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LECTURE 1: INTRODUTION 

 

Content of Lecture 1 

1.1. Some semantics 

1.2. Historical milestones 
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1.3. Philosophy of science note 

1.4. Some practical applications 

1.5. Thermodynamics, statistical mechanics and kinetic theory 

1.1. Some semantics 

We introduce here classical thermodynamics. The word “thermo-dynamic,” used first by 

W.Thomson (Fig.1.1) has Greek origin and is translated as the combination of  

• θǫρµη ´ , therme: heat, and 

 • δσναµις ´ , dynamis: power. 

 

 

Fig 1.1. William Thomson (Lord Kelvin) 

(1824-1907) is the first man used the word 

“thermodynamic” in his 1849 work  

 

The modifier “classical” is used to connote a description in which quantum mechanical 

effects, the molecular nature of matter, and the statistical nature of molecular behavior 

are not considered in any detail. These effects will not be completely ignored; however, 

they will be lumped into simple averaged models which are valid on the macroscale. As 

an example, for ordinary gases, our classical thermodynamics will be valid for systems 

whose characteristic length scale is larger than the mean free path between molecular 

collisions. For air at atmospheric density, this about 0.1 µm (1 µm = 10
−6

 m). 

Additionally, “classical” also connotes a description in which the effects of finite 

timedependency are ignored. In this sense, thermodynamics resembles the field of statics 

from Newtonian mechanics. Recall Newton’s second law of motion,  

                                                        2 2/md x dt F                                          (1.1) 

where m m is the mass, x  is the position vector, t is time, and F  is the force vector. In 

the statics limit where  F = 0, inertial effects are ignored, as is time-dependency. Now, 

a Newtonian would consider dynamics to imply motion, and so would consider 
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thermodynamics to imply the time-dependent motion of heat. So a Newtonian would be 

more inclined to call the subject of these notes “thermostatics.” However, if we return to 

the earlier Greek translation of dynamics as power, we are actually truer to the classical 

connotation of thermodynamics. For the fundamental interplay of thermodynamics is that 

between so-called thermal energy (as might be thought of when considering heat) and 

mechanical energy (as might be thought of when considering power, a work rate). 

• Thermodynamics: the science that deals with heat and work and those properties of 

matter that relate to heat and work. 

One of the main goals of these notes will be to formalize the relationship between heat, 

work, and energy. 

 

Fig 1.2. Greek philosopher Aristotle (384 BC-322 

BC) gives the first recorded use of the word 

“energy” and whose method of logic permeates 

classical thermodynamics 

 

We close this section by noting that the concept of energy has evolved through time, but 

has ancient origins. The word itself had its first recorded use by Aristotle (Fig 1.2). In the 

Greek, the word , ǫνǫργǫια ´ , “energeia,” connotes activity or operation. While the word 

was known to Aristotle, its modern usage was not; it was the English polymath Thomas 

Young (Fig 1.3) who first used the word “energy,” consistent with any sort of modern 

usage, in this case kinetic energy, Finally, though she did not use the word “energy,” the 

notion of what is now known as kinetic energy being related to the square of velocity was 

first advanced by du Chˆatelet (Fig 1.4), 

 

Fig 1.3. English natural philosopher Thomas 

Young (1773-1829) 
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Fig 1.4. French physicist Gabrielle Emilie Le 

Tonnelier de Breteuil, marquise du Chatelet   

 

1.2. Historical milestones 

Thermodynamics has a long history; unfortunately, it was not blessed with the crispness 

of development that mechanics realized with Newton. In fact, its growth is filled with 

false steps, errors, and debate which continues to this day. Some of the milestones of its 

development are given here: 

• first century AD: Hero of Alexandria documents many early thermal engines.  

• 1593: Galileo develops a water thermometer. 

• 1650: Otto von Guericke designs and builds the first vacuum pump.  

• 1662: Robert Boyle develops his law for isothermal ideal gases. 

• 1679: Denis Papin develops his steam digester, forerunner to the steam engine.  

• 1698: Thomas Savery patents an early steam engine.  

• 1710: Thomas Newcomen creates a more practical steam engine.  

• 1760s: Joseph Black develops calorimetry.  

• 1780s: James Watt improves the steam engine.  

• 1798: Benjamin Thompson (Count Rumford) considers the mechanical equivalent of 

heat from cannon boring experiments.  

• 1824: Nicolas L`eonard Sadi Carnot discusses idealized heat engines.  

• 1840: Germain Henri Hess considers an early version of the first law of 

thermodynamics for work-free chemical reactions.  

• 1840s: Julius Robert von Mayer relates heat and work. 
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• 1840s: James Prescott Joule relates heat and work.  

• 1847: Hermann von Helmholtz publishes his theory of energy conservation.  

• 1848: William Thomson (Lord Kelvin) postulates an absolute zero of temperature.  

• 1850: Rudolf Julius Emanuel Clausius formalizes the second law of thermodynamics.  

• 1865: Clausius introduces the concept of entropy.  

• 1871: James Clerk Maxwell develops the Maxwell relations.  

• 1870s: Josiah Willard Gibbs further formalizes mathematical thermodynamics.  

• 1870s: Maxwell and Ludwig Boltzmann develop statistical thermodynamics.  

• 1889: Gibbs develops statistical mechanics, giving underlying foundations for classical 

and statistical thermodynamics.  

Much development continued in the twentieth century, with pioneering work by Nobel 

laureates:  

• Jacobus Henricus van’t Hoff (1901),  

• Johannes van der Waals (1910),  

• Heike Kamerlingh Onnes (1913),  

• Max Planck (1918),  

• Walther Nernst (1920),  

• Albert Einstein (1921),  

• Erwin Schr¨odinger (1933),  

• Enrico Fermi (1938),  

• Percy Bridgman (1946),  

• Lars Onsager (1968),  

• Ilya Prigogine (1977), and  
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• Kenneth Wilson (1982).  

Note that Sir Isaac Newton also considered the subject matter of thermodynamics. Much 

of his work is concerned with energy; however, his theories are most appropriate only for 

mechanical energy. The notion that thermal energy existed and that it could be equivalent 

to mechanical energy was not part of Newtonian mechanics. Note however, that 

temperature was known to Newton, as was Boyle’s law. However, when he tried to apply 

his theories to problems of thermodynamics, such as calculation of the speed of sound in 

air, they notably failed. The reason for the failure required consideration of the yet-to-be-

developed second law of thermodynamics. 

