Correspondingly, the heat capacity depends on the
manner of heating. Commonly considered heat capacities are C,, and
C,, which respectively correspond to heating at constants V' and P.
Heat capacities per unit mass or per mole of a substance are called
specific heats.

A heat reservoir, or simply reservoir, is a system so large that the gain
or loss of any finite amount of heat does not change its temperature.
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A system is thermally isolated if no heat exchange can take place
between it and the external world. Thermal isolation may be achieved
by surrounding a system with an adiabatic wall. Any transformation
the system can undergo in thermal isolation is said to take place
adiabatically.

A thermodynamic quantity is said to be extensive if it is proportional
to the amount of substance in the system under consideration and is
said to be intensive if it is independent of the amount of substance in
the system under consideration. It is an important empirical fact that
to a good approximation thermodynamic quantities are either exten-
sive Or intensive.

The ideal gas is an important idealized thermodynamic system. Experi-
mentally all gases behave in a universal way when they are sufficiently
dilute. The ideal gas is an idealization of this limiting behavior. The
parameters for an ideal gas are pressure P, volume V, temperature 7,
and number of molecules N. The equation of state is given by Boyle’s
law:

PV
e constant (for constant temperature)

Isolated systems do not interact in any way with the surroundings. Closed
systems only exchange energy but not exchange matter with their surroundings.
Open systems can exchange energy and matter with their surroundings.

In general one distinguishes two classes of state quantities:

Extensive (additive) state quantities

These quantities are proportional to the amount of matter in a system, e.g., to the particle
number or mass. Characteristic examples of extensive properties are the volume and
the energy. In particular, an extensive state quantity of a heterogeneous system is
additively composed of the corresponding extensive properties of the single phases.
Thus, the volume of a pot containing water, steam and air is the sum of the volumes
of the fluid and gaseous phases. The most characteristic extensive state quantity for

thermodynamics (and statistical mechanics) is the entropy, which is closely related to
the microscopic probability of a state.
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Intensive state quantities

These quantities are independent of the amount of matter and are not additive for the
particular phases of a system. They might assume different values in different phases,
but this is not necessarily the case. Examples are: refractive index, density, pressure,
temperature, etc. Typically, intensive state quantities can be defined locally; i.e., they
may vary spatially. Consider, for instance, the density of the atmosphere, which is
largest at the surface of the earth and continuously decreases with height, or the water
pressure in an ocean, which increases with increasing depth.

We consider a material body consisting of N atoms in volume V, in the absence of a
nonuniform external potential, to be the idealized limit

N = o0
V = 00

% = fixed number

This is called the thermodynamic limit, in which the system becomes translationally
invariant.

Zeroth Law: If each of two systems is in thermal equilibrium with a
third system they are in thermal equilibrium with each other.

The argument can be repeated for fourth, fifth, ... systems (D, E, ...).
If each is in thermal equilibrium with all the others, they must have the
same value of some property that has a common value.

This property is called thermodynamic temperature 7.

The temperature of a system is a property that determines whether or not
that system would be in thermal equilibrium with other systems.
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LECTURE 3: PROPERTIES OF A PURE SUBSTANCE

Content of Lecture 3

3.1. The pure substance
3.2. Vapor-liquid-solid phase equilibrium
3.3. Independent properties
3.4. Thermal equations of state
3.4.1. Ideal gas law
3.4.2. Non-ideal thermal equations of state
3.4.3. Compressibility factor
3.4,4. Tabular thermal equations of state

3.1. The pure substance

We define a

e PURE SUBSTANCE: a material with homogeneous and invariable composition.

To elaborate,

e Pure substances can have multiple phases: an ice-water mixture is still a pure sub-
stance.

¢ An air-steam mixture is not a pure substance.

¢ Air, being composed of a mixture of Ny, (J;, and other gases, is formally not a pure
substance. However, experience shows that we can often treat air as a pure substance
with little error.

3.2. Vapor-liquid-solid phase equilibrium
Often we find that different phases of pure substances can exist in equilibrinm with one
another. Let us consider an important gedankenerperiment (Latin-German for “thought
experiment” ) in which we boil water. Ordinary water boiling is shown in Fig. 3.1] However,
this ordinary experiment has constraints which are too loose. Most importantly, the mass
of water leaks into the atmosphere; thus, the water vapor and the air become a mixture and
no longer a pure substance.

Let us instead consider a more controlled piston-cylinder arrangement. Inside the cylin-
der, we begin with pure liquid water at 7' = 20 °C'. The piston is free to move in the cylinder,
but it is tightly sealed. so no water can escape. On the other side of the piston is a constant
pressure atmosphere, which we take to be at P = 100 kPa = 0.1 MPa = 10° Pa = 1 bar.
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Figure 3.1: Water boiling isobarically in an epen environment.

We slowly add heat to the cylinder, and observe a variety of interesting phenomena. A sketch
of what we observe is given in Fig. [3.2] We notice the following behavior:

F=100 kPa P =100 kPa P =100 EPa P =100 kPa F =100 kEPa P =100 kPa
| E——
| ——
waber vapor
m— | e T> 0062
o o 8 waler vapor
_ I— Ea= _T|.__!'J;"J;Ii_}. _‘-:'. == T = m.fiz 'f-
- legubd water saturated Ly,
]:N._II:-I::LI. n.;lh';‘ T = 90 % Ligpubd water T =0062"C
= T T=#62°C T T T T
Q Q £ £ Q

Figure 3.2: Sketch of experiment in which heat is added isobarically to water in a closed
piston-cylinder arrangement.

e The pressure remains at a constant value of 100 kPa. This is an isobaric process.
® The total volume increases slightly as heat is added to the liqud.
s The temperature of the liquid increases significantly as heat is added to the liguid.

s At a special value of temperature, observed to be T = 99.62 *C’, we have all liquid, but
cannot add any more heat and retain all liquid. We will call this state the saturated
liquid state. We call T = 99.62 °(” the saturation temperature at P = 100 kPa. As we

continue to add heat,

32



— The temperature remains constant (this is 1sothermal now as well as isobaric).
— The total volume continues to increase.

— We notice fwe phases present: liquid and vapor. with a distinct phase boundary.
The liquid is dense relative to the vapor. That is py > p,, where f denotes fluid
or liquid and g denotes gas or vapor. Thus, v, > vy.

— As more heat is added, more vapor appears, all while P = 100 kPa and T =
09.62 °C.

— At a certain volume, we have all vapor and no liquid, still at P = 100 kPa,
T =99.62 °C. We call this state the saturated vapor state.

# As heat is added. we find both the temperature and the volume rise, with the pressure
remaining constant. The water remains in the all vapor state.

We have just boiled water! We sketch this process in the temperature-specific volume plane,
that is, the T — v plane, in Fig. B3] Note that the mass m of the water is constant in this

T A

Lieyasdel mixLinne : satiurated

J | ViapHr

[ 1

(] 1

(] i

: |

[ 1

(] i

M . b_
u 1

f a v

Figure 3.3: Isobar in the T — v plane for our thought experiment in which heat is added
isobarically to water in a piston-cylinder arrangement.

problem, so the extensive V' is strictly proportional to specific volume, v = V/m.

We next repeat this experiment at lower pressure (such as might exist on a mountain
top) and at a higher pressure (such as might exist in a valley below sea level). For moderate
pressures, we find qualitatively the exact same type of behavior. The liquid gets hotter,
turns into vapor isothermally, and then the vapor gets hotter as the heat is added. However,
we note the following important facts:

e The saturation temperature (that is the boiling point) increases as pressure increases,
as long as the pressure increase is not too high.
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o As pressure increases vy becomes closer to v,.

e Above a critical pressure, P = F. = 22.080 MPa. there is no phase change ob-
serverl At the critical pressure, the temperature takes on a critical temperature of

T, = 374.14 °C. At the critical pressure and temperature, the specific volume takes the
value v; = v, = v, = 0.003155 m?/kq.

We see how the boiling point changes with pressure by plotting the saturation pressure
as a function of saturation temperature in the T — P plane in Fig. [3.4] This is the so-called
vapor pressure curve. Here, we focus on liquid-vapor mixtures and keep T high enough to

P

eritical

P Lo point

ommpressd

liquid

superheated
vasor

e
Ll

T T
Figure 3.4: Saturation pressure versus saturation temperature sketch.

prevent freezing. Note the curve terminates abruptly at the eritical point.
We adopt the following nomenclature:

® SATURATED LIQUID: the material is at T,y and is all liqud.

SATURATED VAPOR: the material is at T,y and is all vapor.

COMPRESSED (SUBCOOLED) LIQUID: the material is liquid with T < Ty

SUPERHEATED VAPOR: the material is vapor with T > T

TWO-PHASE MIXTURE: the material is composed of co-existing liquid and vapor with
both at T.u.
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For two-phase mixtures, we define a new property to characterize the relative concentra-
tions of liquid and vapor. We define the

® QUALITY= x: as the ratio of the mass of the mixture which is vapor (vap) to the total
mixture mass:

T =t (3.1)

Myntal

We can also take the total mass to be the sum of the liquid and vapor masses:
Miatal = Miig + MMpap. {32}
So -
g—_ M (3.3)
My + Mygp
There are two important limits to remember:
e 1 = (): corresponds to M. = (). This is the all liquid limit.

e 1 = 1: corresponds to m,, = Myyy. This is the all gas limit.

We must have
D<r<l1. (3.4)

We sketch water's T — v plane again for a wide variety of isobars in Fig. 3.5] We sketch

T
A P=40MPa p _ 99050 MPa
F=10 MFPa
T
E superheated
B VAPOT
8 P=1MPa
twio-plhase
mixture
P=01 MPa
T=99.62 °C - saturated
A saturated vapor line
lirquid line >
v, = 0003155 m' kg v

Figure 3.5: Sketch of T — v plane for water for a variety of isobars.

water's P — v plane for a wide variety of isotherms in Fig. We can perform a similar
thought experiment for ice. We can start with ice at P = 100 kPa and add heat to it. We
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Figure 3.6: Sketch of P — v plane for water for a variety of isotherms.

ohserve the ice’s temperature rise until T = Ty ~ 0 °C'. At that temperature, the ice begins
to melt and the temperature remains constant until all the ice is melted. At this point the
liguid temperature begins to rise. If we continued to add heat., we would boil the water.

We note if we perform this experiment for P < 0.6113 EPa the ice in fact goes directly
to vapor. It is said to have undergone sublimation. There exists a second important point
where ice being heated isobarically can transform into either liquid or gas. This is the so-
called triple point. At the triple point we find the saturation pressure and temperature are
Py = 0.6113 kPa and Ty, = 0.01 °C, respectively. It is better described as a triple line,
because in the P— v —T space we will study, it appears as a line with constant P and T, but
variable v. In the P =T projected plane of the P — v =T volume, it projects as a point. We
sketch water's P — T plane again for a wider range to include the vapor-liguid-solid phase
behavior in Fig. 3.7]

These characteristics apply to all pure substances. For example, nitrogen has a triple
point and a critical point. Table A.2 in BS lists critical constants for many materials. Note
also that phase transitions can occur within solid phases. This involves a re-arrangement of
the crystal structure. This has important implications for material science, but will not be
considered in detail in this course.

3.3. Independent properties

Let us define a

o SIMPLE COMPRESSIBLE SUBSTANCE: a material that can be worked upon by pressure
forces.
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Figure 3.7: Sketch of P — T plane for water.

Note we neglect electric, magnetic, and chemical work modes. While this is indeed restrictive,
it will be important for many mechanical engineering applications. The following important
statement can be proved (but will not be so here):

e For a simple compressible substance, two independent intensive thermodynamic prop-
erties define the state of the system.

Consider the implications for

e superheated vapor: If we consider P, T, and v, this states that we must allow one of the
variables to be functions of the other two. We could have P = P(T,v), v = (T, P),
or T = T(P,v). All are acceptable.

e two-phase mizture: If we have a two-phase mixture, our experiments show that P and
T are not independent. In this case, we need another property to characterize the
system. That property is the quality, . So for two-phase mixtures, we might have
v =v(T, z). for example.

3.4. Thermal equations of state

Here, we will describe some of the many different ways to capture the relation between two
independent properties and a third dependent property for a simple compressible substance.
We will focus on a so-called
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¢ THERMAL EQUATION OF STATE: an equation which gives the pressure as a function
of two independent state variables. An example is the general form:

P =P(T,v). (3.5)

We will progress from simple thermal equations of state to more complex.

3.4.1 Ideal gas law

For many gases. especially at low density and far from the critical point, it is possible to
write a simple thermal equation of state which accurately describes the relation between
pressure, volume, and temperature. Such equations were developed in the 1600s and early
1800s based entirely on macroscopic empirical observation. In the late 1800s, statistical
mechanics provided a stronger theoretical foundation for them, but we will not consider that
here.

Let us start with the most important equation of state:

o IDEAL GAS LAW: This equation, which is a combination of Boyle's Iaw,EI Charles’ :'awﬂ
and Avegadro’s Iawﬂ is most fundamentally stated as

PV =nRT. (3.6)

On the continent, Boyle's law is sometimes known as Mariotte's law after Edme Mariotte
(1620-1684), but Boyle published it fourteen years earlier[] A reproduction of Boyle's data
1s given 1n Fig. The data in (V,1/P) space is fit well by a straight line with intercept
at the origin; that is 1/P = KV, where K is a constant. Thus, PV = C, where C = 1/K is
a constant.

0.04 b)
0.03 [
=
= [
2 0.02f
o, [
T L
—~  001L
0 10 ) 30 40 50 g (in)

Figure 3.8: a) Boyle's 1662 data to validate his law (PV is constant for an isothermal
process), b) plot of Boyle's data: V (column A) versus reciprocal of P (reciprocal of column
D), demonstrating its near linearity.
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Depictions of Bovle, Charles, and Avogadro are given in Fig. 5.9 The ideal gas law was
first stated in the form roughly equivalent to Eq. (B.6]) by Clapeyron|” depicted in Fig. 310

It is critical that the temperature here be the absolute temperature. For the original
argument. see Thmnmn Here, n is the number of moles. Recall there are N = 6.02214179 %
10 molecules in a mole, where N is Avogadro’s number. Also R is the universal gas constant,
whose history is recounted by J{?nsenﬁ From experiment, many performed by by Regnault,
depicted in Fig. it 1s determined to be

- kJ
R=8314472 ————. (3.7)
kmole K
In this class the over bar notation will denote an intensive property on a per mole basis.
Intensive properties without over bars will be on a per mass basis. Recall the mass-basis

syt {Zmedes (69’076”&(’
174

a) b) C)
Fig 3.9. a) Robert Boyle (1627-1691), Irish scientist who developed an important special case of
the ideal gas law; b) Jacques Alexandre Cesar Charles (1746-1823), French scientist credited in
1802 by Joseph Louis Gay-Lussac (1778-1850) for developing an important special case of the
ideal gas law in the 1780s; c) Lorenzo Romano Amedeo Carlo Avogadro di Quarengna e di
Cerroto (1776-1856), Italian physicist, nobleman and revolutionary.

Fig 3.10. Benoit Paul Emile Clapeyron (1799-1824),
French engineer and physicist who furthered the
development of thermodynamics.
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Fig 3.11. Henry Victor Regnault (1810-1878), French
chemist and physicist who made careful early
measurements of thermodynamic parameters for ideal
and non-ideal gases

specific volume is v = V/m. Let us define the mole-based specific volume as

T=—. (3.8)

Thus, the ideal gas law can be represented in terms of intensive properties as

r

P- =TT (3.9)
e
Pt = RT. (3.10)

There are other ways to write the ideal gas law. Recall the molecular mass M is the
mass in g of a mole of substance. More common in engineering, it is the mass in kg of a
kmaole of substance. These numbers are the same! From chemistry, for example, we know

the molecular mass of O 1s 32 g/mole = 32 kg/kmole. Symbolically, we can say that

m
M=—. 3.11
- (3.11)
Now, take the ideal gas law and divide by m:
PV = nRT, (3.12)
rp~— = L RmT (3.13)
m m
S S
=g =].l||r.ﬂ-f
R
Pv = — T 3.14
! M (3.14)
=k
Now. let us define -
R
R= —. 3.15
M ( )



Let’s check the units: i Emol o
o mole

1 = = ) A6

[R] kmole K= kg kg K (3.16)

We have actually just lost some universality. Recall R is independent of material. But since
each different gas has a different M. then each gas will have its own K. These values for
various gases are tabulated in Table A.5 of BS.

With this definition, the ideal gas law becomes

(317)

This is the form we will use most often in this class. Note the useful fact that

Pv
T = H. (3.18)

Thus, if an ideal gas undergoes a process going from state 1 to state 2, we can safely say

Py, Fyu,
= . 19
T o (3.19)

Consider some notions from algebra and geometry. The function f(z,y) = 0 describes a
curve in the  — y plane. In special cases, we can solve for y to get the form y = y(z). The
function f(z,y,z) = 0 describes a surface in the = — y — z volume. In special cases, we can
solve for z to get z = z(x,y) to describe the surface in the r — y — 2 volume.

Similarly, the ideal gas equation P(v,T) = RT /v describes a surface in the P— v =T

volume. A surface for air is shown in Fig. 3.14] Often, it is easier to understand the behavior

nK) 5 100
300 290 v

400

Figure 3.14: Thermodynamic surface for air modeled as an ideal gas.

of the thermodynamic surfaces by projection into various thermodynamic planes and plotting
various iso-contours. Let us do this for an ideal gas.

e isobars:

— Consider curves in the T'— v plane on which P is constant. Thus, for the ideal

gas, we consider
P
= (—) . (3.25)



If we insist that P is constant, this gives the equation of an isobar in the T — v
plane. Moreover, for the ideal gas, we see that in the T — v plane isobars are
straight lines with slope P/R. The slope is always positive since P > () and
R = (). 5o if the pressure is high, the slope is positive and steep. If the pressure
is low, the slope is positive and shallow.

— Consider curves in the P — v plane in which P is constant. Thus. we consider
P = constant, (3.26)
which are straight horizontal lines in the P — v plane.

— Consider curves in the P — T plane in which P is a constant. Thus, we consider

P = constant, (3.27)
which are straight horizontal lines in the P — v plane.
Isobars in various planes are shown in Fig. 3.15
T & Phj: A Y P oA
r.lII ’,' ______________ 'PH,I: ______________ Ph,n.
AP e S (U P
' T

Figure 3.15: Isobars for an ideal gas in T — v, P — v, and P — T planes.

e Isotherms

— Consider curves in the T — v plane on which T is constant. Thus, for the ideal

gas, we have

T = constant

These are straight horizontal lines in the T = v plane.

(3.28)

— Consider curves in the P — v plane on which T is a constant. Thus, for the ideal

gas, we have

P = (RT) %

These are hyperbolas in the P — v plane.
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— Consider curves in the P — T plane on which T is a constant. Thus, for the ideal
gas, we have
T = constant. (3.30)

These are straight vertical lines in the P — T plane.

Isotherms in various planes are shown in Fig. .16}

T Ak P A P oA 1 T
Ll fow high
P 1
-------------- 1 [ 1 1 '
fagh :..I.I;.II 1 1 1 1
1 1 1 1
':'I','.':I 1 1 1 1
—————————— [ | I [
i ll'l1\~ ] i I ]
:11\ [ 1 i [
______________ R [ i i 1
oo i i i i
A 1 1 [ 1
] o 1 1 1 1
.............. T v Tw e el T 1 1 1 1
o " L higk 1 1 1 1
Sema o= T 1 1 1 1
= L =
> > r
(i T

Figure 3.16: Isotherms for an ideal gas in T = v, P = v, and P = T planes.

e isochores

— Consider curves in the T — v plane on which v is constant. Thus, for the ideal
gas, we have
v = constant (3.31)

These are straight vertical lines in the T = v plane.

— Consider curves in the P — v plane on which v is a constant. Thus, for the ideal
gas, we have
v = constant. (3.32)

These are straight vertical lines in the P — v plane.

— Consider curves in the P =T plane on which v is a constant. Thus, for the ideal
gas, we have

P= (g) T (3.33)
——

constant

These are straight lines in the P — T plane with slope R/v. Since R > 0 and
v = (), the slope is always positive. For large v, the slope is shallow. For small v,
the slope is steep.

Isochores in various planes are shown in Fig. [3.17]
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Fig 3.20. Johannes Diderik van der Waals (1837-1923),
Dutch physicist and Nobel laureate who developed a
corrected state equation

i
{
i

-
Ly

L 4
L 4

Figure 3.17: Isochores for an ideal gas in T — v, P — v, and P — T planes.

3.4.2 Non-ideal thermal equations of state

The i1deal gas law is not a good predictor of the P — v = T behavior of gases when

e the gas has high enough density that molecular interaction forces become large and
the molecules occupy a significant portion of the volume; this happens near the vapor
dome typically, or

e the temperature is high enough to induce molecular dissociation (e.g. N + N; =
2N + Ny)

(One alternative is a corrected thermal equation of state.

3.4.2.1 wvan der Waals

For the van der H—"aﬂl@ equation of state, which will be studied in more detail in Sec.
one has

RT a
P= - 3.45
v=—"h 2 (3.45)
with -
27 LT 1 T oo

A depiction of van der Waals is given in Fig. [3.20]
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3.4.2.2 Redlich-Kwong
For the Rcdiich—f(wnn equation of state, one has
RT a

P= - , 347
v=b u(v+b)VT (347)
with
ReT? RT.
a = (0.42748) =—. b= (0.08664) = (3.48)

3.4.3 Compressibility factor

In some cases, more detail is needed to capture the behavior of the gas, especially near the
vapor dome. Another commonly used approach to capturing this behavior is to define the

o COMPRESSIBILITY FACTOR: the deviation from ideality of a gas as measured by

_P*u

TE (3.49)
'y
2 =
2 /
=
::;-l. [Te——— 2 i7" ideal gas, Z=1
N saturated vapor
critical
point
ﬁaturat{-:rl Tiopaid -
| .

1 10

Figure 3.21: Sketch of compressibility chart for Na.

For ideal gases, Pv = RT. so £ = 1. Experiments show the behavior of real gases, and this
can be presented in graphical form, as shown for N in Fig. [3.21] Note
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o forallT, £ — 1 as P — (). Thus, one has ideal gas behavior at low pressure
e for T =300 K, Z ~ 1 for P < 10 M Pa.

o Hold at P =4 M Pa and decrease temperature from 300 K: we see £ decrease below
unity. Now
Pu P P
"= RT_ prT’ "7 ZRT
Since & < 1, the density p is higher than we would find for an ideal gas with 2 = 1.
Thus, in this region, there is an attractive force between molecules.

(3.50)

e For P > 30 MPa, we find Z > 1. Thus, a repulsive force exists in this regime. The
forces are complicated.

Note that generalized compressibility charts have been developed for general gases. These
are based on the so-called reduced pressures and temperatures, F, and T, where

P==, T,==. (3.51)

3.4.4 Tabular thermal equations of state

Often equations are too inaccurate for engineering purposes. This 1s generally because we
may be interested in behavior under a vapor dome. Consider that the surface for steam is
well represented by that shown in Fig. [3.2J]

Figure 3.22: P — v — T surface for H,0. showing solid, liquid, and vapor phases.
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In such cases, one should use tables to find a third property. given two independent
properties. We can say that the thermal equation of state is actually embodied in the
tabular data.

We lay down some rules of thumb for this class:

e [f steam. use the tables.

o If air or most other gas, use the ideal gas law, but check if the pressure is high or
the properties are near the vapor dome, in which case use compressibility charts or
non-ideal state equations.

Let us look at how the tables are organized.
3.4.4.1 Saturated liquid-vapor water, temperature tables
For water. the most important table is the saturated steam table. One should go to such
tables first. If the water is a two-phase mixture, tables of this type must be used as the
equation of state. Recall, for two-phase mirtures, pressure and temperature are not inde-

pendent thermodynamic variables. Two properties still determine the state, but quality = is
now important. So for two-phase mixtures we allow

o I'=T(v, ).
e P=P(v,x), or
o v=uo(T,x),

for example. But P # P(T,v) as for ideal gases.
Consider the structure of saturation tables, as shown in Table B.2] extracted from BS's
Table B.1.1. Data from the steam tables is sketched in Fig. We have the notation:

m.{-

Specific Volume, -

Temp. Press. Sat. Liquid Evap. Sat. Vapor
°C kPa vf Vg Vg

0.01 0.6113 0.001000°  206.131 206.132
5 0.8721 0.001000  147.117 147.118

10 1.2276 0.001000  106.376 106.377
15 1705 0.001001  77.924 77.925

35  5.628 0.001006  25.2148 25.2158
40 7384 0.001008  19.5219 19.5229

374.1 22089 0.003155 0 0.00315

Table 3.2: Saturated liquid-vapor water tables, temperature entry, from BS, Table B.1.1.
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e f: saturated liquid,
e g: saturated vapor,
s vy specific volume of saturated liquid, and

s 1, specific volume of saturated vapor.

Note for liguid-vapor mixtures, this table begins at the triple point temperature (0.01 *C and

ends at the critical temperature 374.1 °C. At P = F, and T' = T, we have vy = v,.

that

¢c) 4

superheated
vapor

conprissed
ligguicl

1 S e bt CEEEEEE T

s — TTU ]
v, = TT.924 m kg

i
i
i
i
i
i
i
- )
] L
'
1
0
0
0
0

v=0.001000 mifkg v, =77.925 mifky

Figure 3.23: Vapor dome for H,0O with data for vy, vg. and vy at T = 15°C.

® vp = constant

e v, decreases with increasing T

We define v g 85

Recall the quality = is
Myap

ﬂltnﬂtd‘
Consider a mass of luid m in total volume V. We must have

Ir =

Vo= Vig + Viap:

m = Mg+ Mygy.
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Now, use the definition of specific volume and analyze to get

Mgty + m
m

vaply,
lyap

Myiq
vy +
- f

Vg
'E
m

(1 = x)vp + xvy,

vf 4z (vg — vy) .
“_'\"'_"

=tfg

We get the final important results:

U=V 4 TVUfg.

Ufg

_U—U_f

3.4.4.2 BSaturated liguid-vapor water, pressure tables

(3.55)
(3.56)

(3.57)

(3.58)
(3.59)

(3.60)

(3.61)

Sometimes we are given the pressure of the mixture, and a saturation table based on the
pressure is more useful. An example of a portion of such a table is shown in Table

Specific Volume, "‘1—J

£

Press. Temp. Sat. Liguid Evap. Sat. Vapor
EFa °C vy Ufg Ug
0.6113 0.01 QL0000 206.131 206.132
1.0 6.98 0001000 129.20702 129.20802

1.5 13.03 0.001001 8T7.97913 87.98013

2.0 17.50 0.001001 G7.00285 GT.003385
22089 3741 0.003155 0 0.00315

Table 3.3: Saturated water tables, pressure entry from BS, Table B.1.2.

3.4.4.3 Superheated water tables

The superheat regime is topologically similar to an ideal gas.
the quality r is meaningless. and we can once again allow pressure and temperature to be
independent. Thus, we can have v = v(T, P). And the tables are in fact structured to give
v(T, P) most directly. An example of a portion of such a table is shown in Table B.4] This
portion of the superheated tables focuses on a single isobar, P = 10 kEPa. At that pressure,
the saturation temperature is 45.81 °C', indicated in parentheses. As long as T > 45.81 °C,
we can use this table for P = 10 kPa water. And for various values of T" > 45.81 °C', we
find other properties, such as specific volume v, and properties we have not vet focused on,

internal energy u, enthalpy h, and entropy s.
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Temp. v u h 5
°C m?t kJ kJ kJ
i kg kg kg kg K

P = 10 kPa (45.81 °C)

Sat. 14.67355 2437.89 2584.63 5.1501

50 14.86920 2443.87 259256 8.1749
100 17.19561 2515.50 2687.46 8.4479
150 1951251 2587.86 278299 8.65881

Table 3.4: Superheated water tables, from BS. Table B.1.3.

3.4.4.4 Compressed liquid water tables

Liquids truly have properties which vary with both T and P. To capture such variation,
we can use compressed liquid tables as an equation of state. An example for water is given
in Table If compressed liguid tables do not exist, it is usually safe enough to assume

Temp. v i h 5
o7 md kJ kJ kJ
B kg kg kg kg K

P =500 kPa (151.86 °C)

Sat. 0.001093 639.66 640.21 1.8606
0.01  0.000999 0.01 0.51  0.0000
200 0.001002 8391  84.41 (0.2965
40 0.001008 167.47 167.98 (0.5722

Table 3.5: Compressed liquid water tables, from BS, Table B.1.4.

properties are those for r = () saturated liquid at the appropriate temperature.

3.4.4.5 Saturated water, solid-vapor

Other types of saturation can exist. For example, below the triple point temperature, one
can have solid water in equilibrium with water vapor. The process where ice transforms
directly to water vapor is known as sublimation. Saturation tables for ice-vapor equilibrium
exist as well. For example, consider the structure of saturation tables. as shown in Table
(L0l extracted from BS’s Table B.1.5.
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Specific Volume, '“-,_,—;

Temp. Press. Sat. Solid Evap. Sat. Vapor
T EPa v Vig Vg

0.01 0.6113 0.0010908 206.152 206.153
0 06108 0.0010908  206.314 206.315

-2 05177 0.0010905  241.662 241.663
-4 04376 0.0010901  283.798 283.799

Table 3.6: Saturated solid-vapor water tables, temperature entry, from BS, Table B.1.5.

3.4.4.6 Tables for other materials

For many materials similar tables exist, e.g., ammoma, N H,;. Consider the ammonia satura-
tion tables, as shown in Table B3] extracted from BS’s Table B.2.1. One also has tables for

2

Specific Volume, Yy

Temp. Press. BSat. Liguid Evap. Sat. Vapor

ot EPa Up Vg Uy
=50 40.9 0.001424  2.62557 262700
-45 54.5 0.001437  2.00489 200632
-40 T1.7 0.001450 1.55111 1.55256
-39 03.2 0001463 1.21466 1.21613
132.3 11333.2 0.004255 0 0004255

Table 3.7: Saturated liquid-vapor ammonia tables, temperature entry, from BS, Tahble B.2.1.

superheated ammonia vapor. An example of a portion of such a table is shown in Table
Other tables in BS, include those for carbon dioxide, '3, a modern refrigerant, R-410a
another common refrigerant, R.—1343JE diatomic nitrogen, N3, and methane, (' H,.

Temp. v u h s
o m kJ kS _kd
kg kg kg kg K

P = 50 kPa (—46.53 °C)

Sat. 21752 1269.6 13783 6.0839
-30 23448 1296.2 14134 6.2333
=20 24463 13123 14346 6.3187
-10 25471 13284 1455.7  6.4006

Table 3.8: Superheated ammonia tables, from BS, Table B.2.2.
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NOTES
Ideal Gases

Boyle's Law and the Kelvin scale

" - Ii_r,rg)(pb?)rp H
lim(pV') = o s1e | RT valid for dall gases for p - O

p—0

define
the “gas constant”

An ideal gas obeys the expression pVV =RT at all pressures
(= the gas molecules do not interact)

lim(pV) 7
R=| 222 "% |=831451 (gas constant)
273.16 K —mol

The Ideal gas law

pV =RT| or pV =nRT

This is an example of an equation of state
V=~Ff(npT)

Eguations of state

AL GAS LAW: | pV =nRT —  pV =RT
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Mixture of ideal gases comprising 7 moles of each

p = ”ﬁr <— Partial pressure of i™ gas
P=Prow = 2P X =% mole fraction of i™ gas
p = %p =Xp Dalton's Law
Real Gases --  do not necessarily obey ideal gas law

(@) Compressibility factor

pV =ZRT Z=T=

Viea
High T =  Repulsions dominate Z>1 Vear > Vioea
Low T =  Attractions dominate Z<1 Vs <Voow

(b) Virial Expansion

generally neglect

_ ’ ‘
PV _ _1,80) (), .
RT_Z(T)_1+ v 4 "z +
As p >0,V ->», = ideal gas B=0 = ideal gas

(neglect C and higher order terms)

(¢) van der Waals Equation of state

only two parameters, derived from molecular concepts

e First assume “hard sphere” molecules

pV =RT  becomes p(V -b)=RT
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e Now put in attraction

So P=[;j—bj becomes p=[;jbj—;2

Rearranging = (p + T](V_ -b)=RT
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LECTURE 4: WORK AND HEAT

Content of Lecture 4

4.1. Mathematical preliminaries: exact differentials
4.1.1. Partial derivatives
4.1.2. Total derivative
4.2. Work
4.2.1. Definitions
4.2.2. Work for a simple compressible substance
4.2.3. Other forms of work
4.3. Heat

4.1. Mathematical preliminaries: exact
differentials

Here, we review some notions from calculus of many variables. Recall in thermodynamics,
we are often concerned with functions of two independent variables, e.g. P = P(v,T), as is
found in an equation of state. Here, let us consider z = z(x, y) for a general analysis.

4.1.1 Partial derivatives

Recall if z = z(z,y), then the partial derivative of z can be taken if one of the variables is
held constant.

4.1.2 Total derivative
If z = z(r,y), for every = and y, we have a z. We also have the total differential

iz
dr = — —| dy. 4.3
z= - 7. u (4.3)

dr Y

dr +

On a particular path C in the r — y plane along which we know y = y(x), we also have the

total derivative )
dz iz

Iz~ oz,
Now, we can integrate dz along a variety of paths C in the z — y plane. Two paths from z;
to z; are shown in Fig. [l.1] Integrating Eq. (4.3), we get

[ [(5

Now, because z = z(x,y), it will not matter which path we choose. The integral is said to
be path-independent

dz| dy

5|, 2 (4.4)

iz

(

fi'y) : (4.5)
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Figure 4.1: Sketch of two paths from z; to 2o in the r — y plane.

Conversely, if we were given
dz = M(x,y)dr + N(z,y)dy, (4.6)

the associated integrals are path-independent iff z(z,y) can be found by solving.

0z iz
M= =], N=—]. 4.7
dr Yy dyl, (4.7)

One easy way to check this is to form the following two partial derivatives of Eqs. (L.1]):

aM| % aN| 0% 45
dy |, Oyor’ oz |, T ordy’ ’

Now, if z(r,y) and all its partial derivatives are continuous and differentiable, it is easy
to prove the order of differentiation does not matter: ¢°z/dzdy = *z/dydx. Thus, if

z = z(x,y), we must insist that
’}J.;\r
: (4.9)

dr

M
dy

u

F o

We define the following:
® EXACT DIFFERENTIAL: a differential which vields a path-independent integral.

4.2. Work

4.2.1 Definitions

From Newtonian mechanics, we know going from state 1 to state 2, that the work {115 is
done by a force moving through a distance. The word “work” was first used in this sense by
the French mechanician Gaspard-Gustave Coriolis, depicted in Fig. [1.3] Work is defined as
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2
11-1@:/ F - dx. (4.26)
1

In differential form. we have

W =F - dx. (4.27)
In one-dimensional systems, we have
2
W = / Fdr, (4.28)
S = F}dz (4.29)

Note that we have anticipated that the work differential is inexact. This is an important
point, as work integrals will be path-dependent, and work will not be a state variable for a
system. Here, F is a three-dimensional force vector, x is a three-dimensional distance vector,

Fig 4.3. Gaspard-Gustave Coriolis (1792-1843),

French physicist who used to word “work” to
characterize a force acting through a distance

and - is the dot product operator. Recall that the dot product of two vectors yields a scalar.
The terms F and x are scalar equivalents valid for one-dimensional systems. The units of
force are NV, those of distance are m. so the units of work are N m, which have been defined
as Joules (.J).

Work is done by a system if the sole effect on the surroundings (i.e. everything external
to the system) could be the raising of a weight. We take the following sign convention:

e + work done by the system,
o — work done on the system.

This sign convention is not universal. Many physicists use precisely the opposite convention.

Probably the reason for this convention is that thermodynamics is a science that was invented

by engineers in the nineteenth century. And those engineers wanted to produce work from

steam engines. Svstems doing work were viewed favorably and endowed with a positive sign.
We associate energy with the ability to do work. We define

e POWER: the time rate of doing work = §WW/dt.

e SPECIFIC WORK: the work per unit mass w = W/m. Because work is path-dependent,
the intensive quantity w is not a thermodynamic state variable.

4.2.2 'Work for a simple compressible substance
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Consider the scenario sketched in Fig. [1.4] In state 1, we have a material at pressure P
confined in a cylinder of cross-sectional area A. The height of the piston in the cylinder is
x. The pressure force of the material on the piston is just balanced by weights on top of the
piston.

. P+dP r+de

state 1 state 2

Figure 4.4: Sketch of piston-cylinder arrangement as work is done as the material expands
when weights are remowved.

Now, remove one of the weights. We notice a motion of the piston to a new height =+ dx.
We let a long time elapse so the system comes to rest at its new equilibrinm. We notice
there is a new pressure in the chamber, P 4+ dP sufficient to balance the new weight force.

Obwviously work was done as a force acted through a distance. Let us caleulate how much
work was done. The differential work is given from Eq. (1.29) as

§W = Fdx. (4.30)

Now, F waries during the process. At state 1, we have FF = FPA. At state 2. we have
F = (P + dP)A. Let us approximate F' by its average value:

F~ %{Pﬂ +(P+dP)A) = PA+ %A. (4.31)

So
ow = (Pa+ A dr = PAdr + 2 gpPa 1.32
= + 5 A ) de = T+ an. (4.32)

Let us only retain terms which are differential and neglect the square of differential terms,
S0

§W = PAdzr. (4.33)
Now, since Adr = dV, the differential volume, we get the important formula:
AW = PdV. (4.34)

We can integrate this and get the equally important
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2
W, = / PdV. (4.35)
1

Note we employ the unusual notation ;% to emphasize that the work depends on the path
from state 1 to state 2. We are tempted to write the incorrect form Jl‘lz AW = Wo — W, but
this would imply the work is a state function, which it is not, as shown directly.

We can also see the path-dependence of W3 by realizing that ;W; = fl? PdV represents
the area under a curve in a P — V' diagram. Consider two paths, A and B from the same
points 1 to 2 as depicted in the P — V space of Fig. The area under the curve defined
by Path A is clearly different from that under the curve defined by Path B. Clearly, the
work {1V, depends on the path selected. and not simply the end points. Obviously then. to
calculate the work, we will need full information on P(V') for the process under consideration.

Many processes in thermodynamics are well modeled as a

Pn Pu

w

¥

'Ir.f

2 2
Hf'2 = IIPEfI»f' IHIZ — led V

1

Figure 4.5: P — V diagram for work for two different processes connecting the same states.

e POLYTROPIC PROCESS: a process which is described well by an equation of the form
PV = constant = (.

Here, n 1s known as the polytropic exponent.

Now, if n = 1, we have PV = (', which corresponds to an isothermal process if the
material is also an ideal gas. Note that non-ideal gases can also have PV = (; they just are
not isothermal. We need to be able to analyze polytropic processes with n = 1.

A family of paths in the P =V plane for a set of polytropic processes of varying n is
shown n Fig. [L6]
4.2.3 Other forms of work

We note that there are other forces hesides pressure forces, and those forces can also do

work. Consider

¢ a stretching wire stretched by tension force T through length change dL. The differ-
ential work is
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“- n—0 (isobaric)

n-=1 [polytropic)
n=1 (isothermal [or deal gases)

n + oo (isochoric) n>=>1 [(polytropic)

 }

> v
W, = [ PdV
1

Figure 4.G6: P — V diagram for wvarious polytropic processes.
P E 5

-
=]

3
W, =] PdV <0

rrmmmmm

=

V

Figure 4.7: Sketch of two-step, isothermal-isobaric, compression of an ideal gas.
oW = =TdL. (4.107)

s a surface with surface tension 8. The differential work is

SW = —8dA. (4.108)

e a system with electrical work where £ is the electrical field strength. g is the particle

charge, and r is the distance:
W = —q&dx. (4.109)

In total, for materials which are more than simple compressible substances, we have
W = =PdV = TdL — 8dA — q€dxr — ... (4.110)

It can be shown that the more work modes we include, the more independent thermodynamic
variables are necessary to specify the state of the system.

Lastly we note that a gas expanding into a vacuum has W, # JI'I:E FdV because it is
inherently a non-equilibrium process.
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4.3. Heat

Let us make the following definition:

¢ HEAT: a form of energy transferred across the boundary of a system at a given tem-
perature to another system (or the surroundings) at a different temperature by virtue
of the temperature difference hetween the two.

We adopt the notion that bodies do not contain heat, but that heat only has relevance as a
type of energy that crosses system boundaries. Note that work is in a similar class; it 1s not
contained within a system, but can be identified when it crosses system boundaries. We will
make a distinction between heat and work energy transfers.

We also note that when two bodies are at the same temperature, there can be no heat
transferred between the two bodies. The subject of heat transfer considers the details of the
heat transfer process. There are three fundamental classes of heat transfer:

o heat diffusion, also called conduction. Physically this is due to local effects. Bacon is
fried via conduction effects as a culinary example. This is characterized by Fourler’s

la
q=—-kVT. (4.111)

where q is the heat flur vector with units J/s/m* = W/m?®, k is the thermal conductivity
with units J/s/m/K = W/m/K, and VT is the vector representing the gradient of
temperature. Recall that VT is a vector pointing in the direction in which T rises
most rapidly. Because of the minus sign, we see then that the thermal energy flows in
the direction of most rapid temperature decrease. This law was developed by Joseph
Fourier, who built an elegant and correct theory of a special case of non-equilibriim

thermodynamics before the laws of equilibrium thermodynamics were formulated. let
alone fully understood. Fourier is depicted in Fig. [L.16]

In one dimension, we get

dT
q=—k—. (4.112)

If we multiply by the local cross-sectional area, we find Q = gA. and

Q= —I-ul£ ~ _MM,

- - (4.113)

Here, () has units J/s or W (Watts).
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Fig 4.16. Jean Baptiste Joseph Fourier (1768-1830),
French physicist and mathematician who developed a
correct theory of heat conduction

e convection. This is actually a version of conduction. albeit enhanced by fluid How. For
some systems, convective effects are well modeled by Newton's law of conlinﬁ :

q = h(Thot = Teota) (4.114)
Q = qA=hA(Tha — Teatd). (4.115)

Here, h is a constant with units W/m?/K.

o thermal radiation. Physically this is due to remote effects. The earth is heated by
the sun via radiation effects, not conductive energy diffusion. For some systems, the
radiative heat transfer rate is well modeled by

a = o= Th). (4.116)
Q = aA=cA(Tiy - Tha). (4.117)

Here, o is the Stefan-Boltzmann constant, o = 5.67 x 107* W/m*/K".
We adopt the traditional engineering sign convention for heat:
e + heat enters the system,

o - heat leaves the system.

The sign convention again is motivated by nineteenth century steam engines. Heat had to be
added into a system to get work out of the system. Since engineers were and are concerned
with this problem. this convention is taken.

We define a special kind of process in which () = () as

o ADIABATIC: a type of process for which there is no heat transfer.

The word “adiabatic” was first used by Rﬂnkil‘lEH It is from the Greek a diaFatos: not
to be passed through; in detail, @ (not) 4 dud (through) + Sards (passable). An image of
Rankine's text containing the first use of the word is shown in Fig. [1.17]
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xjo Omn the other hand, let the sub-
stance be allowed to expand from

X the volume and pressure v,, p,, with-
“ out receiving or emitting heat; and

when it reaches a certain volume,
v, let the pressure be represented
P N by p,, which is less than the pres-

E| N ® sure would have been had the tem-
BT~ perature been maintained constant,
" because, by expansion, heat is made
< . ———x to disappear. Then C will be a
' c point on & certain curve N N pass-
Fig. 92. ing through A, which may be called

a curve of no iransmission, or adiabatic curve.

)
g

Figure 4.17: Image of the first modern use of the word “adiabatic” from|/Rankine's 1859 textl
As is work, heat transfer is a path function characterized by inexact differentials. We
take
2
102 = / a0, (4.118)
1
i1l

Q= = (4.119)
_ @ .
= = (4.120)

Here, g is the specific thermal energy transfer. It has units J/kg. Note g # q, where q is the
heat flux with units W/m?. In this thermodynamics course, we will mainly be concerned
with g. In a heat transfer course, g 1s more important.

Now, (W3 = fl PdV. We will see in future chapters that there is an equivalent for heat

. 3 . . . .
in that ) = fl TdS, where 5 is the entropy, to be defined later.
We finish with some notes of comparison:

o () and W as well as ¢ and w are affiliated with transient phenomena: both cross
boundaries when the system changes state.

o () and W as well as g and w only exist at system boundaries.

o () and W as well as g and w are both path-dependent, have inexact differentials, and
are not properties of the system.