1.3. Philosophy of science note 

As with science in general, thermodynamics is based on empirical observation. 

Moreover, it is important that those observations be repeatable. A few postulates, also 

known as axioms, will serve as the foundation of our science. Following Occam’s razor, 

we shall seek as few axioms as possible to describe this behavior. We will supplement 

these axioms with some necessary definitions to describe nature. Then we shall use our 

reason to deduce from the axioms and definitions certain theorems of engineering 

relevance.  

This approach, which has its foundations in Aristotelian methods, is not unlike the 

approach taken by Euclid to geometry, Aquinas to theology, or Newton to mechanics. 

Consider for example that Euclid (Fig 1.5) defined certain entities such as points, lines, 

and planes, then adopted certain axioms such as parallel lines do not meet at infinity, and 

went on to prove a variety of theorems. Classical thermodynamics follows the same 

approach. Concepts such as system and process are defined, and axioms, known as the 

laws of thermodynamics, are proposed in such a way that the minimum amount of theory 

is able to explain the maximum amount of data. Now, in some sense science can never be 

formally proved; it can  

 

Fig 1,5. Greek mathematician Euclid of Alexandria 

(~325 BC-~265 BC) whose rational exposition of 

geometry formed a model for how to present 

classical thermodynamics  

 

only be disproved. We retain our axioms as long as they are useful. When faced with 

empirical facts that unambiguously contradict our axioms, we are required to throw away 

our axioms and develop new ones. For example, in physics, the Michelson-Morely 
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experiment forced Einstein to abandon the axioms of Euclid, Newton, and Clausius for 

his theory of general relativity. It turns out that we can still use these axioms, as long as 

we are considering problems in which the speed of our reference frame is far less than the 

speed of light. In an example from biology that is the topic of a popular science book, it 

was noted that it was once believed that all swans were white. This working hypothesis 

was perfectly acceptable until 1697, when a black swan was discovered in Australia. 

Thus, the “theory” (though it is not a highly profound theory) that all swans were white 

was unambiguously discredited. It will be briefly seen in this course that non-classical 

thermodynamics actually has a deep relation to probability and statistics and information, 

a topic which transcends thermodynamics. 

1.4. Some practical applications 

It turns out that the classical approach to thermodynamics has had success in guiding the 

engineering of devices. People have been building mechanical devices based on thermal 

energy inputs for centuries, without the benefit of a cleanly enunciated theory. Famously, 

Hero of Alexandria, perhaps the first recognized thermal engineer, documented a variety 

of devices. These include an early steam engine known as the æolipile, pumps, and a 

device to use fire to open doors. Hero and a nineteenth century rendition of his steam 

engine are shown in Fig 1.6. While Hero’s contributions are a matter of some speculation 

inspired by ancient artistry, the much later works of Denis Papin (1647-1712) are more 

certain. Papin invented the so-called steam digester, which anticipated both the pressure 

cooker and the steam engine. The device used steam power to lift a weight. Depictions of 

Papin and his device are found in Fig 1.7. Significant improvements were led by James 

Watt (1736-1819) of Scotland. An image of Watt and one of his engines is shown in Fig 

1.8. 

These engines were adopted for transportation. In 1807, the American engineer Robert 

Fulton (1765-1815) was the first to use steam power in a commercial nautical vessel, the 

Clermont, which was powered by a Boulton and Watt steam  

 

Fig 1.6. Hero of 

Alexandria (10-

70AB), Greek 

engineer and 

mathematician who 

devised some early 

ways to convert 

thermal energy into 

mechanical energy  
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and his æolipile 

 

Fig 1.7. French-born 

inventor Denis Papin 

(1647-1712) and his 

steam digester 

 
 

 

Fig 1.8. a) Scottish engineer 

James Watt (1736-1819); b) 

Sketch of one of Watt’s steam 

engines  

 
a)                                        b) 

engine. Soon after, in 1811 in Scotland, the first European commercial steam vessel, the 

Comet, embarked. We have a sketch of the Comet and its steam power plant in Fig 1.9. 

On land, steam power soon enabled efficient rail transportation. A famous early steam 

locomotive was the English engineer Robert Stephenson’s (1803-1859) Rocket, sketched 

in Fig 1.10.  

 

Fig 1.9. Sketch of the 

Comet and its steam 

sngine  
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Fig 1.10. Sketch of the Rocket 

 

The effect of steam power, a contribution driven by engineers, on the development of the 

world remains remarkable. It is what is commonly known as a disruptive technology as 

its widespread adoption displaced other well-established technologies. While it is 

difficult to quantify historical pronouncements, it is likely that the effect on the world 

was even more profound than the introduction of networked computers in the late 

twentieth century. In short, steam power was the linchpin for the industrial revolution. 

Steam power replaced animal power as a prime mover throughout much of the world and, 

where implemented, enabled rapid development of broad economic segments: mining, 

manufacturing, land and sea transportation, among others. Large scale population 

movements ensued as opportunities in urban manufacturing centers made industrial work 

more appealing than agricultural work. Certainly, changes precipitated by the advent of 

steam power were contributing factors in widespread social unrest in the nineteenth 

century, ranging from labor strife to war between nation states.  

The text of BS has an introduction to some more modern devices, listed here:  

• simple steam power plant,  

• fuel cells,  

• vapor-compression refrigeration cycle,  

• air separation plant,  

• the gas turbine, and  

• the chemical rocket engine 

Additionally, one might consider the following topics to have thermodynamic relevance: 

• gasoline and Diesel engines,  

• the weather,  
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• cooking,  

• heating, ventilation, air conditioning, and refrigeration (HVAC&R), or  

• materials processing (metals, polymers, etc.) 

   We close with an image of Sir Isaac Newton in Fig 1.11, who began to study issues 

related to thermodynamics and whose scientific methods imbue its development.  

 

Fig 1.11. English genius Sir Isaac 

Newton (1643-1727)  whose classical 

mechanics broadly influenced the 

development of thermodynamics  

 

 

1.5. Thermodynamics, statistical mechanics 

and kinetic theory 
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Fig 1.12.  
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Fig 1.13 

 
Fig 1.14 
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LECTURE 2: SOME CONCEPTS AND DEFINITIONS 

 

Content of Lecture 2 

2.1. Thermodynamic system and control volume 

2.2. Macroscopic versus microscopic 

2.3. Properties and state of a substance 

2.4. Processes and cycles 

2.5. Fundamental variables and units 

2.6. Zeroth law of thermodynamics 

2.7. Secondary variables and units 

 2.1. Thermodynamic system and control 

volume 
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2.2. Macroscopic versus microscopic 
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2.3. Properties and state of a substance 
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2.4. Processes and cycles 
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2.5. Fundamental variables and units 
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2.6. Zeroth law of thermodynamics 

 
 



23 

 

 

2.7. Secondary variables and units 
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Fig 2.4. Blaise Pascal (1623-

1662) French scientist and 

philosopher who considered 

manometry 

 
 

 

 

Fig 2.5. Manometer sketch 
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NOTES 

 

 
 

 
Fig 2.6. Geometrical representation of the equation of state 
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    Isolated systems do not interact in any way with the surroundings. Closed   

systems only exchange  energy  but not exchange matter with their surroundings. 

Open systems can exchange energy and matter with their surroundings.  
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LECTURE 3: PROPERTIES OF A PURE SUBSTANCE 

 

Content of Lecture 3 

3.1. The pure substance 

3.2. Vapor-liquid-solid phase equilibrium 

3.3. Independent properties 

3.4. Thermal equations of state 

3.4.1. Ideal gas law 

3.4.2. Non-ideal thermal equations of state 

3.4.3. Compressibility factor 

3.4,4. Tabular thermal equations of state 
3.1. The pure substance 

 
3.2. Vapor-liquid-solid phase equilibrium 
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3.3. Independent properties 
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3.4. Thermal equations of state 
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                   a)                                    b)                                  c) 

Fig 3.9.  a) Robert Boyle (1627-1691), Irish scientist who developed an important special case of 

the ideal gas law; b) Jacques Alexandre Cesar Charles (1746-1823), French scientist credited in 

1802 by Joseph Louis Gay-Lussac (1778-1850) for developing an important special case of the 

ideal gas law in the 1780s; c) Lorenzo Romano Amedeo Carlo Avogadro di Quarengna e di 

Cerroto (1776-1856), Italian physicist, nobleman and revolutionary.  

 

 

 

 

 

Fig 3.10. Benoit Paul Emile Clapeyron (1799-1824), 

French engineer and physicist who furthered the 

development of thermodynamics. 
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Fig 3.11. Henry Victor Regnault (1810-1878), French 

chemist and physicist who made careful early 

measurements of thermodynamic parameters for ideal 

and non-ideal gases  
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Fig 3.20. Johannes Diderik van der Waals (1837-1923), 

Dutch physicist and Nobel laureate who developed a 

corrected state equation  
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NOTES 
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LECTURE 4: WORK AND HEAT 

 

Content of Lecture 4 

4.1. Mathematical preliminaries: exact differentials 

4.1.1. Partial derivatives 

4.1.2. Total derivative 

4.2. Work 

4.2.1. Definitions 

4.2.2. Work for a simple compressible substance 

4.2.3. Other forms of work 

4.3. Heat 

4.1. Mathematical preliminaries: exact 

differentials     
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4.2. Work 
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Fig 4.3. Gaspard-Gustave  Coriolis (1792-1843), 

French physicist who used to word “work” to 

characterize a force acting through a distance 
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4.3. Heat 
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Fig 4.16. Jean Baptiste Joseph Fourier (1768-1830), 

French physicist and mathematician who developed a 

correct theory of heat conduction 
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NOTES 
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                                                                   dW dq  

 
compression. Here the sign is caused by the fact that adding a positive charge 

while the potential is positive corresponds to work performed on the system, 
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  We define 
                                                  dW dN  

 
 adding particles. 
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LECTURE 5: THE FIRST LAW OF THERMODYNAMICS 

 

Content of Lecture 5 

5.1. Representations of the first law 

5.1.1. Cycle 

5.1.2. Process 

5.2. Specific internal energy for general materials 

5.3. Specific enthalpy for general materials 

5.4. Specific heat capacity 

5.5. Caloric equations of state 

5.5.1. Ideal gases 

5.5.2. Liquids and solids 

5.5.3. General materials 

5.6. Time-dependency 

5.7. Final comments on conservation 

 5.1. Representations of the first law 
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Fig 5.1. A portrait of Sir Benjamin 

Thompson (Count Rumford)(1753-1814), 

American scientist whose cannon-boring 

experiments discredited the caloric theory 

and the image his cannon(1798)   

 
 

 

Fig 5.2. Julius Robert von Mayer (1814-1878), German physician 

and physicist who in 1842 said “Energy can be neither created nor 

destroyed.  

 

 
a)                                           b)                                        c) 

Fig 5.3. a) James Prescott Joule (1818-1889), English experimentalist who demonstrated  the 

mechanical equivalent of heat; b) Sketch of Joule’s original apparatus (1869); c) Operational 

full-scale replication of Joule’s experiment to measure the mechanical equivalent of heat at the 

University of Notre Dame.     
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Fig 5.4. Hermann Ludwig Ferdinand von Helmholtz (1821-

1894), German physician and physicist who impacted nearly 

all of nineteenth century   

 
 

 

Fig 5.5. Rudolf Julius Emmanuel Clausius (1822-1888), 

German theoretician who systematized classical 

thermodynamics into a science.     
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Now, since ( ) ( )dE dU d KE d PE  from Eq.(5.11), we get 
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5.2. Specific internal energy for general 

materials 
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5.3. Specific enthalpy for general materials 
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5.4. Specific heat capacity 
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5.5. Caloric equations of state 
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5.6. Time-dependency 
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5.7. Final comments on conservation 
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Fig 5.22. Albert Einstein (1879-1955), German 

theoretical physicist who developed theories that 

explained data better than those of Newton  
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LECTURE 6: FIRST LAW ANALYSIS FOR A CONTROL VOLUME 

 