NOTES
e Work: w=F -/

.

applied force distance

63



Pext | —
Expansion work A
p ._.. . . '?T‘--.__Area: Pext
F _ pexrA '. o‘. :. :0: ..- = f e e ‘e =
" L= _pexl‘A V

convention Having a "-" sign here implies w >0 if AV <0, that

is, positive work means that the surroundings do
work to the system. If the system does work on the
surroundings (AV >0) then w<O.

If pe.x:+ is not constant, then we have to look at infinitesimal changes

dw =-p,;dV d means this is not an exact differential

Integral w= —j’f P..,aV depends on the pathlll

e Path dependence of w
Example: assume a reversible process so that pex: = p
Ar (g, p1, ) = Ar (g, p2, V2)

Compression Vi> Vo and p1< po

Pext=P1
‘ Pext= P2
p1,V4 compression >
p2,Vo
initial final
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Two paths:
(1) First W > Vo at p=p (2) First pp > p. at V=W

then po > p> at V=1 then U > Vo at p=p>
Ar(g, p1, V1) = Ar(g, p1, V2) = Ar(g, p2, V2) Ar(g, p1, 1) = Ar(g, p2, 1) = Ar(g, p2, V2)
P4
final
P2 )
P11 ™ Init.
| | a
| | 'V
V2 Vi
Wy =~[; PV = |} PV Wey =1\ PV ~ ! PrcydV
==l AV =-A-¥) = paV =—p, (% -¥)
Wy =AY W = P (1)

(Note w> 0, work done 1o system to compress it)

w,

1 % Wiy I

(@)

Note for the closed cycle [path (1)] - [path (2)], j'>dw =0
closed cycle

wis not a state function cannot write w = f(p, V)

WORK Work (w) is not a function of state.

For a cyclic process, it is possible for §dw #0

-

HEAT That quantity flowing between the system and the

surroundings that can be used to change the temperature
of the system and/or the surroundings.
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Sign convention: If heat enters the system, then it is
positive.

Heat (q), like w, is a function of path. Not a state function

It is possible to have a change of state

(pr, K, 1) = (po, V2, T2)

adiabatically  (without heat transferred)
or nonadiabatically.

Historically measured in calories
[1 cal = heat needed to raise 1 g H,O 1°C,
from 14 .5°C to 15.5°C]

The modern unit of heat (and work) is the Joule.

1cal=4.184J
It is a general property of the energy added to or subtracted from a system that it is
the product of an intensive state quantity (pressure) and the change of an extensive state

quantity (volume), We can illustrate this with further examples. If the system, for instance,
contains an electric charge g, this charge gives rise to an electric potential ¢. If one wants
to add another charge dg with the same sign to the system, one has to perform an amount
of work
dW = ¢dq
The locally defined electric potential is the intensive quantity which describes the resistance
of the system against adding another charge, just as the pressure is the resistance against a
compression. Here the sign is caused by the fact that adding a positive charge

while the potential is positive corresponds to work performed on the system,
If our thermodynamic system has an electric or magnetic dipole moment, adding
another dipole to the system requires the work
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=

W, = E -dDy
SWMQQ — -g " dﬁmuy

Here the intensive field quantities are the electric and magnetic fields (E and 5), while d D
denotes the change of the total dipole moment, which is an extensive quantity,
We define
dW = xdN
as the work necessary to change the particle number by dN particles. The intensive field
quantity is called the chemical potential and represents the resistance of the system against
adding particles.

All different kinds of work have the generic property that they can be converted into
each other without restrictions. For example, we can lift a weight with electrical energy
or gain electrical energy from mechanical work with the help of a generator. There is no
principle objection that these conversions do not proceed completely, i.e., with a rate of
100%, although real energy converters always have losses.

Sign convention
In physics (as opposed to engineering) we are generally interested in changes of the system and therefore

consider work to be defined as the work done ON the system by its surroundings. Hence for a
reversible change of volume of a system consisting of a fluid,

| dW = -PdV |

If dV is negative, the gas is compressed and the work done on it, —PdV, is positive.

Dissipative processes

Unlike for a reversible process where we can specify dW = —PdV | it is not possible to specify work
done in terms of state variables of the system for dissipative processes, eg stirring. Although the
work done may be quantified, this requires knowledge of external forces. Reversing the process, via
controlling the surroundings, does not reverse the sign of the work done eg reversing the direction
of stirring does not extract energy from the system. Therefore dissipative processes = irreversible.
Irreversible processes where there is no direct dissipation (conversion of work into random motion) can
also occur eg the irreversible flow of heat between bodies at different temperatures (we will see later
that this represents a loss of potential to do work).

What is Heat
Newton: 1690

The rate of heat loss of a body is proportional to the tem-
perature difference between the body and its surroundings.
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Lavoisier: 1790
Heat consists of a self-repellent fluid, caloric, that flows
from hotter bodies to colder bodies.

Joule and Thomson: 1851
Heat is not a substance, but a dynamical form of

mechanical effect

If a THERMALLY ISOLATED system is brought from one equilibrium state
to another, the work necessary is independent of the process used.

Heat is the exchange of energy between the system and the surroundings
that cannot be identified as work (eg mechanical work).
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LECTURE 5: THE FIRST LAW OF THERMODYNAMICS

Content of Lecture 5

5.1. Representations of the first law
5.1.1. Cycle
5.1.2. Process
5.2. Specific internal energy for general materials
5.3. Specific enthalpy for general materials
5.4. Specific heat capacity
5.5. Caloric equations of state
5.5.1. Ideal gases
5.5.2. Liquids and solids
5.5.3. General materials
5.6. Time-dependency
5.7. Final comments on conservation

5.1. Representations of the first law

There are a variety of ways to represent the first law of thermodynamics, also known as
the principle of conservation of energy. Some of them are not obvious, but have withstood
the scrutiny of detailed experiment. Perhaps the simplest, but also the most obtuse, is the
following.

5.1.1 Cycle

o FIRST LAW OF THERMODYNAMICS: During any cycle, the cyelic integral of heat added
to a system is proportional to the eyelic integral of work done by the system.

If we denote a cyclic integral by jf , the mathematical representation of this law is

J f 5Q = f SW,  (Qin cal, W in J). (5.1)

Here J is a proportionality constant, sometimes known as the mechanical equivalent of heat.
Now. during the development of thermodynamics, () was measured in cal, where 1 cal rep-
resented the energy necessary to raise 1 g of water 1 °C', and W was measured in .J which
represented the work done in moving a 1 kg mass against a force of 1 V.

In the now-discredited caloric theory, heat was thought to be a Huid and not explicitly
related to work. This theory began to lose credibility with the experiments conducted in
Bavaria by the colorful American scientist Sir Benjamin Thompsor| (Count Rumford). By
doing work in boring a cannon immersed in water and boiling the water, Thompson was
able to demonstrate that the work of boring was converted into heat. Thompson’s image is
shown in Fig.[5.1h. Thompson's etching of the cannon used in his experiment is reproduced

in Fig. 5.Ib.
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In the 1840s there was considerable effort to relate mechanical and thermal energy and
thus measure J. There is some controversy over who first quantified this value. By many
accounts Julius Robert von Mayver achieved the first sucecess in 1842@ though his exposi-
tion often lacked the mathematical and experimental support that many scientists demand.
Mayer is pictured in Fig. Contemporaneously, and with more publicity, Joule spent
considerable effort in carefully measuring J He estimated § = 4.41 .J/eal, which has since
been corrected to

g = 1.1860 ig (5.2)

ca
We give a portrait of Joule in Fig. 5.3h. A nineteenth century etching of Joule's device is
given in Fig. 0.3b. A modern full-scale replica of Joule's apparatus designed and constructed
by Mr. Leon Hluchota and Prof. Patrick F. Dunn, based upon Joule's original experimental
display in the Science Museum, London, and in use in undergraduate laboratories at the
University of Notre Dame. 1s shown m Fig. [5.3¢.

Fig 5.1. A portrait of Sir Benjamin
Thompson (Count Rumford)(1753-1814),
American scientist whose cannon-boring
experiments discredited the caloric theory
and the image his cannon(1798)

Fig 5.2. Julius Robert von Mayer (1814-1878), German physician
and physicist who in 1842 said “Energy can be neither created nor
destroyed.

c)

Fig 5.3. a) James Prescott Joule (1818-1889), English experimentalist who demonstrated the
mechanical equivalent of heat; b) Sketch of Joule’s original apparatus (1869); c) Operational
full-scale replication of Joule’s experiment to measure the mechanical equivalent of heat at the
University of Notre Dame.
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While Joule performed the key experiments, the critical acceptance of the first law is
attributed by many to the work of Hermann von Helmhultz@ pictured in Fig. However,
Truesdell notes that in this work Helmholtz restricts his conservation principle to kinetic
and potential Energies The classical theoretical framework for the first law and more was
firmly solidified by Rudolf E'la,us;ius; Clausius is depicted in Fig.

Now, in this class, we will not bother much with the mechanical equivalent of heat, and
simply insist that () be measured in units of work. When () has units of .J, then § = 1, and
we recover our preferred form of the first law:

)1{ 6Q = f( SW.|  (QinJ, W in J). (5.3)

Fig 5.4. Hermann Ludwig Ferdinand von Helmholtz (1821-
1894), German physician and physicist who impacted nearly
all of nineteenth century

Fig 5.5. Rudolf Julius Emmanuel Clausius (1822-1888),
German  theoretician who  systematized  classical
thermodynamics into a science.

5.1.2 Process

We arrive at an alternate representation of the first law by the following analysis. Consider
the sketch of Fig. (.6l Now, consider two cyeles, each passing through points 1 and 2, albeit

P

-~

> v

Figure 5.6: Sketch of P — V diagram for various combinations of processes forming cvclic
mtegrals.
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via different paths:

e Cvyele I: 1 to 2 on Path A followed by 2 to 1 on Path B,
e Cycle II: 1 to 2 on Path A followed by 2 to 1 on Path .

The only difference between Cycles I and IT is they take different return paths. Now, write
the first law § Q) = § W for Cycle I:

2 1 2 1
] Q4 + / Qe = f AWy +] Wg, Cycele I. (5.4)
1 2 1 2

For Cwyele I1. we have similarly

2 1 2 1
/ 5Qa + f §Qc = f SWa + / §We,  Cycle I1. (5.5)
1 2 1 2

Now, subtract Eq. (5.5) from Eq. (5.4) to get

1 1 1 1
f §Q g — j §Qp = j SWy — ] SW. (5.6)
2 2 2 2

Rearrange Eq. (5.6) to get

[ (6@ =W, = f (50 = W), (5.7)

Now, B and C are arbitrary paths; Eq. (5.7)) asserts that the integral of 4Q) — §W from 2 to
1 is path-independent. This is in spite of the fact that both W and. as we will see later, ()
are path-dependent quantities. Therefore, we can deduce that this defines

e ENERGY: a thermodynamic property which is a theoretical construct suggested by the
first law of thermodynamics as something to account for the difference between heat
transfer and work in any process between the same start and end states.

Energy is a new extensive property of the system denoted by E. While we like to think we
have intuition for what constitutes energy, it really is an elusive gquantity. Viewed at another
way, the Newtonian mechanical energy is easily visualized in terms of kinetic and potential
energy. but it is not always conserved! Our new energy includes thermal energy, which we
think we can easily feel, so we still have a good intuition for it. So we have generalized
energy so that it is always conserved, at the expense of losing the ability to easily visualize
it.

Recall that properties depend only on the state and not the path taken to arrive at the
state. Let us then take the following definition for the differential of E:

dE = 6Q — oW. (5.8)
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If we integrate from 1 to 2, we get

2 2 2
[ dE = f 5Q — / S, (5.9)
1 1 1

Ez _ El = 1(,}2 _ 1“& {51(]}
Equation (5.10) is the alternate representation of the

yielding

e FIRST LAW OF THERMODYNAMICS: For a system undergoing a process, the change in
energy is equal to the heat added to the system minus the work done by the system.

Now, we consider E to represent the total energy of the system. It has units of J. It
includes energy which is

s potential,
e kinetic,
e thermal,
e chemical,

e electrical,

* magnetic,

& ofc,

We will find it useful to lump all of the types of energy which are not potential or kinetic
into a single term [V, which we call

e INTERNAL ENERGY: that portion of total energy E which is not kinetic or potential
energy. It includes thermal, chemical. electric. magnetic, and other forms of energy.

We take U7 to have units of J. We call the kinetic energy K'E and the potential energy PE.
So we take

E = ] - . )
E U + KE + PE (5.11)
total energy internal energy  kinetic energy  potential energy

In this course we shall mainly be concerned with changes of U which are associated with
changes of the thermal energy of the system. A useful way to think of thermal energy is

e THERMAL ENERGY: kinetic energy associated with random motions of molecules at
the microscale.
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We can only observe this microscale kinetic energy with great difficulty. We usually have no
hope of having any detailed knowledge of it, and so only consider it in the average. In fact,
the temperature is a measure of the average microscale kinetic energy. We distinguish the
thermal energy from K E. which we take to exist at the observable macroscale.

Each form of energy is an extensive property of the system. Taking differentials of

Eq. (B.1I), we get
dE = dU + d(KE) + d(PE). (5.12)

So the first law, dE = 6Q) — W, can be written as
dU + d(KE) 4+ d(PE) = 60 — 6W. (5.13)

In the next two examples, let us consider two special cases of Eq. (5.13), which are familiar
from Newtonian mechanics.

Now, since dE =dU +d(KE)+d(PE) from Eq.(5.11), we get
dE = dU + mv dv 4+ mg dz. (5.34)

Integrate Eq. (5.34) from state 1 to state 2 to get

1
E-E=U:=-U+ ﬁm{vg —v;) 4+ mg(z2 — 21). (5.35)

Now, substitute Eq. (5.35) into Eq. (5.10) to obtain

1 , .
U,=U, + Em(‘"’g = i)+ mg(z = 2) =10 = W (5.36)

L. vl

—
=Ey—E,

Now, if m is a constant, as it will be for a system, we can divide both sides by m to get

1
ug—u1+§(v§—vf]+g(zg—:1}= 12 — 110 (5.37)

Here, we have defined the new intensive variables

e u = [//m, the internal energy per unit mass, also known as the specific internal energy.
It has units k.J/kg. It is an intensive thermodynamic property.

® 1q2 = 1()2/m, the heat transfer per unit mass. It has units k.J/kg and is not a thermo-
dynamic property.

o jw; = 1W3/m, the work per unit mass. It has units k.J/kg and is not a thermodynamic
property.
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5.2. Specific internal energy for general
materials

Just as P, v, and T are thermodynamic properties, so is u. In fact, it can be considered to
be one of the necessary two properties necessary to define a third. So, for example, if we are
given P and u, we could find v = v(P,u) or T = T(P, u).

More importantly, let us consider the most general form for «; a form where u is a function
of at most two independent thermodynamic variables, say T and v,

u=u(T,v). (5.38)

For materials such as water, u(7T,v) is tabulated. Note that the tables must presume a
reference value for energy so as to give it an absolute nature. However, as long as we confine
our thermodynamics to a single substance, differences in energy wnll be the only quantities
that have relevance in determining physical quantifies of interest. That is to say, the reference
state will not be important for single material problems. This is not true for multiple material
problems such as when chemical reactions are present.

Similar to vy and v,, the tables have

s uy: the specific internal energy of a saturated liquid, and

e u,: the specific internal energy of a saturated vapor.

Also similar to v, we have
Ufy = Uy — Us. (5.39)

We also get a similar analysis for quality x as for volume. For a two-phase mixture, the total
energy of the mixture is the sum of the energies of the components:

ll.-_,lT = ll.-_,lrﬁq + U‘l.rﬂp'! (54“}
mu = Myl + Mygplly, (5.41)
Mg Myap
= — . A2
i - wf 4 - Uy, (5.42)
u = m = mmp u_f + ﬂlﬂﬂpﬂg.. 5;43

m m
u = (1==x)us+ ru,,

us + x(ug = ),
up+ Tig,.

We can solve for = by inverting Eq. (5.46) to get

'E.L—H_f

Ufg

Ir=
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Let us consider the heat transfer for an isochoric process in which we also have AKE =
APE = (). Because the process is isochoric |V, = ff PdV = (). So the first law, Eq. (5.36),
reduces to

er — {.-'T]_ == 1{’22_. {5.-18]
12 = U =T, =AU (5.49)

The change in U gives the heat transfer for isochoric processes.

5.3. Specific enthalpy for general materials

Let us define a new thermodynamic property, enthalpy, in terms of known thermodynamic
properties. The extensive total enthalpy H. and intensive specific enthalpy h are defined as

H = U+PV, (5.50)
H U V

h = —=—4P—. (5.51)
m m m

Thus.
6

[ts most important feature is its utility in control volume analysis which will be fully discussed
in Sec. [.1.2.2 4 its underlying mathematical rationale will be given in Sec. 113

The first written use of the word “enthalpy” is given by Furterlﬂ who notes the term was
introduced by the Dutch physicist and Nobel laureate Heike Kamerlingh Onnes (1853-1926).
The word is from the Greek evfdA7err. meaning “to warm in.” We give an image of Porter’s
citation of Onnes’ usage in Fig.

The equation characteristic of the expansion through a throttle is that
internal energy + 7 = constant,
or E + pv = constant.
The quantity E + po is what is usually known in England as Total
Heat or Heat Contents. 1 submit that these names are not satisfactory,
because the quantity is not heat in general ; and the presence here of
a member of the Leyden Laboratory encourages me to press the claims
of the name proposed by Kamerlingh Onnes, vz, Enthalpy—a name
which I have used for some years. We can denote it by H, which can
stand either for capital h (Heat Contents) or for Greek E (Enthalpy) at
the option' of the reader,

Figure 5.9: Image of first known printed use of the word “enthalpy” from Porter, 1922,
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Eq. (5.52) is valid for general materials. It will be seen to be useful for many problems,
though in principle, we could get by with u alone just as well. Now, since u, P, and v are
thermodynamic properties, so then is h:

h = h(T. P). (5.53)
Sometimes tables give h and we need to find u; thus,
u=h-— Pu. (5.54)
Similar to u, we can easily show
h— hy
hq L

The enthalpy is especially valuable for analyzing isobaric processes. Consider a special
isobaric process in which Py, = P, = P, AKE = APE = (. Then the first law, Eq. (5.36]).
reduces to

h=hs+ zhy,, r= (555}

Uy = Uy =1Q2 — 1Wa. (556}
Since W5 = ff PdV = P(V, = V1) for the isobaric process, the first law reduces to
Uy=U, = Q= P(Va=1), (5.57)
Uz =Uh = 12— FBVa+ BV, (5.58)
102 = EU:Z + Py El_EUl + P rll (55@}
=-EE =-El
Q2 = Hy—H, = AH. (5.60)

The change in H gives the heat transfer for tsobaric processes.

5.4. Specific heat capacity

We loosely define the

s SPECIFIC HEAT CAPACITY: the amount of heat needed to raise the temperature of a
unit mass of material by one degree.

The word is a relic of the discredited caloric theory of heat in which heat was thought to be a
fluid which could somehow fill its container. We often simply call it the “specific heat.” We
give the specific heat the symbol ¢. It has units kJ/kg/K . Its loose mathematical definition
is

_146Q
[ Eﬁ. {ﬁ.ﬁl}

We also define the extensive heat capacity as C' = 4Q /4T, where C has units kJ/K. We
will not use ' explicitly from here on.
It turns ont that since () is path-dependent. so is . So let us specify two common paths:

® SPECIFIC HEAT AT CONSTANT VOLUME: ¢,. We determine this on a path which is
isochoric. On such a path. the first law holds that 4¢) = dUU, since 4T = (). So we take

m JdT |,
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Since u = U/m, and we take m to be constant, we get

i
= —] . i
“= a7, (5.63)
Now, for general materials u = u(T, v), so we see that
e = (T, v), (5.64)

that is to say, c(T, v) is itself a thermodynamic property for general materials. It can
vary with two independent variables. We shall see later for some materials it varies
only with T, and for other materials, it is actually a constant.

SPECIFIC HEAT AT CONSTANT PRESSURE: cp. We determine this on a path which is
isobaric. On such a path, the first law holds that ) = dH. So we take

1 dH
e —— i

cp=— o . (5.65)

Since h = H/m, and we take m to be constant, we get

ih

= — . 66
"= 57| (5.66)

Now, for general materials h = h(T, P), so we see that
cp = cp(T, P), (5.67)

that is to say, ep(T, P) is itself a thermodynamic property for general materials. It can
vary with two independent variables. We shall see later for some materials it varies
only with T, and for other materials, it is actually a constant.

SPECIFIC HEAT FOR INCOMPRESSIBLE MATERIALS: . Most liquids and solids under
moderate to low pressure conditions (P < 1 G Pa) are well modeled as incompressible.
Thus, in any heating process, there will be little if any associated work of compression.
For such a material, there is no need to distinguish ¢, and cp. so we simply use ¢ for

the specific heat. We thus take
du
T = —. 6
oT) = o (569)
Often, especially if the temperature changes are small, we can ignore the temperature
variation of ¢ for incompressible materials and simply take

=2 (5.60)



More rigorous mathematical discussion of specific heat capacity will be given in Sec. I1.4l

5.5. Caloric equations of state

Recall that thermal equations of state are given by P = P(T,v). We also have equations of
state for the energy. We call such a relation a

o CALORIC EQUATION OF STATE: an equation which gives the energy as a function of
two independent state variables. An example is the general form:

u=u(T.v). (5.70)
In a later chapter we shall see there are a few restrictions on the form u(7T, v) can take. In a
complicated fashion, it is not entirely independent of the thermal state equation P = P(T, v).

One of the more confusing notions to beginning students of thermodynamics is which
forms of energy and specific heat are appropriate for which materials. Here. we discuss them

in more detail, moving from simple to complex.

5.5.1 Ideal Gases

For ideal gases, we have Pv = RT. Ideal gases can be either calorically perfect or calorically
imperfect. For all ideal gases, be they calorically perfect or calorically imperfect. it will be
proved in Sec. [I1.4]that the caloric equation of state takes on a simpler form:

u=u(T). (5.71)

Now, we can specify h for an ideal gas. From Eq. (5.52), h = u + Puv, and the ideal gas
law, Pv = RT, we get
h=u(T)+ RT. (5.72)

Thus, the enthalpy of an ideal gas is a function of T only:
h = h(T). (5.73)
Now, for the specific heats of an ideal gas, Eq. (LG3) gives

du d

ar|, = - (u(l)) = a(T). (5.74)

ceo(T,v) =

Separating variables in Eq. (5.74), we can also say for an ideal gas

du = ¢,(T)dT. (5.75)

For cp, Eq. (0.66) gives
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ep(T, P) = 3_; - %{h{T}} = cp(T). (5.76)

Separating variables in Eq. (5.76]), we get then

dh = cp(T)dT. (5.77)
Now, we can differentiate Eq. (L.T2) to get

dh = du + RdT. (5.78)

Now, substitute Eqs. (B.75[5.77) into Eq. (5.78)) to get

cp(T)AT = c,(T)dT + RdT, (5.79)
cp(T) = elT)+ R (5.80)
cp(T) — ¢, (T) = R. (5.81)

This is sometimes known as Mayer’s relation. Last, let us define the ratio of specific heats,
k. as

Cp
k=—. 9.82
{ }

For general materials k = k(T,v). For an ideal gas, we have
o(T)+R R

D) 1+ @) (5.83)

So k = k(T) for an ideal gas. We will see that k(T) is often nearly constant. Since R > ()
and ¢,(T) > 0, we must have k > 1 for an ideal gas. In a later chapter, it will later be seen
this result extends to general gases.

k=

5.5.1.1 Calorically perfect

A calorically perfect ideal gas (CPIG ) has constant specific heat. Examples of CPIGs include
noble and monatomic gases (e.g. He, Ne, Ar, O, H, N') over a wide range of temperatures
and pressures, and more complex molecules (e.g. 02, Ny, CO,, CH,) over narrower bands
of temperatures and pressures.

For the CPIG, ¢, is a constant, so

= Gy (5.84)
But for the ideal gas, u = u(T'), so the partial derivatives become total derivatives and
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du .
dT

Cye

Integrating, we get the simple caloric equation of state:

u(T)=u, +c,(T =T,),
valid for CPIG.

Note that
U = ty+ el — T,
u+Pv = HQ+F¢IT_F-1‘JTEI+,‘PU,BI
=h =RT
h = w,+ T — e, T, + RT,
h = u,+RT,+(c,+ R)T - (¢, T, + RT,),
=ha =cp =cpTy
h = h,+cpl —cpT,.
So
valid for CPIG.
For a CPIG,
tp Cp
k= — = — = constant.
Car Cy

5.5.1.2 Calorically imperfect

(5.85)

(5.86)

(5.92)

(5.93)

For calorically imperfect ideal gases (CIIG), e.g. O, at moderate to high temperatures

(300 K < T < 6000 K):

o cp=cp(T).

For such temperatures, our assumption of constant ¢, is not as valid. But for ideal gases,

we can still take ¢, = ¢,(T), so
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Figure 5.10: Plot of polytropic compression of Ar.
. c .
— =,(T). 5.115
& — 1) (5.115)
We can integrate via separation of variables to get
du = ¢,(T)dT, (5.116)
2 2
] du = / co(T)dT, (5.117)
1 1
2
Uy —uy = / co(T)dT. (5.118)
1

We can interpret the difference in u as the area under the curve in a plot of ¢, (T") versus T
as plotted in Fig. [5.11] More generally, we could say

u(T) = u, + fj co(T)dT, (5.119)

Ta

valid for all ideal gases.

Here, Tisa dummy variable of integration. Similarly. we could show
T
ha—h; = f cp(T)dT, (5.120)
T,

and more generally,

-

:
h(T) = h, + f ep(T)dT, (5.121)
T,

valid for all ideal gases.
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Figure 5.11: Relation between u; — 4, and area under curve in a plot of ¢,(7") for calorically
imperfect ideal gas.

Now, ¢,, cp and R all have units of kJ/kg/K. Let us consider the ratio

c oM 5§
R RM E

(5.122)

|

The ratio is now in terms of molar specific properties with ¢, and K having units of
kJ/kmole/K. Note that R is the universal gas constant. A plot of &,/R versus T for a
variety of simple molecules is given in Fig. [5.12] We note some remarkable facts:

e For monatomic gases, such as Ar, O, and H, 7, I.r"f_i’ = 3/2 for a wide variety of temper-
atures.

e For diatomic gases. such as (J; and Hs for T < 600 K, Eﬂfﬁ ~ 5/2, and for T > 600 K,
g, /R —T/2

e For larger molecules such as C0; or H,O, &, /R is larger still.

What we are seeing actually reflects some fundamental physics. We first note that sta-
tistical thermodynamics proves

o Temperature is a measure of the average translational kinetic energy of a set of molecules.
Now, we consider some features of Fig. [5.12]

e Monatomic molecules, such as Ar, O or H have three fundamental modes of kinetic
energy: translation in the x, y, and z directions. Each mode contributes 1/2 to &, /R,
which sums to 3/2.

¢ For diatomic molecules, we summarize the behavior in the sketch given in Fig. (.13
— At very low temperatures, diatomic molecules, such as H, or (J,, act like monatomic

molecules.
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Figure 5.12: &, ,:"E as a function of T for several molecules.

— At low temperatures, diatomic molecules begin to rotate, and the rotational en-
ergy becomes an important component. In fact when energy is added to diatomic
molecules, some is partitioned to translation and some is partitioned to rota-
tion. There are two non-trivial axes of rotation, each adding 1/2 to &, m._ giving
o/R ~ 5/2.

— At higher temperatures, diatomic molecules begin to vibrate as well, and this
energy becomes an important component. There are two vibrational modes, one
for kinetic energy and one for potential energy. Each adds another 1/2 to 7, /R,
giving T, l.n"f_?, ~ T/2 at high temperature.

— At higher temperatures still, the diatomic molecules begin to dissociate, e.g. (O, +

Oy — 20 + Os.

— At even higher temperatures, its electrons are stripped. and it becomes an 1onized
plasma. This is important in engineering applications ranging from welding to
atmospheric re-entry vehicles.

e For triatomic molecules such as Hy() or C'0y, there are more modes of motion which
can absorb energy, so the specific heat is higher still.

Feynm summarizes the argument that this preference for one type of energy over another
(translation, rotational, vibrational) depending on temperature is surprising to those not
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3/2 / model diatomic
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k-1.4 L variable k N

sl
I T .
trans trans+rot trans+rot+vib

Figure 5.13: ©, fﬁ as a function of T for a model diatomic gas. (Note a real gas would liquefy
in the very low temperature region of the plot! So this model is really for a non-existent gas
that has no liquid-inducing intermolecular forces.)

versed in quantum mechanics and violates standard assumptions of classical statistical me-
chanics. In fact, he notes that Maxwell had a hint of the problem as early as 1859, and stated
this concern more directly in 1869. Maxwell summarized those concerns in an 1875 lecture,
transcribed in Nature.@ Feynman argues that the reason for the energy partition observed
in diatomic gases is a “failure of classical physics” and instead is a pure effect of quantum
mechanics; that is to say k = ep(T)/eo(T) = E(T) is a non-classical result! Employment of
the theories of quantum and statistical mechanics allows an accounting for the observation
that there is a preference of molecules to exist in lower energy states, and at those states,
the discrete quantization is important. High energy vibrational states are less likely than
translational states at low temperature. At higher temperature, there is a higher probability
that all states are populated, and one recovers results consistent with classical physics.

Let us also recall that ep(T) — e(T) = R; thus, &p(T) — &(T) = R. Let us summarize

e for monatomic gases,

3

¢, = ﬁR* (5.123)
5
cp = o+ R= ER’ (5.124)
5
cp FH 5 .
— = k=+= === 1.6667. 5.12
- R~ 3 66 (5.125)

e for diatomic gases at moderate temperature, 50 K < T < 600 K,
51

€ = 3R (5.126)
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T
cr = e+ R=3R, (5.127)
T
Cp iR 7T
— = k=32=-=-=14. 5.128

To summarize, usually the most problematic case is whether or not specific heats vary
with temperature in ideal gases. For low temperatures, the specific heat is well modeled as a
constant; here the internal energy change is strictly proportional to the temperature change.
For moderate to high temperatures, a temperature-variation of the specific heat is observed.
Changes in internal energy are no longer strictly proportional to changes in temperature.
The behavior is analogous to solid mechanics. At low strain e, stress o is proportional to
strain, and the constant of proportionality is the modulus of elasticity E. For high strains,
the linearity is lost; we could say the elastic modulus becomes a function of strain. We give
a sketch in Fig. [5.14] of the comparison to solid mechanics

[&) 1
A A calorically
imperfect [
TEEO [ higher ¢
calorically
perfect H
region e,
1
L. L.
L L
£ T

Figure 5.14: Sketch of comparison of stress-strain behavior in solids with ideal gas internal
energy-temperature behavior.

There are four main ways to calculate changes in enthalpy for ideal gases:

e assumption of constant cp evaluated at 208 K,
e assumption of constant ¢p evaluated at an intermediate temperature,
e using a known analytic form of cp(T') in the direct integration of ff ep(T)dT, or

e estimation using the ideal gas tables.

5.5.2 Liquids and solids

Most liquids and solids for moderate pressures or below, P < 1 G Pa, are well modeled as
incompressible. For such materials, we have caloric equations of state and specific heats of
the form
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e u=u(T),

o c=c(T).
For such a material ;
w(T) = u, + ]; ) o(T)dT, (5.144)
and
E‘:—; = ¢(T). (5.145)

Often, we can take a calorically perfect model in which ¢ loses its temperature variation, and
get the commonly used equations

w(T) = u, + (T = T,). (5.146)
j;;;'; Y (5.147)

5.5.3 General materials

Examples of general materials include water and van der Waals gases. For such materials
we have caloric equations of state and specific heats

e u=u(T v),
.o, = C‘LI{T 1;}1
e h=h(T,P),

T(K)

1 (K) l(ll')

Figure 5.15: Sketch of u = u(T, v), ¢, = (T, v) using a Redlich-Kwong caloric state equation
model for superheated water.
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e cp=cp(T,P).

A sketch of an estimate for u(T, v) and ¢,(T, v) for superheated water is given in Fig.
Here, we selected a Redlich-Kwong model obeying

u(T,v) = (23&3.?5 g) + (1.41 ﬂ) (T = (673.15 K))

kg K
kJ KY?m? kg 1
— [ 65.743 — 1.12304 —— - . (5.161
(ﬁ kg kg ) (( 30 K12 ms VTv/) ' ( )
BT ke KY2m®
e\ (328715 MKEt)
(T, v) = (1.41 - H) + e : (5.162)

This particular model ignores some of the potential temperature variation of ¢,, but is useful
for illustration purposes. It gives results not unlike those in portions of the steam tables. As
an aside, the Redlich-Kwong thermal equation of state, see p.[G3] for superheated water is

(0.461501 gk ) T a3z Kpw i
v — (000117008 22) v (v + (000117008 22)) VT (5.163)

P =

Even more generally, u and h are tabulated for materials such as water.

5.6. Time-dependency

We venture gently away from classical thermodynamics into non-equilibrium thermodynam-
1cs. Let us admit time ¢ into the differential form of the first law by scaling Eq. (5.13)) by d#:

v d, . d 5Q oW
—+ —(KE) + —(PE) = = = —. (5.178)

Since total energy E =U + KE + PE, we could also say

dE  §Q W
@e_% 2 5.179
dt — dt  dt (5:179)

Often. we will use the Newtonian “dot” notation for time derivatives. A common form is

df . .
—=0Q=W. 5.180)
—=0 (5:180)

In this course. we will often neglect changes in K E' and PE. in which case the time-dependent
first law reduces to

v .
—=Q-. (5.181)
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Many times in this course, we will treat Q and W as constants. Problems become more
interesting when they are variable. Such problems are also important. Now, Newton did
consider some thermal problems. In fact Newton's law of cooling (see Eq. (4.115])) tells us
that f,} is proportional to the surface area of a body and the temperature difference between
the body and its environment: .

Q=-hA(T=-T,). (5.182)
Note that heat Hows into a body when it has a temperature less than its surroundings,
T < T... Here, we have the

e HEAT TRANSFER COEFFICIENT, h, with units W/m?* /K.

Note h # h. Enthalpy is a different physical quantity with different units. While Eq. (5.182)
is given the elevated name of “law.” one must realize that it is by no means a law of the same
status as the first law of thermodvnamics. Rather, it is actually only a useful but fallible
approximation; often h is not a constant but rather a complicated function of the local
material’'s state and peometrical confipuration. Its nuances are the subject of the discipline
of convective heat transfer.

5.7. Final comments on conservation

We note the first law is often re-stated as energy is conserved. Let us reconcile this with our
mathematical statement, dE /df = I‘.j— W. This equation tells us that the total energy E can
change in response to heat and work crossing the system boundary. But conservation implies
that a quantity does not change. We can recover the proper notion of conservation if we
speak of an isolated system, which we recall is one that is not influenced by its surroundings.
So for an isolated system there can, by definition be no work or heat transfer, so

dE
- = 0, isolated system. (5.206)
Integrating. we find
E = constant, isolated system. (5.207)

Even more fundamentally, we can say, by its definition, that the mass m of a system is
constant; thus, the mass of an isolated system must also be constant.

This theoretical formulation is often successful in describing nature for a wide variety
of scenarios. However, it does not always succeed. It has been observed to fail for systems
which move at a velocity close to the speed of light. For such systems, not only do energy
and mass conservation principles fail, so do Newton's laws of mechanics. To realign theory
with observation, it was necessary for Einstein. depicted in Fig. [5.22] to re-formulate a new,
modified set of axioms. In a certain sense the new axioms are simple. For example one
can replace Newton's second law with the seemingly simpler dv/dt = (), where v is a new
velocity vector; however, the coordinate axes associated with this vector are complicated.
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Fig 5.22. Albert Einstein (1879-1955), German
theoretical physicist who developed theories that
explained data better than those of Newton

Another consequence of Einstein’s reformulation was the remarkable results of mass-energy
equivalence via the famous relation

E = mc*, (5.208)

where ¢ is the speed of light in a vacuum. Another way of viewing Einstein’s contributions
is via a new conservation property: the mass-energy of an isolated system is constant. It is

the conservation of mass-energy that is the key ingredient in both nuclear weapon systems
as well as nuclear power generation.

NOTES
Experimentally it was found that

f(dw +dg)=0

=  The sum (w+ ¢) is independent of path

=  This implies that there is a state function whose differential is
dw+dg

We define it as U, the “internal energy” or just “energy”

dU =dw +dg
For a cyclic process §a’U =0

For a change from state 1 to state 2,

AU = Lza’U =U,-U,=¢g+w does not depend on path
each depends on path individually, but not the sum
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For fixed n, we just need to know 2 properties, e.g. (7, V), to fully
describe the system.

So U=U(TV)
Uis an extensive function (scales with system size).

U=

3[Q

is molar energy (intensive function)

6\

THE FIRST LAW

dU =dg +dw

Mathematical statement: AU=g+w

Corollary: Conservation of energy
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Clausius statement of 1°" Law:

The energy of the universe is conserved.

The first law expresses the conservation of energy by including heat as a form of
energy. It asserts that there exists a function of the state, internal energy U, whose
change in any thermodynamic transformation is given by

AU = AQ — AW

That is, AU is independent of the path of the transformation, although A @ and
AW are path dependent. In a reversible infinitesimal transformation, the infinitesimal
changes dQ and dW are not exact differentials, in the sense that they do not represent
the changes of definite functions, but their difference

all = dQ — dW
18 an exact differential.

In other speaking

In an arbitrary thermodynamic transformation let AQ denote the net amount of
heat absorbed by the system and AW the net amount of work done by the
system. The first law of thermodynamics states that the quantity AU, defined by

AU = AQ — AW (1.1)

is the same for all transformations leading from a given initial state to a given
final state.

This immediately defines a state function U, called the internal energy. Its
value for any state may be found as follows. Choose an arbitrary fixed state as
reference. Then the internal energy of any state is AQ — AW in any transforma-
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tion which leads from the reference state to the state in question. It is defined
only up to an arbitrary additive constant. Empirically U is an extensive quantity.
This follows from the saturation property of molecular forces, namely, that the
energy of a substance is doubled if its mass is doubled.

The experimental foundation of the first law is Joule’s demonstration of the
equivalence between heat and mechanical energy—the feasiblity of converting
mechanical work completely into heat. The inclusion of heat as a form of energy
leads naturally to the inclusion of heat in the statement of the conservation of
energy. The first law is precisely such a statement.

In an infinitesimal transformation, the first law reduces to the statement that
the differential

dU = dQ — dW (1.2)

is exact. That is, there exists a function U whose differential is dU; or, the
integral [ dU is independent of the path of the integration and depends only on
the limits of integration. This property is obviously not shared by dQ or dW.

Given a differential of the form df = g( A4, B)dA + h( A, B) dB, the condi-
tion that df be exact is dg/dB = dh/dA. Let us explore some of the conse-
quences of the exactness of dU. Consider a system whose parameters are P, V, 7.
Any pair of these three parameters may be chosen to be the independent
variables that completely specify the state of the system. The other parameter is
then determined by the equation of state. We may, for example, consider
U= U(P,V). Then*

dU (au) dP + cid dv 1.3)
~\ar/, (W » (1.
The requirement that dU be exact immediately leads to the result
a [/aU a [1aU
s (_) == (_ (1.4)
AVI\IP |y]|p OP|\3V/ply

The following equations, expressing the heat absorbed by a system during an
infinitesimal reversible transformation (in which dW = PdV), are easily ob-

tained by successively choosing as independent variables the pairs (P, V'), (P, T'),
and (V,T):

o = %)VdP+[(%g)P+P av (1.5)
dQ = Q(%)P+P(%)Jdr+ [(3—5)?+P(Z—;)T}ﬂ’ (1.6)
dQ = %)VJT+ [(%)T+Pl dv (1.7)
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First Law of Thermodynamics

This leads to the general statement of the First Law of Thermodynamics,
for infinitesimal changes:

dU = dW+ dQ,

where both W and dQ are path-dependent. For work done mechanically

on a compressible fluid, First Law for infinitesimal reversible processes is:

dU = —PdV + dQ

Work: electrical, magnetic, gravitational etc.
Internal energy: kinetic and potential energy.
Potential energy includes chemical, nuclear, mass, gravitational.
The first law has time-reversal symmetry.
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LECTURE 6: FIRST LAW ANALYSIS FOR A CONTROL VOLUME

Content of Lecture 6

6.1. Detailed derivations of control volume equations
6.1.1. Relevant mathematics
6.1.2. Conservation axioms
6.2. Mass conservation in brief
6.3. Energy conservation in brief
6.4. Some devices
6.4.1. Throttling device
6.4.2. Nozzles and diffusers
6.4.3. Turbine
6.4.4. Pumps and compressors
6.4.5. Heat exchanger
6.5. Introduction to the Rankine cycle
6.6. Preview: equations of continuum mechanics
6.6.1. Full set
6.6.2. Static solids equations
6.6.3. Incompressible fluid mechanics equations
6.6.4. Compressible fluid mechanics equations
6.6.5. Heat transfer in incompressible static solids

Problems in previous chapters have focused on systems. These systems always were com-
posed of the same matter. However, for a wide variety of engineering devices, for example

o flow in pipes,

e jet engines.

heat exchangers,

gas turhines,

® pumps,

¢ furnaces, or

e air conditioners,

a constant flow of new fluid continuously enters and exits the device. In fact, once the Huid
has left the device, we often are not concerned with that fluid, as far as the performance
of the device is concerned. Of course, we might care about the pollution emitted by the
device and the long term fate of expelled particles. Pollution dispersion, in contrast to
pollution-creation, is more a problem of fluid mechanics than thermodynamics.
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Analysis of control volumes is slightly more complicated than for systems. and the equa-
tions we will ultimately use are slightly more complex. Unfortunately, the underlying mathe-
matics and physics which lead to the development of our simplified control volume equations
are highly challenging! Worse still, most beginning thermodynamics texts do not expose the
student to all of the many nuances required for the simplification.

We will introduce no new axioms in this chapter. We shall simply formulate our mass
and energy conservation axioms for a control volume configuration. A sketch of a generic
apparatus for control volume analysis is given in Fig.

'rh,l[hl - vf,’? - yzlj

fl:i!,ﬁ{ h, + fo’? + gz)

ol
-

'r:.r:,ﬂ{ h, + Vt"}f'ﬂ + gz,)

W, m(h +v?2+ gz)

Figure 6.1: Sketch of generic confizuration for control volume analysis.

6.1. Detailed derivations of control volume
equations

This section will give a summary of the necessary mathematical operations necessary to cast
the conservation of mass and energy principles in a traditional control volume formulation.

6.1.1 Relevant mathematics

We will use several theorems which are developed in vector calculus. Here, we give short
motivations and presentations. The reader should consult a standard mathematics text for
detailed derivations.

6.1.1.1 Fundamental theorem of calculus

The fundamental theorem of caleulus is as follows
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L:ﬁ d(x) dr = [:*‘ (i_;) dr = ¥(b) — v(a). (6.1)

It effectively says that to find the integral of a function ¢(x), which is the area under the
curve, it suffices to find a function 1, whose derivative is ¢, L.e. dy/dr = ¢(z), evaluate ¢
at each endpoint, and take the difference to find the area under the curve.

6.1.1.2 Divergence theorem

The divergence theorem, often known as Iauﬁ:-;' theorem, is the analog of the fundamental
theorem of calculus extended to volume integrals. Gauss is depicted in Fig. [6.2] While it is

Fig 6.2. Johann Carl Friedrich Gauss (1777-1855), German
mathematician

often attributed to Gauss who reported it in 1813, it is said that it was first discovered by
Joseph Louis Lagrange in 1?52@
Let us define the following quantities:

e { — tiume,

® x — spatial coordinates,

Va(t) — arbitrary moving and deforming volume,

A,(t) — bounding surface of the arbitrary moving volume,
® n — outer unit normal to moving surface, and

e ¢(x, 1) — arbitrary vector function of x and t.

The divergence theorem is as follows:

V- dV = [ ¢ -n dA. (6.2)

Val(t) o Aalt)

The surface integral is analogous to evaluating the function at the end points in the funda-
mental theorem of calculus.