Content of Lecture 6 

6.1. Detailed derivations of control volume equations 

6.1.1. Relevant mathematics 

6.1.2. Conservation axioms 

6.2. Mass conservation in brief 

6.3. Energy conservation in brief 

6.4. Some devices 

6.4.1. Throttling device 

6.4.2. Nozzles and diffusers 

6.4.3. Turbine 

6.4.4. Pumps and compressors 

6.4.5. Heat exchanger 

6.5. Introduction to the Rankine cycle 

6.6. Preview: equations of continuum mechanics 

6.6.1. Full set 

6.6.2. Static solids equations 

6.6.3. Incompressible fluid mechanics equations 

6.6.4. Compressible fluid mechanics equations  

6.6.5. Heat transfer in incompressible static solids    
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6.1. Detailed derivations of control volume 

equations 
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Fig 6.2. Johann Carl Friedrich Gauss (1777-1855), German 

mathematician  
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Fig 6.3. Gottfried Wilhelm von Leibniz (1646-1716), 

German mathematician, philosopher and polymath who 

co-invented calculus   
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Fig 6.5. Osborne Reynolds (1842-1912), Anglo-Irish 

engineer 
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6.2. Mass conservation in brief 
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6.3. Energy conservation in brief 
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6.4. Some devices 
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6.5. Introduction to the Rankine cycle 
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Fig 6.17. William John Macquorn Rankine (1820-1872), 

Scottish engineer who systematically studied  and publish 

discussion of steam power cycles 
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6.6. Preview: equation of continuum 

mechanics 
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LECTURE 7:  THE SECOND LAW OF THERMODYNAMICS 

 

Content of Lecture 7 

7. 1. Statements of the second law 

7.1.1. Entropy-based statement 

7.1.2. Clausius statement 

7.1.3. Kelvin-Planck statement 

7.1.4. Carathéodory statement  

7.1.5. Judeo-Christian statement 

7.1.6. Historian-inspired statement 

7.1.7. Literature-inspired statement 

7.1.8. Food service-inspired statement 

7.2. Reversible and irreversible processes 

7.3. Analysis of Carnot heat engines 

7.4. The absolute temperature scale 

7.5. Analysis of Carnot refrigerators and heat pumps 

7.6. Rejected thermal energy on a national scale  
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7.1. Statements of the second law 
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Fig 7.4. a) William Thomson (Lord 

Kelvin)(1824-1907), Ulster-born Scottish 

scientist who had profound on nineteenth 

century science including thermodynamics; 

b) Max Carl Ernst Ludwig Planck (1858-

1947), German physicist   

 
                   a)                                  b) 

 
Fig 7.5. Images of a) Thomson’s 1851 and b) Planck’s 1897 statements of the second law of 

thermodynamics 
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Fig 7.6.  Schematic of the Kelvin-Planck statement of the second law of thermodynamics 
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Fig 7.7. Constantin Carathéodory (1873-1950), Greek 

mathematician  

 

 

7.2. Reversible and irreversible processes 
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7.3. Analysis of Carnot heat engines 

 

 
 

 

 

Fig 7.8. Sadi Nicolas Léonard Carnot (1796-

1832), French engineer whose analysis 

formed the basis for modern thermodynamics 

and the title page from his magnum opus 
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Fig 7.9. Schematic of a realizable heat engine 
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7.4. The absolute temperature scale 
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7.5. Analysis of Carnot refrigerators and heat 

pumps 
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Fig 7.12. Plot of idealized thermal efficiency as a function of thermal reservoir temperature with 

300KLT  
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7.6. Rejected thermal energy on a national 

scale 

 

 
Example 
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Fig 7.15. Chart of distribution of energy sources and usage in the US in 2011. Data from 

Lawrence Livermore National Laboratory  

 

NOTES 
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LECTURE 8:  ENTROPY 

 

Content of Lecture 8 

8.1. Theoretical development 

8.2. Second law in terms of entropy 

8.3. The Gibbs equation 

8.4. Entropy for ideal gases 

8.4.1. Calorically perfect 

8.4.2. Calorically imperfect 

8.5. Entropy for an incompressible solid or liquid 

8.6. Iso-curves 

8.6.1. Isochores 

8.6.2. Isobars 

8.6.3. Isentropes 

8.7. Isentropic relations for an ideal gas 

8.7.1. Calorically perfect 

8.7.2. Calorically imperfect 

8.8. Two cycles 

8.8.1. Carnot  

8.8.2. Otto 

8.9. Entropy of thermo-mechanical mixing 

8.10. Probabilistic approach to entropy  

8.11. Summary statement of thermodynamics  

 

 

8.1. Theoretical development 
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Fig 8.1. Image capturing the first use of 

the word entropy, from R. Clausius, 

1865  

 
 

 

 

 

 

 

 

Fig 8.2. Sketch of heat engine 

configuration to motivate the 

development of entropy  
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Fig 8.3. Sketch of P-V diagram for various 

combinations of processes forming cyclic 

intergrals  
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Fig 8.4. Sketch of process in the 

T – S plane, with the associated 

heat transfer 

 
 

 
  

 

 

 

Fig 8.5. Walther Hermann Nernst (1864-1941), 

German physical chemist who developed the third law 

of thermodynamics 
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8.2. Second law in terms of entropy 

 
 

 

 

 

Fig 8.6. Sketch of cycle in the T - S plane 

composed of irreversible process I from 1 to 2, 

followed by reversible process R from 2 back to 1    
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8.3. The Gibbs equation 

 
 

 

Fig 8.11. Josiah Willard Gibbs (1839-

1903), American mechanical engineer 

who revolutionized the science of 

classical and statistical thermodynamics   
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Fig 8.12. An image of the 1873 first 

appearance of the Gibbs equation in print 

 
 



160 

 

 

 

8.4. Entropy for ideal gases 
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8.5. Entropy for an incompressible solid or 

liquid 

 

8.6. Iso-curves 
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Fig 8.14. Sketch of isochores and isobars in 

the T – s plane for CPIG  air,  7 / 5,k R   

00.287 / / , 0 / /kJ kg K s kJ kg K  
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8.7. Isentropic relations for an ideal gas 
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8.8. Two cycles 
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Fig 8.24. Sketch of Carnot cycle piston-cylinder device 

 
 

Fig 8.25. Sketch of a Carnot cycle for a CPIG represented in the P – v and T- s planes 
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Fig 8.26. Logo of the international  mechanical 

engineering honor society, Pi Tau Sigma  

featuring the Carnot cycle for a CPIG in the P – v plane 

as displayed on the campus of the University of Notre 

Dame 

 

 
 

 

 

 

Fig 8.28. Nikolaus August Otto (1832-1891), German 

developer of the internal combustion engine 
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Fig 8.29. P – v and T – s diagrams for the Otto cycle 
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8.9. Entropy of thermo-mechanical mixing 

 

 
 

8.10. Probabilistic approach to entropy 
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Fig 8.31. Two scenarios for the temperature field with the grey scale proportional to the 

temperature 
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Fig 8.32. Ludwig Boltzmann (1844-1906), 

Austrian physicist whose statistical approach to 

thermodynamics laid the foundation for quantum 

mechanics 
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8.11. Summary statement of thermodynamics 

 

 

 
 

 

Fig 8.35. Claude Elwood Shannon (1916-2001), 

American electrical engineer and mathematician whose 

“information entropy” mathematically identical to 

Boltzmann’s statistical definition of entropy 
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NOTES 
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LECTURE 9:  CYCLES 

 

Content of Lecture 9 

9.1. Rankine 

9.2. Brayton 

9.3.Refrigeration 

9.1. Rankine 

 
      typical  power plant cycle foe electricity generation in Fig. 9.1.The ideal   

      Rankine cycle war first described in 1859 by William John Macquorn  

      Rankine long after the steam engine was in wide usage. This cycle has  

      the following steps  

 
      Two variants of the T – s diagram are given in Fig 9.2. The first is more  

      efficient as it has the appearance of a Carnot cycle.      However, it  is  

      impractical. As it induces liquid water in the turbine, which can damage  

     its blades. So the second is more common. 

     The thermal efficiency is 

                                            turbine pumpnet

H boiler

W WW

Q Q
                                 (9.1) 

 

                        
3 4 1 2 ,4 1

3 2 3 2 ,

1 1
out condenser

in boiler

m h h h h qh h

m h h h h q
             (9.2) 
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Fig 9.1. Rankine cycle schematic 

 
Fig 9.2. T – s for two Rankine cycles 

 

 

                                    2 1

3 4

pump work

turbine work

h h
bwr

h h
                                  (9.3) 

   
                                                .Tds dh vdP  

 
                                                    dh vdP                                                (9.4) 
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                                            2 1 2 1 ,h h v P P                                        (9.5) 

 
Fig 9.3. However, it is practically difficult to bulid a pump to handle two-phase mixtures.    

 
  

Fig 9.3. Rankine-Carrnot cycle 
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    diagram for the Rankine cycle with reheat is given in Fig 9.4 

 
Fig 9.4. Rankine cycle with reheat schematic and T – s diagram. 

 

9.2. Brayton 

 
  is depicted in Fig 9.5. It has many similarities to the  Rankine  cycle.  A  schematic  and   

 
  Fig 9.6.  
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Fig 9.5. George Brayton (1830-1892), Americal mechanical 

engineer from Exeter.    

 
 

 
Fig 9.6. Schematic of Brayton cycle along with P- v and T – s diagrams 

 

 
                                                            3 4 2 1h h h h                                                 (9.6) 

 
                                                             3 4 2 1T T T T                                                (9.7) 

 

 
                                                     ,       on isobar,Tds dh                                              (9.8) 

                                                       ,      if IG,PTds c dT                                                (9.9) 

                                                             
P P

T T

s c
                                                    (9.10) 

 
proportional to T, it is easily seen how they must diverge. This is illustrated in Fig 9.7. 
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Fig 9.7. Sketch of diverging isobars for CPIG in T - s plane 

 

 
   See Fig 9.8 

 
     it is not particularly efficient. A sketch is given in Fig 9.9. 

 
     sketch is given in Fig 9.10 

 
 

Fig 9.8. Sketch of turbojet schematic and associated T – s plane 
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Fig 9.9. Sketch of turbojet with afterburners schematic and associated T – s plane 

 
Fig 9.10. Sketch of ramjet schematic and associated T – s plane 
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3 4 2 1

turbine compressor

3 2

combustor

h h h h

h h
                                (9.11) 

Rearranging (9.11), we can also say 

                                                    

4 1

heat rejected

3 2

heat added

1

h h

h h
                                      (9.12) 

 

                                                 2 1

3 4

c

t

w h h
bwr

w h h
                                    (9.13) 

 

 
(9.11) reduces to 

         

4

3 4 2 1 3 4 2 1 4 1 1 1

33 2 3 2 3 2 2

2

1

1 1

1

P P

P

T

c T T c T T T T T T T T T T

Tc T T T T T T T

T

     (9.14) 

 

                                                                  32

1 4

,
TT

T T
                                                     (9.15) 

                                                                  34

1 2

TT

T T
                                                      (9.16) 

So 

                                                     1

1

2
2

1

1
1 1

k

k

T

T
P

P

                                           (9.17) 
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Fig  9.11.As the 

 

 

 
Fig 9.11. Thermal efficiency versus pressure ratio for air standard Brayton cycle, k = 7/5  

 

9.3. Refrigeration 

 

 

 
shown in Fig 9.12. One goal in design of refrigerators is low work imput. There are 

two main strategies in this:  
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what one wants

what one pays for

L

c

q

w
                                 (9.18) 

 

                                                         H

c

q

w
                                              (9.19) 

 
  shown in Fig. 9.12  

 
 

Fig 9.12. Chiller in the University of Notre Dame power plant, 14 June 2010 

 

NOTES 
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LECTURE 10:  MATHEMATICAL FOUNDATIONS 

 

Content of Lecture 10 

10.1. Maxwell relations 

10.2. Functions of two independent variables 

10.3. Legendre transformations 

10.4. Specific heat capacity 

10.5. The first law and coordinate transformations 

10.6. The van der Waals gas 

10.7. Adiabatic sound speed 

10.8. Introduction to compressible flow 

10.8.1. Acoustics 

10.8.2. Steady flow with area change 
   This lecture will serve as an introduction to some of the mathematical underpinning of the  

 

10.1. Maxwell relations 

 
  tenth century physicist, Jame Clerk Maxwell, shown in Fig 10.1. 