If ¢(x.t) has the form ¢p(x.t) = cg(x, t), where ¢ is a constant vector and ¢ is a scalar
function. then the divergence theorem, Eq. (6.2]), reduces to

Vo (co) dV = [ (co) -n dA, (6.3)
Valt) J Ag(t)
dV-c+c- Vo | dV = [ ¢ (c-n) dA, 6.4
jl-}.{ﬂ ( j ) JAagm ( ) (6-4)
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c- Vo dl = c-[ gmn dA,
Aalt)

c-( ‘quﬂf’—/ éndﬁl) = (.
Valt) Aa(t)

S

Now. since c is arbitrary, the term in parentheses must be zero. Thus,

j;.{e}

Vo dV = én dA.

Aalt)

(6.5)

(6.6)

(6.7)

Note if we take ¢ to be the scalar of unity (whose gradient must be zero), the divergence

theorem reduces to

Valt)

V() dV = /,4 (maa,

0 =/ (1)n dA,
Aa(t)

/ ndd = 1.
Aalt)

That is, the unit normal to the surface, integrated over the surface, cancels to zero when the

entire surface is included.

(6.8)
(6.9)

(6.10)

We will use the divergence theorem (6.2) extensively. It allows us to convert sometimes
difficult volume integrals into easier interpreted surface integrals. It is often useful to use

this theorem as a means of toggling back and forth from one form to another.

6.1.1.3 Leibniz’s rule

Leibniz" rule relates time derivatives of integral quantities to a form which distinguishes
changes which are happening within the boundaries to changes due to fluxes through bound-
aries. Leibniz is depicted in Fig.

Fig 6.3. Gottfried Wilhelm von Leibniz (1646-1716),
German mathematician, philosopher and polymath who

co-invented calculus

Let us consider the scenario sketched in Figure [6.4] Say we have some value of interest,

@, which results from an integration of a kernel function ¢ over V,(t), for instance
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D = f @ dV. (6.11}
Valt)

We are often interested in the time derivative of @, the caleculation of which is complicated
by the fact that the limits of integration are time-dependent. From the definition of the
derivative, we find that

dd  d s ipean @ + At) dV = | o(t) dV
e _ 6 dV = lim fm{t+.1t‘] E } erﬂ{t]. ( } . (6.12}
dt dt Vait) At—0 At

VLo V(AL 1

Figure 6.4: Sketch of the motion of an arbitrary volume V(). The boundaries of V,(t) move
with velocity w. The outer normal to Vy(t) is A,(t). Here, we focus on just two regions: I,
where the volume is leaving material behind, and IJ, where the volume is sweeping up new

material.

Now, we have

Va(t + At) = V,(t) + Vi (At) = Vi(Atl). (6.13)
Here, Vij(At) is the amount of new volume swept up in time increment At, and Vi(At) is
the amount of volume abandoned in time increment At. So we can break up the first integral

in the last term of Eq. (6.12) into

f é(t + At) dV = f 8(t + At) dV + f 6(t + At) dV = f 6(t + Af) dV,
Va(t+Af) Va(t) Viz(At) Vi(At)
(6.14)

which gives us then

d’ ! .

1 i) dl =

4t vt

lim S Ot + A1) dV + [ ot + At) dV = [, 0(t + A) dV = [, ) 6(t) dl’::ﬁ 15)
o At 1
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Rearranging (6.15) by combining terms with common limits of integration, we get

d (bt + At) — (8)) dV
4 Gl 80 = 60)
df Val(t) At—0 &f

4 Tim Loirian Ot + At) dV — fmm}cﬁ(t + At) dV
Mf—0 ﬂt .

(6.16)

Let us now further define

o w — the velocity vector of points on the moving surface V(t),
Now, the volume swept up by the moving volume in a given time increment Af is
d‘r}; = w -n MAf dﬂ;;:u'“&fd}l“, (6.17}
positive distance
and the volume abandoned is
dV; = w-n At dA; = — wAfF dA;. (6.18)
—— g
negative distance
Substituting into our definition of the derivative, Eq. (6.16), we get
(it + At) — ot
df 1,-:‘(:‘] St—ailh 1.-'““} .&f
L f,.a.”{m;*?"ff + At)wirAt dArs + [y ap Ot + At)wi At dA;
im .
Af—D FAY

(6.19)

Now, we note that

¢ We can use the definition of the partial derivative to simplify the first term on the right

side of (6.19),

e The time increment At cancels in the area integrals of (6.19), and
o A (t) = Ar+ Ay,

so that

d o
£ bdV = / ‘?—‘p 7 +/ ow-n dA. (6.20)
dt Jv,m va(ty Ot Jauw )

total time rate of change intrinsic change within volume net fAux i:;-u volume

This is the three-dimensional scalar version of Leibniz’s rule. Say we have the special case
in which ¢ = 1; then Leibniz’s rule reduces to

([6.20)
d r:ﬂ / il
Valt)

— ;o= — (1) dV + f 1w -m dA, 6.21
dt Va(f) EEE..E An{ﬂ( ) ( :
=i
d_
—Vu(t) = / w-n dA. (6.22)
di Aalt)

This simply says the total volume of the region, which we call V,(t), changes in response to
net motion of the bounding surface.

Leibniz's rule (6.20) reduces to a more familiar result in the one-dimensional limit. We
can then say
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r=h(f) x=h(t]
d ¢z, t) dr = (}_qi's dr + %g}[b(f]ft} - j—?{ﬁ{a(i}ft}. (6.23)

dt z=af(t) r=a(t) (}t

As in the fundamental theorem of calculus (6.1), for the one-dimensional case, we do not have
to evaluate a surface integral: instead, we simply must consider the function at its endpoints.
Here, db/dt and da/dt are the velocities of the bounding surface and are equivalent to w.
The terms ¢(b(t).t) and ¢(a(t),t) are equivalent to evaluating ¢ on A,(t).

We can also apply the divergence theorem ([6.2) to Leibniz’s rule (6.20) to convert the
area integral into a volume integral to get

d do
= [ ¢dv = —dV+ [ V-(6w) dV. 6.24
dt Jv, vary Ot Va() ) o

Combining the two volume integrals, we get

d do 2
dt Jy. vay \ Of (ow) (6:25)

6.1.1.4 General transport theorem

Let B be an arbitrary extensive thermodynamic property. and 3 be the corresponding in-
tensive thermodynamic property so that

dB = Bdm. (6.26)

The product of a differential amount of mass dm with the intensive property 3 give a
differential amount of the extensive property. Since

dm = pdV, (6.27)
where p is the mass density and dV is a differential amount of volume, we have
dB = BpdV. (6.28)

If we take the arbitrary ¢ = p3, Leibniz's rule, Eq. (6.20), becomes our general transport
theorem:

)
L[ psdav= Z(pB) dV + / p3 (w-mn) dA. (6.29)
dt Jy, @ Va(e) 9t Aa(t)

Applying the divergence theorem, Eq. (62), to the general transport theorem, Eq. (629),
we find the alternate form

= ,
- p3dV = (i(pﬁ) + V- (p,b‘w)) dv. (6.30)
dt Jv, () Va(e) \ Ot

101



Fig 6.5. Osborne Reynolds (1842-1912), Anglo-Irish
engineer

6.1.1.5 Reynolds transport theorem

(Osborne Rr_‘}-'nol{i@ made many pioneering contributions to fluid mechanics. He is depicted
in Fig. .3l Among other things. he wrote a treatise on the development of conservation
principles in a general sr:nz-;z: From this work, and after emploving more modern notation,
we arrive at what 15 now known as the Reynolds transport theorem if we force the arbitrary
velocity of the moving volume to take on the velocity of a Huid particle, i.e. take

w=vV. (6.31)

In this case, our arbitrary volume is no longer arbitrary. Instead, it always contains the same
fluid particles. We call this volume a

® MATERIAL VOLUME, V5, (t): a volume which always contains the same fluid particles.

The proper way to generalize laws of nature which were developed for point masses is to
consider collections of fixed point masses, which will always reside within a material volume.
That said. it i1s simple to specialize the general transport theorem to obtain the Reynolds
transport theorem. Here, we give two versions, the first using area integrals, and the second
using volume integrals only. In this special case, Eqs. (6.29) and (6.30) become, respectively,

d be

— p3 dV = f —(p3) dV + f pd(v-n) dA, .32

dt Jv. () Vin(2) "H( ) A (8) ( ) (6.32)
d . J x i
— p3 dV = —(p3) + V- (p8v) ) dV. (6.33)
dt Jy,.c0) V() \ Ot

The implications of these mathematical statements are summarized in the words of Reynolds:

in Fig. [6.5]

SECTION IL
THE GENERAL EQUATIONS OF MOTION OF ANY ENTITY.

9. Axiom I.  Anychange whatsoever in the quantity of any entity within
a closed surface can only be effected in one or other of two distinct ways:

(1) it may be effected by the production or destruction of the entity
within the surface, or
(2) by the passage of the entity across the surface.

Figure 6.6: Image from |[Reynolds’ 1903 study. p. 9. giving his key general axiom.
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6.1.1.6 Fixed (control) volumes

If we take our arbitrary volume to be fixed in space, it is most often known as a

CONTROL VOLUME: a fixed volume in space.

For control volumes

w =0. (6.34)
Thus, the arbitrary volume loses its time dependency, so that
Vi) =V, Adt) =4, (6:35)
and the general transport theorem, Eq. (6.29)). reduces to
d a
— 3 dV = —(p3) dV. 6.36
i Vmwd (6.36)

6.1.2 Conservation axioms

A fundamental goal of mechanics is to take the verbal notions which embody the basic
axioms into usable mathematical expressions. First, we must list those axioms. The axioms
themselves are simply principles which have been observed to have wide wvalidity as long as
length scales are sufficiently large to contain many molecules. Many of these axioms can be
applied to molecules as well. The axioms cannot be proven. They are simply statements
which have been useful in describing the universe.

A summary of the axioms in words is as follows

Mass conservation principle: The time rate of change of mass of a material region is
ZEero.

Linear momenta principle: The time rate of change of the linear momenta of a material
region is equal to the sum of forces acting on the region. This is Euler’s generalization
of Newton's second law of motion.

Angular momenta principle: The time rate of change of the angular momenta of a
material region is equal to the sum of the torques acting on the region. This was first
formulated by Euler.

Energy conservation principle: The time rate of change of energy within a material
region is equal to the rate that energy is received by heat and work interactions. This
is the first law of thermodynamics.

Entropy inequality: The time rate of change of entropy within a material region is
greater than or equal to the ratio of the rate of heat transferred to the region and the
absolute temperature of the region. This is the second law of thermodynamics.

Here, we shall systematically convert two of these axioms, the mass conservation principle
and the energy conservation principle, into mathematical form.

6.1.2.1 Mass

Mass is an extensive property for which we have

B=m, (=1 (6.37)
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The mass conservation axiom is simple to state mathematically. It is

d )
= 0. (6.38)
A relevant material volume is sketched in Figure[5.7] We can define the mass enclosed within

a material volume based upon the local value of density:

m = / pdV. (6.39)
(i)
So the mass conservation axiom is
d .
o vt pdV = 0. (6.40)

Invoking the Reynolds transport theorem (6.32), 4 . ol 1dV = v, ) 2l 1dv + [ A
n| |dA, we get
d d'p

pdV = 9P av + f ov-ndA=0. (6.41)
dt Sy Vin (£) Am(t)

Figure 6.7: Sketch of finite material region Vi,(t), infinitesimal mass element pdV’, and
infinitesimal surface element dA with unit normal n, and general velocity w equal to fluid
velocity v,

The first equality of Eq. (G.41)) is simply a mathematical statement involving definitions;
forcing either of the terms to equal zero is a statement of physics. Now, we invoke the
divergence theorem, Eq. (62) [, ) V-[]ldV = J‘AU} [ ]dA, to convert a surface integral to

a volume integral to get the mass conservation axiom to read as

f 9 4y + V- (pv) dV =0, (6.42)
Vin(t) ot Vinlt)
/ ({}p + V- (pv }) dv = 0. (6.43)
Vi) \ O g
nrt

Now. in an important step, we realize that the only way for this integral, which has absolutely
arbitrary limits of integration. to always be zero. is for the integrand itself to always be zero.
Hence, we have
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d
i’ + V- (pv) =0. (6.44)
This is the important differential form of the mass conservation principle.

We can get a useful control velume formulation by integrating the mass conservation

principle (6.44) over a fired volume V:

fv({}a‘uv-{pﬂ) d‘if:/vﬂ dv. (6.45)

X;:lw, the integral of 0 over a fixed domain must be zero. This is equivalent to saying
L (dx = 0, where the area under the curve of () has to be zero. So we have

/1: (%" +V- (pv}) dv = 0. (6.46)

Next apply the divergence theorem (G6.2)) to (G.46) to get

f,—cnr’+ pv-n dA =0, (6.47)

Applying now the result from (6.36)) to ([6.47)), we see for the fixed volume that

i
— [ pdV + ] pv-n dA=10. (6.48)
dt Jy A

We note now that at an inlet to a control volume that v points in an opposite direction to
n, so we have
v-n <, at inlets. (6.49)

At exits to a control volume v and n point in the same direction so that

v-n >0, at exits. (6.50)

If now, we take the simplifving assumption that p and v have no spatial variation across
inlets and exits, we get for a control volume with one inlet and one exit that

d
il dV + pe|ve|Ae = pi|vi|Ai = 0. (6.51)
v

Here, the subscript ¢ denotes inlet, and the subscript e denotes exit. Rearranging (6.51), we
find J
= ‘/; p dV = pi|vi| Ai = pe|ve|Ae. (6.52)

We now define the mass in the control volume m., as

My = f p dV. (6.53)
v

Here, (6.53) is equivalent to the equation on the top of p. 182 of BS. If we make the further
simplifying assumption that p does not vary within V', we find that
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iy

— = pilvildi = pe|ve|de . (6.54)
dt &v_a e —

mass rate in  mass rate out
rate of change of mass

Here, m_, is the mass enclosed in the control volume. If there is no net rate of change of
mass the control volume is in steady stafe, and we can say that the mass flow in must equal
the mass How out:

pi|vi| Ai = pe|ve| Ae. (6.55)
We define the mass flow rate m as
m = p|v|A. (6.56)
For steady flows with a single entrance and exit, we have
m = constant. (6.57)

For unsteady flows with a single entrance and exit, we can rewrite ([6.54]) as

dm
S = T = T (6.58)
For unsteady flow with many entrances and exits, we can generalize (6.54) as
dm

—= = alvil A= pelvel A, (6.59)

rate of change of mass maaa-;';te in mass :arte out

dm . .
dt = o= Y i (6.60)
e ——
rate of change of mass mass rate in mass rate out

Note that (6.60) is fully equivalent to BS's Eq. (6.1) (p. 181), but that it actually takes a
good deal of effort to get to this point with rigor! For steady state conditions with many
entrances and exits we can say

D plvil A = pelvel Ae. (6.61)
Thus

D = rite. (6.62)

Here, [6.62) is the same as BS's (6.9), p. 186.

6.1.2.2 Energy

For energy, we must consider the total energy which includes internal, kinetic, and potential.
Our extensive property B is thus

B=E=U+ %mv -V + mgz. (6.63)

Here, we have assumed the Huid resides in a gravitational potential field in which the gravi-
tational potential energy varies linearly with height z. The corresponding intensive property
3 is
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1
;‘3=e=u+§v-v+gz. (6.64)

We recall the first law of thermodynamics, which states the change of a material volume's
total energy is equal to the heat transferred to the material volume less the work done by
the material volume. Mathematically, this is stated as Eq. (5.8):

dE = 6Q — 6W. (6.65)

We recall the total derivative is used for dE. since energy is a property and has an exact
differential, while both heat transfer and work are not properties and do not have exact
differentials. It is more convenient to express the first law as a rate equation., which we get
by dividing ([6.65) by df to get

dE 480 SW

P T T (6.66)
Recall that the upper case letters denote extensive thermodynamic properties. For example,
FE is total energy, inclusive of internal and kinetic and potenti . with 5[ units of .J. Let us
consider each term in the first law of thermodynamics in detail and then write the equation
in final form.

6.1.2.2.1 Total energy term For a fluid particle, the differential amount of total energy
=

1
dE = pidV =p (u 4 SV°V +gz) dV, (6.67)

S

A

= pdV (u + %v v 4 gz) . (6.68)

L

T
internal +kinetic +potential

6.1.2.2.2 Work term Let us partition the work into work Wpe done by a pressure force
Fp and work done by other sources, which we shall call W, where the subscript “muv”
indicates “material volume.”

W =Wp+ W, (6.69)
Taking a time derivative, we get
daW daWp .
—_—=—+W,,. 6.70
dt gt T me (6.70)

The work done by other sources is often called shaft work and represents inputs of such
devices as compressors, pumps, and turbines. Its modeling is often not rigorous.

Recall that work is done when a force acts through a distance, and a work rate arises when
a force acts through a distance at a particular rate in time (hence, a velocity is involved).
Recall also that it is the dot product of the force vector with the position or velocity that
gives the true work or work rate. In shorthand, we can say that the differential work done
by the pressure force Fp is

§Wp = Fp-dx (6.71)
SWp dx .
? = FP'E—FP'?. (6.72}
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Figure 6.8: Sketch of fuid doing work.

Here, W has the SI units of J, and Fp has the SI units of N. Now, let us consider the work
done by the pressure force. In a piston-cylinder arrangement in which a fluid exists with
pressure P within the evlinder and the piston is rising with velocity v. the work rate done
by the fluid is positive. We can think of the local stress vector in the Huid as pointing in
the same direction as the fuid is moving at the piston surface, so that the dot product is
positive. Now, we can express the pressure force in terms of the pressure by

Fp = PAn. (6.73)
Substituting ([6.72)) into (6.73), we get
oW,
d—: = PAn-v. (6.74)

It is noted that we have been a little loose distinguishing local areas from global areas. Better
stated, we should say for a material volume that

SW
A =f Pn-v dA. (6.75)
dt Amlt)

This form allows for P and v to vary with location. This is summarized in the sketch of

Figure

6.1.2.2.3 Heat transfer term If we were considering temperature fields with spatial
dependency, we would define a heat Hux vector. This approach is absolutely necessary to
describe many real-world devices, and is the focus of a standard undergraduate course in
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heat transfer. Here, we will take a simplified assumption that the only heat fluxes are easily
specified and are all absorbed into a lumped scalar term we will call (). This term has
units of J/s = W in SI. So we have then

(1)

— = Qe (6.76)

6.1.2.2.4 The first law of thermodynamics Putting the words of the first law into
equation form, we get

d 1 5Q oW

= —v- v =—t-"" 6.77

dt Jo0” ("’"’ 2" """gz) it dt (677)
Enma

We next introduce our simplification of heat transfer (G.76) and partition of work (E.T0)

along with (6.75) into (6.77]) to get

d 1 . ;
— P (u +-v-v+ gz) dV = Qe — (I-i-"mﬂ +'/ Pn-v dﬂ) . (6.78)
dt Vialt) -2 Am[ﬂ
Now, we bring the pressure work integral to the right side of (6.78) to get
d 1 , S
— plut+=v-v+gz|dV+ Pn-vdA=Qu, — W (6.79)
dt Sy - Am(t)

We next invoke the Reynolds transport theorem into [6.79) to expand the derivative
of the first integral so as to obtain

) 1 1
f f—(p U+ =V V4 gz r.ﬂr’+/ P n+—v-v+g:) v-ndA
Vin(t) O 2 An(t) 2

L.

—
dE . fdt

+ / Pn.v dA = Qmy = Wie. (6.80)
Am(t)

We next note that the two area integrals have the same limits and can be combined to form

d 1 . P 1
—plut+=v-v+gz| |dV + plu+ —+=-v-v+gz v-ndA
Vin(t) O 2 Aum(t) p 2
\h-uv-r-f

h
= Qumy = Wi (6.81)

We recall now the definition of enthalpy h, Eq. (5.52)),

F
h=u+—=u+ Pv. (6.82)
P
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Invoking (G.82) into ([E.E1]), we get

f %(P(H+%v-v+g:))d1’+f (p(h+%v-v+gz))v-ndﬂ
V1) Am(t)

= Qe = Wiy (6.83)
Next use the divergence theorem ([6.2) to rewrite (6.83) as

¥, 1 1
/ f—(p u+-v-v+g:) -:ﬂr’+f V-|pv h.+—v-v+_q:) dV
Vialt) fjf 2 Vialt) 2

= Qo = Wi (6.84)

Now, for convenience, let us define the specific control volume heat transfer and work g,
and yy,,, each with SI units .J/kg such that

d

thr = Oy (Pthr} "i-]"r:u (685}
1;’“{{] {}t
W, f J (ptwme) dV (6.86)
Ve = — | P W fa .
Vi (£) I!'jf

so that by substituting (6.85) and (6.86) into ([6.84]), we get

) 1 1
/ f—(ﬂ(ﬂ+—‘-"v+§3))dv+f v-(ﬂv(h+—v-v+§:)) dV
d J
= = (PAme) dV — f — (pwy,) dV. (6.87)
w/l:’m{t} f}f Vm.[:t} (}t

Now, all terms in ([6.87) have the same limits of integration, so they can be grouped to form

5, 1 1
fv’mm(ﬁ (p(u+§v-v+g:)) +V- (pv(h+§v-v+gz))

B a o
_E {pqmtl} + E {lﬂ'wmu]) dV’ = 0. (688}

As with the mass equation, since the integral is zero. in general we must expect the integrand
to be zero, giving us

0 1 1 i 0
E(P(ﬂ+§?-v+§~)) +v(ﬂ\r (h+§v-v+gz)) _E(pq"‘"}+ﬁ{m'"‘”)_ﬂ'
(6.89)

To get the standard control volume form of the equation, we then integrate (G.80) over
a fired control volume V" to get

3] 1 1
ﬁ(ﬁ (p(u+§v-v+gz))+v- (pv(h+§v-v+g:))

) d o
_E (mmtr} + E [.lp'wmtl}) dV = 10. (ﬁ‘:ﬂ]:}
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Now, defining the control volume heat transfer rate and work rate, (,:],:1, and i-ir"m,

: J
Qew= | — (pGme) dV. 6.91
deo = | 57 (PGme) (6.91)
A (W) dV. (6.92)
o ﬁ E P 1 -

we employ (6.91) and (6.92) in (6.90) to get

] (i (p (u b oveve gz)) +V- (,r:rv (h Fov-v gz))) dV = Qe = We.(6.93)
Vv I!'.if 2 2

Applying the divergence theorem (6.2) to (6.93) to convert a portion of the volume integral
into an area integral, and (6.36) to bring the time derivative outside the integral for the fixed
volume, we get

i 1 1 . .
— | plut+=v-v4+gz| dV+ [ pv-n|h+-v-v+gz | dA=Qun— Wa. (6.94)
dt J, 2 \ 2

Eew

We now define the total energy in the control volume as

1
E.= f p (u + 5V°V +gz) dV. (6.95)
v

Next assume that all properties across entrances and exits are uniform so that the area
integral in (6.93) reduces to

1
fpv-n(h+7v-v+gz) dA =
A 2
Zﬂ'l h +lv - Ve + g2, —Zrh- h-+lv- -v; + gz ). (6.96)
e [ = 2 2 e a { = i i 2 L i a i
Substituting (6.95) and (6.96]) into (G.94), we get
dE., 1 1 . .
— ng (hg +5Ve Vet _ng) - Z i (h,- +pvievit _qzi) = Quy — W (6.97)

Rearranging (6.97), we get
dE.,
it
rate of CV energy change

= Qe - Wi

—— N’
CV heat transfer rate OV shaft work rate

1 1
+Zﬁ1i (h-i + E"’i -V +ng) —Z i (he + __:)VE - Ve + gze) (6.98)

il e
total enthalpy rate in total enthalpy rate out
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Here, (L.98) is equivalent to BS's Eq. (6.7), p. 185. Note that the so-called total enthalpy is
often defined as

1
htot =h + zv-v+gz. (6.99)

2
Employing (6.99) in (G.98), we find

dFe - _ |
= Qo= Weo # ) _titihioti = ) titehiosc. (6.100)

Here, (6.100) is equivalent to BS's (6.8), p. 185.

If there is a single entrance and exit, we lose the summation, so that (6.98) becomes

diw e L?:_-u - II::,_, + ?'-'ﬂi (.’1( + %VE -V + gzi) - T‘."'.LE (hE 4+ %‘rg -V, + gze) i (ﬁlﬂl}

If the flow is steady, we have dE../dt = 0 and m; = m. = m, so the first law with a single
entrance and exit becomes

. . 1
0=Qw—Wa+m (hf - he + E(v.- Wi — Ve Ve) + gz — ze}) . (6.102)

Defining the specific control volume heat transfer and work as

e W
g=2e Ve (6.103)
m m
and substituting (6.103) into ([6.102), we get
1
0=g—w+hi—h.+ EE"’i Vi = Ve Ve ) + glzi — ze). (6.104)

Now, ([6.I04) can be rearranged to form BS’s (6.13), p. 187:

1 1
r;i+h,-+EV;-V,-+gzt-=u'+he+§"'e've+!}'ze- (ﬁlﬂﬁ}

This looks more like the first law when we rearrange as

1 1
(h—e + E'ﬂ'e “ Ve + gzg) - (hi + §Vl’ Vi + gZi) =gq=w. (ﬁlm}

If the How is adiabatic, steady, has one entrance and one exit, and there is no shaft work,
we find that the total enthalpy must remain constant:

1 1
h; + EV( vi+ gzi = he + E"’e * Ve + gZe. (ﬁlﬂ?}
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6.2. Mass conservation in brief

Here, we summarize the key equations for mass conservation derived in the previous section.
We consider the mass enclosed in a fixed control volume V', Eq. (6.53):

ﬂi.m:fprﬂ*’. (6.108)
"

The density p can vary throughout V. In this class, we will nearly always take it to be
constant throughout the volume. If p is constant throughout V', then it can be brought
outside the integral operator, vielding m., = p va dV" = pV. Our control volume will have a
finite number of openings where fluid can enter and exit.

We state mass conservation for a control volume as

ATy
T = 2 ﬂil‘rda‘li—; Pg|‘i’e|a‘1i-. (6.109)
rate of change of mass masa-;';te in MAss ;:te ot
dm e, , )
= = )i o= Y me . (6.110)
—— M e’
rate of change of mass mass rate in mass rate out

Equations (6.109] [6.110) were fully developed in the previous section where they appeared

as Egs. [6.60). Here, the fluid at an inlet ¢ has density p;, velocity vector v; and flows
through cross-sectional area A;. An analogous set of variables exists at each exit e. Let us
look at the units of the important quantity p|v|A:

A gmm _ "9 6.111
plviA — — (6.111)
Obviously, it is a rate of mass flow; consequently, we define the mass How rate as

m = p|v|A. (6.112)
Often we will neglect the vector notation and take |v| = v. Equation (6.110) expresses

mathematically the notion of mass conservation for the control volume:

e The time rate of accumulation of mass within the control velume is equal to the net
rate of mass flow into the control volume.

In short
accumlation = in - out.

In the important case in which there is no net accumulation rate, the so-called steady
state limit, we get

E; = =) i (6.113)

=
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Y =) . (6.114)

Eq. (6.114) is the same as Eq. (6.62]). If there is a single entrance and exit, then we simply
get

m; = m, = m = constant. (6.115)

6.3. Energy conservation in brief

We can state the first law of thermodynamics for a control volume as
dE,,
dt
S’
rate of CV energy change

- Qo = W
—— —
'V heat transfer rate OV shaft work rate

. 1, . 1,
+ z 1 (hi + 5Vi + _q:i) - E Tile (he + Ve + g:._;) . (6.144)

o

T T
total enthalpy rate in total enthalpy rate out

Here, Eq. (G.144]) is equivalent Eq. (6.98) and to BS's Eq. (6.7), p. 185. Note that the
so-called total enthalpy is often defined as

hmzh+%u2+gz=u+%u2+gz+f:’u. (6.145)

Note that in this context, total enthalpy is on a per mass basis. The “total” comes from
summing internal, kinetic, potential, and Pv terms. Emploving ([6.145]) in ([6.144]), we find

dE., - . . .
3 Qo — Woo + Z Milor; — Z Tite heot e - (6.146)

Here, Eq. (6.146) is equivalent to Eq. (6.100) and to BS's (6.8), p. 185. Eq. (6.146]) expresses

mathematically the notion of energy conservation for the control volume:

o The time mate of accumulation of total energy within the confrol voelume is equal the
rate of heat transfer into the control volume minus the rafe of work done leaving the
control velume plus the net rate of total enthalpy entering the control velume.

The new terms here are attributable to total enthalpy entering and exiting the control

volume.

Apain, the total enthalpy is the sum of the specific internal energy, the specific kinetic
energy. the specific potential energy and the term Pv. It is easy to imagine that E.,, which
itself is composed of v, K E. and PFE, is affected by the How of v, K E, and PE into and out

of the control volume. However the term Pv is unusual. It is multiplied by m. Let us check

the units: k EN y ki
Py — [ (Y 2B e (6.147)
s m? kg s

It has the units of power. As shown in detail in the previous section,
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o The term mPv embedded within the control velume energy equation within hy, accounts
for the net work rate done by the fluid as it enters and erits the control surface bounding
the control volume.

o The term W represents so-called shaft work and does not include work associated with
the erpansion of the working fluid.

If there is a single entrance and exit, we lose the summation, so that (6.144) becomes

% =0, - W, +m, (hi + %vf + _q':i) — 1, (he + %vf + _q:,_,) : (6.148)

If the flow is steady, we have dE, /dt = () and m; = . = m, so the first law with a single
entrance and exit becomes

0=Qu— W, + 1 (ht- —h, + %(vf —vi)+g(z — ze}) . (6.149)

Defining the specific control volume heat transfer and work as

q=Q_m ur:w_m

. . 6.150
m mo ( )
and substituting (6.150) into (6.149). we get
1
ﬂ=q—w+hf—hg+§(vf—vz}+g(:i—zg). (6.151)
Now, (6.I51I)) can be rearranged to form BS’s (6.13), p. 187:
q+h; + %vf+§~; =w+h. + %\'ﬁ + gze. (6.152)
This looks more like the first law when we rearrange as
1 1, .
he+ V24 gz | = hi+svi+gu |+  g-w . (6.153)
2 @ L
~ o o e . “ VW heat and work
outlet inlet

If the How is adiabatic, steady, has one entrance and one exit. and there is no shaft work,
we find that the total enthalpy must remain constant:

1 1
h; + ivf + gz =h. + §v§ + gz.. (6.154)

6.4. Some devices

Here. we will consider rudiments of control volume analysis for some common engineering
devices.

6.4.1 Throttling device
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A flow is throttled when, for example, it lows through a partially open valve. When it does
s0, we notice that there can be a significant pressure loss from one side of the partially open
valve to the other. A sketch of a throttling device is given in Fig. [6.12]

We model a throttling device as steady with one entrance and exit, with no control
volume work or heat transfer. We neglect changes in area as well as potential energy. Mass
conservation tells us

dm,, , .
o = =i, (6.155)
P
=0
0 = iy =g, (6.156)
W = g = . (6.157)
_— E—
1 2
o —

Figure 6.12: Sketch of throttling device.

Energy conservation tells us that

dE., i . . vi . V3
_df = Qo = Wa 4y | Iy + E +gz | —mz | ha + E + gz ). (6158}
. vioowvi
0 = m|h=—h+2=Z+4gz,—gn|. (6.159)
2 2 I
=i}
el

Now, in throttling devices there may be a change in velocity due to compressibility effects,
but it is observed to be small when the flow velocity 1s much less than the speed of sound.
We shall assume here the velocity is small relative to the speed of sound so as to recover
vy ~ Wy and thus

hy = hy. (6.160)

So, we can say that such a throttling device is one in which pressure drops and enthalpy
remains constant.

6.4.2 Nozzles and diffusers

Similar to a throttling device, we model nozzles and diffusers as steady with one entrance
and exit, with no control volume work. We may or may not neglect heat transfer. We neglect
potential energy changes but take kinetic energy changes into account.
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A nozzle is a device which induces a velocity increase; a diffuser is a device which induces
a velocity decrease. For flows with subsonic velocities, nozzles have area decrease in the
flow direction, while diffusers have area Increases with the flow direction. We sketch these
common configurations in Fig, If one systematically applied the conservation of mass,

! 2
T __,_,..---""'""-'_Fr. L,
[—
- ___.___....--""" "---._._____‘___‘___-_‘_' -
subsonic subsonic
nozzle diffuser

Figure 6.13: Sketch of subsonic nozzle and diffuser.

momentum, and energy principles, after detailed analysis, one finds the converse state of
affairs for supersonic How conditions. Supersonic nozzles have increasing area; supersonic
diffusers have decreasing area. This is why in the design of rocket nozzles, the cross-sectional
area broadens at the base. The broadening area induces a higher velocity, and induces a
higher thrust for a supersonic rocket engine.

We analyze nozzles and diffusers as follows. Mass conservation tells us

dm
i = ﬂl".l.l — lez._ (ﬁ‘ 1ﬁ3}
dt
=}
= i = 1. (6.164)
Energy conservation tells us
dE,, ; - vi 5
— = Qo= Wa+in (hl + El + _t;le) = i (hz + %2 + _t;wz) . (6.165)
Ry =0
=il
i Ve 2
0 = Qutm |h=h+ D=2 4gzs =gz, (6.166)
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Qoo vi _v3
0 = = 4 h, —h,+ L —22 6.167
e ( )

If the nozzle or diffuser is also adiabatic. we get

V2 2
m+%=m+%. (6.168)

6.4.3 Turbine

A turbine is a device in which work is generated through expansion of a fluid as it passes
through a fan-like device. The fluid interacts with the blades and turns the fan. Ultimately
thermal and mechanical energy is transferred from the fluid into the rotational kinetic energy
of the fan blades. A sketch of a turbine is given in Fig. [6.14] For a turbine, we typically

Figure 6.14: Highly simplified sketch of turbine.

neglect kinetic and potential energy changes of the fluid. We may or may not neglect heat

transfer. We also neglect any unsteady effects. Mass conservation tells us

d

";1"” . (6.169)
R

=

T (6.170)

Energy conservation tells us

dE., . ] Ve 2
? = Qo — We +my (-’11 + El + !}'31) — Tty (1’12 + % + g‘ﬂz) . l:ﬁ.l?l:}
=0
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2

o 2
0 = Qu—We+mm hl—hz+%—§2+gz1—ga
. R el

=i

=)
0 = Qu— Wa+m(hy — ha),
Weo = Qe+ 1in(h1 — ha).

We often neglect ()., to get

W = min(hy — ha).

On a per mass basis, we can scale by m to get
w = hl — h-Q.

For turbines, iy > ha, so we get w > (). The device is doing work.

6.4.4 Pumps and compressors

]

(6.172)

(6.173)
(6.174)

(6.175)

(6.176)

The analysis for a pump or compressor is effectively identical to that for a turbine. However
the device operates in an opposite sense. Mechanical energy from either rotating (like a
compressor in a jet engine) or reciprocating machinery (like a piston-cylinder arrangement)
is transferred to the working fluid, raising its energetic state. We typically neglect changes
in kinetic and potential energy of the Huid and consider the device to be in a steady state.

We sometimes neglect heat transfer to the device.
The analysis is as follows. Mass conservation tells us

dmey ) )
= Wy = My,
dt
e’
={)
T.IH1 = ?".i‘l:g = 7.

Energy conservation tells us

dE : . V2 :
d—;ﬂ = ch - W, + 71y (.I’I'l -+ El + 9'31) — Tty (h? + % + g2
—
=i}
o 22
0 = Qu=Wa+m -’11—-’12+%—52+921_§ZZ

0 = Qu = W +m(hy = hy),
Weo = Qe +102(hy = ha).

We often neglect Q. to get
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(6.177)

(6.178)

(6.179)
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W = mia(hy — ha). (6.183)
On a per mass basis, we can scale by m to get
w=hy — ha. (6.184)

For pumps and compressors, by < hs, so we get w < (). The device requires an input of

work.

6.4.5 Heat exchanger

A heat exchanger is a device in which a working Huid trades its thermal energy with another
working Huid. A sketch of a heat exchanger is given in Fig. For heat exchangers, we

Figure 6.15: Sketch of counterflow heat exchanger.
typically neglect all work, as well as changes in kinetic and potential energy. Also
o there will be exchange of thermal energy between individual flow streams, but

e pglobally for the entire device, there will be no heat transfer with the environment.

Let us consider a counterflow heat exchanger. The mass balance for steady flow is trivial.
The energy balance, neglecting changes in K E and PE states

dE, . . .
— = Qc ~ We + Z mihi = 1iche. (6.185)
S =0 = 7 )

Applying this to the counterflow heat exchanger gives

fitihy hot + Mahocotd = 1k cold + 12ha hot. (6.186)
11 (R ot = Prcotd) = iz (Rzhot — B2 cold) - (6.187)

6.5. Introduction to the Rankine cycle
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Consider the

s HANKINE CYCLE: a thermodynamic cycle which forms the foundation for most steam
power plants.

The cvcle was studied analytically by Rﬂnkine depicted in Fig. We will consider

Fig 6.17. William John Macquorn Rankine (1820-1872),
Scottish engineer who systematically studied and publish
discussion of steam power cycles

additional miances of the Rankine cycle in Sec. 10.1}
The key features of the Rankine cycle are

e 1 — 2: compression of a liquid by a pump,

e 2 — 3: hoiling of the liguid to form a vapor,

e 3 — 4: expansion of the vapor through a turbine, and

e 4 — 1: condensation of the vapor to liquid in a condenser.

A sketch of the Rankine cyvcle in the P — v plane is given in Fig. [6.18] The Rankine

P A

3]

pump

L4
Figure 6.18: Sketch of Rankine cycle in the P — v plane.

cycle forms the cornerstone of a wide variety of power generating devices in the world today.
Whether the heat source comes from burning coal, natural gas, fuel oil, garbage, nuclear
fission, solar energy, or some other source, it can always be used to boil water, which is
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the key feature of the Rankine cvcle. Most modern power plants are considerably more
complicated than the simple outline given here. Some are equipped to use a variety of
fuels. Often coal burning components are used continuously for so-called base loads and
are supplemented during peak consumption hours by natural gas. Some modern plants use
natural gas for base loads. Some cycles are equipped for district heating and cooling, some
for electric power generation, some for nautical propulsion.

6.6. Preview: equation of continuum
mechanics

This course focuses on mass and energy conservation coupled with equations of state for sys-
tems which are well modeled as equilibrinm processes. We can do many important problems
with these tools. However, there are many problems which we cannot do with these tools,
e.g. problems with coupled time and space dependency, or problems with detailed material
motion.

Let us, as a preview for future courses, write various related sets of partial differential
equations which can couple equilibrinum thermodynamics with mechanics.

6.6.1 Full set

We first give a summary of a reasonably complete and general set of equations for a continuum
material. One way to write these equations is as follows:

7)
% +V-(pv)=0  mass, (6.265)
%(p\r) +V-(pvww)=pg—-VFP+ V-1, linear momenta, (6.266)
‘
=T, angular momenta, (6.267)

%(P(H+%‘-’-V)) +?-(pv(u+%v-v)) = =V-q-V-(Pv)

+V-(r-v)+pv-g,
energy. (6.268)

Equations (6.265]6.268]) are the axioms of mass conservation, linear momentum conservation,
angular momenta conservation, and energy conservation, respectively. They are valid for any
pure material, be it solid, liquid, or gas, as long as we are at velocities small relative to the
velocity of light. New variables here include the deviatoric stress tensor 7, and the heat flux

vector g. The vector g is the constant gravitational acceleration. It is easily modified for
variable gravitational acceleration.

The conservation axioms are necessary but not sufficient to determine all flow variables.
They must be supplemented by constitutive relations. Constitutive relations specify the
actual material. A general set is given here.

122



P = P(p.T), thermal EOS, (6.269)
u = u(pT), caloric EOS, (6.270)
q = q(T.VT,...). heat flux, (6.271)
T = 7(I.Vv.Vx,...). stress. (6.272)

Equation (6.269) is a thermal equation of state. An example is the ideal gas law P = pRT.
Equation (6.270]) is a caloric equation of state. An example is a calorically perfect ideal
gas, u = (T = T,) + u,. Equation (G.2T1)) is a relation between the heat flux vector and
other state variables. An example is Fourler's law, q = —kVT. Equation (6.272)) is a relation
between the deviatoric stress and a variety of variables. For example, a Newtonian fluad
obeying Stokes” assumption has 7 = p(Vv + (Vv)T) = (1/3)(V - v)I. This relates stress to
strain rate. On the other hand, the stress in a solid would be related to the strain, instead
of the strain rate.

6.6.2 Static solids equations

For a static solid, we take v = 0 and the density constant. The mass equation becomes
irrelevant, as does the angular momenta equation. The linear momenta equation reduces to
a force balance, since inertia is zero. We take the total stress tensor & = v — PIL. where I is
the identity matrix.

V-a = —pg. linear momenta. (6.273)
E
° = 11 (E +73 _HQUTI'{E}I) . stress-strain relation. (6.274)

Here, E is the modulus of elasticity, # is Poisson’s ratio (—1 < »» < 1/2), and e is the strain.

6.6.3 Incompressible fluid mechanics equations

In the discipline of incompressible fluid mechanics, we typically take p to be a constant,
we ignore the kinetic energy of the Huid, consider fluid properties such as viscosity and

conductivity to be constant, and reduce our equations to the following set

V-v=1, mass, (6.275)

p (i% +v- 'G'v) = pg = VP + uViv, linear momenta, (6.276)
=T angular momenta, (6.277)

pcp (?% +v- "F’T) = kV*T, energy, (6.278)

123



T =p(Vv+ (Vv)'), stress-strain rate, (6.279)
q=—-kVT, Fourier’s law (6.280)
The thermodynamic state equations are not particularly important here. Moreover, the mass

and linear momenta equations form an independent set. The energy equation is coupled to
to mass and momenta equations because of the velocity vector.

6.6.4 Compressible fluid mechanics equations

In compressible aerodynamics, we account for density changes and thermodynamics, but
usually neglect gravity. viscosity and heat conduction. Our equations reduce to, for a CPIG,

(,}—}g + V- (pv) =0, mass, (6.281)
é
v .
p (? +v- vv) ==VP, linear momenta, (6.282)
é
dhu o )
(E +v- 'ff’u) = =P (E +v- ?U) . energy, (6.283)
P = pRT, thermal state, (6.284)
u=ec,T + uo, caloric state. (6.285)

Notice the energy equation is simply the familiar du/dt = — Pdv/dt, when d/dt is interpreted
as Jfot +v - V.

6.6.5 Heat transfer in incompressible static solids

For heat transfer in static solids, we require v = 0. Moreover. there is no work. We take
a calorically perfect solid with constant thermal conductivity k which obeys Fourier's law
q = —kVT and get the first law of thermodynamics to reduce to the simple scalar equation
known to Fourier in the early nineteenth century:

aT

peor = kYT, energy. (6.286)
é
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LECTURE 7: THE SECOND LAW OF THERMODYNAMICS

Content of Lecture 7

7. 1. Statements of the second law
7.1.1. Entropy-based statement
7.1.2. Clausius statement
7.1.3. Kelvin-Planck statement
7.1.4. Carathéodory statement
7.1.5. Judeo-Christian statement
7.1.6. Historian-inspired statement
7.1.7. Literature-inspired statement
7.1.8. Food service-inspired statement
7.2. Reversible and irreversible processes
7.3. Analysis of Carnot heat engines
7.4. The absolute temperature scale
7.5. Analysis of Carnot refrigerators and heat pumps
7.6. Rejected thermal energy on a national scale
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Conservation of mass and energy are fine concepts that allow us to quantify and predict well
many phenomena which are observed in nature. And if a phenomenon can be repeated, it
becomes subject to prediction, and can be thought of as a science.

However, conservation of mass and energy, by themselves, admit as possibilities phenom-
ena which are not observed in nature! For instance consider an isolated system composed of
two equal masses of liquid water. See Fig. [T.1] The first is at T4 = 310 K, the second is at

not observed in nature

observed in nature

Figure 7.1: Sketch of two scenarios, both of which satisfy mass and energy conservation.

Tg = 290 K. A long time elapses. Because the combined system is isolated, there are no

external heat or work exchanges with the environment. But we will allow heat exchanges
between mass A and mass B. Consider two possibilities, both admitted by mass and energy
conservation, as t — oo:

o Ty — 320 K, Tg — 2800 K. The thermal energy that is gained by A is lost by B, such
that the net energy is conserved and the first law is satisfied. This is never observed
in nafure.

o Ty — 300 K, Ty — 300 K. The thermal energy that is lost by A is gained by B, so
once again the first law is satisfied. This is always observed in nature.

So mass conservation and the first law of thermodynamics, both of which speak to this
gedankenerperiment, are insufficient to guarantee that we will predict what is observed in
nature. We need another axiom!

In a similar way, there are a variety of phenomena which may satisfy mass and energy

conservation, but are not observed in nature. Some include
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e water running uphill without an external assist,

e (C0; and H,0 reacting spontaneously to form CH,; and O,, and

® air separating into its constituents spontaneously.

The second law of thermodynamics is an attempt to provide a single all-encompassing state-
ment which expands our thermodynamic theory so as to predict the just-described behavior.
Though our statement of the second law will be simple enough, it will be obtuse and some-
times difficult to reconcile with nature. It is also a profound concept which has wide ranging
ramifications. Its origins are firmly rooted in the engineering sciences, as it was motivated
by optimization of steam engines. However, it has found applications in many realms of

7.1. Statements of the second law

physics, chemistry, ecology, economics, computer science, and other fields.

In his influential essay contrasting scientific and humanistic cultures, C. P. Snuwm sees
understanding of the second law as an indicator of scientific literacy and goes on to chide

his humanist colleagues:

A good many times I have been present at gatherings of people who, by the stan-
dards of the traditional culture, are thought highly educated and who have with
considerable gusto been expressing their incredulity at the illiteracy of scientists.
Once or twice I have been provoked and have asked the company how many of
them could describe the Second Law of Thermodynamics, the law of entropy. The
response was cold: it was also negative. Yet I was asking something which is

about the scientific equivalent of: ‘Have you read a work of Shakespeare’s?’ [
now believe that if I had asked an even simpler question —such as, What do you
mean by mass. or acceleration, which is the scientific equivalent of saying, ‘Can
you read?’ —not more than one in ten of the highly educated would have felt that
I was speaking the same language. So the great edifice of modern physics goes up,
and the majority of the cleverest people in the western world have about as much
insight into it as their Neolithic ancestors would have had.

Let us summarize some more reasons for studying the second law:

It predicts the direction in time of processes.
It aids in determining equilibrium conditions.

It allows one to determine peak performance of practical devices.

It enables one to frame analysis of the factors which inhibit the realization of peak

performance.

It allows a rational definition of the absolute temperature scale.

It has implications bevond engineering in physics, philosophy, economics, computer

science, etc.
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7.1.1 Entropy-based statement

There are many ways to state the second law of thermodynamics. One statement is as

follows:

® SECOND LAW OF THERMODYNAMICS: The entropy of an isolated system can never
decrease with time.

This definition begs the question. what is entropy? A formal definition will be deferred to
the next chapter. Let us loosely define it here as a measure of the so-called randomness (or
disorder) of a system, with high randomness corresponding to high entropy. Low randomness
or low disorder often corresponds to low entropy.

Interpreted in another way, structure or order requires energy input to be realized, while
over time, without continued maintenance, structure and order decay. The formulation of
the second law we adopt will be robust enough to prevent us from predicting water to run
uphill, methane to spontanecusly form from carbon dioxide and water, or air to separate into
its constituents. It will also be seen to be an important principle for predicting the optimal
behavior of a wide variety of engineering devices.

All that said, it should be noted that the equivalence of entropy with disorder, while
useful and common. is likely not universal. Certainly 'Wrigh characterizes it as “a highly

“P. GG. Wright, 1970, “Entropy and disorder.” Contemporary Physics, 11(6): 581-588.

contentions opinion” and discusses counter-examples, especially as related to molecular level
phenomena. Wright's arguments are reinforced by Styer[”] who concludes that the notion of
“entropy as disorder” be used only in conjunction with the notion of “entropy as freedom.”
Freedom here is to be interpreted as the ability to acquire a variety of states: if only one state
is available, freedom is severely restricted. and entropy is low; if many states are available,
freedom i1s widespread, and entropy is high. Both terms. “disorder” and “freedom”™ are
shown by Styer to have alternate interpretations which render both imperfect metaphors for
entropy.

AD. F. Styer, 2000, “Insight into entropy,” American Journal of Physics, 68(12): 1090-1096.

7.1.2 Clausius statement

Clausius, the German mathematical physicist who probably did the most to cast thermody-
namics on a scientific basis, gives a more precise statement of the second law:

s SECOND LAW OF THERMODYNAMICS: “Heat cannot, of itself, pass from a colder to a
hotter hudy.’ﬂ

AR. Clausius, 1879, The Mechanical Theory of Heat, Macmillan, London, p. 78

The original German version appeared earliel” and is reproduced in Fig. [T.2]

R. Clausius, 1854, “Ueber eine veriinderte Form des zweiten Hauptsatzes der mechanischen Wirmethe-
orie,” Annalen der Physik und Chemie, 169(12): 481-506.
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Dieser Grundsatz, auf welchem die ganze folgende Ent-
wickelung berubt, lautet: es kann nie Wirme aus einem kal-
teren in einen wiirmeren Kirper ibergehen, wenn nicht gleich-
zeitig eine andere damit zusummenhingende Aenderung ein-
tritf. Er wird duarch Alles, was wir iiber den Wirme-

Figure 7.2: Image of the joriginal 1854 appearance| of the Clausius form of the second law.

The Clansius formulation of the second law is easy to understand in engineering terms
and is illustrated schematically in Fig. [7.3] Note that air conditioners move heat from cold
regions to hot regions, but that work input is required.

7.1.3 Kelvin-Planck statement

Another statement of the second law is inspired by statements of the nineteenth century
scientists, Kelvin and Planck, depicted in Fig. [7.4] The so-called Kelvin-Planck statement,
a modern rendition of earlier statements, is often given as

e SECOND LAW OF THERMODYNAMICS: It is impossible for any system to operate in
a thermodynamic cycle and deliver a net amount of work to its surroundings while
receiving an energy transfer by heat from a single thermal reservoir.

cold hot cold

is impossible without W is possible without W

Figure 7.3: Schematic of the Clausius statement of the second law of thermodynamics.

Thomson's original 1851 statemenﬂﬂ 15 somewhat different. Planck’'s 1897 statememfl 15
closer. Both are reproduced in Fig. [[.5]

fW. Thomson (later Lord Kelvin), 1851) “On the dynamical theory of heat, with numerical results de-
duced from Mr. Joule's equivalent of a thermal unit, and M. Regnault’s observations on steam,” Transactions
of the Royal Society of Edinburgh, 20: 261-268; 280-298.

M. Planck, 1897, Vorlesungen iber Thermodynamik, Walter de Gruyter, Berlin; reprinted in
English translation as Treatise on Thermodynamics, Dover, New York, p. 89.
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Fig 7.4. a) William Thomson (Lord
Kelvin)(1824-1907), Ulster-born  Scottish
scientist who had profound on nineteenth
century science including thermodynamics;
b) Max Carl Ernst Ludwig Planck (1858-
1947), German physicist

b)

It is impossible, by means of inawimate malerial agency, o Tt is dmpossible to construct an
derive mechanical effect from any portion of matter by cooling | |engine which will work in a complete eyele, and produce no effect
it below the temperature of the coldest of the surrounding objects®. | |evoept the raising of & weight and the onoling of a heal-reservoir.®

a) Kelvin b) Planck

Fig 7.5. Images of a) Thomson’s 1851 and b) Planck’s 1897 statements of the second law of

thermodynamics
The Kelvin-Planck formulation of the second law is easy to understand in engineering

terms and is illustrated schematically in Fig.[Z6] For the schematic of Fig.[T.6] the first law,
neglecting changes in kinetic and potential energy, states that

Uy =Uh =Q—-W. (7.1)
But we have specified that the process is a cycle, so U; = U,. and thus the first law holds
Q=W. (7.2)

Now. the second law, for this scenario, holds that positive ) cannot be delivered, which
gives, for an engine in contact with a single thermal reservoir,

Q<0. W <. (7.3)
In informal language. the Kelvin-Planck statement says
e you can turn all the work into heat, but

e you cannot turn all the heat into work.

7.1.4 Carathéodory statement

Another form of the second law was given by the mathematician and advocate for the ax-
iomatic a%)roach to thermodynamics. Carathéodory, depicted in Fig.[T.7] The Carathéodory
statement(’ is

8C. Carathéodory, 1909] “Untersuchungen iiber die Grundlagen der Thermodynamik,” Mathematische
Annalen, 67: 355-386.

e SECOND LAW OF THERMODYNAMICS: In the neighborhood of any equilibrium state
of a thermodynamic system. there are equilibrium states that are adiabatically inac-
cessible.
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Demonstration of its equivalence to other statements is not straightforward, and we shall
not consider it in any further detail in these notes: nevertheless, the notions embodied in
this statement as well as the school of thought in thermodynamics which has grown around
the work of its author has benefits associated with casting thermodynamics in the context of
more general mathematical ideas, thus making results from modern mathematics more easily
applicable to thermodynamics. The work of Carathéodory is often dismissed as somehow too
mathematical. Indeed. his approach to thermodynamics in general requires a mathematical
sophistication beyvond that needed to understand the more common Clausius or Kelvin-
Planck formulations. The interested reader can consult a relevant discussion

M. W. Zemansky, 1966] “Kelvin and Caratheodory—a reconciliation,” American Journal of Physics,

34(10): 914-920.
thermal reservoir / i thermal reservoir
Q .

)
cyclic 44— W : cyvelic o W
EngEine e
first law: (=W, since AL=0 for cyvele first law: = W, since A=) for cyvele
second law: This scenaric cannot be. secoaml baw: This scenario can be.

Fig 7.6. Schematic of the Kelvin-Planck statement of the second law of thermodynamics
7.1.5 Judeo-Christian statement
One finds in Genesis 3:19 the admonition given by the Catholic church in its Ash Wednesday

services,

e MODULATED SECOND LAW OF THERMODYNAMICS: Remember man that thou art
dust, and unto dust thou shalt return.

7.1.6 Historian-inspired statement

The great American historian and generalist, Henry Brooks Adams (1838-1918) grandson
and great-grandson of American presidents, wrote a detailed and entertaining essay on the
second law. Among his many comments is includ

o Apams’ SECOND Law OF THERMODYNAMICS: “._.but to the vulgar and ignorant
historian it meant only that the ash-heap was constantly increasing in size.”

WH. B. Adams, 1910, A Letter to American Teachers of History, J. H. Furst, Washington.
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7.1.7 Literature-inspired statement

Though he probably did not intend it for engineering, the Nobel literature laureate Chinua
Achebe’s most famous novel has a title which also serves as a rough-and-ready statement of
the second law:

o INFORMAL SECOND LAW OF THERMODYNAMICS: Things fall apart.

The title of the novel is drawn from a line in Nobel literature laureate William Butler Yeats’
apocalyptic 1921 poem, The Second Coming.

Fig 7.7. Constantin Carathéodory (1873-1950), Greek
mathematician

7.1.8 Food service-inspired statement

® SECOND LAW OF THERMODYNAMICS, SPECIAL CASE: Untended food rots.

7.2. Reversible and irreversible processes

We shall find it useful to have in hand definitions for so-called reversible and irreversible
processes. Let us take

¢ REVERSIBLE PROCESS: A process in which it is possible to return both the system
and surroundings to their original states.

o [RREVERSIBLE PROCESS: A process in which it is impossible to return both the system
and surroundings to their original states.

Now, it may be possible to restore the system to its original state but not the surroundings
(or the surroundings to its original state but not the system). Such a process is irreversible.

We shall often study reversible processes as they represent an ideal of the most we can
ever hope to achieve. Some common engineering idealizations of reversible processes include

¢ frictionless motion.
o 1deal inviscid flow of a fluid over an airfoil.

Now, everything in the real world deviates from the ideal. In flow over a wing. friction in
the form of viscosity causes local irreversible heating of the air near the wing and the wing
itself. Often in the real world these irreversibilities are confined to small regions and often
do not largely affect the motion of the body.

If the world in which we live were reversible, we would realize some benefits, but ulti-
mately life would be impossible. In a reversible world
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o Pendulum clocks would never need to be rewound.

s Electricity would flow without generating heat; thus, computer fans would be unnec-
essary, among other things, but

¢ We would not be able to walk!

7.3. Analysis of Carnot heat engines

Here, we will present what amounts to a version of the discussion of the 1850s inspired by
the original work of [','arncr depicted along with his writings in Fig. [[.8] for heat engines.

WS, Carnot, 1824] Réflerions sur la Puissance Motrice du Feu et sur les Machines propres a Développer
cette Puissance, Bachelier, Paris. (English translation, 2005, Reflections on the Motive Power of Fire, Dover,
Mineola, New York). 1897 English translation.

REFLEXIONS

PUISSANCE MOTRICE

Fig 7.8. Sadi Nicolas Léonard Carnot (1796-
1832), French engineer whose analysis
formed the basis for modern thermodynamics
and the title page from his magnum opus

SUR LES MACHINES

PROPRES A DEVELOPPER GETTE PUISSANCE.

Pan S. CARNOT,

aneany dubve o Vdoen soryrremsiger.

A PARIS,
CHEZ BACHELIER, LIBRAIRE,

Quat ors aceusmins, 0. 55

1824

Carnot’s 1824 work was done before any formal notions of the first and second laws had been
systematized.

The informal statement of the Kelvin-Planck version of the second law is that you cannot
turn all the heat into work. Now, an engineer often wants to harvest as much as possible
of the thermal energy of combustion and convert it into mechanical energy. Kelvin-Planck
simply says we cannot have it all. But it lets us have some! In fact if we only harvest a
portion of the thermal energy for work and reject the rest in the form of thermal energy, we
can satisfy the second law. We show this schematically in Fig. [[.91 The first law for this

system is

Uy=Uh =Qu=Qr=W. (7.4)

Note that here, we are thinking of W, (Jy. and (J; as all positive. If we were rigorous
with our sign convention, we would have reversed the arrow on (), since our sign convention
always has positive work entering the system. However,
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hot thermal reservoar

O

cyelic W
engine

Q.

onld thermal ressrvoir

first law: W= @, = G, since AL = 0 for cycle

second law: This scenario can be.
Fig 7.9. Schematic of a realizable heat engine

o following a common practice, the rigorous sign convention is traditionally abandoned
for analysis of heat engines!

Now, we are requiring a cyclic process, so [} = Us; thus, Eq. (T.d]) reduces to
W=0Qu—Q. (7.5)
Now, recall we previewed the idea of thermal efficiency, i, in Eq. (6.220):

what you want

= . 7.6
" what you pay for (7.6)
We recast it for the scenario of Fig. [1.9] where we want W and we pay for Jy:
W
= —. 7.7
"= Oon (7.7)
Now, we use Eq. (L) to eliminate W in Eq. (LT) and get
Qu = QL QL
L Rl (7.8)

Qu Qu

Equation (Z8) is analogous to the earlier Eq. (6.235). Now, if Q@ = 0. we get n = 1, and
our engine does a perfect job in converting all the heat into work. But if (05 = 0. we violate
the Kelvin-Planck version of the second law! So we must reject some heat. Another version
of the Kelvin-Planck statement then is
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n=1—§—:-i1- (7.9)

It is possible to prove the following corollary to the Kelvin-Planck statement:

Nirreversible = Nreversible s (Tlﬂ}

for cyvcles operating between the same thermal reservoirs.

And there is a second corollary, applicable for two different cyeles, both reversible, and both
operating between the same thermal reservoirs:

Nreversible,1 = Mreversible,2- {Tll}

7.4. The absolute temperature scale

The second corollary to the Kelvin-Planck statement holds that all reversible engines op-
erating between the same thermal reservoirs have the same n. This is independent of any
details of the cycle or the materials involved. This implies that

o The thermal efficiency. n. should depend only on the character of the reservoirs in-
volved.

Specifically, we will define 5 in terms of what we will call the TEMPERATURE of the reservoir.
This is the classical macroscopic interpretation of temperature. Later statistical theories give
it the additional interpretation as a measure of the average translational kinetic energy of
molecules of the system. But that is not our approach here! Now., we might suppose that
this new thermodynamic property, temperature, should somehow be a measure of how much
heat is transferred from one reservoir to another. Moreover, each reservoir will have its
own temperature. The hot reservoir will have temperature Ty the cold reservoir will have
temperature Tp. So we are then saying that

n=n(Tu.TL). (7.19)

As of yet, this functional form is unspecified. Substituting this form into our earlier Eq. (L8],
we get

M. Ty) = 1= S (7.20)

H

This can only be true if (J; and (Jy have some relation to Ty and Ty. So let us propose a
useful definition. We insist that our temperatures take the form of that for a Carnot cycle

T, _Qu

T~ or (7.21)

This is just a definition that cannot be argued. Its utility will be seen as its justification,
but nothing more. Eq. (7.21]) is valid only in the context of a Carnot cycle, and not for other
cycles,
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Our logic train is that we observe heat engines, such as steam engines seen by Carnot
in the early 1800s, doing work as a result of heat transfers. That effect, work, must have a
cause. And we are going to assert that the cause is affiliated with a temperature difference.
So far our temperature has been defined only in terms of a ratio. Let us make an arbitrary
choice to avoid ratios. We take, for convenience, the temperature of the triple point of water

to be 273.15 K. Thus for any system, the local T is

Q@

) . (7.22)
Q"'EF‘E point /' pepersible eyele

T = (273.15 K) (

This implies we can connect our heat engine to a reservoir maintained at the triple point

temperature of water, and measure the associated (Js for the heat engine. With our definition,
Eq. (T.21)), our thermal efficiency, Eq. (Z.8)), becomes

Ty
n=1-—= (7.23)

H

This famous formula is the thermal efficiency for an idealized heat engine; it is not valid for
other heat engines. This formula is not found in Carnot’s original work: nor is it straightfor-
wardly presented in the later works of the 1850s. Clausius puts most of the pieces in place
so much so that Miller and Miille attribute the formula to him; but it is not directly seen
in his 1854 study; see Truesdell

MNote
J'!LHP-G” = 1, (7.24)
lim 5 = 1. (7.25)
T —o

These two statements have practical importance. While we would like to drive our efficiency
to be as close to unity as possible, nature limits us. Generally, we have little to no control
over the environmental temperature T} . so it 1s a lower bound, usually around T; ~ 300 K.
And material properties for engines limit Ty;. For many metals, Ty ~ 1500 K is approaching
values where material strength is lost. So a practical upper bound based on these numbers
tells us n ~ 1 = (300 K) /(1500 K) = 0.8 is maybe the most we can expect. We plot 7 as a
function of Ty for fixed T; = 300 K in Fig. [[.12] For real systems, with irreversible features,
the values are much worse.

2R, Clausius, 1854] “Ueher eine verfinderte Form des aweiten Hauptsatzes der mechanischen Wirmethe-
orie,” Annalen der Physik und Chemie, 169(12): 481-506.

131, Miiller and W. H. Miiller, 2009, Fundamentals of Thermodynamics and Applications with Historical
Annotations and many Citations from Avogadro to Zermelo, Springer, Berlin, p. 131.

1. Truesdell, 1980, The Tragicomical History of Thermodynamics, 1822-1854 Springer, New York,
p. 330.

7.5. Analysis of Carnot refrigerators and heat
pumps
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A refrigerator or heat pump is a device which, with work input, moves thermal energy
from cold regions to hot regions. Without the work input, this could not be achieved, as
it would violate the Clausius statement of the second law of thermodyvnamics. We show
this schematically in Fig. [7.13] For a refrigerator, we define a coefficient of performance 3,
sometimes called COP, as

what you want QL

~ what you pay for w’

f
[

Carnot refrigerator. (7.26)

" Lo maximum efficiency = 1

0.8 |

0.6 L

04t

02t

LRI

0 00 L] L] S000 10000
T, (K)

Fig 7.12. Plot of idealized thermal efficiency as a function of thermal reservoir temperature with
T, =300K

Now, the first law for this cycle gives W = Qy — (1. 50

1 1
8= Qﬂcfﬂ O = "‘é—” 1= T Carnot refrigerator. (7.27)
L L
Note that
5 =0, (7.28)

for Ty /T; = 1. In addition, it is possible to have 3 > 1 if Ty /Ty < 2. Since we reserve
efficiencies to have () < 5 < 1, the COF is not really an efficiency. But it is a useful measure
that is used as an industry standard for refrigerators.
For heat pumps, we want to bring (Jy into a warm room from a cold outdoors to make
the warm room warmer. So it has a related C'OFP, which we define as 3':
Qu

3= T Carnot heat pump. (7.29)

Again the first law gives W = Qy — (J, s0

Ou 1 1
= = = =, C t heat . 7.30
Qu—CQr 1- g—i 1 — &’ ATHOR At prmp (7.30)

H Ty

3

For Ty /Ty < 1, we have 3’ > 1.

Note for both refrigerators and heat pumps, as W — 0, both 7 — oc and 4 — oo, and
we transfer thermal energy from a cold reservoir to a hot one, in violation of the Clausius
statement of the second law.
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7.6. Rejected thermal energy on a national
scale

We see that the second law characterizes the necessary rejection of heat in processes involving
heat and work. Let us briefly examine this on a national scale. Figure[7.15|reports US energy
usage in 2011 from a wide variety of sources directed to a wide variety of applications. The

basic unit of energy here is the quad where 1 quad = 10'* Btu = 1.055 x 10" J = 1.055 EJ,

where E.J is an “exajoule.” Much can be gleaned from this chart. Overall US energy use
is estimated at 97.3 guad for the year indicated. As far as the second law is concerned,
electricity generation rejects 26.6 quad waste heat per annum and transportation rejects
20.3 quad waste heat per annum. In total, 55.6 quad is rejected, and 41.7 gquad is directed
towards a useful intended purpose. Thus, the thermal efficiency of the US in 2011 was

41.7 quad
(41.7 quad) + (55.6 quad)

Nus = = (.420. (7.34)

Example
If all the waste heat in the US in 2011 were directed into Lake Michigan, find its temperature rise.

In more convenient units the waste heat for a given year is

1.055 x 10'% .J

= (55.6 = 5.87 x 10" .J. 7.35
Q = (55 quad) (M) 507 (7.35)
Now, Lake Michigan has a volume of 4900 km®. Therefore the mass of water in Lake Michigan is
roughly

kg 4 [ 10° m
= plV = | 997 — | (4900 Fm’
m=e ( m") ( ) ( km

a3
) = 4.88 x 10" kqg. (7.36)

If all the waste energy were dumped into Lake Michigan, we could expect from a first law analysis to
find a temperature rise of

Q 5.87 x 101 J

AT = =
MCP (488 x 1015 kg) (41311 *ﬁ,]

=288 K. (7.37)

For comparison, Lake Ontario would have received roughly an 8 K temperature rise. Locally on the
University of Notre Dame campus, both St. Mary's and St. Joseph's Lakes wonld be vaporized many
times over.
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Estimated U.S. Energy Use in 2011: ~97.3 Quads L] h“a‘{,";";,’;??_a%m,y

R i Net Electricity
Imports

| selar | 0.0175
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Fig 7.15. Chart of distribution of energy sources and usage in the US in 2011. Data from
Lawrence Livermore National Laboratory

NOTES

The Second Law

A |First Law showed the equivalence of work and heat
AU=¢g+w, ﬁ‘JdU =0 for cyclic process = ¢=-

Suggests engine can run in a cycle and convert heat into useful work.

A | Second Law
. Puts restrictions on useful conversion of ¢to w
«  Follows from observation of a directionality to
natural or spontaneous processes
«  Provides a set of principles for
- determining the direction of spontaneous change
- determining equilibrium state of system
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Heat reservoir Definition: A very large system of uniform
T, which does not change regardless of
the amount of heat added or withdrawn.
Also called heat bath. Real systems can come close to this

idealization.

Different statements of the Second Law

Kelvin: It is impossible for any system to operate in a cycle that
takes heat from a hot reservoir and converts it to work in the
surroundings without at the same time transferring some heat to a

colder reservoir.

T (hof) | >0 T (hon =0
w< [] w<0
g2<0
@4 w G =w-Q2
/MPOSSIBLE Il To [Cold] K.":"

Clausius: It is impossible for any system to operate in a cycle that
takes heat from a cold reservoir and transfers it to a hot reservoir
without at the same time converting some work into heat.

>0 [ T [hoT] T, (hot) | 92>0

0 w>0
_(;< 9 gi<0
] -01 =W-+o

/MPOSS/BLE AR (cold] T (cold)

Alternative Clausius statement: All spontaneous processes are
irreversible.

(e.g. heat flows from hot to cold spontaneously and irreversibly)
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Kelvin and Clausius statements are specialized to heat engines.
Mathematical statement is very abstract.
Link them through analytical treatment of a heat engine.

The Carnot Cycle | - a typical heat engine

All paths are reversible

T (hot)
o)

p.ﬂ

Q2
T» (cold)

1— 2 isothermal expansion at 7; (hot) AU =g, +w,

2 — 3 adiabatic expansion (¢ = 0) AU =w/
3 —> 4 isothermal compression at 7; (cold) AU =¢, +w,
4 —» 1 adiabatic compression (¢ = 0) AU =w)]

work output to surroundings  —(w, +w, +w, + w;)

Efficiency = heat in at 7, (hot) G

1" Law = <‘Jf)a’U=0 = g +g=—(w+w+w,+wy)

G%+% _1,%

Efficiency = ¢ =
G G

Kelvin: ¢ <0 — Efficiency =<1 (< 100%)

-w = g = work output
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Note: if cycle were run in reverse, then ¢ <0, ¢ >0, w> 0.
It's a refrigerator!

Carnot cycle for an ideal gas ‘

1-2 AU=0; ¢ =-w, =J’12pdV=RT;InU;—2]
2 —3 g=0. w'=¢,(T,-T))

Rev. adiabat = [

3-4 AU =0; ¢2=—wz=j:pdV=R7;|n[%J
4—-1 g=0: w;=¢,(T,-T;)
. ANIAS
Rev. adiabat =N [i]_(lfl’}

o _TIn(v/%)
g T/

y-1 y-1
AT (B)-(5]" = (4)-() =[2-3
Vi ) K ) \K @ T

q q — d?rev_
?1+?2_0 = <j>—_0

or
1 2 r

links heat engines to mathematical statement

Efficiency e=1+%_1- — 100% as T - 0K

%

SIS

142



For a heat engine (Kelvin): @q>0,w<0, Th<T;

n-T,
T,

1

Total work out =—w=£q1=( Jql = (-w)<gq

Note: In the limit 7> — 0K, (-w) — ¢, and £ — 100% conversion of
heat into work. 3™ law will state that we can't reach this limit!

For a refrigerator (Clausius): ¢2>0,w>0, T2< T
Total work in  =w= E_;?I g,
1
T -T
But %o-% o[0T
A A O A

Note: In the limit 72 - O K, w— o. This means it takes an infinit
amount of work to extract heat from a reservoirat O K = 0K
cannot be reached (3™ law).

Kelvin Statement. There exists no thermodynamic transformation whose sole
effect is to extract a quantity of heat from a given heat reservoir and to
convert it entirely into work.

Clausius Statement. There exists no thermodynamic transformation whose
sole effect is to extract a quantity of heat from a colder reservoir and to

deliver it to a hotter reservoir.

In both statements the key word is “sole.” An example suffices to illustrate
the point. If an ideal gas is expanded reversibly and isothermally, work is done
by the gas. Since AU = 0 in this process, the work done is equal to the heat
absorbed by the gas during the expansion. Hence a certain quantity of heat is
converted entirely into work. This is not the sole effect of the transformation,
however, because the gas occupies a larger volume in the final state. This process
is allowed by the second law.

The Kelvin statement K and the Clausius statement C are equivalent. To
prove this we prove that if the Kelvin statement is false, the Clausius statement is
false, and vice versa.
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Proof that K False = C False Suppose K is false. Then we can extract heat
from a reservoir at temperature 7; and convert it entirely into work, with no
other effect. Now we can convert this work into heat and deliver it to a reservoir
at temperature T, > 7, with no other effect. (A practical way of carrying out this
particular step is illustrated by Joule’s experiment on the equivalence of heat and
energy.) The net result of this two-step process is the transfer of an amount of
heat from a colder reservoir to a hotter one with no other effect. Hence C is
false. |

Proof that C False = K False First define an engine to be a thermodynamic
system that can undergo a cyclic transformation (i.e., a transformation whose
final state is identical with the initial state), in which system does the following
things, and only the following things:

(a) absorbs an amount of heat Q, > 0 from reservoir T>;

(b) rejects an amount of heat Q, > 0 to reservoir T, with T} < Tj;

(c¢) performs an amount of work W > 0.

Suppose C is false. Extract Q, from reservoir T; and deliver it to reservoir
T,, with T, > T,. Operate an engine between T, and T, for one cycle, and
arrange the engine so that the amount of heat extracted by the engine from T, is
exactly Q,. The net result is that an amount of heat is extracted from 7; and
entirely converted into work, with no other effect. Hence K is false. [ ]

Carnot’s theorem

The second law immediately implies that a Carnot engine cannot be 100% efficient,
for otherwise all the heat absorbed from the upper reservoir would be converted into
work in one cycle of operation. There is no other effect, since the system returns to

its original state.

According to the Carnot’s theorem
No engine operating between two given temperatures is more efficient than a
Carnot engine.
Proof  Since only two reservoirs are present, a Carnot engine
simply means a reversible engine. What we assert then, is that an irreversible engine
cannot be more efficient than a reversible one.
Consider a Carnot engine C and an engine X (not necessary reversible) working
between the reservoirs 7> and Ty, with T > Ty, as shown in Figure 2.5. We shall run
C in reverse, as a refrigerator C, and feed the work output of X to C. Table 2.1 shows
a balance sheet of heat transfer in one cycle of joint operation.
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The total work output is

Wit = {Q; = Q"]) - (Q2 = QI)
Now arrange to have 0% = Q3. Then, no net heat was extracted from the reservoir 75,

which can be ignored. An amount of heat 0| — Q] was extracted from the reservoir 1)
and converted entirely into work with no other effect. This would violate the second

Balance Sheet of Heat Transfer

Engine From 13 To Tj
X o 0’
_ 2 1
¢ - -
Q3 Q,
| 4
T
v | ’
—
X ,..__" —E C
w W
| 4
T
v | :
Q) Q

Driving a Carnot referigarator C with an arbitrary engine X.

law, unless @y < Q. Dividing both sides of this inequality by (5, and using the fact
Q5 = 0y, we have
0 _0o
@2 O
Therefore 1 — (Q,/Q2) = 1 — (Q}/0Q5), or
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ne = Nx

As a corollary, all Carnot engines have the same efficiency, since X may be a Carnot
engine. This shows that the Carnot engine is universal, in that it depends only on the
temperatures involved, and not on the working substance,

Absolute scale of temperature

(@) The definition of the absolute scale of temperatufe is independent of the
specific properties of any substance. It depends only on a property that
is common to all substances, the second law of thermodynamics.

(b) The limit § = 0 is the greatest lower bound of the temperature scale and
is called the absolute zero. Actually no Carnot engine exists with
absolute zero as the temperature of the lower reservoir, for that would
violate the second law. The absolute zero exists only in a limiting sense.

(¢) The absolute Kelvin scale @ is identical with the ideal-gas temperature
scale T, if T> 0. This is easily proved by using an ideal gas to form a
Carnot engine. From now on we do not distinguish between the two and

denote the absolute temperature by 7.

The Carnot cycle and engine

The four-stage Carnot cycle is shown. Any fluid known as
the working substance may be taken around the cycle.
The surroundings consist of two constant temperature heat
reservoirs, one at 7y and the other at Ty < T, and some
means (such as pistons) to allow the exchange of mechan-
ical energy with other devices. The system and surround-
ings comprise the hypothetical Carnot engine. It operates
reversibly between the two heat reservoirs, with, in each cy-
cle, heat () entering at Ty, ( leaving at Ty and work W
being delivered. If the working substance is not an ideal gas,
the shapes of the isotherms and adiabatics will be (slightly)
different from those shown.
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The efficiency of a heat engine
A generalised engine is illustrated schematically opposite. This

engine still operates in cycles, with its working substance always Heat Engine
returning to the same thermodynamic state at the end of each cy- hot body
cle. Thermodynamic efficiency analysis is done in work/heat per ‘ T
cycle: in reality the power produced is often more important: 1O
Power = Work per cycle x cycles per second I W
E +—-
Q1, Q2 and W are heat supplied to, heat rejected by and work
done by the working substance. The work done on the working
substance is —W, and the First Law takes the form AU = Q; — | Q2
Q2+ (—W) = 0 for each complete cycle. From this, W = Q; — Q-, ‘ ot
and the efficiency 7 of the engine is defined by cold body2
n=W/Q:1=1-Qx/h
The Clausius statement:
hot body
It is impossible to construct a device that, NOT
operating in a cycle, produces no effect allowed by {Q
other than the transfer of heat from a CLAUSIUS
colder to a hotter body ) R
The “R” on the diagram, of the forbidden 1@
device, denotes “refrigerator”. ‘ ‘
cold body
The Kelvin-Planck statement ‘ hot body ‘
It is impossible to construct a device that, glgge d by TQ
operating in a cycle, will produce no effect KELVIN | W=0
other than the extraction of heat from a E T
single body at a uniform temperature and
the performance of an equivalent amount
of work.
‘ cold body
The “E” on the diagram, of the forbidden de-

vice, denotes “engine”.

Note the use of body rather than heat reservoir, meaning that engines can be considered to operate
between two bodies (one a source and the other a sink of heat) of which the hotter one cools and the colder
one heats up whilst the engine is running,
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The equivalence of the Clausius and the Kelvin-Planck statements

This is traditionally proved by showing that if either statement is false, so is the other.

Suppose Kelvin-Planck’s statement
is false. Then an engine (E) can
drive a refrigerator (R), as sketched

opposite, where W (equal to @1 from T ‘ ‘ T
the 15 law applied to E) is just suf-
ficient to operate one cycle of R. If 1 @1 1Q2+ Q1 1Q2
R extracts Qo from the cold body,
it will deliver heat Q; + Q2 (1% law
applied to R) to the hot body, each E -
cycle. E4R can be treated as a com- W refrigerator
posite refrigerator, whose only effect =@ |
is to transfer heat )5 from a colder
to a hotter body, requiring Clau- @2 {Q2
sius’s statement to also be false. T ‘ ‘

(The similar proof that if Clausius’s cold body

statement is false so too is Kelvin’s
is left as an exercise).

(A) (B)
hot body hot body

composite

cold body

Carnot’s theorem and a corollary

Carnot’s Theorem is

No engine operating between two reservoirs can be more efficient than
a Carnot engine operating between the same two reservoirs.

To prove this we will examine how the efficiency of a hypothetical engine E’ is restricted by Clausius’s
statement of the 2°¢ law.

(A) (B)
hot reservoir hot reservoir
T1 ‘ Tl
Q} Q1 Q) 1
E —+—— C E' — C
w’ %% 4%
, Q=Qi-W Qs =
Qs Q-W=0@, Q1—W
1> ‘ ‘ T
cold reservoir cold reservoir
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Let the hypothetical engine E’ (efficiency 1’) and a Carnot engine C (efficiency n¢) operate between
the same heat reservoirs at temperatures T7 and Tp < Ti; sketch (A) above. All stages of the Carnot
engine are reversible, so it can be driven backwards. If the engines are adjusted so that W' = |W|, then,
assuming 7' > n, W'/Q| = W/Q} > W/Q; leads to 1 > @}. That means (see diagrams) that the
composite device (sketch (B))would act as a refrigerator which each cycle extracts heat Q1 — @] from the
lower temperature reservoir and delivers exactly the same heat to the higher temperature reservoir without
exchanging mechanical work with any other device. This contradicts Clausius’s statment of the 2°¢ law, so
the assumption 7' > 1 cannot be valid. It is necessary to consider also the possibility 7’ = 7, for which,
from the diagram, @] = Q1. The composite device achieves nothing: heat flows are zero and there is no
work exchanged. The conclusion is that the efficiency 1 for any real engine must therefore satisfy

The corollary follows: make the composite device from two Carnot engines, C, and C;, with the first
one, efficiency 7., driving the second one, efficiency 17).,, backwards. Carnot’s Theorem leads to 7., < 1.,
However, for C, driving C, backwards, 1., < 7n.,. The only option is 7., = 7,,. hence the corollary:

All Carnot engines operating between the same two reservoirs have the
same efficiency (INDEPENDENT of the working substance).

Another Corollary: Existence of a thermodynamic temperature

We have shown that the thermodynamic efficiency of all reversible heat engines operating between the same
two temperature reservoirs is equal (independent of the choice of working substance or process). This ef-
ficiency, n = 1 — %, can therefore only depend on the temperature of the reservoirs. The ratio Q1/Q2 is
therefore some universal function f of 77 and Ts: Q1/Q2 = f(T1,T2). We can say more about the functional

form of f by considering the following:

Consider two reversible engines as shown (any
working substance). Per cycle, the first re-

. . T
moves heat from reservoir at T and rejects

heat at 75 doing work Wj. The size and Qi T
rate of the processes of the second engine are Wi
scaled so that it is synchronised with the first Q for Qi
engine removing heat @ = @ per cycle from T,
the reservoir at 75 doing some work Ws and Q>
rejecting heat Q3 to a reservoir at Ty with
T >T, > T

For this arrangement the heat entering and Qs
leaving the reservoir at 75 balance and so no T;

W +W,
Qs

Ts

composite engine
reservoir is in fact required. The overall pro-

cess is thus equivalent to the composite engine
shown on the right of the figure. For the two

individual engines:
Q
Q2
Q
Qs

f(T1,To) (1)

f(To, T3) 2)
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While for the composite

% _ Ty 3)

with f the same universal function in all 3 expressions. Multiplying EQN 1 by EQN 2, ()2 cancels giving
an expression for (1 /Q3 that can be compared with EQN 3:

Q
Q_i = [(11.1).[(,T3) = [(1,T5)
The only way the boxed expression can be satisfied is if the function f factorises,
0(Th)
h,h)=45—
[, T) i)

with #(T') a universal function of temperature for a given choice of temperature scale. We have thus found
a ‘natural’ temperature scale, 6, called thermodynamic temperature, that can be expressed as a function of
our arbitrary practical temperature scale. It is shown in the next topic that 8 = Tjq ie 0(T;q) = Ty
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LECTURE 8: ENTROPY

Content of Lecture 8

8.1. Theoretical development
8.2. Second law in terms of entropy
8.3. The Gibbs equation
8.4. Entropy for ideal gases
8.4.1. Calorically perfect
8.4.2. Calorically imperfect
8.5. Entropy for an incompressible solid or liquid
8.6. Iso-curves
8.6.1. Isochores
8.6.2. Isobars
8.6.3. Isentropes
8.7. Isentropic relations for an ideal gas
8.7.1. Calorically perfect
8.7.2. Calorically imperfect
8.8. Two cycles
8.8.1. Carnot
8.8.2. Otto
8.9. Entropy of thermo-mechanical mixing
8.10. Probabilistic approach to entropy
8.11. Summary statement of thermodynamics

Much as the new property energy arose via consideration of the first law of thermodynamics,

we will find it useful to introduce

o ENTROPY: a thermodynamic property which provides a quantitative measure of the

disorder of a given thermodynamic state,

from consideration of the second law of thermodynamics. The word itself was coined by
Clausius who based it on the combination of e~ (en-) “to put into,” and Tpomr} (trope),
“turn” or “conversion.” The Greek here is a modification of the original Greek of Clausius,
who emploved 7} Tpowf). An image of the first use of the word is given in Fig. B.1]

In some ways entropy is simply a mathematical convenience and a theoretical construct.
However, its resilience is due to the fact that it is useful for engineers to summarize important
design concepts for thermal systems such as steam power plants, antomobile engines, jet

engines, refrigerators, heat pumps, and furnaces.

'R. Clausius, 1865, “Ueber verschiedene fiir die Anwendung bequeme Formen der Hauptgleichungen der

mechanischen Wirmetheorie,” Annalen der Physik und Chemie, 125(7): 353-390.

8.1. Theoretical development
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Let us motivate the property of entropy by considering Fig. Here, we perform our
analysis on a differential basis. We have a thermal reservoir at T,... which delivers a small
amount of heat 4() to a reversible cyclic engine, labeled “1.” This engine delivers a small
amount of work 41" and rejects a small amount of heat 4() to another reservoir at variable
T, labeled “2." This reservoir itself delivers a different small amount of work 4W to the
surroundings. Let us examine the implications of our temperature definition and the second
law of thermodynamics on this scenario.

w0 erhilt man die Glelehung:
6 fR=s-3,

welche, our etwas. anders geordoet, dicsclbe ist, wie die
unter (§0) angefBhrte wor Bedimmung von § dienende Gloi-
chang.

Sucht man fir S einen bezeichoenden Nemen, so konnte
mnn, Sholich wie von der Grifse I gesagt ist, sie sey der
Werme- und Werkinhalt des Korpers, von der Grafss 8§

Fig 8.1. Image capturing the first use of sagen, sie sey der Ferwondbengrinholt des Korpers. Da
the word entropy, from R. Clausius, ich ¢s aber fir besser halte, die Namen derartiper Tir die

Wirscnschali wichiiger Grilsen sus den alten Sprachen
1865 za eotnehmen, damit sie unverndert in allen meuen Spra-

ched angewandt werden kbnoen, so schlage ich wor, die
Grofee 8 nach dew griechischen Worte 5 rpony, dic Ver-
wandlung, die Entropic dos Korpers o pennen, Das
Wort Entropie habe ich absichilich dem Worte Enmergie
mitglichst Sbmlich gebildet, deun die beiden Gréifsen, welchs
durch diese Worte bensont werden sollen, sind ihren phy-
dlkalischen Bedentungen nach einander so pabe verwand,
dals eime gewisee Gleichartigheit im der Bepeonung mir
eweckmllalp o seyn scheint.

]-;ll
al)’
Fig 8.2. Sketch of heat engine | 5
configuration ~ to  motivate  the :_‘J:_"H‘“ e W
development of entropy ; " '
E"]lgll]i‘
1
o
T — i W
2

combined syvstem boundary
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We first apply Eq. (LZI)) to the configuration of Fig.

‘5(;" — Tf‘ES

o= (8.1)
Thus 5Q 50

T‘F‘Eﬂ - ?‘ {8.2}

Now, let us take the combined system. enclosed within the dotted box, to be composed
of 1 and 2. The first law in differential form for the combined system is

dE = (6Q') = (6W + 6W"). (8.3)

Note that we have not yet required the process be cyelic. Also note that 40 is internal and
s0 does not cross the boundary of the combined system and is not present in our first law
formulation. Rearrange Eq. (B3) to get

SW + 6W' = 6’ — dE. (8.4)
Now, use Eq. (B2) to eliminate 4@ in Eq. (E4]):
SW + W' = T,Eaé?f‘) - dE. (8.5)

Now. let us let this configuration undergo a thermodynamic cycle, indicated by the operation

# applied to Eq. (B5):
f( SW + f SW' = f( TME?Q - f dE. (8.6)
L —
=0

Because E is a thermodynamic property, its cyclic integral is zero. But () and W are not
properties, so they have non-zero values when integrated through a cycle. Performing the
integration of Eq. (8.6) and realizing that, by definition, T}, is a constant, we get

Q

- (8.7)

W+ W' =T,. }(

Now, we can apply the Kelvin-Planck form of the second law of thermodynamics to the
confipuration of Fig. thus, we require simply that

W+ W <0. (8.8)

That is. we cannot convert all the heat to work. but we can convert all the work to heat.

Since Kelvin-Planck tells us W 4+ W' < 0, Eq. (&.7) tells us

T‘F‘Eﬂ fﬁ?'@ E ﬂ‘ {8.9}
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And since Tyes > 0, we can divide Eq. (8.1) by it without changing the sense of the inequality
to get a mathematical representation of the second law of thermodynamics:

}f ? <0, (8.10)

second law of thermodynamics.

If all processes are reversible, we lose the inequality, and get simply

30
}( =0, (8.11)

all processes reversible.

Now, let us reconsider Fig. [L6] recast here as Fig. [8.3] which was used for development
of the path-independent thermodynamic property E. Here, we will use similar concepts to
develop the thermodynamic property of entropy. Let us restrict our discussion to reversible

P
r Y
2
A
Fig 8.3. Sketch of P-V diagram for various
combinations of processes forming cyclic
intergrals L f

Y

V

processes, which are the best we could hope for in an ideal world. So we demand that

Eq. (B.1I) holds.