 
 

 

 

 

Fig 10.1. Jame Clerk Maxwell (1831-1879), Scottish physicist  

 

 

                                                       
y x

z z
dz dx dy

x y
                                             (10.1) 

 

                                                       ,   ,
y x

z z
M N

x y
                                            (10.2) 
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2 2

,  
yx

z M z N

y x y x y x
                                     (10.3) 

Because order of differentiation does not matter for functions which are continuous 

and differentiable, we must have for exact differentials 

                                               
y x

N M

x y
                                              (10.4) 

Compare the Gibbs equation to our equation for dz 

                                              ,du Pdv Tds                                                (10.5) 

                                              dz Mdx Ndy                                                 (10.6) 

 
                                ,  ,  , ,  z u x v y s M P N T                                 (10.7) 

 
                                                  ,u u v s                                                  (10.8) 

Application of Eq.(10.4) to the Gibbs equation gives then 

                                              
s v

T P

v s
                                             (10.9) 

Equation (10.9) is known as a Maxwell relation. Moreover, specialization of Eq. 

(10.2) to the Gibbs equation gives 

                                                    ,   
s v

u u
P T

v s
                                              (10.10)  

10.2. Functions of two independent variables 

 
                                                                , , 0f x y z                                                    (10.11) 

 
                                                ( , ),  ( , ),  ( , )x x y z y y x z z z x y                                     (10.12) 

Differentiating the first two of Eqs.(10.12) gives  

                                             ,
yz

x x
dx dy dz

y z
                                    (10.13)  

                                             
z x

y y
dy dx dz

x z
                                    (10.14)   

Now, use Eq.(10.14) to eliminate dy in Eq.(11.13)  

                                 ,
z x yz

x y y x
dx dx dz dz

y x z z
                   (10.15) 
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                              1 ,
z x yz z

x y x y x
dx dz

y x y z z
                 (10.16) 

                      0 0 1
z x yz z

x y x y x
dx dz dx dz

y x y z z
          (10.17) 

Since x and z are independent, so are dx and dz, and the coefficients on each in Eq. 

(10.17) must be zero. Therefore, from the coefficient on dx in Eq. (10.17), we have 

                                                  1 0,
zz

x y

y x
                                     (10.18) 

                                                      1,
zz

x y

y x
                                       (10.19) 

                                                      
1

z

z

x

yy

x

                                       (10.20) 

and also from the coefficient on dz in Eq. (10.17), we have 

                                          0,
x yz

x y x

y z z
                                   (10.21) 

                         ,
y xz

x x y

z y z
                                   (10.22) 

                                      1
y zx

x z y

z y x
                                   (10.23) 

If one now divides Eq.(11.13) by a fourth differential, dw, one gets 

                                          
yz

dx x dy x dz

dw y dw z dw
                                  (10.24) 

Demanding that z be held constant in Eq.(11.24) gives  

                                             
z zz

x x y

w y w
                                      (10.25) 

                                                   ,z

z

z

x

xw

y y

w

                                        (10.26) 

                                                
z z z

x w x

w y y
                                     (10.27) 

 

                                         
yw

x x
dx dy dw

y w
                                     (10.28) 
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yz w z

x x x w

y y w y
                                  (10.29) 

 
 

10.3. Legendre transformations 

 
                                                      ,u u v s                                              (10.30) 

 
                                                                     h u Pv                                                      (10.31) 

 
                                                        dh du Pdv vdP                                               (10.32) 

We repeat the analysis used to obtain Eq.(8.66) earlier. Use Eq.(10.32) to eliminate du in the 

Gibbs equation, Eq.(8.59), to give 

                                                ,dh Pdv vdP du Pdv Tds                                    (10.33) 

                                                                 dh Tds vdP                                                   (10.34) 

 
                           ,h h s P                                                       (10.35) 

 
  image of Legendre is shown in Fig 10.2 
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Fig 10.2. Adrien-Marie Legendre (1752-1833), French 

mathematician.  

 
 

 
                                 ( , ) ,h h P s u Pv u Pv  enthalpy,                              (10.36)  

                                         , ,a a v T u Ts Helmholtz free energy,                            (10.37) 

                       , ,g g P T u Pv Ts u Pv Ts  Gibbs free energy                 (10.38) 

 

  from Helmholtz’s 1882 work is shown in Fig 10.3. The notation  is our Helmholtz free energy 

a; U is our u;  is our mechanical equivalent of heat is our temperature T, and is our 

entropy s. 

 
appearance of the Gibbs from Gibbs’ 1873 work is shown in Fig 10.4. Here, is our u, E is our 

U, is our s; and H is our    

 

 

                                                   
P s

h h
dh ds dP

s P
                                            (10.39) 

 

                                                       ,  
P s

h h
T v

s P
                                               (10.40) 

  From Eq. (10.40), a second Maxwell relation can be deduced by differentiation of the first with 

respect to P and the second with respect to s 

                                                             
s P

T v

P s
                                                    (10.41) 
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Fig. 10.3. Image of the original 1882 appearance of the Helmholtz free energy 

                                                        ,a u Ts                                              (10.42)  

                          da du Tds sdT Pdv Tds Tds sdT Pdv sdT          (10.43)  

 

                                              
T v

a a
da dv dT

v T
                                  (10.44) 

 

                                                       ,   
T v

a a
P s

v T
                                        (10.45) 

 

                                                               
v T

P s

T v
                                                  (10.46) 

 
                                                         ,

h

g u Pv Ts h Ts                                            (10.47) 

                             
dh

dg dh Tds sdT Tds vdP Tds sdT vdP sdT                    (10.48) 

 
extensive version of Eq.(10.48), unfortunately restricted to the isothermal limit, is depicted in the 

floor of University of Notre Dame’s Jordan Hall of Science atrium, see Fig. 10.5.  
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Fig 10.4. Image of the original 1873 appearance of a combination of terms which is now known 

as the Gibbs free energy  

 
Fig 10.5. Figure cast in the atrium floor of the University of Notre Dame’s Jordan Hall of 

Science containing an isothermal extensive version of Eq.(10.48), among other things  

 

 

                                          
T P

g g
dg dP dT

P T
                                  (10.49) 
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                                                         ,  
T P

g g
v s

P T
                                         (10.50) 

 

                                                               
P T

v s

T P
                                              (10.51) 

Table 10.1 gives a summary of the Maxwell relations and their generators. An image showing 

the first published appearance of the Maxwell relations is given in Fig 10.6. In Fig 10.the 

“thermodynamic function“  is our s, and  is our T.  Note that typography for partial 

derivatives was non-existent in most texts of the nineteenth century. 