Now, from Fig. [8.3] consider starting from 1, proceeding on path A to 2. and returning
to 1 via path B. The cyclic integral § 4Q /T = 0 decomposes to

(/12 ﬁ);" ([ ?)Bﬂl (8.12)

Now, perform the same exercise going from 1 to 2 on path A and returning on path ',

vielding
25@) (15-@) :
- == = (. 8.13
(L) (LF). 13
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Now, subtract Eq. (8.13]) from Eq. (B.12) to get

([ g)g - (j: g)c =0 (8.14)
(/21 g);&: ([ E?Q)ﬂ‘ (8.15)

. . ) . 1 2
We can reverse direction and recover the same result, since Jl'z = - Jl'l :

(f ?)H - (jz J?Q)._ﬁ (8.16)

Since paths B and C are different and arbitrary, but J'-lz 460 /T is the same on either path,
the integral must be path-independent. It therefore defines a thermodynamic property of the
system. We define that property as entropy, S, an extensive thermodynamic property:

2
]
s-si= [ F. (8.17)
1

Thus

T

Note the units of S must be kJ/K in the SI system. We also can scale by the constant mass
m to get the corresponding intensive variable s = S/m:

2
Hg =— 8] = f J—q (8.18}
1

T

The units for s are k.JJ/kg/K; note they are the same as cp, ¢,, and R. In differential form,
we can say

dq
ds = —. (8.19)

This leads us to

(520
2 2
f dg = f Tds. (8.21)
1 1

2
1-:}3:[ Tds. (8.22)
1

Integrating Eq. (8.20), we get

Thus, we get

This is the heat transfer equivalent to yw, = Jr1? Pdv. So we see the heat transfer for a process
from 1 to 2 is given by the area under the curve in the T — s plane; see Fig. Note if our
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T & T "
1
i :
Fig 8.4. Sketch of process in the = :
T — S plane, with the associated : | ; :
heat transfer A S A
, s ) s
\Q, =I Td$ \Q, =[ Tds

process lies on a so-called
e ISENTROPE: a line on which entropy s is constant,

then by Eq. (822)), 1g2 = 0; thus, the process is adiabatic. Now, Eq. (£22]) only applies for a
reversible process. Combining these notions, we summarize with the important equivalence:

isentropic = adiabatic + reversible. |

For problems in which no chemiecal reactions are present, we will find ourselves interested
only in entropy differences. For problems with chemical reactions, the absolute values of
entropy will be important. Such values can be obtained by consideration of the

o THIRD LAW OF THERMODYNAMICS: “every substance has a finite positive entropy,
but at the absolute zero of temperature the entropy may become zero, and does so
become in the case of perfect crystalline substances.”

quoted here from Lewis and Rﬂndﬂll The law, another axiom of thermodynamics, was
developed over several years by Nernst depicted in Fig. B85l It will not be considered

2(3. N. Lewis and M. Randall, 1923, Thermodynamics and the Free Energy of Chemical Substances,
MeGraw-Hill, New York, p. 448,

de.z. W. H. Nernst. 1906, Ueher die Berechnung chemischer Gleichgewichte aus thermischen Messungen,
Nachrichten von der Kiniglichen Gesellschaft der Wissenschafien zu Gittingen, Mathematisch-physikalische
Klasse, Weidmannsche Buchhandlung, Berlin.

Fig 8.5. Walther Hermann Nernst (1864-1941),
German physical chemist who developed the third law
of thermodynamics
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further here.
Because entropy is a thermodynamic property. it can be used to help determine the state.
That is we can say any of the following:

s=s(T,v), s=s(T,P), s=s(v,z), P=P(T,s), v=v(Ps), ... (8.23)

For two-phase mixtures, we have, as expected,

.‘:‘—Sf

Sfg

8.2. Second law In terms of entropy

We now have a statement of the second law, _rF 80)/T < 0, valid for reversible or irreversible
heat transfer. and a definition of entropy 5; — 5, = flz 4QQ /T, provided the heat transfer is
reversible. The two seem similar. Let us combine them to cast the second law in terms of
entropy. Consider the cycle in the T — S diagram of Fig. [B.6] We start at 1, and proceed to
2 along path I, which represents an irreversible process. We return from 2 to 1 along path
R, which represents a reversible process. The second law, Eq. (8.10]), holds

s=sp+155, S=5p+1(s,=5p), s=(l=rx)sp+x5,, T=

(8.24)

0@ .
j{ = <0 (8.25)
0 > ?f ? (8.26)
TJ\

Fig 8.6. Sketch of cycle in the T - S plane
composed of irreversible process | from 1 to 2,
followed by reversible process R from 2 back to 1

S
The equality implies all processes are reversible; the inequality implies some portion of the
process is irreversible. Now, for a reversible process we also have

2 5(2
Sy =5 = — 8.27
2 1 f1 T ( )
Since the process is reversible, we reverse to get
1
a0
S51— 5= — 5.28
=sa= [ (5:29)
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Now, apply the second law, Eq. (8.10), to the scenario of Fig. 8.6}

u:_:([$)f+(/;¥)ﬁ. (8.29)

Now, substitute Eq. (E28) into Eq. (8229) to eliminate the integral along R to get

2 5
0 = U; %)J+5’,—Sz~ (8.30)
260 .
S2— S = U; ?),‘ (8.31)

More generally, we can write the second law of thermodynamics as
2
&,
S — 5 :j/ —2 (8.32)
v T

If 1 — 2 is reversible, the equality holds: if 1 — 2 is irreversible, the inequality holds.
Now, if the system is isolated, there can be no heat transfer interactions and 4} = (). So

(539

isolated system.

This implies 2 occurs later in time than 1. Thus. for isolated systems, the entropy increases
as time moves forward.

8.3. The Gibbs equation

We are now in a position to obtain one of the most important relations in thermodynamics,
the Gibbs equation, named for the great nineteenth century American engineer, physicist,
chemist, and mathematician, depicted in Fig. [B.11

US1AH WILLARN G1BBS

Fig 8.11. Josiah Willard Gibbs (1839-
1903), American mechanical engineer
who revolutionized the science of
classical and statistical thermodynamics

The Gibbs equation is a re-capitulation of the first law of thermodynamics. It is taken
in the limit that

e all processes are assumed to be reversible.

And we shall only consider the Gibbs equation for simple compressible substances, neglecting
changes in kinetic and potential energy, though other forms are possible.

—
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We first recall the differential form of the first law, Eq. (58], dE = §Q — 6W, neglect]]
changes in W E and PE, so that dE = dl7, and then consider this on a per mass basis,
obtaining

du = dg — dw. (8.58)

Now, for a simple compressible substance undergoing pressure-volume work, we have Eq. (1.34])
cast on a per mass basis, dw = Pdv. For the same substance undergoing simultanecus re-

versible heat transfer, we have from Eq. (8.20), dg = T'ds. So we can recast Eq. (8.58) as the

1The justification of neglecting changes in K E and PE is rarely stated. If we retained the total energy,
we would be led ultimately to ds = def/T + (P/T)dv. Moreover, we would conclude that changes in KE or
PE could lead to a change in entropy. However, we choose to specifically retain an accounting for mechanical
energy via Newton's second law. Detailed analysis of Newton's second law would show that work done by
certain classes of forces, e.g. gravity forces and forces due to pressure differences, was reversible, and does
not dizsipate mechanical energy. That class of change of K E and PE should not be thought of as entropy-
generating, because of its reversibility. However, work done by other types of forces, e g viscous shear forces,
does dissipate mechanical energy into thermal energy. Such a conversion is irreversible, and should contribute
to an entropy change. These notions are best understood in the context of the full mass, momenta, and energy
equations for a continuum. Details may be found inhttp://www.nd. edu/~povers/ame.60635/notes . pdf|

(Gibbs equaticr

du = Tds — Pdv. | (8.59)

Gibbs presented this now famous equation in an obscure journal, which was the only journal
in which he ever published. A reproduction from that journal of the page where his equation
first appea.re 1s given in Fig. [3.12]

3n this usage, similar to that given by BS, we are not alone, but may be in the minority. Some texts
call Eq. (E50) the “first Gibbs equation.” Perhaps a more common name for a variant of Eq. (E50)
is the “Fundamental Thermodynamic Relation,” which is commonly described for the extensive analog,
dlJ = TdS — PdV.

91. W. Gibbs, 1873| “Graphical methods in the thermodynamics of fluids,” Transactions of the Connecti-
cut Academy of Arts and Sciences, 2@ 300-342,

We have to consider the following quantitics :—
n, the volume,
p, the pressure,
t, the (absolute) temperature,
£ the energy,
», the entropy,
also W, the work done, by the hody in passing from one
and H, the heat received,* state to another.

These are subject to the relations expressed by the following differ-

lof a given body in any
state,

Fig 8.12. An image of the 1873 first sl mtionsr— o P ®
appearance of the Gibbs equation in print d;@. ' ‘(c;

‘ »
where a and /3 are constants depending upon the units by which v, p,
W and H arc measured. We may suppose our units so chosen that
a=1and f#=1,} and write our equations in the simpler form,

de = dH—a W, (1)

d W = pdv, (2)

dH = tdy. (3)

Eliminating d W and dH, we have d&¢= tin — pde. 4)
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Note that the Gibbs equation is generally valid for all materials. We have said nothing
about either a thermal or caloric equation of state. It is thus valid for ideal gases, non-ideal
gases, liquids, solids, or two-phase mixtures. And though we considered reversible processes
in its derivation, once we have it, we note that only properties are defined, and so we do not
have to restrict ourselves to reversible processes. It is commonly rearranged in a way which
allows the entropy to be determined:

| Tds = du + Pdv. | (8.60)

The Gibbs equation can also be written in terms of enthalpy. Recall Eq. (5.52), h = u+ Pu,
also valid for general materials. Elementary calculus then tells us

h = u+ Puv, (8.61)
dh = du+ Pdv+ vdP, (8.62)
du = dh— Pdv—uvdP. (8.63)

Substitute Eq. (8.63]) into the Gibbs relation Eq. (E.60) to yield

Tds = dh— Pdv—vdP + Pdv, (8.64)
Tds = dh—vdP. (8.65)

So we can 53}@
|dh = Tds + vdP. | (8.66)

8.4. Entropy for ideal gases

Let us find how to write the entropy for an ideal gas. We first use the (Gibbs eguation,
Eq. (B.60), to solve for ds to get

ds ==+ = dv. (8.74)

Now, ideal gases have Pv = RT, so P/T = R/v, so we have

du R
ds = — + —dv. 8.75
s = 7% + —dv ( )
Now, ideal gases also have from Eq. (5.75)), du = ¢,(T)dT, so
c(T)dT dv
ds = ——— + A—. 876
s T +B— (8.76)
We will first consider a CPIG. and then a CIIG.
8.4.1 Calorically perfect
For a CPIG, ¢, is a constant, and Eq. (B.76) reduces to
Cypdd dr
ds = —_ BT
s T + R - ( )

This is easily integrated as follows
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2 2 edT T dv
ds = R—, 8.78
TR s 79

: *dT * dv
ds = c‘,,/ —+ R | — (8.79)

/1 1 T 1 U

So we get
T w

Sy — 8, = ¢, In ?j + Rln f (8.80)

In general for a CPIG we can say

s(Tv) =5,+ c‘,,ln; + Rln

v
o Uy

(8.81)

where o denotes a reference state. We can invert to solve for T[T, as follows

% _ (%}H,ﬂ:u exp (s ;.‘:‘a) . (8.82)

Since Rfe, = (cp — ) /cw = k — 1, we also write

T(s,v) _ (E)k—l exp (-‘? - -‘fa) | (8.83)

T, v Cy

Now, we can also rearrange Eq. (8.66) to get

dh v
ds = — — —dF. 8.84
5= — (8.84)

Now, the ideal gas gives us v/T = R/P, and the calorically perfect assumption gives us
dh = cpdT', with cp a constant. Thus, Eq. (8.84) reduces to

dT dP
s = cp— — H—. H.85
s =cp T 5 ( )

We integrate Eq. (883) to get

2 *dT *dpP
ds = c —=—-R [ —. 8.86
fl ) ”’f1 T l P (8:50)

Thus,
T P
S3— 81 =cp lnﬁ — Rn FL:‘ (8.87)
In general, for a CPIG we can say
T P
s(T,P)=s.+cp lni—ﬁ'ln B (8.88)

where o denotes a reference state. We can invert Eq. (8.88]) to form
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()" (2)

Since Rfep = (cp — ) fep =1 =1k = (k = 1)/k, we have

T(s, P) P\ 1k s = sn)
—. = (Fn) exp o . (8.90)

8.4.2 Calorically imperfect

For the CIIG, we integrate Eq. (.76) to get

2 2 o (T)dT 2
/i;:f £+R/ iy (8.91)
1 1 T 1 U

? ¢,(T)dT
sg-sl:f %hﬁunﬂ (8.92)
1

L]

This gives

For the CIIG, we have Eq. (5.77), dh = cp(T)dT, along with the ideal gas result v/T =
R/P; thus, Eq. (E84) reduces to

cp(T)dT _dP

ds = R—. 8.93
s T P (8.93)
Integrating, we get
2 ep(T)dT F,
Sz — 8§ = — — Rln—. 8.94
S2 — 51 jl- T 1 P ( )
In general we can say
T -
cp(T)dT F
5= 8§,+ —— —RIn—. 8.95
: |5 R (8.95)
—s

Here, the “hat” notation indicates a dummy variable of integration. Here, s%. is a function
of temperature and represents the entropy when the pressure is evaluated at its reference
value of P = F,. In BS, Table A.8 gives tabular values of s5.. Note that

e in this course a superscript ® denotes evaluation at a reference pressure. Typically

F, =100 kPa.
So for the CIIG, we have

e —
T)dT F P
s(T,P) = s. + /'rﬂ % _RIHE =sp—FRln B (8.96)
—s2.
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We could also say

Sy — 8 = sp, — s, — Rln E (8.97)

1

8.5. Entropy for an incompressible solid or
liquid
For an incompressible solid or liquid we have dv = (), so the Gibbs equation, Eq. [E.59],
reduces to

Tds = du. (8.129)
If we take du = cdT’, we get
Tds = edT, (8.130)
cdT
ds = —, 8.131
s = T (8.131)
T o(T)dT

5= 5, = f i (8.132)

n T

And if the solid or liquid is calorically perfect with ¢ a true constant, we get

T
5=5,=cln —. 8.133
5 =5 C nT ( )

8.6. I1so-curves

8.6.1 Isochores
To identify isochores, let us consider Eq. ([8.60),

Tds = du+ P dv (8.134)
=)
Tds = du, (8.135)
b3 T}
T = —| . 8.136
ds |, ( )

This is valid for a general material. Iff we have an ideal gas, then du = ¢,(T)dT, and on an
isochore, Eq. (8.60) becomes

Tds = _du, +P_dv, (8.137)
=c,(T)dT =0
Tds = «c,(T)dT, (8.138)
T daT
= —. 8.139
c(T) ds |, ( )
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Thus, the slope of an isochore in the T — s plane for an ideal gas is T/c,,.

8.6.2 Isobars
To identify isobars, let us consider Eq. (8.65),

Tds = dh—v.dP, (8.140)
—
=l
Tds = dh. (8.141)
r = 9 (8.142)
s | p

This is valid for a general material. Iff we have an ideal gas, then dh = ¢p(T)dT, and on
an isobar, Eq. (B.65) becomes

Tds = _dh —v.dP, (8.143)
=cp(T)dT =i

Tds = cp(T)dT, (8.144)

T dJT

Thus, the slope of an isobar in the T — s plane for an ideal gas is T /cp. Since cp(T) > c (T,
the slope of the isochore is greater than the slope of an isebar at a given point.

For air as a CPIG with k = 7/5, R = 0.287 kJ/kg/ K, the scenario is sketched in Fig. [8.14]
For materials such as water, the behavior is similar. The slope of the isochore is greater at
a given point than that of an isobar.

T(K)
1000 7

Fig 8.14. Sketch of isochores and isobars in
the T — s plane for CPIG air, k=7/5R= 600 |
0.287kJ /kg / K,s, =0kJ /kg /K

400 L

200 | g

g __.-#"'s]op@. sochore > slope isobar
i i < L i L

I 2 " s (kifke/K)

8.6.3 Isentropes
We introduce an
e [SENTROPE: a curve on which entropy is constant.

For general materials, we identify isentropes by considering Eq. (B.60) with ds = 0
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T ds = du+ Pdv, (8.146)
=
0 = du+ Pdv, (8.147)
du = —Pdv. (8.148)

Because there is no heat transfer on an isentrope, for such a process, all of the Pdv work
goes into changing the internal energy of the system. We could also say

dhu

E . = =P (8.149)
Similarly,
T ds = dh—uvdPF, (8.150)
=0
0 = dh—uvdPF, (8.151)
dh = wvdP. (8.152)
We could also say
oh
— = 8.153
ap| ~ " (8.153)

8.7. Isentropic relations for an ideal gas

Here. we will consider algebraic relations for ideal gases undergoing isentropic processes. The
results are simple for CPIGs and a little more complicated for CIIGs.

8.7.1 Calorically perfect

Let us consider the important case of a CPIG undergoing an isentropic process. Start with
the Gibbs equation, Eq. (8.60), Tds = du + Pdv. Now, for an isentropic CPIG, we have
ds =10, P= RT /v, and du = c,dT, so we get

0 = r;l,dT+$dv._ (8.154)
0 = cﬂg+ﬂ‘%’, (8.155)

dT d
o = R?U, (8.156)
—cu[g - R 12?, (8.157)
—r:ﬂln% — Rln:—?, (8.158)
ln% = gln%._ (8.159)
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T , Rfce
n=2 = In (L—l) , (8.160)

T U
T k-1
In—= = In (L—l) _. (8.161)
1 [
T e
Lo (m) 8.162
T, (1‘2) ( }

Now, since T = Puv /R, we can also say

Pows
(8.163)

2

(8.165)

)
)H__ (8.164)
)y
(%)T - (z_;)k_l. (8.166)

We can summarize by combining Eqs. (8.162] [8.166) to get an important result, which we
emphasize is valid for tsentropic calorically perfect ideal gases only:

k=1 k1
Ts Py % 1y

— 2 — [ 2 i 2.167
I} (Pl) (t‘z) ( )

Another useful form is given by rearranging Eq. (B.166) to get the result, again valid for
isentropic calorically perfect ideal gases only:

Pvt = Pk (8.168)

We see that the isentropic relation between P and v is that for a polytropic process, see
p.[B7l with the polytropic exponent n = k. Recall for an ideal gas undergoing an isothermal
process, we have Py = Pawvs, which is polytropic with n = 1.

8.7.2 Calorically imperfect

Consider now an isentropic relation for a CIIG. Recall from Eq. (8.96) that there is no
simple way to write the algebraic form of the entropy, which relies on an integral, available
in tabular form. Consideration of CIIGs usually relies on an unusual combination of table
look-up and equations.
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We can use Eq. (8.96) to write the entropy at states 1 and 2 as

P

s = ,s,j‘.l—RlnFl_. (8.275)
P

sy = ,sﬁ,z—RlnF:’. (8.276)

o]

Recall o denotes the reference pressure, and s% is a temperature-dependent function, which
is available in tabular form. So the entropy difference, s, — 5;, is

Sg—s5 = s —sp —R (ln % —In %) . (8.277)
= sp, —sp, —R In (% %) . (8.278)
= sp,—sp—HIn (%) . (8.279)
If the process is isentropic, we have s; = s, and so
0 = s3,—sp, —R In %, (8.280)
sy, —sp, = Hln % (8.281)

1

8.8. Two cycles

In this section, we describe two important thermodynamic cycles. The most scientifically
important is the Carnof cycle, and we spend some effort in its exposition. We contrast this
with the Otto cycle, which is used to model the operation of gasoline engines.

8.8.1 Carnot

Motivated by a practical desire to improve French industry in the aftermath of military de-
feats of earlier decades, Nicolas Léonard Sadi Carnot (1796-1832), (son of the mathematician
and architect of the military success of the early French revolution, Lazare Carnot) devel-
oped an impractical engine with great theoretical importance. Though the so-called Carnot
engine has never been built, it represents the best heat engine which could be built, and im-
poses useful restrictions for practical engineers with visions of unrealizable efficiencies. Most
importantly, the analysis of Carnot demonstrates how perpetual motion machines of the first
and second kind cannot exist. Those of the first kind violate the first law of thermodynamics;
those of the second kind violate the second law of thermodynamics.

Let us use a piston-cylinder arrangement to illustrate a Carnot cycle. See the sketch of
Fig. A sketch of the process in both the P = v and T — s planes for a CPIG is given
in Fig.
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Fig 8.24. Sketch of Carnot cycle piston-cylinder device
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Fig 8.25. Sketch of a Carnot cycle for a CPIG represented in the P —v and T- s planes
The Carnot cycle is defined in four stages. Here, we use a different identification of the
states 1, 2, 3, and 4 than do BS to be consistent with more common notation that will be
used later for other engines by BS and most other texts. The four stages are

e 1 — 2: adiabatic reversible (isentropic) compression (Q = 0) from T} to T4y,
e 2 — 3: isothermal reversible expansion at T},
e 3 — 4: adiabatic reversible (isentropic) expansion from Ty to Tp, and

e 4 — 1: isothermal compression at T}.
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We always assume the same fluid is present within the Carnot engine, and ignore the effects
of valves. We also ignore the effect of mixtures of combustible gases.

The Carnot cycle for a CPIG is such a foundational idealization for mechanical engineers
that it is centrally incorporated in the logo of the international mechanical engineering
academic honor society, Pi Tan Sigma (IITXE). The logo is reproduced in Fig.

Fig 8.26. Logo of the international  mechanical
engineering honor society, Pi Tau Sigma IITZ

featuring the Carnot cycle for a CPIG in the P — v plane
as displayed on the campus of the University of Notre
Dame

8.8.2 Otto

The Otto cycle approximates the gasoline engine using what is known as an air standard
approximation. It is named for Nikolaus Otto, depicted in Fig. B28] Many details are

Fig 8.28. Nikolaus August Otto (1832-1891), German
developer of the internal combustion engine

ignored (like inlet and exhaust), and all material properties are taken to be those of air

modelled as a CPIG. It employs a fired mass approach. Diagrams for P = v and T = s for
the Otto cycle are shown in Fig.[8.29] One can outline the Otto cycle as follows:

s 1 — 2: isentropic compression in the compression stroke,

s 2 — 3: isochoric heating in the combustion stroke during spark ignition,
e 3 — 4: isentropic expansion in power stroke. and

e 4 — 1: isochoric rejection of heat to the surroundings.

(Clearly, the cycle is not a Carnot cycle. The heat transter during the combustion and
exhaust strokes does not take place at constant temperature. Roughly speaking, we might
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erpect degradation of the thermal efficiency, relative to an equivalent Carnot engine operating
between the same temperature bounds, because some of the heat transfer of the Otto eycle
occurs at lower temperatures than other parts of the cycle. Recall that for maximum Carnot
efficiency, we would like Ty as high as possible. Just past state 2, the heat transferred at T,
is at a lower temperature than the heat transferred at T3.

P T
A A

PR

connlyst km
i g

CONpT csslon

T

> >
v 5
Fig 8.29. P —v and T — s diagrams for the Otto cycle

Note for isochoric heating, such as 2 — 3, in a fixed mass environment, the first law gives

Uz =—uz = o2f3 = 2Uy, (8.377)

Uz —Up = 23— fﬂa P duv, but 12 = vy, (8.378)

Uy — Uy = ofy=— f‘“ P dv, (8.379)
- =0

2y = Uz — Uy, (8.380)

a3 = (T3=T2),  if CPIG. (8.381)

The thermal efficiency is found as follows:

Wiet :
_ Qu-Qu :
= o (8.383)
7
=1 O (8.384)
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mf-‘u‘:Td - Tl]

1l 3
mf—'-lr(T'! - Tz}’ (8 85}
T,—T
= 1- 86
o (8.386)
T (5 -1)
1-—Z (8.387)
T, (& -1)
Now, one also has the isentropic relations:
T AL
()" -
s (Vi
o= (ﬁ) . (8.389)
But V; = V] and V; = V5, so
T, _ (V"7 _L
— = = —. 390
T, (Vz) Ty (8 )
Cross multiplying the temperatures. one finds
In T,
=2 391
=T (8.391)
Thus, the thermal efficiency reduces to
T
=1—-—. 3092
7 T (8.392)

This looks a lot like the Carnot efficiency. But for a Carnot engine operating between the
same temperature bounds, we would have found n = 1 — T /T5. Since T3 > T3, the Carnot
engine is more efficient than the ideal Otto engine. This identifies an important

o THERMAL ENGINE DESIGN PRINCIPLE: To optimize the performance of a thermal
engine, the T — s diagram describing its behavior should be as close to a rectangle as
possible, with the highest possible Ty and the lowest possible T,

One often finds commercial engines characterized by their compression ratios. Modern
gasoline engines may have compression ratios of r, = 1(). In terms of the compression ratio
r, = V1 /V5, one has
1

= k—1-
T‘l.l‘

n=1=rl"*%=1

B

(8.393)

Note if the compression ratio increases, the thermal efficiency increases, so this is desirable,
in principle. However, high compression ratios introduces a variety of problems including
1) loss of material strength of hot metals in the engine, 2) higher incidence of detonation

or knock in the combustion process, 3) greater tendency to form harmful pollutants such as
NO,.
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Some deviations of actual performance from that of the air-standard Otto cycle are as
follows:

e specific heats actually vary with temperature,

e combustion may be incomplete (induces pollution and lowers fuel efficiency),

o work of inlet and exhaust is ignored. and

® losses of heat transfer to engine walls are ignored.

8.9. Entropy of thermo-mechanical mixing

We believe from experience that mixing is most likely a process which is entropy-generating.
For instance, it is easy to mix water and ink together, but hard to separate them into their
original components. Separation can be accomplished, but it takes energy. Now, we can
also mix the energy of components. We might imagine two gases at different states. This
is a structured arrangement. When the two gases mix, they come to a new equilibrinm
without external impetus. There is consequently less structure in the universe, and the
entropy should go up. Moreover, it would require an external action to return the system
to its original state. Let us demonstrate this with a simple example thermo-mechanically
mixing two CPIGs initially at different temperatures and pressures, but with otherwise
identical properties. We will enforce thermal equilibrium via temperature equilibration and
mechanical equilibrium via pressure equilibration.

We note

e The entropy of the universe increased, and we were able to quantify it.

# The adiabatic mixing process we described is irreversible. That is to say, once mixed,
we do not expect to see a spontaneous return to the initial state.

e The entropy of the universe will increase whenever two systems. initially not in equi-
librium, come to an equilibrium.

8.10. Probabilistic approach to entropy

One of the more difficult concepts regarding entropy is how it relates to the randomness of
a system. In fact what constitutes randomness vis-a-vis structure may be open to question.
Consider the diagram of Fig. Here, we take the level of the grey scale to be propor-

tional to the local temperature. The blocks on the left are held at a variety of temperatures,
hot, intermediate, and cold. The blocks on the right are held at the same intermediate tem-
perature. Let us restrict attention to the case where the hot and cold temperature blocks
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individual Blocks at individual blocks at
different temperatures: uniform intermediate
indication of structure, order, temperature:  indication

af lack of structure,
randomness. and high
entropy

and low entropy

Fig 8.31. Two scenarios for the temperature field with the grey scale proportional to the

temperature
on the left just balance, so that when the net temperature of all the blocks on the left is

calculated, it is precisely the intermediate temperature of the blocks on the right. For such
a case, the total thermal energy of the left and right configurations is equal. Energy being
equal, which configuration has the higher entropy? Omne is tempted to say that on the left
because it looks to be more random. But in fact it is the configuration on the right, which is
equivalent to that on the left having come to equilibrinm, while conserving energy. The con-
figuration on the left has each block at a different temperature. This is properly considered,
in the sense of thermodynamics, to be a structure. Left to itself, the thermal energy would
diffuse, giving rise to the configuration on the right. Now, the grey-level of each block on
the left is representative of that block’s average kinetic energy. Within each block, there will
be a distribution of kinetic energy for each individual molecule. For the blocks on the right,
there is an overall distribution of randomness, the same for each block. That randomness is
not represented by the uniform grey shade, which only captures the average kinetic energy.

It may be possible to better understand the relationship between entropy and randomness,
such as that depicted in Fig. [B31] by the following discussion. Let us consider a radically

different approach to entropy, first advocated by Boltzmann in the late nineteenth century.
Boltzmann, depicted at two disparate stages in his life in Fig.[8.32] had to struggle mightily

for his theories to gain acceptance in a time when the atomic theory of matter was not widely
understood. His arguments have become accepted over time relative to those of his many
detractors. Let us define a set of NV possible states, each with a probability of p,,. By the
nature of probability, we must hawve

N
Y =1L (8.448)

n=1
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Fig 8.32. Ludwig Boltzmann (1844-1906),
Austrian physicist whose statistical approach to
thermodynamics laid the foundation for quantum
mechanics

Because of the nature of probability, we will demand that
Pa € [0, 1]. (8.449)

That is to say neither negative probability or probability greater than unity has any meaning.
Let us define the entropy of the system as

N
5= —kgzpﬂ In py,. (8.450)

n=

where we take kg to be the Boltzmann constant. Boltzmann's tomb has a variant of this
equation cut into its stone, as shown in Fig. [8.32] As an aside, we note that operating on

Eq. (R450) yields an alternative expression relating S to py:

N
5
— = n ln - 8‘.‘1‘51
i ;p p (8.451)
5 -
- = In pk=, 8.452
W Z;: 24 (8.452)
5 a
—— = In = 8.453
0 n[=[1p*° (8.453)
S N
e - = andl 8.454
(-2 ) 163 (8.451)
Boltzmann defined kg such that
R

where N is Avogadro’s number, N = 6.02214179 x 10** molecule /mole. So

83w pin L |
b = o i etz = 1:380650 X 107 o (8.456)

mole
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Unaware of Boltzmann's theory, electrical engineer and mathematician Clande Shannon
published in 1948 what amounts to precisely the same theory in the context of data com-
mumication. When applied in such context., Boltzmann’s theory is known as information
theory. Information theory was constructed to guantify data lost in telephone line signals.
The theory and its author has had a seminal effect on modern computer and communication

technulﬂg'les Shannon is depicted in Fig.

UC. E. Shannon. 1948, “A mathematical theory of communication.” Bell System Technical Journal, 27(3):
J79-423.

2C. E. Shannon. 1948, “A mathematical theory of communication,” Bell System Technical Journal, 27(4):
G23-656.

8.11. Summary statement of thermodynamics

We have now covered the major ideas of the natural philosophy that is thermodynamics. We
can summarize for an iselated universe by stating

¢ THE ENERGY OF THE UNIVERSE IS CONSTANT, AND ITS ENTROPY IS INCREASING.

This 1s a loose translation of the statement of Clausius@

I3R. Clausius, 1865, “Ueber verschiedene fiir die Anwendung bequeme Formen der Hauptgleichungen der
mechanischen Wirmetheorie,” Annalen der Physik und Chemie, 125(7): 353-390.

Fig 8.35. Claude Elwood Shannon (1916-2001),
American electrical engineer and mathematician whose
“information entropy” mathematically identical to
Boltzmann’s statistical definition of entropy

e Die Energie der Welt ist konstant. Die Entropie der Welt strebt einem Marimum zu.

It is a pessimistic set of principles! Thinking cosmologically, these laws would suggest
that a large concentrated mass-energy complex, initially in a highly structured state, would
ultimately deteriorate into spatially homogeneous space dust at a state of final equilibrium,
the so-called heat death scenario posed initially in the nineteenth century by Kelvin and
others. Present non-equilibrium thermodynamic theory would admit local structures to self-
organize into ordered units such as a solar system or living beings. Such structures could
potentially draw the energy necessary for self-organization from residual energy from the
initial state.

Though some disagree, it is claimed here that the science of thermodynamics is incapable
of definitively answering theological questions which often arise regarding the origin of the
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universe, its ultimate fate, and the evolution of structures within it. It simply gives a
framework for what is admissible with a given set of assumptions. In that it can illuminate
some aspects of theology by identifyving those parts of it that are in and out of agreement with
empirical observations and their consequences, it may be of some use to such disciplines that
are outside its realm. More generally, many scientists follow the train of thought popularized
by the Austrian philosopher of science Karl Popper (1902-1994) who restricted scientific
theories to those that are empirically testable, or more specifically, “falsifiable.” Statements
need not be falsifiable to be true, which thus admits the possibility of theological fact; they
simply are not science.

So. if our universe is formally isolated, we can look forward to “heat death” and the
ultimate equilibrinm, first suggested by Tth‘ﬂﬁDl‘l@ If it is not isolated, there is more

MW. Thomson, 1852 “On a universal tendency in nature to the dissipation of mechanical energy.” Trans-
actions of the Royal Society of Edinburgh, 20(3): 139-142.

uncertainty, and perhaps less reason for pessimism. The so-called laws of thermodynamics
are simply an efficient reflection of present-day empirical data. Science is in that sense
radically pragmatic; if unimpeachable data is found which contradict our present axioms of
thermodynamics, science resorts to new and improved axioms.

NOTES
Entropy
. For a reversible ideal gas Carnot cycle:
Efficiency e=i=1+¢2:: ~1-k
Qr'zv Q1 Tl'
— i+£=0 — @dqre.v=0
T T
. The efficiency of any reversible engine has to be the same as
the Carnot cycle:
Ty (hot) P G0 (—“:")
% G
Some Assume &' >¢ (left
revermble '\ Camot ehgine less efficient
engine T, (cold) cycle  than Carnot cycle)
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Since the engine is reversible, we can run it backwards. Use the work
(-w') out of the Carnot engine as work input (w) to run the left engine
backwards.

Total work out =0 (-#/ = w> 0)

' W' —w w_-w _w A .
But ¢'>e = —>—— = =—>—"="_ = g<-¢ since ¢<0, ¢g>0

r

4 @ 9 9 4
=  —(g+¢)>0

This contradicts the 2" law (Clausius). This says that we have a net
flow of heat into the hot reservoir, but no work is being done!

The efficiency of any reversible engine is e=1-

BN

We can approach arbitrarily closely to any cyclic process using
a series of only adiabats and isotherms.

dqr'e.v = O

For any reversible cycle | ¢ T

This defines Entropy, a function of state

dq.. _ _ 1299,
ds==r= = AS=5,-5=] =
Note: Entropy is a state function, but to calculate AS requires a

reversible path.

An irreversible Carnot (or any other) cycle is less efficient
than a reversible one.

Py 1-2

imeversible

. —W). < |—W = W, > W,

isotherm with payxt = P2 ( )’”‘B" ( )’"3"’ irrev rev
AU = ';?;}-rev + w.-h-ev = qrev +Wr3v

isotherm (rev.) 3 Girrev < Grev
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**  Anirreversible isothermal expansion requires less heat **
than a reversible one.

gﬂ'r.r‘ev = 1 + q;.zrv'ev < 1 + qzrev = Sr'ev (‘?2 < 0)
1 1
dqirr'e.v d?re.v d?irre.v
dq,“ev _
I = 0

- Leads to Clausius inequality @d?¢< O| contains

@dq;:rgv < 0
The entropy of an isolated system never decreases

(A) ireversible (A): The system is isolated and
-2 irreversibly (spontaneously) changes

(B) reversible from [1] to [2]

1

(B): The system is brought into contact with a heat
reservoir and reversibly brought back from [2] to [1]

Path (A): g,. =0 (isolated)
| dq 2d rev - ldqrev
Clausius @?50 = | - +J'2T50

Ll%;sl_sz:_&sgo

AS=5,-52=0

This gives the direction of spontaneous change!

A5 >0  Spontaneous, irreversible process
For isolated systems A5 =0 Reversible process
AS <0 Impossible
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1/—>—\.2 AS =5 -5 independent of path

But! AS,

surroundings

depends on whether the process is
reversible or irreversible
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(@) Irreversible: Consider the universe as an isolated system

containing our initial system and its
surroundings.

AS, =AS5,

universe system

AS,  >—-AS5

surr sys

+AS, >0

surroundings

(b) Reversible:

A5,

univ

=AS, +AS,,. =0

surr
A5, =—AS,

surr sys

Examples of a spontaneous process

ESANRRRIRSRRRALY,

: /fﬂ_ﬂ_’_’_’_—..—-—-—" _.__. .
= [ —| = Cor-mec‘r two metal blocks thermally in
N N an isolated system (AU=0)
/HHHIHHHI\H‘

Initially 77=7,

d5>0 for spontaneous process

= if ,>7T, = d¢>0 } in both cases heat flows
<

,<T, = dg <0 | from hot to cold as expected
INERRRZIEN NNy,
— - Joule expansion with an ideal gas
— | gas | vac. | = —
“| v v |=
/IJ[Jlllll]\'Jlll'rIllllll'll{H
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adiabatic

1molgas (V,7) = 1molgas (2V,7)
A= 0 g=0 w=0

Compress back isothermally and reversibly
ql"ZV ¢ o

1molgas (2V,7) = 1molgas (V,7)

AS =-AS,

ckwards

A‘Sbuckwur'ds = qu’”e" = I ! RdV = R'n%

A5 =RIn2>0 spontaneous

Note that to calculate AS for the /rreversible process, we needed to

find a reversible path so we could determine dg,, and jd%

Clausius’s theorem

In any cyclic transformation throughout which the temperature is defined,
the following inequality holds:
d
—Q <0
T
where the integral extends over one cycle of the transformation. The equality
holds if the cyclic transformation is reversible.

Proof Let the cyclic transformation in question be denoted by . Divide the
cyclic into » infinitesimal steps for which the temperature may be considered to
be constant in each step. The system is imagined to be brought successively into
contact with heat reservoirs at temperatures T3, 75, ..., T,. Let Q, be the amount
of heat absorbed by the system during the ith step from the heat reservoir of

temperature 7;. We shall prove that

i=1 T,

'

The theorem is obtained as we let n — o0. Construct a set of n Carnot engines
{C, Gy, ..., C,} such that C,
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(a) operates between T, and T, (7,>T,, all i),
(b) absorbs amount of heat Q{? from T,
(¢) rejects amount of heat Q, to 7.

We have, by definition of the temperature scale.

o I,

o T

Consider one cycle of the combined operation 0 + {C, + --- +C,}. The net
result of this cycle is that an amount of heat

Q= Lof=T72 (g)

i=1 i=1 7‘1

is absorbed from the reservoir 7, and converted entirely into work, with no other
effect. According to the second law this is impossible unless Q, < 0. Therefore

o 19,
b (— <0
=1\ T;
This proves the first part of the theorem.

If O is reversible, we reverse it. Going through the same arguments, we
arrive at the same inequality except that the signs of Q, are reversed:

2%«

i

Combining this with the previous inequality (which of course still holds for a
reversible @) we obtain

AT
(2= -
COROLLARY
For a reversible transformation, the integral
dQ
T

is independent of the path and depends only on the initial and final states of the
transformation.
Proof Let the initial state be 4 and the final state be B. Let I, II denote two
arbitrary reversible paths joining A4 to B, and let I’ be the reverse of II.

Clausius’ theorem implies that
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d d
1 T w T
But
aQ do
mw T = n T
Hence,
d d
aQ 4 =
1 T n T
Entropy

The second law of thermodynamics enables us to define a state function S, the
entropy. which we shall find useful. We owe this possibility to the
Clausius’s theorem

The corollary in above mentioned section enables us to define a state

function, the entropy. It is defined as follows.
Choose an arbitrary fixed state O as reference state. The

entropy S(A4) for any state 4 is defined by

4dQ

o T

where the path of integration is any reversible path joining O to A. Thus the

entropy is defined only up to an arbitrary additive constant.* The difference in
the entropy of two states, however, is completely defined:

440
T

S(4) =

S(A) — S(B) =

where the path of integration is any reversible path jointing B to A. It follows
from this formula that in any infinitesimal reversible transformation the change
in § is given by
dQ
dS = —
T

which is an exact differential.
We note the following properties of the entropy:
(a) For an arbitrary transformation,

BdQ
fA — <S(B)-S(4)

The equality holds if the transformation is reversible.
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Fig. 1.7 Reversible path R and irreversible path 7 connecting states
A and B.

Proof Let R and 7 denote respectively any reversible and any irreversi-
ble path joining A4 to B, as shown in Fig. 1.7. For path R the assertion
holds by definition of §. Now consider the cyclic transformation made
up of I plus the reverse of R. From Clausius’ theorem we have

aQ _cdo
1 T R T
or
dQ aQ
I?S R?=S(B)*S(A) i

(b) The entropy of a thermally isolated system never decreases.

Proof A thermally isolated system cannot exchange heat with the exter-
nal world. Therefore dQ =0 for any transformation. By the previous
property we immediately have

S(B)-S(4)>0

The equality holds if the transformation is reversible. =

That is, the entropy of an isolated system never decreases and it remains constant
during a reversible transformation.
We emphasize the following points:

* The principle that the entropy never decreases applies to the “universe” consist-
ing of a system and its environments. It does not apply to a nonisolated system,
whose entropy may increase or decrease.

« Since the entropy is a state function, the entropy change of the system in going
from state A to state B is Sp — 54 regardless of the path, which may be reversible
or irreversible. For an irreversible path, the entropy of the environment changes,
whereas for a reversible path it does not change.

+ Theentropy difference Sz — S is not necessarily equal to the integral I f dQ/T.
It is equal to the integral only if the path from A to B is reversible. Otherwise,
it is generally larger than the integral.
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Entropy - a new state variable

Consider a system performing a reversible
cycle from initial state i to an intermediate state
f then back to i, as shown in the indicator di-
agram (think of it as a sample of gas). Since
the cycle is reversible the equality sign in the
Clausius inequality applies giving,

dqr
T

I dqg idQR:
T ), T

0

i

from which

/f dgr _ /f dqr
i|path 1 T i|path 2 T

Because the value of the integral is path-independent,

function, we call it call entropy S:

V

d4r g an exact differential of some state

T

T i

f f
/ @:/ dS = 5; — 5, = AS

The Principle of Increasing Entropy

Now reconsider the existence proof for entropy if one part (i to f) is irreversible.

The Clausius inequality leads to fif %q + f; % <0

from which fif % < Lf d% — Sf — Sz'.

(note the change in sign when inverting the limits on the integral).

This means that in an irreversible process, the change in entropy,
Sy — S, is greater than the integration of infinitesimal contributions:

(“heat supplied from the surroundings”) /

(“temperature of the contributing part of the surroundings”).

2

Changes of entropy of thermally isolated systems in adiabatic processes

When a system is thermally isolated no heat is exchanged with the surroundings. Then for an
irreversible process undergone by a thermally isolated system

dS >0

(= Sy —S; =AS > 0 for a finite process) ‘

It also follows that for a finite reversible adiabatic process AS = 0.

The entropy of a thermally isolated system increases in any irreversible process and
is unaltered in a reversible process. This is the principle of increasing entropy.
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Summary of Oth, 1st, 2nd Law

0" taw |-

Temperature defines Thermal Equilibrium

T(P~ V): TEquiiibréum = deca!(}'as = TCarnot

/

1% law : dU = dg+dw |= | Same hotness = Same T |

‘energy is conserved if heat is included’ ﬂ

2™ law (i) KP (i) C|= ‘(—J{P — -CO)&(~C = -KP) = C=KP

Kelvin Planck & Clausius statements

!

CARNOT’S THEOREM: 1fany cycle < ¢ & ¢ independent of working substance

Arbitrary Engine between 2 T’s Two Carnot engines in series

0-
3 thermodynamic temperature, : nc =1 — 2

ﬂ-|-q—2<(} &=
(1

T Ty —

Ideal gas Carnot cycle

Arbitrary closed cycle

. . gi dq
Clausius Inequality Z = f <0
~ Tiub i T

sub = subsidiary body; often a reservoir

RI%
Reversible closed cycle

A
TsysEres

I
RI%

J State function S, AS = /

d d
% & AS > ?q for general changes

An example, “heating water on a stove”

Calculate the change in entropy of water heated from 20° C to 100° C on a stove.
method 1 (lecture 7): Create equivalent reversible process.
" dqp /Tf C,dT

AS =
T T T T
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The change of entropy of the water is the same as in the irreversible
process that actually occurs since entropy is a state function and the initial
and final equilibrium states match.

method 2: Integrate the central equation:

f f
du P
AS = — —dV
> / T+/,-T

Need to expand dU and dV in terms of {p,T}.
d‘U

= dT d . .
AS — ] aT +( P)T P+/r%[(3_i)pdT+({;:)po}

I

stove is open to atmosphere so p is constant and dp = 0.

-:") d[U-I—pV] r

(fw) +p v

Tr \GT Tf —ar Ty

a5=/ P dT_/ pdT_/
T,'

method 3: Use enthalpy for constant pressure process:

dH = dU + pdV + Vdp = (TdS — pdV) + pdV + Vdp = TdS + Vdp

— [ dH = TdS + Vdp

and integrate with p =const to get
dH
[ %
p=const p=const T
Writing H = H(T, P)

dH = (g—ﬁ) dT + (ﬂ"‘”) dp = CodT + ( P) dp.
P
Along the path p =const, dp = 0 and dH|, = CpdT

Ts C
= AS = / —2dT as found previously.

change in the universe: a hint of the Third Law
For heating water from T to T + AT
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T + &T)
T
AT

ASeym = CPT

Defining x = ﬂ“—TT, the entropy change of the universe is:

ASyater = Cp In{

ﬂstotaf = [X - In{l + x)] CF‘

The function f(x) = x — In(1 + x) is ALWAYS positive for x > —1
Entropy always increases for positive T.

Another example, “electrical work”

Consider emf & driving current | through resistor R in an adiabatic box.
The power delivered is £/ = I?R. No heat or mechanical work input.

15 law: AU = I’RAt
Electrical work is dissipated irreversibly as heat: AU = C,ATl|y
The change in temperature is then:
Ty
I’RAt = CydT = CyAT = AT = I?RAt/Cy
T;
What is the change of entropy?

The change in temperature:
AT = I?RAt/Cy

Use method 2 Central Equation for constant V process dV = 0

dS = dU/T = dS = CydT/T = AS = —dT
ﬂ.

Use method 1 Equivalent Reversible Process.
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T+AT T+AT
&S=f Jq‘g/T:f C,dT/T
T; T;

FPRAt
again, that nagging problem of infinite negative entropy at T=0.

Romantic Poets on Entropy and Measurement

How do I love thee? Let me count the ways.
I love thee to the depth and breadth and height

Elizabeth Barrett Browning (1806 - 1861)

c/f Wordsworth
“I've measured it from side to side: 'Tis three feet long, and two feet wide."”

Entropy is Counting things

Planck, " The logarithmic connection between entropy and probability was
first stated by Ludwig Boltzmann in his kinetic theory of gases”

"The calculus of probabilities teaches us precisely this: any non-uniform
distribution, unlikely as it may be, is not strictly speaking impossible.”
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Thermodynamics and Statistical Mechanics

@ Thermodynamics: total entropy of an isolated system must increase.
@ Statistical Physics: transform to more probable state.

@ This suggests there is a relationship between probability and entropy.

S=kInQ2

(Use Q to avoid confusion with work)
e.g. Maxwell-Boltzmann distribution,
e.g. Quantum wavefunction,

High entropy states of matter exist because of the existence of
arrangements of atoms which have never, and will never occur.

Entropy, Counting, and Probability

Consider the Joule (free) expansion of N gas atoms.

partition When the partition is removed, all gas in A
i
&
"
gi 4 vchuEm Prob. that one atom is in A: %
break Prob. that all atoms are in A: 2%
partition

We observe the state with most options.

‘ oV Prob. that 50% atoms are in A: NCNIQ X ,%N
We observe the state with highest entropy?

gas everywhere
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A hint of where the log comes from

partition
/

i
AV ¥ BV

gas vacuum

break
partition

2V

gas everywhere

Statistical entropy

Number of possible states with all particles

in A: Q(N, V., E).
in Aor B: Q(N,2V,E).
If all the accessible microstates are equally likely.

Qa Q(N, V,E) _(I)N

Qas  QN.2V.E)  \2

Suppose that there is a relationship between the
entropy and 2. S = f(Q).

Entropy is additive S = 51 + S5, but
permutations grow as product 2 = ;5.

F(122) = (1) + ()

Thus f must be a logarithm,

Definition of statistical entropy for fixed E

S =kg In(Q)

kg, Boltzmann's Constant, relates micro- and macro- worlds.
Caveat: Lots of subtle assumptions sneaked in here: We'll do it properly in

Stat.Mech..
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LECTURE 9: CYCLES

Content of Lecture 9

9.1. Rankine
9.2. Brayton
9.3.Refrigeration

9.1. Rankine

Large electric power plants typically utilize a vapor power cycle. Regardless of the heat
source, be it nuclear or combustion of coal, oil, natural gas, wood chips, etc.. the remaining
details of these plants are similar. Typically a pure working fluid, usnally water, is circulated
through a cycle, and that fluid trades heat and work with its surroundings. We sketch a
typical power plant cycle foe electricity generation in Fig. 9.1.The ideal
Rankine cycle war first described in 1859 by William John Macquorn
Rankine long after the steam engine was in wide usage. This cycle has
the following steps

e 1 — 2: isentropic compression in a pump,

e 2 — 3: isobaric heating in a boiler,
e J — 4: isentropic expansion in a turbine, and

e 4 — 1: isobaric cooling in a condenser.

Two variants of the T — s diagram are given in Fig 9.2. The first is more
efficient as it has the appearance of a Carnot cycle.  However, it is
impractical. As it induces liquid water in the turbine, which can damage
its blades. So the second is more common.

The thermal efficiency is

W W +W

n = .net _ turbinfe pump (91)
QH Qboiler
This reduces to
m| h,—h, + h —h _
n= I: 3 : 4 hl 2 :I =1- h4 h1 -1— qout,condenser (92)
m h,—h, h, —h, Uin boler

Note that because the Rankine cycle is not a Carnot cycle, we have gy condenser [ Gin boiler 7
LT

Power plants are sometimes characterized by their
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" eotnbastion

exhanst
= F=r
I L -
i
fILH_—}.
endd water
alr————p +
boller % > /
o ey hot water
: / cooling
wark
Fig 9.1. Rankine cycle schematic
T A T A

> >

s
Fig 9.2. T — s for two Rankine cycles

® BACK WORK RATIO: bwr, the ratio of pump work to turbine work.

Here,
ump work -
r_ lpumpwork| _ h, —h, (9.3)
|turbine work|  h, —h,
We model the pump work as an isentropic process. Lhe Gibbs equation gives
Tds = dh —vdP.
If ds = 0, we have
dh=vdP (9.4)
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Thus. for the pump
h,-h=v P,-P,, (9.5)

since v is nearly constant, so the integration is simple.
It might be tempting to make the Rankine cycle into a Carnot cycle as sketched in
Fig 9.3. However, it is practically difficult to bulid a pump to handle two-phase mixtures.

T
A

L

F s

>

L

Fig 9.3. Rankine-Carrnot cycle
The gas phase can seriously damage the pump. Some features which could be desirable for

a Rankine cvele include
o high power output: One can enhance this by raising the fluid to a high temperature
during the combustion process or by pumping the fluid to a high pressure. Both
strategies soon run into material limits; turbine blades melt and pipes burst. Another
strategy is to lower the condenser pressure, which means that one must maintain a
vacuum, which can be difficult.

e high thermal efficiency: The key design strategy here lies in 1) increasing component
efficiencies, and 2) rendering the overall cycle as much like a Carnot cycle as is feasible.
Modern power plants have had revolutionary increases in overall thermal efficiency
because of enhancements which make the process more Carnot-like.

There are some important loss mechanisms in the Rankine cyele which inhibit efficiency.
They include

o Turhine losses: These are the major losses. To avoid these losses requires detailed
consideration of fluid mechanics, material science, and heat transfer and is beyond
the scope of classical thermodynamics. Thermodynamics develops broad measures of
turbine efficiency such as feurbine = (ha — ha)/(hs — hus).

o Pump losses: Again, fluid mechanics, machine design, and material science are required
to analyze how to actually avoid these losses. Thermodynamics characterizes them hy

pump efficiency, Nyymp = (has = h1)/(ha = hy).
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Heat transfer losses from components.

Pressure drop in pipes.

Incomplete fuel combustion.

Pollution removal devices.

Loss of heat to surroundings in the condenser.
(One simple design strategy to make the system more Carmot-like is to use

o REHEAT: a design strategy in which steam is extracted from the turbine before it is
fully expanded, then sent to the boiler again. and re-expanded through the remainder
of the turbine.

This has the effect of making the system more like a Carnot cyele. A schematic and T — s
diagram for the Rankine cycle with reheat is given in Fig 9.4

g PR condenser

v

Fig 9.4. Rankine cycle with reheat schematic and T — s diagram.

9.2. Brayton

(as turbine power plants, both stationary and those for jet engines operate on the Brayton
cycle. The cycle is named after George Brayton, an American mechanical engineer. Brayton

is depicted in Fig 9.5. It has many similarities to the Rankine cycle. A schematic and
T — 5 and P — v diagrams for the Brayton cycle for a power plant is illustrated in

Fig 9.6.
The Brayton cycle is outlined as follows:

e 1 — 2: isentropic compression (W added),

® 2 — 3: isobaric heat addition ((} added),
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Fig 9.5. George Brayton (1830-1892), Americal mechanical
engineer from Exeter.

products

y
v

JE— i —

Fig 9.6. Schematic of Brayton cycle along with P- vand T — s diagrams
e 3 — 4: isentropic expansion (W extracted), and
e 4 — 1: isobaric heat rejection (passive exhaust).

Note, the work extracted is greater than the work added, i.e.

[P =] >[h, N (96)
Often we will be dealing with a CPIG, in which case Ah = cpAT'. If so, then we can say
|T3 —T4| > |T2 —T1| (9.7)

Another reason for this is that
o isobars diverge in T — s space as s increases.

This is easy to understand when we recall the Gibbs equation, Tds = dh — vdF. On an
isobar, we have dP = (), so

Tds=dh, onisobar, (9.8)
Tds=c.dT, iflG, (9.9)
(ﬂj = l (9.10)

0s Jo  Cp

Since at a given s, a high T isobar sits above a low T isobar, and the slope of the isobar is
proportional to T, it is easily seen how they must diverge. This is illustrated in Fig 9.7.
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L i

Fig 9.7. Sketch of diverging isobars for CPIG in T - s plane

There are other classes of Brayton cycle plants. Schematics are shown next.

e Turbojet. In the turbojet, the kinetic energy of the fluid becomes important at two
points in the cycle. In the compression, the freestream fluid, entering the compressor
at the flight speed, has its pressure increased by the so-called “ram effect” where the
fluid decelerates. Second, the point of the turbojet is to produce thrust, which requires
a significant exit velocity. The turbine work is used solely to power the compressor.

See Fig 9.8

o Turbojet with afterburners. We are limited in an ordinary turbojet by how much heat
can be added to the flow in combustion because such flow typically must pass through
the turbine blades, which suffer material degradation if the fluid is too hot. However,
we can add heat after the turbine in so-called afterburners. This releases chemical
energy, turns it into fluid potential energy in the form of high P/p, and then converts
to kinetic energy in the nozzle. This can enhance the thrust, though it can be shown

it is not particularly efficient. A sketch is given in Fig 9.9.

e Ramjet. A ramjet is much simpler. The compressor and turbine are removed. We
rely on the ram compression effect alone for compression and convert as much of the
thermal energy as possible into mechanical energy used to generate thrust force. A

sketch is given in Fig 9.10

— :

E— «
&
—_— EE——

Y

Fig 9.8. Sketch of turbojet schematic and associated T — s plane
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Fig 9.9. Sketch of turbojet with afterburners schematic and associated T — s plane

T
F 3
;9
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v

Fig 9.10. Sketch of ramjet schematic and associated T — s plane

Let us consider an

o AIR STANDARD ANALYSIS: a common set of assumptions used for idealized cyelic
devices.

The air standard make many compromises in order to admit some simple analysis tools to
be used to make simple estimates for the performance of a variety of devices. Actual design
calculations would have to remedy the many shortcomings. But it is useful for a framework
of understanding. We take the air standard to entail

¢ The working fluid is air. This ignores any effect of the properties of the fuel or any
other fuid which is mixed with the air.

¢ The working fluid is an ideal gas. We will often assume it is a CPIG, but sometimes

not.

o We will ignore all details of the combustion process and treat it as a simple heat
addition.

Often in eyele analysis, the formal sign convention is ignored. We take the following
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Turbine work: wy = hy — hy. Here, the sign convention is maintained.

o Compressor work: w,. = hs — hy. Here, the sign convention is ignored.

Heat addition: g;, = h; — h,. Here, the sign convention is maintained.

Heat rejection: ¢ = hy — hy. Here, the sign convention is ignored.

The cycle efficiency is

hs_h4 - hz_h1
N e e

turbine compressor
n= (9.12)
ha - hz

combustor

Rearranging (9.11), we can also say
h4 - hl

77 — 1_ h;lat re;je;:ed (912)
3 2

%f—/
heat added

The back work ratio, bwr, is

w, h,—

bwr:_‘?:Z_hl (9.13)
W, h3 - h4

Note the back work ratio will be seen to be much larger for gas phase power cycles than it

was for vapor cycles. For Brayton cycles, we may see bwr ~ (.4. For Rankine cycles, we
'II‘:'IIFI”'\" B h”"‘l" [ ﬁ l-l-l

Now, if we have a CPIG, we get Ah = j cpdI to reduce to Ah = cpAT. So Eq.
(9.11) reduces to

T,
41
poG Tl e B LoT-TT ) Ty T T (9.14)
c, T,-T, T,-T, T,-T, T, B—l
T,
Now, 1 — 2 is isentropic. Recall for a CPIG which is isentropic that T3 /T = (szplj{k_]”k-
We also have 3 — 4 to be isentropic, so Ta/Ty = (Pa/P))*~/* But P, = P; and P, = P,.
So
T_2 = B, (9'15)
L T,
TL_T (9.16)
T, 2
So
T. 1
pe1- B L 017)



A plot of n versus the pressure ratio Py/P, for k = 7/5 is plotted in Fig 9.11.As the

pressure ratio P,/P; rises, the thermal efficiency increases for the Brayton cycle. It still is
much less than unity for P»/P; = 2(. To approach unity, high pressure ratios are needed;
n = 0.9 requires P»/P; ~ 3200. Note in terms of temperature, the efficiency looks like that
for a Carnot cycle. but it is not. The highest temperature in the Brayton cycle is Ty, so the
equivalent Carnot efficiency would be 1 = T /T5.

" 1.0,

n.&L
n6L
04l

0.2[

P,/P,

Fig 9.11. Thermal efficiency versus pressure ratio for air standard Brayton cycle, k = 7/5

9.3. Refrigeration

A simple way to think of a refrigerator is a cyclic heat engine operating in reverse. Rather
than extracting work from heat transfer from a high temperature source and rejecting heat

to a low temperature source, the refrigerator takes a work input to move heat from a low
temperature source to a high temperature source.

A common refrigerator is based on a vapor-compression cycle. This is a Rankine cycle
in reverse. While one could employ a turbine to extract some work, it is often impractical.
Instead the high pressure gas is simply irreversibly throttled down to low pressure.

One can outline the vapor-compression refrigeration cycle as follows:

e 1 — 2: isentropic compression
e 2 — 3 isobaric heat transfer to high temperature reservoir in condenser,
e 3 — 4: adiabatic expansion in throttling valve, and

e 4 — 1: isobaric (and often isothermal) heat transfer from a low temperature reservoir
to an evaporator.

A schematic and associated T' — s diagram for the vapor-compression refrigeration cycle is

shown in Fig 9.12. One goal in design of refrigerators is low work imput. There are
two main strategies in this: _
o Design the best refrigerator to minimize ();,. This really means reducing the conductive
heat Hux through the refrigerator walls. One can use a highly insulating material. One
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can also use thick walls. Thick walls will reduce available space for storage however.

This is an example of a design trade-off.

e For a given (). design the optimal thermodynamic cycle to minimize the work nec-
essary to achieve the goal. In practice, this means making the topology of the cycle
as much as possible resemble that of a Carnot refrigerator. Our vapor compression

refrigeration cycle is actually close to a Carnot cycle.

The efficiency does not make sense for a refrigerator as (0 < 5 < 1. Instead, much as our
earlier analysis for Carnot refrigerators, a coefficient of performance, 3, is defined as
B= what one wants _9 (9.18)
what one pays for  w,
Note that a heat pump is effectively the same as a refrigerator, except one desires gy
rather than g;. So for a heat pump, the coeficient of performance, ', is defined as

p=3u (9.19)

W,

c

The University of Notre Dame Power Plant also serves as a generator of chilled water for
air conditioning campus buildings. This is effectively a refrigerator on a grand scale, though
we omit details of the actual system here. A photograph of one of the campus chillers is

shown in Fig. 9.12

b

By
&
E'
)
14

[y -

Fig 9.12. Chiller in the University of Notre Dame power plant, 14 June 2010

NOTES

a typical heat engine

The Carnot Cycle | -

All paths are reversible
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T (hot)
o)

o))
T» (cold)

1 -2 isothermal expansion at 7; (hot) AU=¢ +w,

2 — 3 adiabatic expansion (¢ = 0) AU =w,
3 — 4 isothermal compression at 7; (cold) AU =g, +w,
4 —» 1 adiabatic compression (¢ = 0) AU =w,

work output to surroundings —(w; + W) + w, +w;)
heat in at 7] (hot) 4

Efficiency =

15" Law = (ﬁdU=0 = G+G=—(m+w+w,+w)

%+% 1. %

Efficiency = ¢ =
G G

Kelvin: ¢ <0 — Efficiency = e<1 (< 100%)

-w = gie = work output

Note: if cycle were run in reverse, then ¢1<0, >0, w> 0.
It's a refrigerator!

Carnot cycle for an ideal gas ‘

12 AU=0; ¢g=-wm =fpdV=R?;In{%]
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2 —3 g=0; w'=¢,(T,-T))

: IANIAS
Rev. adiabat = [?J_[P;]
3—-4 AU =0; ¢2=—wz=_deV=R7;In[%]
4-1 9=0; w;=¢(T-T)
- IANIAS
Rev. adiabat = [EJ_(V{J
PRAUAA
q TIn(L/WK)
oG - (0 -5
v, ) K ) \K ¢ T
or $,.%-0 = ¢%=0
T, T

links heat engines to mathematical statement

Efficiency s=1+z—2=1—% — 100% as T, — 0 K
1 1
For a heat engine (Kelvin): ¢>0,w<0, To< T;

T

1

Total work out =—w=g<,;v1=[]r;_]z};;1 = (-w)<gq

Note: In thelimit 72 - 0K, (-w) — ¢, and £ —» 100% conversion of
heat into work. 3™ law will state that we can't reach this limit!

For a refrigerator (Clausius): ¢>0,w>0, < T

Total workin =w-= [g) ¢,
1
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T, -T,
BUT '71=_¢2 |1 2
/A S N A L

Note: In the limit 72 — 0 K, w— o=. This means it takes an infinite

amount of work to extract heat from a reservoirat 0 K = 0K
cannot be reached (3™ law).

British Empire - built by thermodynamics

Republic of
Sibe

Lecture 6: FIRST LAW OF THERMODYNA! October 6, 2016 5/18

Graeme Ackland

Can define ideal efficiency via of the temperatures of the reservoirs.
Efficiency is always defined by (what you want out)/(what you put in). So

@ For an Engine you put heat in and get work out.

e For a Refrigerator, put work in, take heat out (from the cold region).

e For a Heat Pump put work in, get heat out (into the warm region).

World's biggest Fridge Magnet?
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CERN uses about 1/3rd as much energy as Geneva.
LHC cryogenics 27.5 MW
LHC experiments 22 MW
Heat Pump and Refrigerator: same device, different purpose.

Refrigerator, coefficient of performance n*:

R @ Q> R T
N == e = ————
W Q- Q@ h—-T
Heat pump, heat pump efficiency nHF:
W™ i-Q € Th-T

QUESTION : Explain (using the engineering definition of the efficiency of

a heat pump) why heat pumps are best used to produce domestic
background heating.

Ideal Rankine Heat Cycle P-V Diagram

Vapour

condenser
/l pump
heat
in

Steam engine works with a liquid+vapour mixture, which combines big
volume expansion (steam) and easy to pump/heat (water)
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The Otto cycle: a “nearly real” engine

P, kPa

3 @ Simplified two-stroke petrol engine.

@ Assume single working substance with
“external” heating

o

@ Two adiabats and two isochores.

T I — @ Heat exchange takes place in the isochoric
! - -
processes (i.e. not isothermal)
e Il ]
End of
combustion
p Exhaust Air-fuel

gases mixture
J

Ignition Exhaust valve

G
Intake -O,"/"tx
valve opens “Stoy,

Exhaust

Air-fuel
mixture

P
Intake
N N Compression Power (expansion) Exhaust Intake
™C BDC v stroke stroke stroke stroke
@ a - b: reversible adiabatic compression (Piston
moves in)
-1 -1
T, V{F =T Vg
@ b — c: heat added (actually, combustion) at
3 constant volume.

Q1= Cy(Tc—Tp)

& @ c-d: reversible adiabatic expansion (the
! 2 “power stroke”: piston moves out)

V2 Vv
TV =TV !

@ d - a: heat rejected (actually exhaust) at
constant volume.

Q= CV(Td - Ta}

206



Otto efficiency

The efficiency 7 for the engine has to be specified in terms of @, and @-.
From (4) and (2):
QZ Td - Ta

—1-2 -1
" 1 Te—Tp

To get more insight into the factors controlling efficiency use (1) and (3)

to give:
1-1
n=1-— E =1- L
Vi rg_l

where r. = Vi /V; is called the compression ratio. If r. is ~ 5, 11 ~ 50%.
Other considerations mean real engines are well below this.
Four-stroke engines have exhaust and intake stages between da and ab.

A
0.7+
0.6
Typical
0.5+ compression
g ratios for
S 0.4 gasoline
— 031 engines
0.2
0.1
| 1 l | -

2 4 6 8 10 12 14
Compression ratio, r
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Fridge without electricity

r‘miwdnb

JAcoinainar
einredatn

cmdonok

I'||
L

e

CorauieF

ZF ceedwir
-

Depdribndes Head

A teedeiD
Bratarva dor e e Vajune

Outane Ammasls Ligukd

Wi Amincnia Gt

Aivereaed s Watar Sakition
- Cool Ammonis Dazlsted Water

- ‘WarmAmmenia Cepleted Water
- Cocling Water

s

o

e 11930

Einstein and Szilard patent a fridge.
No moving parts.

No work input.

Butane as working fluid.
Ammonia/water mixture pump.
Energy supplied as heat to
Ammonia/water

https://www.youtube.com /watch?v=aeW76Jequag
http:/ /www.bbc.co.uk/newsbeat/article /37306334 /this-invention-by-a-
british-student-could-save-millions-of-lives-across-the-world
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LECTURE 10: MATHEMATICAL FOUNDATIONS

Content of Lecture 10

10.1. Maxwell relations
10.2. Functions of two independent variables
10.3. Legendre transformations
10.4. Specific heat capacity
10.5. The first law and coordinate transformations
10.6. The van der Waals gas
10.7. Adiabatic sound speed
10.8. Introduction to compressible flow
10.8.1. Acoustics

10.8.2. Steady flow with area change

This lecture will serve as an introduction to some of the mathematical underpinning of the
thermodynamics. Though the practicality is not immediately obvious to all, this analysis
is a necessary precursor for building many useful and standard theories. Important among
those are theories to describe chemical reactions, which have widespread application in a
variety of engineering scenarios, including combustion, materials processing, and pollution
control.

10.1. Maxwell relations

We begin with a discussion of the so-called Maxwelﬂ relations, named after the great nine-
tenth century physicist, Jame Clerk Maxwell, shown in Fig 10.1.

11, C. Maxwell. 1871, Theory of Heat, reprinted 2001, Dover, Mineola, New York, p. 169.

Fig 10.1. Jame Clerk Maxwell (1831-1879), Scottish physicist

Recall that if z = z(r, y), we have

dz =(@j dx{@J dy (10.1)
X y ay X
Recall if dz = M(x, y)dr + N(x,y)dy, the requirement for an exact differential is
(@J M, (@J _N, (10.2)
oX ), oy ),
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0’z :(OMJ 02 :(@J (10.3)
oyox oy )" axay \ox ),

Because order of differentiation does not matter for functions which are continuous
and differentiable, we must have for exact differentials

=)
ox ), oy ),
Compare the Gibbs equation to our equation for dz
du =—Pdv +Tds, (10.5)
dz = Mdx + Ndy (10.6)
We see the equivalences
Z>U, X>V,y>sSM >-P, N>T (10.7)
and just as one expects z = z(r.y), one then expects the natural, or canonical form of
u=uv,s (10.8)
Application of Eqg.(10.4) to the Gibbs equation gives then
b
ov J 0s ),

Equation (10.9) is known as a Maxwell relation. Moreover, specialization of Eq.
(10.2) to the Gibbs equation gives

(a_u) __p, (5_“) _T (10.10)
ov ), 0s ),

10.2. Functions of two independent variables

Consider a general implicit function linking three variables, x, y. z:

f x,y,z =0 (10.11)
In ¥ — y — z space, this will represent a surface. If the function can be inverted. it will he
possible to write the explicit forms
x=X(Y,2), Yy=Y(x,2), z=2(X,Y) (10.12)
Differentiating the first two of Eqs.(10.12) gives
dx = x dy+(%j dz, (10.13)
oy ), oz ),
dy:(@) dx+(ﬂ) dz (10.14)
oX J, oz ),
Now, use Eq.(10.14) to eliminate dy in Eq.(11.13)
ax = & [@j dx+(@j dz (%j az, (10.15)
oy ),|\ox ), oz ), oz ),
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81 (5)(E). )

oo 5 () o [5) (2] (%)

(10.16)

(10.17)

Since x and z are independent, so are dx and dz, and the coefficients on each in Eq.
(10.17) must be zero. Therefore, from the coefficient on dx in Eq. (10.17), we have

53]
oy ),\oxJ,
x (@) 1
oy ) \ox ), ™
57
e
ox /,
and also from the coefficient on dz in Eq. (10.17), we have

3)2)-(2)
(3)-(3)(%).
(3512

If one now divides Eq.(11.13) by a fourth differential, dw, one gets
dw (ody ), dw \oz ), dw
Demanding that z be held constant in Eq.(11.24) gives
oxX ) (Ox| (oY
-5
OX
56
L
ow )/,
236
owJ,\ oy ), \oy),

dx:(%j dy+(%J dw
ay w 8W y
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If ¥ = x(y, w), one then gets

(10.18)
(10.19)

(10.20)

(10.21)
(10.22)

(10.23)

(10.24)

(10.25)

(10.26)

(10.27)

(10.28)



Divide now by dy while holding z constant so

5)51&[5) o2

These general operations can be applied to a wide variety of thermodynamic operations.

10.3. Legendre transformations

The Gibbs equation, Eq. (859): du = —Pdv + T'ds, is the fundamental equation of classical
thermodynamics. It is a canonical form which suggests the most natural set of variables in

which to express internal energy u are v and s:

u=uv,s (10.30)

However, v and s may not be convenient for a particular problem. There may be other
combinations of variables whose canonical form gives a more convenient set of independent
variables for a particular problem. An example is the enthalpy, Eq. (5.52):

h=u+Pv (10.31)
Differentiating the enthalpy gives
dh =du + Pdv +vdP (10.32)

We repeat the analysis used to obtain Eq.(8.66) earlier. Use Eq.(10.32) to eliminate du in the
Gibbs equation, Eg.(8.59), to give

dh—Pdv—vdP =du =—Pdv +Tds, (10.33)
dh =Tds +vdP (10.34)

S0 the canonical variables for h are s and P. One then expects
h=h s,P (10.35)

This exercise can be systematized with the Legendre transformation, details of which we
will omit. The interested student can consult Zia. ef allj or Abbott and van Nes&,ﬁ The
transformation is named after Adrien-Marie Legendre, whose work was not motivated by
thermodynamic concerns, but has found application in thermodynamics. The only known

image of Legendre is shown in Fig 10.2

IR. K. P. Zia. E. F. Redish, and 5. R. McKay, 2009] “Making sense of the Legendre transform,” Ameri-

can Journal of Physics, T7(7): 614-622.
M. M. Abbott and H. C. van Ness, 1972, Thermodynamics, Schaum’s Outline Series in Engineering,

MeGraw-Hill, New York.

The basic outline of the Legendre transformation is as follows. The form du = — Pdv +
T'ds, suggests u is the fundamental dependent variable, v and s are the canonical independent
variables, with —P and T serving as so-called conjugate variables. We seek transformations
which can render conjugate variables to be canonical variables. We can achieve this by
defining new dependent variables as the difference between the original dependent variable
and simple second order combinations of the canonical and conjugate variables. For the
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Fig 10.2. Adrien-Marie Legendre (1752-1833), French J “
mathematician. .

(Gibbs equation. there are only three combinations, —FPwv, Ts, and —Pv + T's, which are
dimensionally consistent with u. We subtract each of these from u to define new dependent
variables as follows: They are

h=h(P,s)=u—- —Pv =u+Pv, enthalpy, (10.36)
a=a Vv,T =u-Ts,Helmholtz free energy, (10.37)
g=9g P,T =u— —Pv+Ts =u+Pv-Ts, Gibbs free energy (10.38)

The Helmholtz free energy was developed by Helmholtzﬂ It is symbolized by a in recognition
of the German word arbeit, or “work.” An image of the original appearance of the notion

from Helmbholtz’s 1882 work is shown in Fig 10.3. The notation § is our Helmholtz free energy

a; U is our u; J s our mechanical equivalent of heat d; b'is our temperature T, and S'is our
entropy s.
The Gibbs free energy was introduced by sibbs [ An image of a somewhat roundabout

appearance of the Gibbs from Gibbs’ 1873 work is shown in Fig 10.4. Here, € is our u, E is our
U, nisours; and H is our S

YH. Helmholtz, 15882] “Die Thermodynamik chemischer Vorginge,” Sitzungsberichte der Kéniglich
Preufischen Akademie der Wissenschaften zu Berlin, 1: 22-30.

7J. W. Gibbs, 1873] “A method of geometrical representation of the thermodynamic properties of sub-
stances by means of surfaces,” Transactions of the Connecticut Academy of Arts and Sciences, 2: 382-404.

It has already been shown for the enthalpy that dh = Tds + vd P, so that the canonical
variables are 5 and P. One then also has

dh = (a—h) ds +(a—hJ dP (10.39)
oS Jp oP ),
from which one deduces that
0S Jp oP )

From Eq. (10.40), a second Maxwell relation can be deduced by differentiation of the first with
respect to P and the second with respect to s

)
op ), \as),

The relations for Helmholtz and Gibbs free energies each supply additional useful relations
including two new Maxwell relations. First consider the Helmholtz free energy
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Kérpers, d. b. von den Parametern p, abhiingigen Function ist, welche
Hr. Coavsis fiir einen Paramcter sEntropics genannt und mit § be-
zeichnet hat.

Also
1 . E]S ;]S
g-:iﬁ=d&_ﬁ‘d5+2.iﬁ5.. I'#J,.g .......... [ I,
Aus 1 und 1, folgt:
3 ElS_ 1 47
-
?IS I :-LH
Dieans folgt:
EI .
P [ S—= U] I .
dp,
Ferner

o8 I dtr I dir P, 1 [air
el B E o e = “N—-.1.- +P. R
= Ak, Gy = :’Els-ﬂ_p‘ & aﬂ-ﬂp‘ a.ﬁr e ::‘lll,r.
Aus der letzten Gleichung folgt wiederum:
+3—R'=?—F{+P‘ .l
4% dp,
Wenn wir setzen
AT i T S - S | 1.
s¢ st §F, wie 7 und § es sind, eine eindentige Funetion der Grissen
p, und 3 Die Funectionen U7 und 5, welche nur durch die Griissen
ihrer Differentislquotienten definirt sind, enthalten jede cine willkdhr-
liche additive Constante. Woenn wir diese mit 2 und £ bezeichnen,

S0 one gets

Fig. 10.3. Image of the original 1882 appearance of the Helmholtz free energy

a=u-Ts,

da=du-Tds —sdT =—Pdv +Tds —Tds —sdT =—-Pdv —sdT

So the canonical variables for a are v and T. The conjugate variables are —F and —s. Thus

ov

aa) (aaj
I P,
v ) ot ),

da= @) dv+(@) dT
T aT \

and the consequent Maxwell relation

For the Gibbs free energy

g=u+Pv-Ts=h-Ts,
h

dg =dh-Tds—sdT =Tds +vdP —Tds —sdT =vdP —sdT
—

dh
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(10.42)

(10.43)

(10.44)

(10.45)

(10.46)

(10.47)

(10.48)

Many find some of these equations to have sufficient appeal to cast them in concrete. The
extensive version of Eq.(10.48), unfortunately restricted to the isothermal limit, is depicted in the
floor of University of Notre Dame’s Jordan Hall of Science atrium, see Fig. 10.5.



write ¥, H, and E, for ita volume, eni.mp;r, and mrgr_ equation (1)

becomen dE=TdH-PdV,
which we may integrate regarding P and T as constants, obtaining
E—-E=TH -TH -FV"+FV’, 18}

where 5, ", ste., refer to the initial and final states of the mediom
Agnin, as the sum of the energies of the body and the surrounding
modium may beoome less, but cannot become greater (this arisss from
the naturs of the envelop supposed), we have

C+E =+ E. L]
Apuin as the sam of the entropies may increass but cannot diminish

+H Zg+H. 1
Lastly, it is evident that

V4 P =y 4 T id)

Thees four equations may be arranged with alight changes ss follows:
—E" 4+ TH" =PV ' =<~E4+TH =PV
C+E Z€+E
-y —-TH" =-Ty-TH’
Py + PV =Py 4+ PT',

By addition wa have
=T+ P —¢—Ty'+Pv. (e}

Fig 10.4. Image of the original 1873 appearance of a combination of terms which is now known
as the Gibbs free energy

. )} i SRl
Fig 10.5. Figure cast in the atrium floor of the University of Notre Dame’s Jordan Hall of
Science containing an isothermal extensive version of Eq.(10.48), among other things

So for Gibbs free energy, the canonical variables are P and T, while the conjugate vari-
ables are v and —s. One then has g = g(P, T), which gives

dg=(a—g) dp+(a—gj dT (10.49)
). T ),

So one finds
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V:(a_g] | _s:(a_gj (10.50)
P ), o7 ),

The resulting Maxwell relation is then
(ﬂj :_(ﬁj (10.51)
aT ), oP );

Table 10.1 gives a summary of the Maxwell relations and their generators. An image showing
the first published appearance of the Maxwell relations is given in Fig 10.6. In Fig 10.the
“thermodynamic function” ¢ is our s, and & is our T. Note that typography for partial
derivatives was non-existent in most texts of the nineteenth century.

Table 10.1. Summary of Maxwell relations and their generators

u=u h=u+ Pv a=u—Ts|g=u+Pv—=Ts
du==Pdv+Tds | dh = Tds + vdP | da = =Pdv — s5dT | dg = vdP — sdT
u = u(v, s) h = h(s, P) a=a(v,T) g=g(P,T)

—op| T o) — 2 8P| _ 9 o) —_ 2
dsly — duls aPls — aslp arly — awlr arlp arlr

10.4. Specific heat capacity

specific heat capacities are defined as

ou
C,=|—1, 10.52
-2 sz
Cp = (a—h] (10.53)
aT J)p
Then perform operations on the Gibbs equation, Eq. ([E59):
du =Tds— Pdv, (10.54)
(a—uj =T ﬁ) : (10.55)
oT ), a1 ),
c,=T (éj (10.56)
ot ),
Likewise, operating on Eq. (B.66), we get,
dh =Tds +vdP, (10.57)
(a_“j T (éj , (10.58)
aT ), aT ),
Co=T (ﬁj (10.59)
aT J)p

One finds further useful relations by operating on the Gibbs equation, Eq. (E59):
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(5_“) :T(ﬁj _P=T(8—Pj _p (10.60)
o). v, ot ),

S0 one can then say

u=uT,v, (10.61)
du = (a“j dT + (a“j dv=c,dT +T (apj —P |dv (10.62)
oT oV J; aT ),
For an ideal gas, one has
(a—uj =T(8PJ -P= TE—E=O (10.63)
ov ); oT VA"

Consequently, u is not a function of v for an ideal gas, so u = u(T') alone. Since h = u+ P,
h for an ideal gas reduces to h = u + RT. Thus,

h=u(T)+RT =h(T) (10.64)
Now, return to general equations of state. With s = s(T", v) or s = s(T, P), one gets
ds = (ﬁj dT + (65) dv, (10.65)
oT ), ov
ds = ( os j dT + ( os j dP, (10.66)
oT oP
Therefore,
ds =gt + @) dv, (10.67)
T aT ),
ds = 4T - ﬂj dP (10.68)
T oT Jp
Subtracting Eqg.(10.69) from Eq.(10.67), one finds
0= G —C dT + @» dv + ﬂ) dp, (10.69)
T Fig v aT ),
C,—cC, dT = T(an dv+T(ﬂj dP (10.70)
ot ), aT ),
Now, divide both sides by dT and hold either P or v constant. In either case, one gets
Co—C, =T (a—Pj (ﬂj (10.71)
ot ), \oT ),
Since (OPJ (G—PJ (ﬂj , (10.71) can be rewritten as
oT ov ); \ OT Jp
2
- =_T(6Pj (ﬂj (10.72)
ov aT ),

Now, since T > 0, (0v/dT|p)?* > 0, and for all known materials dP/dv|r < 0, we must have
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C, >C

v

10.5. The first law and coordinate
transformations

(Jne can apply standard notions from the mathematics of coordinate transformations to the
first law of thermodynamics. Recall the primitive form of the first law Eq. (5.3): f o) =
j‘; oW. In intensive form, this becomes

(10.73)

Joa=dow (10.74)
We also know that dg = T'ds and dw = Pdv, so that
Tds =g Py (10.75)

Geometrically, one could say that an area in the T — s plane has the same value in the P —v
plane. Moreover, because the cyclic integral is direction-dependent, one must insist that an
area in the T'— s plane maintain its orientation in the P —v plane. As an example, a rotation
of a two-dimensional geometric entity preserves area and orientation., while a reflection of
the same entity preserves area. but not orientation.

Now we can consider equations of state to be coordinate mappings; for example, consider
the general equations of state

T=T P,v, (10.76)
s=s P,v (10.77)

These are mappings which take points in the P—wv plane into the T'—s plane. The differentials
of Egs.(10.76),(10.77) are

dT =(£) dP+(£) dv, (10.78)
oP ), o Jp
ds=(§) dp+(§J dv (10.79)
oP ), oV Jp
In matrix form, we could say
(@) (ﬂj (ﬂ) [ﬂ)
dT oP ov dP oP ov
= Y P 3= Y P (10.80)
ds dv

5. 5

~

="l @

< jsthe Jacobian matriz of the mapping from the standard mathematics of coordinate

transformations

In a standard result from mathematics, for a coordinate transformation to be area- and
orientation-preserving, its Jacobian determinant, J must have a value of unity:

J=detI=1 (10.81)

Expanding the Jacobian determinant, we require
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] =(5_T) (@) _(G_T) (@J _1 (10.82)
®)\av), Uav),\p ),

For general mathematical background of Jacobians and coordinate transformations, the in-
terested reader can consult a variety of sources, for example, Kaplan

5W. Kaplan, 2003, Advanced Calculus, Fifth Edition. Addison-Wesley, Boston, pp. 90-95. pp. 331-336.

10.6. The van der Waals gas

A van der Waals gas is a common model for a non-ideal gas, introduced earlier in Sec.
It can capture some of the behavior of a gas as it approaches the vapor dome. Its form is

PTv="_2 (10.83)
v-b v
where b accounts for the finite volume of the molecules, and a accounts for intermolecular
forces.
If we select
R°T? RT,
a:E ¢ b=—¢ (10.84)
64 P,

R
where T, and F. are the critical point temperature and pressure, respectively, we approximate
some physical behavior well, namely

e at the critical point dP/dv|r = 0; that is an isotherm has a zero slope in the P — v
plane at the critical point, and

e at the critical point J°P/dv?|p = 0; that is an isotherm has a point of inflection in the
F — v plane at the critical point.

It is also easy to show that at the critical point, we have

v =3p=2CTrc (10.85)

10.7. Adiabatic so[Jnd speed

With help from the mass, linear momentum, and energy equations, along with validation
from experiment, it can be shown that the speed of sound waves, ¢, is given by the formula

oP
c= (%l (10.86)

As the entropy is constant for such a caleulation, this is sometimes called the adiabatic sound
speed.
Let us calculate ¢. From the Gibbs equation, Eq. (8.60), we have

Tds = du+ Pdv (10.87)

Now, since v = 1/p, we get dv = —(1/p")dp, and Eq. (10.87) can be rewritten as
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Tds =du —izdp (10.88)
yo)

Now, for simple compressible substances, we can always form u = u(P, p). Thus, we also
have
du :(a—“) dp+[a—“j dp (10.89)
oP), op ),

Now, use Eq. (10.89) to eliminate du in Eq. (10.88) so to get

P ou ou P
Tds=du——dp=[—J dP+(—J dp-—dp
P’ P ), op) = P

ou ou P

Now, to find ¢ = /OP/dp|s, take ds = 0, divide both sides by dp, and solve for dP/dp|; in
Eq.(10.90) so as to get

_(5“] P
[GPJ __\%J)p P (10.91)

2N EY
8Pp

Now, Eq. (10.91) is valid for a general equation of state. Let us specialize it for a CPIG.
For the CPIG. we have

P c, P
u=c,T +const =c, — +const = ———+const

PR C—C, P
= L E+const: iE+const (10.92)
C _q4p k-1p
CV
Thus, we have for the CPIG
(a_uj 11 (10.93)
oP), k-1p
au =‘—1£2 (10.94)
op P k_lp
Now, substitute Egs. (10.93), (10.94) into (10.91) so to get
1 P P
P\ k-1p° o° P P P
(_j _k=1p® PP P P kP T (10.95)
ap ) 11 P p P
k-1p

Thus,
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¢ = (Z—PJ _kRT, (10.96)
P,

c=JkRT = [k (10.97)
P

Compare this to the isothermal sound speed:

c, = (@J =JRT (10.98)

op

By use of the ideal gas law, one can also say

c = [— (10.99)

o,

This is the form Newton used in 1687 to estimate the sound speed; however, he probably
used an approach different from assuming Boyvle's law and taking derivatives. Newton's
approach was corrected by Laplace in 1816 who generated what amounts to our adiabatic
prediction, long before notions of thermodynamics were settled. Laplace is depicted in
Fig 10.6 Laplace’s notions rested on an uncertain theoretical foundation; he in fact adjusted

Fig 10.6. Pierre-Simon Laplace (1749-1827), French
mathematician and physicist who improved Newton’s sound
speed estimates

his theory often, and it was not until thermodynamics was well established several decades

later that our understanding of sound waves clarified. The interested reader can consult
Finn

TB. S. Finn, 1964] “Laplace and the speed of sound,” Tsis. 55(1): 7-19.

10.8. Introduction to compressible flow

We close these course notes with an opening to later coursework in which thermodynamics
and the adiabatic sound speed plays a critical role: compressible fluid mechanics. We only
sketch two critical results here and leave the details for another semester.