Table 10.1. Summary of Maxwell relations and their generators 

 
 

10.4. Specific heat capacity 

 

                                           ,  v

v

u
c

T
                                          (10.52) 

                                                                     P

P

h
c

T
                                                   (10.53) 

 
                                                                 ,du Tds Pdv                                                 (10.54) 

                                                               ,
v v

u s
T

T T
                                             (10.55) 

                                                                    v

v

s
c T

T
                                                  (10.56) 

 
                                                                 ,dh Tds vdP                                                 (10.57) 

                                                              ,
P P

h s
T

T T
                                             (10.58) 

                                                                   P

P

s
c T

T
                                                  (10.59) 

 



217 

 

                                             
T T v

u s P
T P T P

v v T
                                   (10.60) 

 
                                                                 , ,u u T v                                                       (10.61) 

                                v

v T v

u u P
du dT dv c dT T P dv

T v T
                    (10.62) 

 

                                                0
T v

u P R RT
T P T

v T v v
                              (10.63) 

 
                                                 ( ) ( )h u T RT h T                                      (10.64) 

 

                                             ,
v T

s s
ds dT dv

T v
                                (10.65) 

                                             ,
P T

s s
ds dT dP

T P
                                (10.66) 

Therefore, 

                                                            ,v

v

c P
ds dT dv

T T
                                          (10.67) 

                                                           P

P

c v
ds dT dP

T T
                                          (10.68) 

Subtracting Eq.(10.69) from Eq.(10.67), one finds 

                                             0 ,v P

v P

c c P v
dT dv dP

T T T
                               (10.69) 

P v

v P

P v
c c dT T dv T dP

T T
                               (10.70) 

 

                                                        P v

v P

P v
c c T

T T
                                          (10.71) 

Since 
v T P

P P v

T v T
, (10.71) can be rewritten as 

                                                      

2

P v

T P

P v
c c T

v T
                                          (10.72) 
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                                                                     P vc c                                                            (10.73) 

10.5. The first law and coordinate 

transformations 

 

                                                                  q w                                                     (10.74) 

 

                                                                 Tds Pdv                                                    (10.75) 

 
                                                                   , ,T T P v                                                    (10.76) 

                                                                    ,s s P v                                                      (10.77) 

 
of Eqs.(10.76),(10.77) are 

                                                      ,
v P

T T
dT dP dv

P v
                                       (10.78) 

                                                      
v P

s s
ds dP dv

P v
                                       (10.79) 

 

        ,
v P v P

v v

T T T T

P v P vdT dP

ds dvs s s s

P v P v

                     (10.80) 

 is   

 

 
                                                                 det 1J                                                      (10.81) 
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                                             1
v P P v

T s T s
J

P v v P
                                  (10.82) 

 

 

10.6. The van der Waals gas 

 

                                                           
2

,
RT a

P T v
v b v

                                               (10.83) 

 

                                                          
2 2

27
,  

64

c c

c c

R T RT
a b

P P
                                            (10.84) 

 

 

                                                                 
3

3
8

c
c

c

RT
v b

P
                                                 (10.85) 

10.7. Adiabatic sound speed 

 

                                                                 
s

P
c                                                     (10.86) 

 
                                                                 Tds du Pdv                                                  (10.87) 

(10.87) can be rewritten as 
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2

P
Tds du d                                                      (10.88) 

 

                                                 
P

u u
du dP d

P
                                            (10.89) 

Now, use Eq. (10.89) to eliminate du in Eq. (10.88) so to get 

                                  
2 2

P

P u u P
Tds du d dP d d

P
  

                                                
2

P

u u P
dP d

P
                                       (10.90) 

 
Eq.(10.90) so as to get 

                                                        

2

P

s

u P

P

u

P

                                            (10.91) 

Now, Eq. (10.91) is valid for a general equation of state. Let us specialize it for a CPIG.  

 

                                
const const constv

v v

P v

cP P
u c T c

R c c    

                                         
1 1

const = const
1

1P

v

P P

c k

c

                                        (10.92) 

 

                                                            
1 1

,
1

u

P k
                                                  (10.93) 

                                                             
2

1

1
P

u P

k
                                                 (10.94) 

Now, substitute Eqs. (10.93), (10.94) into (10.91) so to get 

  

                                   
2 2

1

1
1

1 1

1
s

P P

P P P Pk
k k kRT

k

                     (10.95) 

Thus, 
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                                                         2 ,
s

P
c kRT                                                   (10.96) 

                                                        
P

c kRT k                                                      (10.97) 

 

                                                       T

T

P
c RT                                                  (10.98) 

 

                                                                  
T

P
c                                                           (10.99) 

 
  Fig 10.6 Laplace’s notions rested on an uncertain theoretical foundation; he in fact adjusted  

 

 

Fig 10.6. Pierre-Simon Laplace (1749-1827), French 

mathematician and physicist who improved Newton’s sound 

speed estimates 

 

 

 

10.8. Introduction to compressible flow 

 

                                                0,A v A
t x

                                          (10.100) 



222 

 

                                                     

,
v v P

v
t x x

                                          

(10.101) 

                                                   
u u v v

v P v
t x t x

                                       (10.102) 

 
  isentropic as long as there are no shock waves. Note that  Eq.(10.102)  can  be  rewritten  as  

 
 Thus, Eq.(10.102) also says .du Pdv  Comparing this to the Gibbs equation, Eq.(8.59), 

,du Tds Pdv we see that our energy equation, Eq.(10.102), is isentropic, du = 0. We can thus 

replace Eq.(10.102) by / / / 0.ds dt s t v s x  We also take a general equation of state 

, .P P s  So our governing equations, Eqs.(10.100)-(10.102) supplemented by the general 

equation of state become 

                                                0,A v A
t x

                                          (10.103) 

                                                     

,
v v P

v
t x x

                                          

(10.104) 