To see the importance of the sound speed for compressible lows, let us consider briefly
the equations of motion for a one-dimensional How in a duct with area change. We ignore
effects of momentum and energy diffusion as embodied in viscosity and heat conduction.
The conservation laws of mass, linear momentum, and energy can be shown to be

d d
2 oA +Z Hl|A =0, 10.100
= PRt 2 ( )
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a|\7| #a|\7| oP
bl P 10.101
p( o +|v| ( )

5_“+|\7|a_“=_p(@+|\7|@j (10.102)
ot ox o ox

Note., we have not specified any equation of state. It can be shown that viscosity and heat
conduction, which we have neglected, are the only mechanisms to generate entropy in a
flow without shock waves. Since we have neglected these mechanisms, our equations are
isentropic as long as there are no shock waves. Note that Eq.(10.102) can be rewritten as
du/dt = —Pdv/dt when we define the material derivative as d/dt = d/dt + vd/oz.
Thus, EQ.(10.102) also says du=-—Pdv. Comparing this to the Gibbs equation, Eq.(8.59),
du =Tds — Pdv, we see that our energy equation, Eq.(10.102), is isentropic, du = 0. We can thus

replace Eq.(10.102) by ds/dt =83/6t+|\7|as/8x:0. We also take a general equation of state
P=P p,s . So our governing equations, Eqgs.(10.100)-(10.102) supplemented by the general
equation of state become

% oA +% plV|A =0, (10.103)
oN| . oN|) oP
Rt W L 10.104
/{ M, g2 o8 (10.10)
B w1 <o, (10.105)
ot OX
P=P p,s (10.106)

10.8.1. Acoustics

Let us first explore the acoustic limit in which disturbances to an otherwise stationary
material are small but non-zero. We restrict attention to purely isentropic Hows, so s =
constant, and all its derivatives are zero. We first consider the state equation., Eq.

s0 as to remove P from our analysis.
(10.106) i L

ap = P dp{@J ds, (10.107)
op ), os ),
P _(oP ‘lﬂ(@j & (10.108)
ox \0p ), ox \0s ), ox
VO 0
P _2% (10.109)
OX OX

We next consider Eq. (10.103) in the limit where A is a constant and Eq.(10.104)
where 0P /0x is replaced in favor of op/oxvia Eq. (10.109)

op O _
i - 10.11
- +8x p|v| 0, (10.110)
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We next assume that the state variables p and v are the sum of a constant state and a
small perturbation:

P =P+ D, (10.112)
V] =0+v] (10.113)

The welocity is assumed to be perturbed about zero, the stationary state. We substitute

EQgs.(10.112)-(10.113) into EQgs.(10-108)-(10.109) to get

0 pp+tp 0 ~ |z
S ot M —0, (10.114)
Dy + P aM ‘ ‘GM 20 Yo R 5] (10.115)
’ ot x|
We expand to get
9 0P, ﬁ+2 ”‘\7‘ =0 (10.116)
a ot Pk T Pl |
0 -0
6M o @M | cap 05
— 2% _29P
o M +p M =—¢' 2 -C (10.117)
._0 0
-0
Neglecting small terms, we remain only with
op, o
—+p,— =0, 10.118
ot Po ox ( )
oo
—_— 10.119
Po— ot ox ( )
Now, take the time derivative of Eq. (10.118) and the space derivative of Eq.(10.119) and get
52 2 il M =0 (10.120)
Pk |
N _ 0%
p
—c? 10.121
Po oot PV ( )

Next, realizing the order of the mixed second partial derivatives does not matter for functions

which are continuous and differentiable, we eliminate 0°|V|/otox and get

2
a—f —¢? a_p (10.122)
ot Ox?

Taking P=F, + P, we have
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= k5(1+3—£+...j (10.123)
Po e
We retain only the most important term and take then
c® =c. +... with ¢? = ko (10.124)
Po
S0 we get
p_ 0P

This is the well known wave equation which is satisfied by the well known D’Alembert
solution:

p Xt =f x+ct +9 X—cgt (10.126)
Here, f and g are arbitrary functions. In a physical problem, they are determined by the
actual initial and boundary conditions which are appropriate for the particular problem.
The so-called “phase”™ ¢ of f is ¢ = r + ¢,f. We can find the speed of a point with constant
phase by considering ¢ to be a constant, and taking appropriate derivatives:

¢ = const = X +Cyt, (10.127)
(31_?:0:%”0’ (10.128)
% =—C, (10.129)

Thus, waves described by p(x,t) = f(x + ¢,t) are traveling to the left (negative = direction)
with speed ¢,. Similarly the waves given by g(z — c,t) are traveling to the right (positive =
direction) with speed c,.

10.8.2. Steady flow with area change

Let us now return to the full equations, (10.103)-(10.106). In particular, we will now
consider potentially large fluid velocities, v; more specifically, the kinetic energy changes of

the low may be as important as the internal energy changes. Let us also consider only

steady flows; thus, 0/t =0. Our governing equations. Eqs.(10.103)-(10.106), reduce to

9 oA =0, (10.130)
dx
- d|\7| dP
bl P 10.131
p|V| dx dx ( )
E=o, (10.132)
dx
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P=P p,s (10.133)
Specializing Eq.(10.109) for steady flows, we have

dP 2 2 dp

dx dx

Using Eq. (10.134), in the linear momentum equation, Eq.(10.131), anf expanding the mass
equation, Eq.(10.130), our mass and linear momentum equations become

(10.134)

|V|—+pA |V| ||Ad’0 0, (10.135)
.d |V| ,dp
o 2 2E 10.136
p|v| dx ¢ dx ( )
We next use Eq.(10.136) to eliminate d o/ dx in the mass equation, Eq.(10.135), to get
dA . d plv| d}y
A——+V|A| ———— |=0, 10.137
oS paSil 215 @013
id_AJ,iM_MdM 0 (10.138)
Adx [V dx ¢* dx
_2
LA, M| _L1dA (10.139)
|v| dx c A dx
V| dA
d|V| _Adx. (10.140)
i
-

We define the Mach number, M as the ratio of the local fluid velocity to the local adiabatic
sound speed:

M = 1| (10.141)
c
So we can restate Eq.(10.140) as
V] dA
4V _ Adx (10.142)
dx M?2-1

Notice when the Mach number is unity, there is a potential singularity in dv/dz. This caused
great concern in the design of early supersonic vehicles. The only way to prevent the singular
behavior is to require at a sonic point, where M = 1, for dA/dz to be simultaneously zero.
Remarkably, this is precisely how nature behaves and is the reason why supersonic nozzles
are first converging, then diverging. At the point where dA/dr = 0, the flow becomes locally
sonic and can undergo a transition from subsonic to supersonic.
In terms of differentials,, we can restate Eq. (10.142) as
dv| 1 dA
V[ MZ1A

(10.143)
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Note, if the flow is subsonic, M < 1, with v > 0 and area increasing dA = (), then dv < (): area

increase in a subsonic nozzle generates velocity decrease. For supersonic How. the opposite

is true: area increase in a supersonic nozzle generates velocity increase. One can see a

converging-diverging nozzle as well as its use in generating supersonic How at its exit plane
in an image of a 2010 space shuttle launch depicted in Fig 10.7.

a) b)
Fig 10.7. a) Diverging section of a nozzle for the space shuttle main engine; b) Launch Spce
Shuttle Atlantis, STS-132, 14 May 2010, with a crew including astronaut Michael T. Good,
BSAE 1984, MSAE 1986, University of Notre Dame

NOTES
The Legendre transformation

Let us first restrict ourselves to functions of one variable. The results are then readily
generalized to functions of several variables. Assume f(x) to be a function of the variable
x, with the total differential
df = E dx = p(x)dx
Idx
The function p(x) = f’(x) gives the slope of the curve f(x) for every
value of the variable x (let us assume that f(x) is differentiable for all
x). The task of the Legendre transformation is to find a function g (p) of
the new variable p = f'(x), which is equivalent to the function f(x),
f(x,) i.e., which contains the same information. Thus, one must be able to
calculate g(p) unambiguously from the function f(x) and vice versa.
The new function g(p) can be readily obtained using the illustrative
interpretation in Figure 4.2 of the variable p as slope of the function

f(x) Tx)

0 Xy X S(x). To this end, we consider the intersection of the tangent to f at
x) the point (xo, f(xp)) with the y-axis. The tangent has the following
8% equation:
Figure 4.2. Concerning the
Legendre transformation. T(x) = f(xo) + f(x0)(x — x0)

226



The intersection with the y-axis g = 7T (0) therefore is
g2(xp) = f(x0) — xo0f (x0)

and depends, of course, on the point xq under consideration. One calls the function g(x)
for an arbitrary point x the Legendre transform of f(x); it is

g=f—xp with _n:leE
dx
(+)
In other words, g(x) is the corresponding value of the intersection of the tangent to f at
point (x, f(x)) with the y-axis.
We now want to show that g depends solely on the slope p = f'(x). To this end we
differentiate Equation (4.20):

dg =df — pdx — xdp
one has
dg = —xdp

(++)
Thus, g can depend only on the variable p. To calculate g(p) explicitly, we have to eliminate
x in Equation (4.20),

gx) = f(x)=—xf'x) O
with the help of the equation
p= f(x) (**)

This, however, is only possible, if Equation (4.24) can be uniquely solved for x, i.e., if there
exists the inverse f'~' to f’. Then one can insert

x= f"p)
()

into Eq. (*) and one obtains explicitly the function
i =1 =1
gp)=f(f ()= (pp
It is therefore evident that a unique Legendre transform exists only if Equation
(%)
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represents a bijective mapping, i.e., if every value of the variable x is uniquely mapped
onto a certain value of the slope p and vice versa. From mathematics it is known that the
function f'(x) has to be strictly monotonic for Equation (**)

to be invertible. Thus, only if f'(x) is strictly monotonic does the
Legendre transform g(p) exist. If the slope f'(x) is not strictly

monotonic, there may be several values of x belonging to a value of the slope
p, and the transformation is no longer unique.

Next we show that one can reconstruct the original function f(x) from the Legendre
transform in a unique way. According to Equation (it holds that

f(p) =g(p) +xp

(****)
In this equation we can uniquely replace p by x. According to Equation |
(++)

we have
x = —g'(p)
(*****)
Since f'(x) is strictly monotonous, the inverse function ()
is also

strictly monotonous. Therefore Equation ...,
can be uniquely solved
for p(x). This can be inserted into Equation -

and we uniquely
reobtain the function f(x).

Helmholtz free energy

In the laboratory it is difficult to manipulate S, V, but far easier to change 7', V. It is
thus natural to ask, “What is the equilibrium condition at constant 7', V 7 To answer
this question, we go back to the inequality AU < TAS — AW.If T is kept constant,
we can rewrite it in the form
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AW < =AU =TS

If AW = 0, then (U — 73%) = 0. This motivates us to define a new thermodynamic
function, the Helmholiz free energy (or simply free energy):

A=U-TS§
The earlier inequality now reads
AA < AW

If AW = 0, then AA < 0. The equilibrium condition for a mechanically isolated
body at constant temperature is that the free energy be minimum.

For infinitesimal reversible transformations we have dA = dU — TdS — SdT. Using
the first law, we can reduce this to

dA = —PdV — §dT

If we know the function A(T, V'), then all thermodynamic properties can be obtain

through the Maxwell relations
p dA
— \av /,

dA
S=‘(ﬁ)p

The first of these reduces to the intuitive relation P = —3U /9 V at absolute zero.

Gibbs potential
We have seen that the thermodynamic properties of a system can be obtained from
the function U (S, V), or from A(V, T), depending on the choice of independent
variables. The replacement of U by A = U — TS was motivated by the fact that
dU = TdS — PdV, and we want to replace the term 7dS by SdT. This is an example
of a Legendre transformation.
Let us now consider P, T as independent variables. We introduce the Gibbs poten-
tial G, by making a Legendre transformation on A:

G=A+PV
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Then, dG = dA + PdV 4 VdP = —5dT — PdV + PdV + VdP, or
dG = —8dT + VdP

The condition for equilibrium at constant 7, P is that G be at a minimum. We now

have further Maxwell relations
G
V = (_
P ),

5=~ (sr)
3T /,

The Gibbs potential is useful in describing chemical processes, which usually take
place under constant atmospheric pressure.

Maxwell relations
Above obtained Maxwell relations are

P=— (ii‘.)
av /
JdA
“‘(zﬁ)v
G
V=|—
37,

 J
aT /,

Still two more Maxwell relations may be ebtained by considering the differential
changes of the enthalpy:

H=U+ PV
dH =TdS + VdP
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from which follow

[ dH
V=|—
\ P | s
[ dH \
T= —
\ IS | p
Further Maxwell relations are
i aUu
- ( as)v
= BU]
- ( Vs

which follow from the first law, dU = —PdV + TdS.
The eight Maxwell relations may be conveniently summarized by the follow-
ing diagram:
V. A T

U G
S H P

The functions A4, G, H, U are flanked by their respective natural arguments, for
example, 4 = A(V, T). The derivative with respect to one argument, with the
other held fixed, may be found by going along a diagonal line, either with or
against the direction of the arrow. Going against the arrow yields a minus sign;
for example, (dA4/9T), = —S,(dA/3V )= —P.

Chemical potential

So far we have kept the number of particles N constant in thermodynamic transfor-
mations. When N does change, the first law is generalized to the form

dU = dQ — dW + udN

where w is called the chemical potential, the energy needed to add one particle to a
thermally and mechanically isolated system. For a gas-liquid system we have
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dlU = TdS§ — PdV + pdN
The change in free energy is given by
dA = —8dT — PdV + udN
which gives the Maxwell relation

- (&%)
“T\aN vy

Similarly, for processes at constant P and 7', we consider the change in the Gibbs
potentiai:

dG = —SdT — VAP + udN

_ [9CG
K=\oN/ .,

and obtain
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LECTURE 11: SOME OTHER PROBLEMS OF THERMODYNAMICS

Content of Lecture 11

11.1. Third law of thermodynamics
11.2. Euler’s equation and the Gibbs-Duhem relation
11.3. Jacobi transformation
11.4. Gibbs’s phase rule
11.5. Phase equilibrium and Maxwell construction
11.6. The law of mass action
11.7. The Joule-Thomson effect
11.8. Phase transition

11.1. Third law of thermodynamics

The second law of thermodynamics enables us to define the entropy of a
substance up to an arbitrary additive constant. The definition of the entropy
depends on the existence of a reversible transformation connecting an arbitrarily
chosen reference state O to the state A under consideration. Such a reversible
transformation always exists if both O and A lie on one sheet of the equation of
state surface. If we consider two different substances, or metastable phases of the
same substance, the equation of state surface may consist of more than one
disjoint sheets. In such cases the kind of reversible path we have mentioned may
not exist. Therefore the second law does not uniquely determine the difference in
entropy of two states A and B, if A refers to one substance and B to another. In
1905 Nernst supplied a rule for such a determination. This rule has since been
called the third law of thermodynamics. It states:

The entropy of a system at absolute zero is a universal constant, which may be
taken to be zero.

The generality of this statement rests in the facts that (a) it refers to any
system, and that (b) it states that S = 0 at T = 0, regardless of the values of any
other parameter of which S may be a function. It is obvious that the third law
renders the entropy of any state of any system unique.

The third law immediately implies that any heat capacity of a system must
vanish at absolute zero. Let R be any reversible path connecting a state of the
system at absolute zero to the state 4, whose entropy is to be calculated. Let
Cr(T) be the heat capacity of the system along the path R. Then, by the second
law,
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TA dT
5(4) = [Meu(T) =
(11.1)
But according to the third law
S(4) - 0
=0 (11.2)
Hence we must have
C(T) = 0
— (11.3)
In parﬂcular Cr may be C, or Cp. The statement (113)is

experimentally verified for all substances so far examined.
A less obvious consequence of the third law is that at absolute zero the
coefficient of thermal expansion of any substance vanishes. This may be shown as
follows. From the TdS equations we can deduce the equalities

(3S\  GCp
\ BTJ P T
[ S vV
\OP |; (3? P
(11.4)
Combining these we arrive at
dCp v
e & —
5 )= (am),
(11.5)

we have, for the coefficient of thermal expansion a, the

expression
v as a dT aCp\ dT
am () <) -T2 &
BT P -:?P T 3P 0 T [¥] SP TT

(11.6)



where the integrations proceed along a path of constant P.
we rewrite this as

r[ 3%V 1% vV
o (), - (). [
] BT P (?T P BT PlT=0

(11.7)
Therefore
a — 0
T—0 (11.8)
In a similar fashion we can show that
( = )
— - 0
dT [y =0 (11.9)

this implies that on the P-T diagram the melting curve has

zero tangent at 7 = 0.
It is experimentally found that C, can be represented by the following series
expansion at low temperatures:

Cp=T*(a+bT+cT?+ ---) (110

where x is a positive constant, and a, b, ¢, ... are functions of P. Differentiating

this expression With respect to P, we find that
aC
(—F) =T*(a’ + b'T+ ¢'T? + --)
0P |1 (11.11)
Therefore
T e — - b'T c'T?
Va=—f(;a’T(aT V4 b'T*+ -+ ) = T(x+x+l+x+2+ )(11.12)

Hence

Va

—— — finite constant

Cp 70 (11.13)

This has the consequence that a system cannot be cooled to absolute zero by a
finite change of the thermodynamic parameters. For example, from one of the
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T dS equations we find that through an adiabatic change dP of the pressure, the
temperature changes by
Va

dT = | — |TdP
Cr (11.14)
the change of P required to produce a finite change in the

temperature is unbounded as T — 0.
The unattainability of absolute zero is sometimes stated as an alternative
formulation of the third law. This statement is independent of the second law, for
the latter only implies that there exists no Carnot engine whose lower reservoir is

at absolute zero.* Whether 1t 1s possible to make a system approach absolute
zero from a higher temperature is an independent question. According to (11.14))

it depends on the behavior of the specific heat, of which the second law says
nothing.

Before experimental techniques were well developed for low temperatures, it
was generally believed that heat capacities of substances remain constant down
to absolute zero, as classical kinetic theory predicts (i.e., x = 0 in (11.10)

. If this were so, we see directly from (11.14)that the unattainability
of absolute zero Would be automatic. This is why the
question did not receive attention until the turn of the

century, when it was discovered that heat capacities tend to vanish at

low temperatures. We now see that even if the heat capacities vanish at absolute
zero, the absolute zero is still unattainable.
We see, when we come to quantum statistical mechanics, that the third law

of thermodynamics is a macroscopic manifestation of quantum effects

The foregoing discussions, which are somewhat abstract, become

concrete and physical when they are presented in the context of quantum

statistical mechanics. The importance of the third law of thermodynamics,

therefore, does not lie in these abstract considerations, but in its practical

usefulness. We end our discussion of the third law with one of its applications.
The free energy of a system is defined as

A=U-15 (11.15)

which, according to the third law, can be written in the form
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r
o T (11.16)
where the integral in the second term extends over a path of constant volume.
There is no arbitrary additive constant except the one already contained in U.
This formula, together with

T
U=f C, dT’ + constant
0 (11.17)

enables us to determine both U and A4 up to the same arbitrary additive constant
from measurements of C,.

To illustrate the practical use of these formulas we consider the melting
point of solid quartz. The stable phase of quartz at low temperatures is a
crystalline solid. The liquid phase (glass), however, can be supercooled and can
exist in metastable equilibrium far below the melting point. Hence a direct
measurement of the melting point is difficult. It can, however, be determined
indirectly through the use of (11 16) Let the specific heat ¢, of both solid and

liquid quartz be measured through a range of temperatures at a fixed volume V.
Let Ac, denote their difference, which is a function of temperature. Then the
difference in internal energy per unit mass of the two phases is obtained by
numerically integrating Ac, at constant V:

= [Ac, dr’
(11.18)

Using (11 17)we have, for the difference in free energy per unit mass of the two

phases,

Ac
Aa=Au—T f "—ar
(11.19)

Plotting Au and Aa as a function of T at a fixed V, we should obtain a graph
that looks qualitatively like that shown in Fjg 11.1.. The melting point is the
temperature at which Aa = 0, since the condition of phase equilibrium at fixed T
and V is the equality of the free energies per unit mass. In practice the point at
which Aa = 0 may be obtained either by direct integration up to that point, or

by extrapolation.
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0 Melting
point

Fig. 11.1. Determination of the melting point through use of the third law

11.2.Euler’s equation and the Gibbs-Duhem
relation

We start from the first law for reversible changes of states for a system which is as general
as possible. We assume that the system contains K particle species (chemical components),
each of which has, of course, a separate particle number and chemical potential. Then we
have

K
dU =TdS — pdV + ) p;dN,
i=l (11.20)
If in addition further forms of work can be exchanged, for instance, electric or magnetic
work, other terms have to be added which have, however, quite analogous forms. Thus,
the extensive internal energy U has to be interpreted as a function of the extensive state

variables S, V, N, ..., Ng. Now in general, an extensive state variable is proportional to
the absolute size of the system. In other words, if one doubles all extensive state variables,

all other extensive quantities also become twice as large. Especially for the internal energy
this means that

U@S$,aV,aNy,...,aNg) =aU(S, V,N,,..., Ng) (11.21)

if o is the enlargement factor. One calls functions which have this property homogeneous
Junctions of first order. All extensive variables are homogeneous functions of first order of
the other extensive variables. On the other hand, the intensive variables are homogeneous
functions of zeroth order of the extensive variables,
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T(@S,aV,aN,,...,aN) =TS, V, Ny, ..., N)
(11.22)
i.e., they do nor change if we divide or duplicate the system.

Equation (11.21) has far-reaching consequences. For if we consider an infinitesimal

increase of the system (@ = 1 + € with € &« 1), we can expand the left-hand side in a
Taylor series:

al aU alu
Uld+e)S,..)=U+ —€S+ —eV+---4+ —eNg
If we insert this into Equation (11 1) and consider that according to Equation (11.20)
80 g, OO _ . W U _
TR T A T e (11.24)
it follows that
Ul(l+e)s,..)=U+eU=U+e¢ (TS—pV+Z:u,-N,-)
i (11.25)
1.e., Euler’s equation is valid,
U=TS-pV+) wh
i (11.26)

In other words, from Eq (11.21) it follows that Eq (11.20) may be trivially inte-
grated. This is by no means obvious since according to Eq (11.24) T, p and u; are

functions of §, V and N;. If we calculate the total differential of Euler’s equation, it holds
that

dU =TdS — pdV + 3 pdN; +SdT —Vdp+ Y N du,
i i (11.27)

If we compare this with Eq (11 0, * obviously the condition

must always be fulfilled (plus additional terms, if other state variables are necessary). One
calls Eq (11.27) the Gibbs-Duhem relation. It means that the intensive variables

T, p, u1, ..., ug which are conjugate to the extensive variables S, V, Ny, ..., Nx are
not all independent of each other. In principle this can be readily understood, since from
three extensive state variables, e.g., S, V and N, one can derive only two independent

intensive state variables, e.g., S/N and V/N. All other combinations can be expressed by
these. In Eq (11.27) of course §, V, Ny, ..., Ng are now functions of the variables

T, p, 1, ..., 1k, and this equation provides the possibility to eliminate one of these
variables.
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11.3. Jacobi transformations

A frequently occurring problem in thermodynamics is the transformation of variables in state
functions. Such transformations must not be confused with the Legendre transformation.
For the latter we have not simply replaced one variable in the internal energy by another, but
have defined a new physical quantity, which is especially convenient for a certain system. In
the following we want to investigate pure transformations of variables in the same physical
quantity.

In general, the Jacobi determinant for the transformation from the

variables (x;, xa, ..., xy) to the new variables (u), us, ..., u,) is defined by
duy au, aU|
3I| 6x2 6x,,
duy  Ous ous
0x) xz 0X,
J(X], .o.|xn) ==
a“" 8“,; aun
ax) 0x2 0x,
(11.28)
It is also denoted as
our, ..., uy,)
J(X1yo0eyXy) = 3 :
(X150 0 Xn) (11.29)
According to the rules for multiplication of determinants
a{ull sy un} 3(w|, “oaey wn) | 3(“]1 .y un}
Iwy, ..., wp) 3(xy,...,x,) (X1, .00y Xn)
(11.30)
This is nothing but a generalized chain rule. Forn = 1 Eq(11_30) simply reads
du dw  du
dw dx dx (11.31)

Exchange of columns or rows in the Jacobi determinant yields a .minus sign. Because
of Eq (11.30) the Jacobi determinant of the reverse transformation
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0(x1, ..., Xp) (3(u1,--.,u,,))']
Ay, ..., uy) \OXp, ..., X,)

is just the inverse of the original transformation.
Especially useful is the denotation of a derivative as a Jacobi determinant,

(11.32)

du
— 0
aX|
1
du O, xp, .. x)
axl X2,X3 000Xy a(xh X2y e vny xll) g
0 1

(11.33)
since u can only depend on x,.

11.4. Gibbs’s phase rule

We now want to return to the important problem of how many state variables are actually
necessary to uniquely determine the state of a system. To this end, we start from an isolated
system which contains K different particle species (chemical components) and P different
phases (solid, liquid, gaseous, . . . ). Each phase can be understood as a partial system of the
total system and one can formulate the first law for each phase, where we denote quantities
of the i™ phase by superscripti = 1, ..., P. For reversible changes of state we have

K
dU® = 7O gs® _ 0 gy® 4 Z“’fﬂ de”, {=1,2...P
I=1 (11.34)
Other terms also may appear, if electric or magnetic effects play a role. However, since the
corresponding terms have a quite analogous form, Eg (11.35) is sufficiently general. In

this formulation of the first law, U of phase i is a function of the extensive state variables
SO, VO N, .., Ngs ie., it depends on K + 2 variables (if further terms appear in
Eq.(11.34)" the number of variables is larger). Altogether we therefore have P(K + 2)
extensive state variables. If the total system is in thermodynamic equilibrium, we have in
addition the following conditions for the intensive state quantitics

T =T7@ —...=T7® Thermal equilibrium
p? =p? =...=pP Mechanical equilibrium
w' =w” =--=p"” I=1,...,K Chemicalequilibium (1 35,

Each line contains P — 1 equations, so that Eq (11.35) is a system of (P — I)(K + 2)
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equations. Since T, p@, and y;" are functions of S©, V() and N/’ we can eliminate
one variable with each equation. Thus, we only require

K+DP-(K+D(P-1)=K+2 (11.36)
extensive variables to determine the equilibrium state of the total system. As we see,
this number is independent of the number of phases. 1f we now consider that exactly P

extensive variables (e.g., V), i = 1,..., P) determine the size of the phases (i.e., the
volumes occupied by each), one needs
F=K+2-P

(11.37)
intensive variables. EQ 11 37y js named after J.W. Gibbs and is called Gibbs’ phase
rule. Tt is readlly understood with the help of concrete examples. Let us for instance think
of a closed pot containing a vapor. With K = 1 we need 3 (= K + 2) extensive variables
for a complete description of the system, e.g., S, V, and N. One of these (e.g., V), however,
determines only the size of the system. The intensive properties are completely described
by F = 142 —1 = 2 intensive variables, for instance by the pressure and the temperature.

Then also U/V, §/V, N/V, etc. are fixed and by additionally specifying V one can also
obtain all extensive quantities.

If both vapor and liquid are in the pot and if they are in equilibrium, we can only
specify one intensive variable, F = 1 + 2 — 2 = 1, e.g., the temperature. The vapor
pressure assumes automatically its equilibrium value. All other intensive properties of the
phases are also determined. If one wants in addition to describe the extensive properties,
one has to specify for instance V¥ and V', i.e., one extensive variable for each phase, which
determines the size of the phase (of course, one can also take N and N, etc.).

Finally, if there are vapor, liquid, and ice in equilibrium in the pot, we have F =
1 +2 — 3 = 0. This means that all intensive properties are fixed: pressure and temperature
have definite values. Only the size of the phases can be varied by specifying v, ve,
and V*. This point is also called triple point of the system. If we have various chemical

components (e.g., air and water) or further terms in Eq (11.34)" all assertions hold with

a correspondmgly larger value of K.

If a system consists of various particle species (chemical components), reactions be-
tween particles are often possible, which transform one species into another. Then certain
reaction equations, as are often used in chemistry, are valid, for example:

2H, + O; = 2H,0
In general we can write such reaction equations as
a\Ay +ayAy + -+ = b1 By + byBy + - (11.39)

where a; particles of species A, react with a; particles of species A; to form b, particles of

species B, etc. The numbers a; and b; are the stoichiometric coefficients from chemistry.
Eqi (11.40) is a condition for the particle numbers Ny, Ny,, ... and Ng,, Ny soss

(11.38)
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since the changes of these numbers are mutually related by the reaction equation. For
instance, let d R be an arbitrary number of reactions of the type of ©q(11.39) - Then it

must hold that

dNA| = —a, dR
dNy, = —a,dR
dNg, = b, dR
dNp, = by dR

(11.40)

The signs are determined by the fact that in each reaction a; particles of species A; and

a; particles of species A, etc. vanish, while b; particles of species B, are created. As we
already know, the equilibrium condition for an isolated system reads

1 p 1
S'=dU+ 2 = D MidN; =0
i (11.41)
However, if U and V are constant in such a system, we have from Eq (11.41) the

condition
5 s =

If we insert the dN; from Eq(ll 40) into Eq (11.42) W have after dividing by the

common factor d R
i i (11.43)

This is a constraint for the chemical potentials, which depends on the reaction equation.
With every reaction equation we are therefore able to eliminate another intensive variable.

If we have, for instance, R reaction equations, we can formulate an extended Gibbs’ phase
rule:

(11.42)

ki e AR o (11.44)

Also, the total number of extensive variables now becomes smaller (K +2 - R). The
reason is that for each phase only K — R components have independent particle numbers;
the other numbers can be calculated with the help of the reaction equations.
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11.5. Phase equilibrium and Maxwell

construction
When we introduced van der Waals’ equation of state we already mentioned some
_ inconsistencies of this equation. The isotherms of van der Waals’ equation (Fig 11.2)

2

(p+ %;)(V — Nb) = NkT
(11.45)
show regions of negative pressure as well as mechanically unstable regions
P t having dp/dV > 0, where the gas wants to compress itself. Both cases are

| certainly unphysical.
We now want to show that these contradictions can be resolved by con-
sidering the phase transition from gas to liquid. Most gases, if we compress

,  WAHEREER them at constant temperature, start to liquefy below a critical temperature
i 7 . at a certain volume V;.
In equilibrium between vapor and liquid, however, a certain vapor pres-

| »  sure p, is established, which we have already calculated for an ideal gas
v, v, V  from the equilibrium conditions
Fig 11.2. Isotherms of the van der ~ Pli = P i =T, wi(p, T) = po(p, T)
Waals (11.46)
The vapor pressure p,(T) is solely a function of temperature and does not depend on the
vapor volume V, so that one obtains a horizontal isotherm in the pV diagram. An isothermal
compression beyond the point of liquefaction V; has the effect that more and more vapor is
converted into liquid, until at point V, the whole amount of gas is liquefied. If we further
compress the system the pressure increases strongly because of the small compressibility
of the fluid.
It is remarkable that neither the density of the liquid (given by N /V>) nor the density
of the vapor (given by N/ V,) changes during this phase transition. The increase of the

average density, which is enforced by the transition from V; to V5, is solely caused by the

creation of more and more liquid and the simultaneous reduction of the partial volume of
the vapor phase.

The pressure p, can be calculated from Eq (11.46) » if the temperatures and chem-

ical potentials of the vapor and liquid are known. Now, however, w.e want to present a
method !cnown as the Maxwell construction: the internal energy U (V, T) at fixed particle
number is a state function, which depends only on the volume for a given temperature. For

constant temperature we therefore have the energy difference
Vi

AU =T(5 - §) —f pv)dV

Y (11.47)
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between two volumes V; and V; with the entropies S; and S, for the purely gaseous and
purely liquid phases, respectively. Since U has an exact differential, it cannot matter whether
AU is calculated along the direct path of constant vapor pressure (p(V) = p; = p, =
const.) or along the van der Waals isotherm, for which the following holds (7' = const.):

NkT aN?
p(v) = - =
V-_Nb V (11.48)
In the first case we simply have (AQ = T'(S; — §)) is the latent heat of the phase transition)
AU, = AQ — p,(V2 — V) (11.49)
1 and in the case of the van der Waals isotherm we have
5 Ath = Al —Rerin 2= _pr. [ 1
£ A= Vi — Nb "\ V.
S 60 =54
= : (11.50)
4%, EC/ANA From the condition
v, [P v, AU, = AU,
01 02 03 04 05 V> — Nb
V(10°m?) @ —p(Vo — V) = =NkT In 4
Fig 11.3. Maxwell construction Vi — Nb
— N2g (l = _l.)
Le R (11.51)

one can, in principle, determine the unknown pressure p, as
well as the also unknown volumes V; and Vz, if one solves van

der Waals' equatnon for Vi(p,, T) and Vz(pv, 7). (Remark For a glven py and T the
van der Waals isotherm has also a third (unstable) solution at C F|g11 3)- However

Eq.(11.51) can be understood far more easily. It tells us that the area p..(Vz - V.) of

the rectangle between V. and V; below the unknown vapor pressure equals Lhe area below}
the van der Waals isotherm.

Or, in other words: the area between the straight line of the vapor pressure and the van
der Waals isotherm A BC has to equal the analogous area CDE. (See Fig 11.3). This is

the well-known Maxwell construction. The explicit calculation following Eq (11.51)

is equivalent to the Maxwell construction. If one draws the points A and E for a couple of
isotherms in a diagram, one obtains the boundary of the phase coexistence region (Fig11 4)

In this region the van der Waals isotherms have to be replaced by strgight lin;s for the
vapor pressure. The maximum of the coexistence curve, the so-called critical point K , lies

on the isotherm, which only has a saddle point (instead of the extrema D and B). Above
the critical temperature the Maxwell construction is no longer possible; liquid and gas are
no longer distinguishable.
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With the help of Fig 11 sone can also understand another phenomenon. If one
isothermally compresses a real gas below the critical temperature until all of the gas is
liquefied, then increases the temperature at constant volume V5 to a point above the critical
temperature, and then expands the gas to the initial volume V; at constant temperature,
one can regain the initial (gaseous) state without a noticeable second phase transition (by a
temperature decrease at constant volume).

P+ \

40°C

31°C

20°C

0°C
B R
0 0.2 0.4 0.6

V(10~°m?)
Fig 11.4. Critical point and critical isotherm Fig 11.5. Scheme of considered process

This means that above the critical temperature (the critical isotherm) a distinction
between the gaseous and liquid states is no longer reasonable! This distinction is only
possible below the critical temperature, since liquids and gases have very different densities,
and thus a phase boundary surface exists between the phases. At the critical point, however,
the density of the liquid and the gas assume equal values, and a distinction between the
phases is no longer possible above the critical temperature.

Because of the importance of the critical point we want to calculate the critical state
quantities 7., p.,, and V,, from van der Waals’ equation. The critical point is characterized
by the fact that both derivatives vanish (saddle point):

d 9°
_p = 0, —F; =0
avlr, v, aV=ir,.v, (11.52)
or
NkT., 2aN? NKT,, .
W -;Jb)2+ v =0 2 —;Vb)3_6avl'i )
or i cr cr (11.53)

If one brings the negative terms to the other sides of the respective equations and divides
one equation by the other, one obtains V,, — Nb = % V.r, and thus

Ve = 3Nb
(11.54)
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If one inserts this into £q (11.53) » ON€ gets

N 2aN 4 8a
Ter = —(Vor = Nb)P2 = — V2 = —_
e s (Ver ) kV: 9 T 2Tkb (11.55)
from V,, and 7., it finally follows with van der Waals’ equation that
_ Nk8a aN? i
Per = 2N2Tkb ~ 962N? ~ 7712 (11.56)

The critical state quantities are therefore uniquely determined by the parameters a and b.
Hence, for all gases one should have

er Ver bN
Ve _aloNzib 3
NkT,, 276*Nk8a 8 (11.57)

Experimentally one finds for Eqi (11 57) "umbers between 0.25 and 0.35, which once

again confirms the qualitative usefulness of van der Waals’ equation. On the other hand, a
measurement of the critical data of a gas yields a comfortable method for determining the
parameters a and b.

By the way, one can also experimentally find the (metastable) parts A B and DE of the
van der Waals isotherm in nonequilibrium situations. If a gas is very carefully compressed
at constant temperature (avoiding concussions and condensation nuclei), one may follow
the isotherm beyond point A nearly up to point B. The same holds for the other side for
an isothermal expansion beyond point E to point D. One speaks of delayed condensation
or delayed boiling, respectively. The system is metastable in this region and switches over
to the stable phase coexistence state even under small perturbations. The same phenomena
can be observed for isochoric temperature changes. Here one speaks of superheated liquid
or supercooled vapor, respectively. Analogous phenomena occur for the solid-liquid phase
transition.

11.6. The law of mass action

Let us consider a vessel containing a mixture of ideal gases which mutually react, for
instance according to Eq (11.6)" To take a concrete example, let us take the reaction

EELAEE
mol(HCl) (11.58)

where an energy of —92.3 kJ/mol is released in an isolated system per mole of hydrochloric
acid. At first we have to extend our previous formula for the ideal gas. The purely thermal
energy content of an ideal gas of N particles at temperature 7 was U = 3NkT /2. Howev.er,
this energy does not take into account additional internal energies of different particle species
due to their internal structures, different masses, etc. For instance, two molecules, H, and

H; + Cl; = 2 HCI, AU = -92.3
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Cl,, differ from two HCI molecules by the chemical binding energy which is released in
the reaction. Thus, we have to consider these additional energies in the internal energy and
write for each particle species i, with N; particles at temperature T and pressure p;:

3
Uj(Nf-.Ts P:) — Ni'Ej -+ —N,—kT, p,-lf' — N,kT

2 (11.59)
The energies ¢; define the different zero points of the energy scales of the respective particles.
The difference 2eyc) — €y, — €qy,, for instance, is the binding energy difference between
two molecules of HCl and one molecule of H, and Cl,, respectively. Consequently, the
constants €; appear also in the chemical potentials of the ideal gases
since also the energy scales of the chemical potentials are shifted with respect
to each other,

: 52
ui(Pi.T)=ei+kT(“L(,(p79"_m_ln{(TL) (Eg)l)
. ° I (11.60)

Of course, in the chemical potentials one must insert only the partial pressure of each
component, since each component itself fulfills the thermodynamic relations for an ideal
gas with N; particles and pressure p; at the temperature T common for all particles. Then,
the total pressure of the systemis p = ¥, p; and fulfills pV = NAT with N =}, N;.
In particular, the ratio p;/p = N;/N = X, is the molar fraction of the component i and
thus a measure for the concentration of particle species i. We can rewrite the equation for

ni(pi, T) using po/ p; = (po/p) - (p/pi) = po/(pXi),

e B wi(po, To) TY [ L
"'(”“”—ﬂ*’”(—kﬁ“ "‘{(rc) (5 %)
i (po, To) (1)5’2( 0)
=¢+kT| ——— -l il = — + kT In X;
€ ( kT n{ Ty p n

=wi(p, T) + kT In X;
(11.61)
This equation means that the chemical potential of component i with the partial pressure
pi in the total pressure p, or with the concentration X; in the mixture, respectively, can be
calculated from the chemical potential of a pure gas of particle species i with total pressure
p, if one introduces an additional concentration dependence of the chemical potential. This
has the advantage that now all chemical potentials refer to the same total pressure p, and
the different partial pressures are taken into account via the concentration X;. (Note that
InX; = 0 for X; = 1, pure component i). By the way, this concentration dependence
is valid not only for ideal gases, but also for dilute solutions of different components in a

solvent. Such solutions are called ideal if the concentration dependence of the chemical
potential of particle species i fulfills Eq (11.61) Now we can insert Eq (11 61)

into the equilibrium condition, Eq (11 43) » and we obtain in general
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Y aimipi, Ty =Y byu;(p;, T)
t J

Zaiui(P, T) —~ ijuj(p. ) =kT ij nX; - zai In Xi)
i F i i
Xp X3 e
exp (Za:#:(P' T)—Zb_,uj(l’. T))] a.‘
{” X X4 (11.62)

where we have divided by k7 in the last step, exponentiated, and exploited the properties of

the logarithm. Eq (11.62) is the law of mass action, which determines the equilibrium
concentrations of products X , X,, ... andreactants X4, X,,, . . . inachemical reaction

accog&ing [O_Eq (11.39) One often writes for the lefthand side in Eq (11.62)

1
K(p,T) = exp l— s (2 bjuwi(p, T) — Zaiui(P, T))}
j i (11.63)

This is the equilibrium constant of the reaction at the total pressure p and the temperature 7.
For ideal gases we can readily recalculate this constant for different pressures and temper-
atures, since we know the chemical potentials ;(p, T) for all pressures and temperatures,
if we have determined them once for a standard pressure p, and a standard temperature

To—see E,q (11.60)" To this end, we form the ratio of K(p, T) to K(po, Tp) and find,

with Eq (11 60) that
1 1
K(p,T) = K(po, To)CXP{‘AE (ﬁ B m)l

A IR
()" (2)]

with Ae = 3, b;e; — 3, aje;, the energy gained or required per reaction (the binding
energy difference between the products and the reactants). Let us first consider the pressure
dependence of the equilibrium constant X (p, T). This depends on whether ), b, — 3", a;
i1s greater than, less than, or equal to zero. For our example in Eq 11 5g) - , for instance,

an, = ac, = 1 and byc) = 2, ie., an, + acy, — qu = 0. In the 1deal case, such
reactions do not show any dependence on the pressure, while for N; + 3 H; = 2 NH,
we have 3 b; — 3. a; = —2. For the latter reaction K(p, To) = K (po, To)(p/po)>.

Hence, the equlhbrium constant increases with increasing pressure. According to Equa-
tion (11.62) the concentration of the products has to increase with respect to that of the

249



reactants. The synthesis of ammonia from the elements is therefore more efﬁcnem at high
pressure than at atmospheric pressure. For this reaction A¢ < 0 and the equilibrium con-
stant K (po, T) = K(po, Tp) exp{—Ae(1/kT —1/kTo)}(To/ T)* decreases with increasing

temperature. To gain a high amount of ammonia one should therefore work at low temper-
atures. However, in practice the technically very important ammonia synthesis (fertilizer
production) is performed at temperatures up to 500°C (and pressures up to 10® Pa). This is,
from a technical point of view, more convenient than synthesis at room temperature. Our
equilibrium considerations namely do not tell us how fast a system assumes equilibrium. In
general, the relaxation times needed to reach equilibrium are larger for lower temperatures.
At low temperatures the reaction rate is also small. The gain of ammonia per unit time
in a continuous reaction, where the reaction products are permanently removed from the

system, may therefore be larger at high temperatures, although the equilibrium is actually
shifted to disadvantageous values. We do not want to discuss these problems, which belong
to the study of reaction dynamics, in more detail. Let us only mention that the reaction
rate can be increased by catalytic agents which are not changed by the reaction. Here one
exploits the fact that the chemical potential of the materials participating in the reaction
is changed if they are absorbed on the surface of certain materials, i.e, if they cling to the
surface of the catalyst. Thus, catalytic agents are mainly porous materials with a surface
which is as large as possible.

In the following we want to use the concentration dependence of the chemical potential
of component i

wilp, T, Xi) = pi(p, T, X; = 1) + kT X, (11.65)

also for ideal solutions. Here p; (p, T, X;) is the chemical potential of particle species i in
a system at pressure p, temperature 7', and with concentration X;. This can be calculated

according to Eq (11.65) from the chemical potermal ni(p, T, 1) of the pure ‘component

i (X; = 1)atthe same pand T. This is a phenomenologncal equation of state like the
ideal gas law and only experience can justify this ansatz. In nonideal solutions Equation
(11.65) is not valid. However, one can retain the form of Eq (11 g5) also for nonideal

systems, if one transforms the term &7 In X; to include the activities kT In f; X;, i.e., if
one introduces effective concentrations. The f; are phenomenological parameters which
describe the deviations from the ideal case and may depend on the pressure, temperature,
and concentration. The form of the law of mass action remains unchanged; one has only to
replace the X; by the effective concentrations f; X;.