                                                                0,
s s

v
t x

                                                 (10.105) 

,P P s                                                     (10.106) 

10.8.1. Acoustics 

 

(10.106)  

                                                     ,
s

P P
dP d ds

s
                                      (10.107) 

                                                      

0
0

,
s

P P P s

x x s x
                                    (10.108) 

                                                                    2P
c

x x
                                                  (10.109) 

We next consider Eq. (10.103) in the limit where  A is a constant and Eq.(10.104)  

where /P x  is replaced in favor of / x via Eq. (10.109) 

                                                               0,v
t x

                                           (10.110) 

                                           

2
v v

v c
t x x

                                          

(10.111) 
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                                                                  0 ,                                                     (10.112) 

                                                                    0v v                                                     (10.113) 

 
  Eqs.(10.112)-(10.113) into Eqs.(10-108)-(10.109) to get 
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                                                                 0 0,
v

t x
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v
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Now, take the time derivative of Eq. (10.118) and the space derivative of Eq.(10.119) and get 
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which are continuous and differentiable, we eliminate 

2 /v t x  and get 
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0
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c
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10.8.2. Steady flow with area change 

  Let us now return to the full   equations,   (10.103)-(10.106).    In particular,   we   will   now  

  
  steady flows; thus, / 0t . Our governing equations. Eqs.(10.103)-(10.106), reduce to 

                                                0,
d

v A
dx

                                                 (10.130) 

                                                     

,
d v dP

v
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(10.131) 

                                                                0,
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,P P s                                                     (10.133) 

Specializing Eq.(10.109) for steady flows, we have 

                                                                  2dP d
c

dx dx
                                                   (10.134) 

        Using Eq. (10.134), in the linear momentum equation, Eq.(10.131), anf expanding the mass 

equation, Eq.(10.130), our mass and linear momentum equations become 

                                                   0,
d vdA d

v A v A
dx dx dx

                                  (10.135) 

                                                            2
d v d

v c
dx dx

                                              (10.136) 

We next use Eq.(10.136) to eliminate /d dx  in the mass equation, Eq.(10.135), to get 
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v
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So we can restate Eq.(10.140) as 

                                                                 
2 1

v dA
d v A dx

dx
                                                 (10.142) 

 
        In terms of differentials,, we can restate Eq. (10.142) as 
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 in an image of a 2010 space shuttle launch depicted in Fig 10.7.  

 
a)                                                        b) 

Fig 10.7. a) Diverging section of a nozzle for the space shuttle main engine; b) Launch Spce 

Shuttle Atlantis, STS-132, 14 May 2010, with a crew including astronaut Michael T. Good, 

BSAE 1984, MSAE 1986, University of Notre Dame   

 

NOTES 
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LECTURE 11:  SOME OTHER PROBLEMS OF THERMODYNAMICS  

 

Content of Lecture 11 

11.1. Third law of thermodynamics 

11.2. Euler’s equation and the Gibbs-Duhem relation 

11.3. Jacobi transformation 

11.4. Gibbs’s phase rule 

11.5. Phase equilibrium and Maxwell construction 

11.6. The law of mass action 

11.7. The Joule-Thomson effect 

11.8. Phase transition  

11.1. Third law of thermodynamics 
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 (11.3)  
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this expression  

                     (11.11) 

Therefore 

(11.12) 
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 (11.16)  
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                                                                    (11.19) 

 
 Fig. 11.1..  
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Fig. 11.1. Determination of the melting point through use of the third law  

 

11.2.Euler’s equation and the Gibbs-Duhem 

relation 
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(11.21) 
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(11.22) 

 

(11.21)  

 (11.23) 

(11.21)  (11.20) 
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 (11.21)   (11.20)  

 (11.24)  
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 (11.20)  
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11.3. Jacobi transformations 

                                      (11.28) 
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 (11.30)  
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11.4. Gibbs’s phase rule 

  (11.34) 

  (11.35)  

 Eq.(11.34)  

  

  (11.35) 

 (11.35)  
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11.5. Phase equilibrium and Maxwell 

construction  
 

.               11.2) 

                                                                (11.45) 

 

 
from the equilibrium conditions 

  
                                                                                   (11.46) 

Fig 11.2. Isotherms of the van der 

Waals 

 

 (11.46)  

 

 

                                                                             (11.47) 
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            (11.50) 

 

 Fig 11.3. Maxwell construction 

                                                                                                      (11.51) 

 

 

11.3) . 

Eq.(11.51)  

 

 11.3).  

 (11.51) 

 
 11.4) 
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 11.5  

 

 

 

Fig 11.4. Critical point and critical isotherm Fig 11.5. Scheme of considered process 
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or  

              (11.53) 

 

                                                                                                                (11.54) 
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 Eq.(11.53)  
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11.6. The law of mass action 
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(11.65)  (11.65)  

 

11.7. The Joule-Thomson effect 
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 as follows 

          (11.66) 

 

                                                                      (11.67) 
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11.6.  

 

 
Fig 11.6. Joule-Thomson experiment 
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                                                                                       (11.72) 
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                                                 (11.75) 
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Eq.(11.75) 
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 (11.79)  

 
Eq. (11.79)  
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 (11.75)  

 

                                                (11.81) 

 

Fig 11.7 

 

 11.8)  

 

 

 

Fig 11.7. Experimental inversion curve and 

isenthalpics (H = const) for nitrogen 

Fig 11.8. Linde’s liquefaction process 

(schematically)  
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     (11.83) 

or 

        (11.84) 

  

11.8. Phase transition 
  11.9. 

 

11.10.  

 

 
 

Fig. 11.9. Surface of equation of state  of a typical substance (not to scale)  
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Fig. 11.10. P-V and P-T diagrams of a typical substance (not to scale)  

 
 

Fig. 11.11. An íotherm exhibiting a phase transition   

 

 

Fig.11.11.  

 

11.12. The 
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Fig. 11.12. Schematic illustration of a first-order phase transition. The temperature and the 

pressure of the system remain constant throughout the transition. The total volume of the 

system changes as the relative amount of the substance in the two phases changes, because 

the two phases have different densities. 
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                                                                    (11.92) 

 

11.13 

 
Fig. 11.13. Chemical potentials 1 2,g g  for the two phases in a first-order phase transition  
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