11.7. The Joule-Thomson effect

From daily experience we know that a container filled with gas under large pressure cools
down when the gas escapes (e.g., for sprays). Since no external work is performed in the
expansion (A = 0) and since the expansion happens very fast so that no heat is exchanged
with the surroundings (6 Q = 0), this process is an irreversible adiabatic expansion of a real
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gas. Since A = Oand 8Q = O we also have dU = 0. For an ideal gas or a van der Waals gas
we can determine the change of the temperature. For the latter case we have already calculated

the internal energy U(V, T) a5 follows

1 1
UV, T) = Up(Ve, To) + Cv(T — To) — N'a (? ) .V_)
07 (11.66)

For an ideal gas we simply puta = 0. With AU = 0 it follows that

boe || INF ( 1 1 )
Cv \V. W/ (11.67)

The maximum change of temperature AT for the expansion into a very large volume (V — o00)
is

Na
Cv¥o (11.68)

For ideal gases we thus have AT = 0, while for real van der Waals gases (a > 0) the
temperature change is negative. The reason is that in the expansion internal work is performed
against the molecular attractive forces, the strength of which is measured via the constant a.
We want to investigate the irreversible expansion of an arbitrary real gas in somewhat more
detail. To have definite thermodynamic conditions at every moment of the expansion one needs
a device which slows down the spontaneous and thus irreversible expansion of the gas, so that
one has a certain well-defined pressure at each moment. One achieves this via a porous plug
(throttle), which permits only a small amount of gas to pass at each moment. Simultaneously
the pressures on both sides of the throttle are continuously kept constant.
throttle . A possible practical set-up is shown in Fig
T b E, 116 Pistons 1 and 2 (in practice the role

4 {lp.,V V L — ! i
bl (Rcak of the pistons is assumed by a pump)
provide at each moment a steady flood of gas

AT =

Fig 11.6. Joule-Thomson experiment
from pressure p; to the smaller pressure p,, whereby the volume V; increases. We must
now isolate the whole set—up well to provide adiabacity (§Q = 0). We consider a
certain amount of gas which has the volume V, at pressure p, and which is
pumped_to the other side of the throttle where it then takes the volume V, at pressure p.
The change of  the internal energy of this amount of gas is given by the work done on
the left side to expell the gas at constant pressure py from volume V;, which is p, V,

minus the work which is performed by the gas at constant pressure p; against piston

2, 50 that the gas takes the volume V,, which is p2 V2.
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U = U, = pV, — ;3 (11.69)
or

Uy + pVy =U; + p,V-
1ThR RO T R (11.70)
The enthalpy U + pV remains constant on both sides; one says that the process happens
isenthalpically. We now want to calculate for a given pressure change dp the change in
temperature d7 at constant enthalpy. To this end we assume H to be a function of T and p:

aH dH
dH = 3_T dT + a— tfp
P ir (11.71)

For H = const. wehave dH = 0, and thus the temperature change under a change of pressure
is

r

aH
BT dp T
anl T T ToH
P |y ﬁ-‘lp

(11.72)

Here we have simply dH/3T|, = C,. We also want to express d H/dp|; by simply
measurable quantities. With (N = const.):

dH =TdS + Vdp (11.73)

we have
oH

ap

=7

T ap

v
+v=v-1 ¥
. aT

P (11.74)

where we have used the Maxwell relation 35 /dp|r = —d V/aT|,. Finally the Joule-Thomson
coefficient § is given by

1
Nl s 2y ] Ly
o |, C, \ ar|,
Y (Ta-1)
= — (Ta —
Cp (11.75)

where aV = 3V/aT|, is the isobaric expansion coefficient, which for an ideal gas has just
the value « = 1/T, so that (for an ideal_ gas) § = 0. We now want to evaluate Equation

(11.75) for special equations of state of real gases. To this end, we use an approximation for

252



van der Waals' equation, since this equation is difficult to solve for V:

N 2
(P+ (V) 0) (V - Nb) = NkT

NkT  N?a N\? Nab
ev= +~b+(_) N

p pv 4 p (11.76)
Now we replace V in zeroth approximation by NkT/p on the righthand side. Moreover, we
assume we have a fixed amount of gas (1 mole), i.e., N = N, and Nk = R. The constants
a and b shall refer to 1 mole; 1.e., we put N2a — a and N,b — b. Then V is equal 1o the

molar volume v for which we obtain in a first successive approximation,

RT a +b+ abp
V= — — —
P RT RT? (11.77)
From this we can calculate the required derivative,
ad RT a ab
T | == 2=
oT|,~ p ~ RT "R
(11.78)
The difference T 22 l,, — v can thus be readily given in explicit terms, so that according to
Eq.(11.75)
T 1 2a b
m ) oL (2ososgin)
oply C, \RT R*T 11.79)

For nitrogen, for instance, we have a = 0.141 m®* Pamol~?and b = 0.03913-10* m? mol .
At room temperature and a pressure p = 10’ PaEq (11.79) Yields dueo = 0.188°C/10°

Pa, while the measured value is 8., = 0.141°C/10° Pa.
Eq. (11.79) Predicts not only cooling down under expansion (§ > 0), but in certain

regions also reheating. One calls the temperature—pressure curve at which & just vanishes
the inversion curve. In an expansion gases only cool down, if for a given pressure the initial
temperature was smaller than the inversion temperature; in the other case they even heat up.

From Eq (17 7g) W€ Can calculate the inversion curve:
2a 3a
d=0e - BT+ 3y =
(11.80)

As one observes, two inversion temperatures exist for each pressure below a certain critical
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pressure pm,.. The inversion curve is a parabola in the Tp diagram, which separates the
region of cooling from the region of reheating. Also shown in the diagram are the isen-
thalpics (H (p, T) = const.). The slope of these curves is just the Joule-Thomson coefficient,

according to Eq (11.75)" The inversion curve connects the maxima of the isenthalpics.
If the relaxation of the gas happens over a wide range of pressures, one has to integrate

the Joule-Thomson coefficient § over the pressure change (here we reverse the substitution
Nia — a and N,b — b):

»
p 0P |y
PN (Za abp )
= — | —=-b-3 dp
./;, Cp \kT kT)? (11.81)

Here T and p, of course, are not independent variables. For each infinitesimal pressure change
the temperature also changes in a fixed way. The variables T and p are mutually related via

H(p. T) = const., and the relaxation happens along an isenthalpic in Fig 11.7

The irreversible expansion of real ga:c»es has gn:;t technical importance for achieving very
low temperatures, as well as in the liquefaction of technical gases. It is used, for example, in
Linde’s liquefaction process (Fig 11 g) . To use the temperature decrease more efficiently

one leads the expanded, cooled gas through a heat exchanger, whereby the highly compressed
gas is further cooled down.

3
H=const.

e ——

——_

w—I1NVersion curve /
¥ compressor |

// throttle valve

0 200 400 600 800

p(10°bar)
Fig 11.7. Experimental inversion curve and Fig 11.8. Linde’s liquefaction process
isenthalpics (H = const) for nitrogen (schematically)

However, this process works only for gases which have an inversion temperature (at a
given compressor pressure) above that of room temperature (e.g., air, CO;, Ny, .. .).

For hydrogen precooling is necessary, since the inversion temperature of hydrogen (~
—80°C) lies below room temperature.
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A temperature decrease _always happens in the reversible expansion of real gases, since
the gas has to additionally perform external work. This process, however, is more difficult to

realize and is thus of no great technical importance.
While discussing the Joule-Thomson experiment we calculated the Joule~Thomson coefficient

aT

§ = —
P |u (11.82)
If 3 is to be expressed by the known enthalpy H(T, p), one obtains this with the help of
aT| _ AT H) AT, H) 3(p,T) _ T, H) [ a(p, H)
aply 9(p, H) ap, T) a(p, H) ap, T) ap, T) (11.83)
or
aT B a(H,T) d(p, H) B oH dH
aply,  Ap,T) a(p, T) ap |r aT |,
(11.84)

which, of course, agrees with the result above.
11.8. Phase transition

The surface of the equation of state of a typical substance is shown in Fig. 119
where the shaded areas are cylindrical surfaces, representing regions of phase
transition. The P-V and P-T diagrams are shown in Fig.11.10. We study here the

implications of the second law for these phase transitions.

Isotherms

rMWIIIHlHIIH

Fig. 11.9. Surface of equation of state of a typical substance (not to scale)
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Fig. 11.10. P-V and P-T diagrams of a typical substance (not to scale)

P
A

A=~ T\
| |
| '|
|
|

|

|
III’ILV
Vi V VOV

Fig. 11.11. An iotherm exhibiting a phase transition

Let us consider the transition between the gas phase and the liquid phase.
The transition takes place at a constant temperature and pressure, as shown in
Fig.11.11. This pressure P(T) is called the vapor pressure at the temperature 7.

Let the system_be initjally'in state 1, where it is all liquid. When heat is added to
the system, some of the liquid will be converted into gas, and so on until we reach
state 2, where the system is all gas, as schematically shown in Fig.11 12 The

important facts are that
(a) during the phase transition both P and T remain constant;

(b) 1in the gas-liquid mixture the liquid exists in the same state as at 1 and
the gas exists in the same state as at 2.
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(a) (72 (c) (d)

All Gas- Gas- All

liquid liquid liquid gas
mixture mixture

Fig. 11.12. Schematic illustration of a first-order phase transition. The temperature and the
pressure of the system remain constant throughout the transition. The total volume of the
system changes as the relative amount of the substance in the two phases changes, because
the two phases have different densities.

As a result, knowing the properties of the states 1 and 2 suffices for a
complete description of the phase transition. The isotherm in the P-V diagram is
horizontal during the phase transition, because the gas phase has a smaller
density than the liquid phase. Consequently, when a certain mass of liquid is
converted into gas, the total volume of the system expands, although P and T
remain unchanged. Such a transition is known as a “first-order transition.”

The dependence of the vapor pressure P(T) on the temperature may be
found by applying the second law. Consider a gas-liquid mixture in equilibrium
at temperature 7" and vapor pressure P(T'). Let the mass of the liquid be m, and
the mass of the gas be m,. If the system is in equilibrium with the given T and

P(T), the Gibbs potential of this state must be at a minimum. That is, if any
parameters other than 7 and P are varied slightly, we must have 6G = 0. Let us
vary the composition of the mixture by converting an amount §m of liquid to
gas, so that
—8m; =dm, =0m
(11.85)

The total Gibbs potential of the gas-liquid mixture may be represented, with
neglect of surface effects, as

G =mg +mg, (11.86)
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where g, 1s the Gibbs potential per unit mass of the liquid in state 1 and g, is
that for the gas in state 2. They are also called chemical potentials. They are
independent of the total mass of the phases but may depend on the density of the
phases (which, however, are not altered when we transfer mass from one phase to
the other). Thus

8G=0=—(g, —g,) 6m (11.87)
The condition for equilibrium is then

g1 = &2 (11.88)

This condition determines the vapor pressure, as we shall see.

The chemical potentials g,(P,T) and g,(P, T) are two state functions of
the liquid and gas respectively. Recall that in each phase we have

dg .

—| = —s  (entropy per unit mass)

aT | p (11.89)
o8 1 it )

=5 == mass
( 2P ) ] v (volume per uni

(11.90)

We see that the first derivative of g, is different from that of g, at the transition
temperature and pressure:

rfﬁ'(gz—gl)]
—— = —(s5,—-35) <0
L IdT  |p == (11.91)
d(g, - 31)]
=p,—0;,>0
N T (11.92)

This is why the transition is called “first-order.” The behavior of g,(P, T) and
g,(P, T) are qualitatively sketched in Fig.11 13
g 4

A 4
} £1

81 (P constant) (T constant)
Ligquid Liquid

82

I
|
|
|
|

T > T T > P
Transition Vapor
temperature pressure

Fig. 11.13. Chemical potentials g,, g, for the two phases in a first-order phase transition
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To determine the vapor pressure we proceed as follows. Let

Ag=g,- &
As =5, — 5,
Av = v, — v, (11.93)

where all quantities are evaluated at the transition temperature 7 and vapor
pressure P. The condition for equilibrium is that T and P be such as to make

Ag = 0. Dividing ;) 5y (17 g), We have
(dAg/dT)p As

(0Ag/3P)y A

(11.94)
By the chain relation,
(228,25~
dT [p\ dP |ag\ dAg |, (11.95)
or
(3Ag/6‘T)P (3P)
(6&3/3P)T T | ag (11.96)

The reason the chain relation is valid here is that Ag is a function of T and P,
and hence there must exist a relation of the form f(T, P, Ag) = 0. The derivative

dP(T) ( dP )
ar T ] ag=0 (11.97)

is precisely the derivative of the vapor pressure with respect to temperature under
equilibrium conditions, for Ag is held fixed at the value zero. Combining

(11.97), (11.96) and (11.95), We obtain

dP(T) As
ar Av (11.98)
The quantity
I =TAs (11.99)
is called the latent heat of transition. Thus
dP(T) |
dr TAv (11.100)
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This is known as the Clapeyron equation. It governs the vapor pressure in any
first-order transition.

It may happen in a phase transition that s, — s, = 0 and v, — v; = 0. When
this is so the first derivatives of the chemical potentials are continuous across the
transition point. Such a transition is not of the first order and would not be
governed by the Clapeyron equation, and its isotherm would not have a horizon-
tal part in the P-V diagram. Ehrenfest defines a phase transition to be an
nth-order transition if, at the transition point,
278, = d"g, and d"g, - 3",

aT" aTn aPn 3P" (11.101)
whereas all lower derivatives are equal. A well-known example is the second-order
transition in superconductivity. On the other hand many examples of phase
transitions cannot be described by this scheme. Notable among these are the
Curie point transition in ferromagnets, the order-disorder transition in binary
alloys, and the A transition in liquid helium. In these cases the specific heat
diverges logarithmically at the transition point. Since the specific heat is related
to the second derivative of g these examples cannot be characterized by the
behaviors of the higher derivatives of g, because they do not exist. Modern
usuage distinguishes only between first-order and higher-order transitions, and
the latter are usually indiscriminately called “second-order” transitions.

A miscellany of applications.

The Second Law tell us to increase entropy.
And move towards lower chemical potential
It doesn't say how.

Ammonia Fountain

https://www.youtube.com/watch?v=gMgRxbv_IW8

dg = dh—s.dT + v.dP + mg.dz
If Ah < mgAz (P,T constant) things move up.

Ammonia dissolves in water with large, negative Ah.

260



Helium Il Fountain effect

https://www.youtube.com/watch?v=kCJ24176enM
https://www.youtube.com/watch?v=2Z6UJbwxBZI

@ He ll is a "mixture” of superfluid and

F':Elm:"h wi 11
normal” He.

40
@ Superfluid component: “all particles in
ground state”

30

Liquid He | @ So can add a particle to superfluid
10 . -
: without changing S.
0 l_.--#_—'-buaw-lr - .
10 50 Tk @ "normal” He component has finite
entropy.

Helium |l Fountain effect

Two vessels of cold He ( “system” + “bath”) Hea%er\iiiééiigg porous Plug
only superfluid can flow through plug. -
Equilibrium: pu = pp.

If “system” is heated (T; > Tp), equilibrium requires:

—sdT +vdp=0=dp/dT =s/v >0

Thus heated “system” is at higher pressure than “bath™.

AP = (s/v)AT

This pressure difference is sufficient to generate a continuous fountain.
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Osmosis: Chemical potential and ergodicity

semipermeable membrane  Concentrated = == Dilute sugar P
sugar solution | ammo o ° = solution . oo
(Water less o0 o0 ° (Water more o4
concentrated) | TR / concentrated) R L S
. ) o o
some particles flow e.g. e B N— :
° o °
water not sugar. s _——T=weul o B 5
molecules 2.0
Water flows freely, | .
W W8 8§ . =~
HA = Hg i Ha # 1B
M
Selectively permeable o?v:;?::‘ ;

membrane

Simple case - noninteracting molecules ;% ~« p%, so va = pgv
Total pressure: sum of partial pressure P =) . p;
If A also contains sugar: its total pressure is higher by p3.

If water and sugar interact then Raoult's Law fails u* depends on sugar
concentration and biology happens.

Too much solvent outside a cell reverses flow of water

Take a slug, add salt...
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Brinicles

https://www.youtube.com /watch?v=IAupJzH31tc

BBC Frozen planet “Finger of Death”
Mix hot salt water and ice at (0°C), atmospheric pressure.
What final temperature will one get?

Temparature ('C)

+20

i+
30~ Nl 1O

20 1 L 1 ! 1 L 1

NaZ1-3H,0 = KaC

'S J -
0 10 20 30 40 s0 g0 TO 80 30
Wisight Parcent NaCi

Salty water and ice — Equilibrium

Coexistence of water in ice, and in liquid brine, p; = py, ,
Mole fraction of salt: X = 2Ny +/(2Ny,+ + Np).
Taylor expand gy (P, T,X) about X =0, T =0

For ice (no salt, X=dX=0);

A
H oT/p St

On co-existence line p; = py thus dpy = dyy, =

(50) e = (35 (=) = (55

where L = TAS is the latent heat of melting.
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Hot water and ice, continued

(50) sareiee= (350) (5 =5) = T (%)

Assume ideal solution of salt:

N
pe(X.T)=p (X =0,T)+ RTIn (—L)

Np + 2Ny, +
Thus
(X, T)= (X =0,T)+ RTIn(1 - X)
(‘),u,;_ —RT .
— (EJ‘X ) STiox = —RT (evaluating at X=0)
So finally,
dT _ RT?
(E)salmater—ir_&, X=0 - L

Temperature drops as we add salt water to ice.

Chemical Cooling

(dT) RT?
dX saltwater-ice, X=0 - L
assumptions: ldeal solution, constant L,coexistence possible
+0 | | T T [ I I ! I
w30 -
@ Independent of which salt. KB e brine:+ Nac .
@ Plug in numbers: %*m- i
AT = —16.5K. -
. E -10f 4
@ Actual limit: -21.1°C for NaCl ® L b T P
@ Below -21.1°C I I g -
pure ice + hydrated salt. gl
L] i 20 30 40 50 &0 TD O B8O 90 100

Wieight Percenl NaCl
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Brinicles

BBC Frozen planet “Finger of Death”

Mix hot salt water and ice at (0°C), atmospheric pressure.
+0 T T T I T T I == ==
+30 - -1

+20 |- beine brine + NaCl

X
o
T
1

-0 -
e+ e +
bring NaCI-2HO NaCt+2M,0 + NaCl

Temperature ('C)
o

20 =

e
-30 - NaCl2H,0 -

-40 ! ! ! 1 1 ! 1 ! Il .
10 20 30 40 S0 60 70 80 90 100 3 > e Of = -
Weight Percent NaCl & 2T e & ‘% Yo 0%

Self assembling structure - ice around descending colume of brine.

Planck’s insight

@ Photons can spontaneously be created or absorbed.

@ spontaneous process cannot increase G.

o dGcrearfon < 0 and dGapninitation < 0;
S dGcreatfon = dGannfhﬂatfon

@ Chemical potential of a photon must be zero!

g=G/V=D=U/V+P—T5f'v’=u-|-%—Ts=0

. _ du
Entropy of a photon gas is s = 57.
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Electrons and Fermi Energy

In a metal, electrons occupy energy states up to the “Fermi Level”.

Adding an electron: u = Ef.
E=0 Placing two metals together means
Ef must be the same.
E=0 == Electron at infinity.
But ...
Ef Work functions, €y are different.
Electrons must flow to equalise Eg

V = (Wl - Wg)jfe
Metal 1 Metal 2
a "pile” forms a battery.

On earth, as it is in heaven
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Hurricanes

A hurricane is a self assembling heat engine.

The hot reservoir is the ocean surface (T =~ 300K),

The cold reservoir is the top of the atmosphere, ( T, = 200K)
Work is done creating winds.

" Adiabatic Expansion” Thatflorw Temgerabure - -70 = T
Leg 2—,

Isothermal expansion - air spirals
towards the eye. (+ absorb water)
Adiabatic expansion Hot air rises
o (low P).

Isothermal compression Water
vapour condenses and falls as rain,
releasing latent heat.

Adiabatic compression In theory,
air drops back to sea level.

]
— Leg 3
) P *Liathermal Compression”

The virial theorem...

For a self-interacting system
the average kinetic energy is
equal to half the average
potential energy

A(TE) __ AU
AKE) ~ AT

Clausius again!

o Self-gravitating star clusters
@ black holes floating in a vacuum (P=0)

@ They expand when energy is added,

- Inhomogeneous Systems: violate definition of equilibrium.

- Add “heat” - Reduce KE Negative heat capacity!?
Intensnve entropy (“heat”) may decrease, the total entropy does not.

paper by Mr and Mrs Lynden-Bell MNRAS, 181, 405 (1977)
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Breaking the Law

Small system, small time, possible to violate the Kelvin statement,

@ Drag a micron sized particle.

@ Measure piconewton forces.
0.6 L

o Work = force x distance.

0B

04 | @ Sometimes moving particle gets hit
o2 from behind more than in front.

I drne I @ Extract work without supplying heat.

@ Second Law violations not predictable

G.M. Wang, EM. Sevick, E. Mittag, D.). Searles & D. ). Evans (2002). "Experimental demonstration of violations of the

Second Law of Thermodynamics for small systems and short time scales”. Physical Review Letters 89 (5): 050601

Stating the obvious

Non-interacting objects in the same system can be treated as independent
ideal gases, thanks to ...

Dalton’s Law
Total pressure is the sum of partial pressures

P=ZP;'
i

Raoult's Law

Partial pressure is proportional to concentration

p,-V = N;'RT

e.g. dilute chemicals in solution, photons in a cavity etc.
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Thermodynamics in Chemistry

Molecules react to form other molecules. -0 = ®o

A chemical potential can be defined for each. 20 - 9 -0
dU = TdS—PdV-i—ZIp,dN_. 0+ 6 = 00: 0
dG = =5dT + VdP + >, pidN; Q000 =» Q600

Total Gibbs, G is also the sum of the chemical potentials

G=> piN; = dG=>_ Ndp;+ pidN;
i i

Equating these expressions for dG yields the Gibbs-Duhem relation:

> Njdpi=-SdT+V dp
i

This gives balance of concentration of components i

Phase separation in Planets

lron/nickel Iron/nicke!
core o core Iron/nickel
» [silicates) Fock iy - Rock

(silicates)
H;0 Ice

‘lsilico'esl
Mars
~Rock

?

Moleculor hydrogen gas ‘

changing to liquid m%ose: - hMoloculor Plito?
ydrogen gas llic

Iron/nickel
core 4 ooy

(silicates)

Mercury Venus Earth
4 To same scale

o " Molecular

wd':' :gli = hydrogen hydrogen gas

Weior / Water Wm‘:? Water
"' ; Rec!

Rock IS Rock O Q Rock?
®

Earth for

comparison

Jupiter Saturn Uranus Neptune

To some scale

Chemical potential includes gravity: g = u— Ts + Pv + mg,h.
Heavy atoms fall to the bottom: can be drawn up_if soluble (u)
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Gibbs phase rule

How much information is needed to specify
system?

...equivalently...
How many degrees of freedom does a system
have?

F=C+2-P

@ C: Chemical species - reactions From Milk to Butter

Qil-in-Water Emulsion WaterinOd Emulsion

@ P: Number of phases present

F=C+2-P

o Single phase water: F = 142-1 =2. P and T must be specified.
e lce/water mix F = 1+2-2 =1. Specifying P defines T.

@ Triple point F = 1+2-3. no freedom, unique P, T.

@ Critical point No freedom, unique P,T == P=3. (!)

e Gaseous 0;, H, and H,0: F = 3+2-1.
Leaves four d.o.f, e.g. T, P, Ng, Ny,

o ...+reaction 30 + Hy <> H,O F = 2+42-1,
Leaves three d.o.f.
(Assuming known reaction constant K, g.v.).
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Order of phase transitions

&1 =82
o First order: discontinuous change of state variables (e.g. s or v)

981 , 082
aT * oT
@ Second order: continuous change of state variables, but discontinuous
derivatives (e.g. ¢,, K, 3)

981 _ &
oT — oT
g + 0%g>
T2 7 97?2

@ Third order: continuous change of state variables and derivatives.

Discontinuous = 1° order transitions

Isothermal process traverse
XY’ At the phase boundary.

P Y3, ¢ 9

| RN g1 = g always . . .
o i‘g"
L=t 3‘%‘45 For first order, derivatives change...
i 3

1
|
Sl Wl k- _(%&) ._(%
7/ B2 |11 aT ) » aT ) »
P

L

=N (),)
op ), 7 \oP),

“""'!J‘"?',"
i
/L
: s1#F spand v #F w
|

LS
P P Discontinuous transition = 15 order

|
5

R
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Second derivatives?

: a2
Isobaric Heat Capacity T (%)P =T (3—%)
P
. . : g2
Thermal Expansivity (%)P = (ﬁ)
Lilie, —1 OV -1 { &g
Isothermal Compressibility 5~ (W)T v (W) .

The ‘discontinuities’ at continuous phase changes

In a second order transition

_(%&\ __(9%&\ . (%) _(%:
aT ) p aT ) » P ). \oP )+

AS = 0 means no latent heat. AV = 0 means no volume change.

S and V are anyway related by (i?_;‘)T Magwell - _ (g—;)P
No latent heat or volume change: same internal energy dU = TdS — PdV

Clausius Clapeyron = 0/0.

Two types of transition look like “second order”

“Critical fluctuation” is where regions of the system fluctuate into the
other phase in and uncorrelated way.
e.g. ferromagnet.

“Coexistence” is where one phase the system is effectively two-component.
e.g. Bose condensate.
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Paul Ehrenfest (1880-1933)

Einstein, my upset stomach hates
your theory [of General
Relativity]—it almost hates you
yourself! How am | to' provide for
my students? What am | to answer

to the philosophers?!!

— Paul Ebrentest —
v

AZQUOTES

The Ehrenfest equations

Clausius-Clapeyron gives 0/0 for second order boundary.
Consider entropy at points A and B on the phase boundary, at (T, P) and
(T +dT,P+ dP),

For second order transitions there is no change in s or v.

at A s(T.P)=s(T,P)

at B s(T+dT,P+dP)=sy(T +dT,P + dP)

use a laylor expansion on B

sy sy dsp sy
IY g+ (L) gp=(92) a1+ (22) ap
(ar)P * (E)P)T (ar)P * (ap .

Multiply through by T and use cp, 3: "first Ehrenfest equation™:

(i) _ fP1—CP2 _ Cp1— Cpo
dr phaseboundary Tv(B1 — B2) TV(B1 — 52)
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Second Ehrenfest equation

“Second Ehrenfest equation”

( dP) _ ﬁg - .51
dT phaseboundary K2 — K1

Similar derivation starting from v = w

Measuring 3/4 of ACp, AS, Ak, v suffices to measure slope of transition
line.

Measuring slope provides information about ACp, AS3, Ak, v

Scaling Laws

In critical region close to the transition, +A T, around T,
e.g. Heat Capacity

Cy x (T —T¢c)™™
e.g. correlations between magnetic spins

L’

< S,-.SJ,- > r

Power Law dependence implies there is no characteristic scale.
Universality: conjecture that «, v are independent of material.

In Economics and Ecology, forthcoming transitions often characterized by
big fluctuations.
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Ising Ferromagnet

N pae e e Equation(s) of state: M‘r= (T -T.)*
,L'“; T e = and x = % = (T—CT.:
%Ei ?E @ MACRO: zero magnetisation to finite

0 02 magnetisation

f'”-—'?—‘ , g0 & @ MICRO: transition from aligned spins to

e ?f-‘[;ﬂ} o randomly oriented spins.
e SUSCEPTIBILITY (UNSOLVED)
U= EZ o0} ° % massive near transition.
i @ Materials near phase transitions can be

very sensitive.

Liquid Helium

P(atm)ﬁ

40

Solid He
30
___Aline
20
Liquid He I Liquid He |
10 I
C
0 l A | " —® Vapour

1.0 2.0 3.0 4.0 5.0 ’T
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Liquid Helium

#fatm) 4 e At T, = 2.2 K, on cooling (He 1) to
. “superfluid” (He I1)

@ Only for *He (Bose Condensation)

30

@ Finite fraction of atoms in same
(ground) quantum state

C
.__-—_‘!_'-'aﬂEul .
TR @ The He Il phase shows no viscous
effects “superfluid”.

@ Marked peak in Cp at transition line.

|
E @ Looks like a A, hence T,.
F\_/

Z] 2 T

@ [ here is no latent heat: second order

@ Heat capacity continuous: third order

Superconductivity

@ Below T. = 3.4K electrical resistance is

zZero.
T T T T T T T T
*r heat cqpacity] @ "Two component model”
of prere In
a0l close to - @ Electrons couple to form “Cooper
L 7—= & K - 1]
e 34 pairs” (bosons).
85 o
e Finite fraction of electrons (Np) in
o ground state
& X -m - 0 o = o 40
T-To(mih

Consider resistors in parallel:
Heat capacity of pure indium

in zero field 1 N N

R~ R R
R1=0 — R:ﬂ
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S

2

g

Temperature (Kelvin)
w B
=] =3

20

. .
Nb,Ge BKBO ‘ 2 :fo‘:"
Nb,s‘- A YbPd.B,C P.uCoca, Liquid

gBa 3 uO @ 30 GPa
TIBaCaCuO / ¢ HgTiBaCaCuO

Night on

BisrCacud® ~ HgBaCaCuO ool
* e
Liqusd

YBaCuO . sl

l o

Cs,Cy
@ 1.‘6?. MgB, s

=]
M:V of Pluto
LaBaCuO

hydrogen
NN V,si K;Ceo UQSJGP:’MN;‘ o
10 )'u: PURRGDs coCy
° CeCu,Si, UBey UPd,Al, CeColn, YbC, 1 Liquid
0 g ( T N pmond, 4 helium
1800 1940 1980 1985 1990 1995 2000 2005 2010
Year
Magnetic, H
Critical magnetic fisld, Hc
Normal state Superconductivity suppressed by
@ High temperature
g\ et o High field
Critical temperature, Tc Q@ ngh current
Current denisiy,J * Gritical current density, Jo "
@ Type | excludes all magnetic
3 - fields
9 Type l I'ype 1l )
g - @ Type Il allows some magnetic
i Normel field
Temparature Tc Temperaiure Tc
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The Microscopic origin of Thermodynamics

DEFINITION: A micro-state...

a way the particles could be arranged at one instant in a given phase.
DEFINITION: Ergodicity means...

it is actually possible to move from any microstate to any other.

@ If S = kgIn W, zero entropy means unique arrangement (W = 1).
Electrons in insulator: all fermion states below Eg occupied
Bose condensate: All bosons in ground state

@ Third Law: at T=0, S=0 only one microstate, the ground state.
@ Negative entropy impossible for quantised system = W <1

@ 5 = kg In W implies all W states equally likely
@ More generally, Gibbs Entropy § = —Nkgp; In p;

There are five laws of Thermodynamics.

3 | 4 L)
S : <L o e ‘,;
1 g 1 S s
0
R

Laws of Thermodynamics

2,1,0, 3, and ?
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What is the entropy at absolute zero?

-
dQ
5= ]D TS
Unless S = 0 defined, ratios of entropies S;/S> are meaningless.

The Nernst Heat Theorem

Consider a system undergoing a pro-
cess between initial and final equilibrium
states as a result of external influences,
such as pressure. The system experiences
a change in entropy, and the change
tends to zero as the temperature char-
acterising the process tends to zero.

9 N
u’ /1"(-7:.!'/ g

Nernst Heat Theorem: based on Experimental observation

Nernst saw that for any exothermic chemical process at temperature T.
AH increases with T,
AG decreases with T.

Energy 4 AG=Gr— G = AH- ‘&{TSJ

He — H; = T(5¢ = 5))

AH
<
TAS
= AH-TAS

AG

" So from Nernst's observation
As T — 0, observed that d
AG — AH asymptotically ﬁ(ﬂtH —AG) =0 = A5—-0
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Planck statement of the Third Law:

The entropy of all perfect crystals is the same at
absolute zero, and may be taken to be zero.

Planck Third Law

@ All perfect crystals have the same entropy at T = 0.

@ Thermodynamics : choose this to be 55 =0

@ Supported by experimental evidence.

@ Microscopics : S = kIn W all atom positions uniquely defined.
o W=1

@ Permuting atoms doesn't count.

Last point comes from Ergodicity - atoms can't swap - or from
indistinguishability: state is the same if they do swap.

Simon Third Law

Sir Francis Simon (ne Franz Eugen Simon)
Student of Nernst

Also invented U?3> separation via gaseous
diffusion of UFg

The contribution to the entropy from each aspect of a system which
in thermodynamic equilibrium disappears at absolute zero.

@ “configurational entropy”: various arrangements of atoms on sites
@ “vibrational entropy”: various positions of vibrating atoms.
@ “magnetic entropy”: various arrangements of spins.

Isentropic process conserves TOTAL entropy.
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The validity of the Third Law, however stated, stems from
@ observation of properties of substances in general

@ successful use in describing the low temperature
behaviour of a wide range of processes and parameters.

Vanishing Thermal expansion coefficient, (3

s L (oVY _ _1/70S
T vi\ot ), Vv\or/;

@ |sothermal derivative.

@ Third Law, as T approaches zero, AS — 0,
...and so as T approaches zero, 7 — 0.

@ This is true for any material

Vanishing Heat capacity

ds
Cv= T(a—r)v

d - 1 — dr
Use 77InT =+ =dInT = = to get

as
Cv =
v (f)ln‘.‘").vrr
As T —-0,InT — —o0,

For infinitesimal AT, Third law has AS — 0

So 22— =0

The consequence is that Cyy =+ 0as T — 0.

The same conclusion is found for all specific heats for all materials.

n.b. The heat capacity for an Ideal gas is ¢, = 3R/2...
. means that the ideal gas doesn't properly describe low-T.
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Heat Capacity of Metals

...... Law of Duiang and Petit [ Law of Duong and Pati
1 Aporoacha 1
i F o Dulong-Pel
E ot high tery
‘e For metals at low temperatures
= -
i L T paraturg o Ceparts from Datye _ 3
o T¥ bahmvioe matches s el ol aw temg CV ~ CP =4 T + bT
[abya Mmoo wwheing alectiron spashic
Fiea! cortributes
1 - - S S S S S T S S —
0 a o L] w0’ ] 10 o a o
T K? T

* attor Pahit

aTl associated with the conduction electrons aspect,
bT?3 associated with the lattice vibrations aspect.
Using %"’ = (% , = a+ bT?; and integrating we see that:

S(T)=aT + %bﬂ

both contributions to entropy tend to zeroas T — 0
All electron states below Ef are occupied.
All lattice vibrations (quantum harmonic oscillators) in ground state.

Zero slope of the phase boundary for first order transition

From derivation of Clausius-Clapeyron, we know that (S—P

T)pB AS

Vv

But AS — 0 as T — 0, so the slope of the phase line must be zero.

pressure

e.g. He* in the low temperature limit.
liquid phase Il / solid phase transition
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Quantum statement of Third Law

S=kinW

A quantised, finite amount of energy is needed to get out of the ground

state (W=1).
An infinitesimal change in temperature cannot provide this.
Therefore, an infinitesimal process at T = 0 cannot change W

Unattainability of absolute zero (Zeno statement)

Another statement of the Third Law:

It is impossible to reach absolute zero in a finite number of processes.

o g e
- B
AT
tl ’\ﬁ i o
t2 i

Magnetic cooling again

sS4
@ Cooling by adiabatic

demagnetisation (Lecture 12). i
@ Field on: Reduce entropy by 2

aligning spins i
@ Field off: Adiabatic equilibration

= cooling. Infinite number

of staps

@ Repeat this process.

AT, x AS, —

T

As T — 0 entropy changes get smaller at each step.
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Disobeying the Third Law?

1.0

Kauzmann's paradox I N
see also Nature 410, 259-267(2001) as |
Temperature dependence of the “heat al
content” (label AS/ASp) between ‘ T
supercooled liquids and their stable crystals. 2R A /

@ Glasses look as if their entropy doesn’t go to zero at 0 K

@ Implication is they are not at equilibrium.

Counting up to two, three times

Three particles, two partitions A and B. State defined by Ny
e W(N,=0)=1(BBB);
e W(Ny=1)=3(ABB/BAB/BBA)
o W(N, =2)=3(AAB/ABA/BAA)
o W(N, = 3) = 1(AAA)
W for N particles: (2’) given by Pascal’s triangle.

“Average” state is VASTLY more likely
As N — oo, width of the peak goes as 1/v/N

Sierpinski Gasket - Pascal's triangle is 100% Even numbers
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Monty Hall Problem as an irreversible process

Entropy collapses when a measurement is made.
3 doors, two goats, one car.

Pick one door (3), Monty opens another (1)
to show a goat.

Is the car more likely to be in (2) or (3)?
Initial Entropy: kIn3 = 0.4771 ...

W 3 [GGC, GCG, CGG]

Final Entropy: kIn2 = 0.3010k ...

W 3> [GGC, GCG] ?

NO, —k(3In 3 + 3In3) = 0.2764k
What changed? - TWO bits of extra information...

If Monty chose at random (may have revealed a car), no advantage
switching

If Monty chose a goat-door, more information, some advantage switching

Breaking the law: Maxwell's Demon

If the Second Law of Thermodynamics is statistical, then...
There's a chance of breaking it.

@ Demon moves shutter ...
only lets fast atoms go A — B.

@ Moves heat to hotter side

@ Violates Clausius 2nd Law

Demon needs information about atom velocity: Demon itself creates
entropy.

Moral. The 2nd law of thermodynamics has the same degree of truth as the
statement that if you throw a tumblerful of water into the sea, you cannot get the
same tumblerful of water out again. Maxwell, 1874
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Breaking the Law

Small system, small time, possible to violate the Kelvin statement,

@ Drag a micron sized particle.

@ Measure piconewton forces.
0.6

@ Work = force x distance.

0.6

o | ' @ Sometimes moving particle gets hit
o2 from behind more than in front.

e | @ Extract work without supplying heat.

@ Second Law violations not predictable

G.M. Wang, E.M. Sevick, E. Mittag, D_J. Searles & D. ). Evans (2002). "Experimental demonstration of violations of the

Second Law of Thermodynamics for small systems and short time scales”. Physical Review Letters 89 (5): 050601

Other definitions of entropy beyond this course

@ The probability interpretation the Gibbs Entropy: S = —kg ). pilnp;

o Quantum probability interpretation: von Neumann entropy
S = —tr(pln p), With p the density matrix.
@ Shannon Entropy H = =), p;log, p;

Quantifies how much information is contained in a message (and
therefore, how much the message can be compressed).

Remarkably, they are all the same, and the missing entropy in Maxwell's
Demon is the information in the Demon’s brain!
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Clausius-Clapeyron equation

Clausius-Clapeyron equation, from AP dP
N = +ve M v
combination of latent heat and Pl &7 p T
relation for (dP/dT)pt \_L /
Lae =it
5 =8
(dP) L hies s AW
dT pt T(l@ — Vl) T( Vo — V1] S T =S T

@ [ is always positive going from low T (solid) to high T phase (liquid).
@ For v; > vg (solid expands on melting), dP/dT is positive.

@ For v; < vs (solid — like ice — contracts on melting) dP/dT is
negative.

e REMEMBER THE SMALL PRINT:
It's % along the phase boundary line. “lsophaseboundaryic”

How does the boiling point vary with pressure

Specific volumes v and v;, for vapour and liquid.
Assume v, > vi: v, — vp = v, = RT /P, giving

2 ()

Integrate, assuming that the specific latent heat / is constant to get the
equation for the vapourization line on a PT diagram.

In P = ——— + constant
RT

Boiling point changes logarithmically with pressure.
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Trouton's Rule (1834)

If the structure of all liquids were the same, the entropy would be similar.
Entropy of vaporization = 10.5R. Latent heat = 10.5RT,,, (not constant!)
Enthalpy of
'|.|-..~.I:1|'.k,.|'r|:
* Bailing J,.*f'

Meling . Measure enthalpy, because...
Gibbs: g=h—-Ts

Phases have equal g, Ag =0
ﬂhvap = TvapﬁS-.fap

500 1000 s000 Temperature, K

P (LY (L o (105P) N 105

Trouton's Rule, with pirates

If the structure of all liquids were the same, the entropy would be similar.
Entropy of vaporization = 10.5R. Latent heat = 10.5RT

T

dP _ (10.5P
dT

—) = P/Py~(T/To)"?




Defining Magnetic Central Equation

But defining work is trickier.

Magnetic Energy = -BM ;

Define increasing magnetisation as “Work™: dW = B.dM
Magnetic Central Equation:

du = Tds + BdM

with associated Maxwell Relations such as ( )M (d )
We could define magnetic equivalant of enthalpy eior = —BM + w.

deyor = Tds — MdB

Similarly, equivalents of Gibbs and Helmholtz free energy; four magnetic
Maxwell relations, etc.

Magnetic Cooling Cycle

a) Isothermal magnetisation process
loses heat: s4

dQ ds dM e
(%) ‘T(ds)fT(E)B 2

where we use a magnetic Maxwell
relation.

b) Adiabatic/isenthalpic l I
demagnetisation reduces temperature T T i

dT\ _  (dT dS_TdM_Tde
dB)s  \ds)z\dB), & \dT ), < \dT

Using Maxwell and product rules,
susceptibility, heat capacity at

constant field
X = MfB; cg = T((JS;IST)B
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Magnetic equation of state: Curie Weiss Law

Defined by
M=aB/(T - T.).
cg =cg(B=0)+ aTBE[(T — Tc]3- + Note cg is infinite at T = T.

Above T, this gives (—g) =(T-T.)/B.

Magnetic cycle starting at T3, raising to B; then dropping to B> gives

h—-T. B
L-T. B
A cycle with complete demagnetisation would cool to T,

Work through details in handin, and note approximations like neglecting

cg(B = 0) and assuming B = pgH mean that in practice the performance will be
less good

Equipartition in society

-. ’
.
.

: US Declaration of Independence (1776)

We hold these truths to be self-evident, that all men are created equal,
But when a long train of abuses and usurpations, pursuing invariably the
same Object evinces a design to reduce them under absolute Despotism, it
is their right, it is their duty, to throw off such Government,

(The King of England is an asshole because...)

2 Declaration of Arbroath (1320)

It is in truth not for glory, nor riches, nor honours, that we are fighting,
but for freedom.

But if he should give us or our kingdom to the English or the king of the
English, we would immediately take steps to drive him out as the enemy
and the subverter of his own rights and ours

(The King of England is a auld scunner because...)
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Ultraviolet
Catastrophe
Allowing equipartition of
energy in all wavelentghs
requires infinite energy.

Epeciral radiance (KW - 55 - /i ® - Y]
-]

Thermal radiation as a thermodynamic system

cavity walls at T
System: radiation inside a cavity,
Surroundings :

Cavity walls = heat bath temperature T. radlatlon
caw

State Variables for radiation
Fixed T, V. System energy, U(T, V)

Equation of state from Electromagntism:
Radiation pressure (S)/c (Poynting vector S=E x H)

P =

L | =t

u
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Equipartition in radiation

walls at T
r3 £

@ Consider an partitioned oven.

@ A and B: different materials, same T.

@ Same value of energy density at ua ug
equilibrium.

@ Crossflow of radiation would make heat ] i
pass from A to B. if ua > ug:

material A material B

@ Clausius violation unless higher v =
higher T, regardless of volumes.

o u(T,v)=u(T)

Consider systems comprising radiation of a given wavelength.

@ Same argument: uy = uy(A, T). (n.b. A not a state variable)

@ Heat flow between different A until all T, are the same.

How Planck discovered Quantum Theory

I had no alternative but to tackle the problem again ...
from the side of thermodynamics. In fact, my previous
studies of the Second Law of Thermodynamics came to
stand me in good stead now, for at the very outset | hit

TREATISE upon the idea of correlating not the temperature of the
ON

T o oscillator but its entropy with the energy... While a host

of outstanding physicists worked on the problem of the
spectral energy distribution ... every one of them
directed his efforts solely towards exhibiting the
dependence of the intensity of radiation on the
temperature. On the other hand, | suspected that
the fundamental connection lies in the
S dependence of entropy with the energy ...
Nobody paid any attention to the method which |

adopted and | could work out by calculations completely
at my leisure, with absolute thoroughness, without fear
of interference or competition.
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he energy spectrum of cavity radiation

What is the energy density of blackbody radiation in a cavity?

oo
u=/ uy(A, T)dA
0

(“area under the curve”) is very strongly temperature-dependent, but
cannot blow up for high or low A.

Anne Elk's Theory on Brontosauruses
All brontosauruses are thin at one
end; much, much thicker in the
middle and then thin again at the far
end.

The energy spectrum of cavity radiation

What is the total energy of blackbody radiation?

oo
u=/ uy(A, T)dA
0

(“area under the curve”) is very strongly temperature-dependent, but
cannot blow up for high or low A

First consider the explicit dependence of u on T. From the central
equation of thermodynamics, and one of the Maxwell's relations

ou oP
(a—v):‘”(a—r)fp
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Stefan's Law is Thermodynamics
ou oP
(v), =7 (57), -7

Using P = 3u, U = uV and
u=u(T) we get

“=z'9r — 3" g

()
€

energy density scales as T%.
The integration constant o is
“Stefan’s constant”.

Black body radiation oc u(T).

Closing in on the Planck distribution

Integrating the Black Body equation of state gives Stefan Law's

u(T) = /ﬂm uy(A, T)dA = (4?”) -

and requires for uy(A, T)

o A 5% power in A\ (3™ power in v) for long wavelengths.
@ A function which doesn’t blow up at high v (short wavelength)
o Gives the same T = (0H,/9S5,)p for all A.

@ Maximises the entropy for fixed energy.

... but how to calculate the entropy?
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Inventing Quantum Mechanics

@ Using Maxwell Relations, get expression for entropy 5,(T)

@ Use S, = kInf2,: count discrete states

@ Discrete amount of U, : photon!

e Can only calculate AS = kAInS2.

@ To count €2, need to know the energy of one photon: Planck’s

constant.

Meanwhile, Boltzmann was still struggling to get the Germans to accept
atoms.

And the ultraviolet catastophe still lurks in zero-point energy.

Other thermodynamic quantities

Specific heat capacity.
ou
C, = (ﬁ) = 4o, VT?

with o, = 40 /c, remembering that we've been using energy density, so
U=uV.

Entropy

c,dT 4
S=f “’T =§aavr3

Enthalpy

H=U+PV=4§JGVT4=T5

which we already knew from T = (g—g) p-

Gibbs Free Energy,

4 1
G=uV—-TS+PV=0,VT* - gaow“ + Enow"' =0
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