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Abstract. We propose in this paper to use group theory (more generally, abstract algebra) to 

unify different models of theories of associative learning  --as complementary to current 

psychological, mathematical and computational models of associative learning phenomena 

and data. The idea is to apply Felix Kein’s Erlangen Program from Geometry to Psychology 

and to carry out a comparative study of recent researches in associative learning so as to 

identify the symmetries of behaviour. This approach, a common practice in Physics and 

Biology, would help us understand the structure of conditioning as opposed to the study of 

specific linguistic (either natural or formal) expressions that are inherently incomplete and 

often contradictory.  

 

 

Keywords. Associative learning, behaviour, symmetries, groups, groupoids. 
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1. Introduction 

 

The ability of animals to recognise and adapt to patterns of stimuli and to form causal links in 

dynamic environments is essential for their survival. Associative learning studies how 

animals learn (that is, how they acquire information) and behave (that is, how what has been 

learned is expressed in their behaviour) and is, therefore, of paramount importance in 

Psychology. Indeed, models of associative learning have proved to be relevant to human 

learning both theoretically (judgement of causality and categorization, e.g., Shanks, 1995) 

and in practice (in such diverse areas as behavioural therapy, drug addiction rehabilitation, or 

anticipatory nausea in cancer treatment to name just a few).  

 

Of course, associative learning is not the only type of learning. There are learning phenomena 

such as habituation or sensitization that are traditionally considered as non-associative. 

Others such as spatial learning, perceptual learning and some forms of social learning seem to 

admit an associative account but such an interpretation is debatable. Besides, behaviour – not 

even adaptive behaviour – cannot be reduced to learned behaviour. Some reflexes such 

sucking in babes or sexual patterns of behaviour are indeed adaptive but not learned 

(although this is also controversial, see, e.g., Dickinson & Balleine, 2002). Finally, it must be 

stressed the difference between learning, the hypothetical psychological and physical changes 

in the brain (memory), and performance, the manifestation of such change in behaviour (see, 

e.g., Bouton & Moody, 2004)
i
. 
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All this taken into account, it is universally accepted that associative learning is at the basis 

of most learning phenomena and behaviour.  
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2. Psychological Models of Associative Learning 

 

The study of associative learning in Psychology has specialised in two sub-fields: Classical 

(Pavlovian) conditioning focuses on how “mental” representations of stimuli are linked 

whereas instrumental conditioning deals (mainly) with response-outcome associations. It is 

agreed though that, at the most general level, their associative structures are the same (Hall, 

2002). In both procedures, changes in behaviour
ii
 are considered the result of an association 

between two concurrent events and explained in terms of operations of a (conceptual) system 

that consists of nodes among which links can be formed. Since research in associative 

learning has predominantly focused on classical conditioning
iii

 we will use it as our leading 

example. 

 

At the risk of over-simplification
iv

, we can identify the main trends in classical conditioning 

according to two dimensions, namely, the mechanisms of the learning process and the way in 

which the stimuli are represented by the learning system. The former fuels the debate 

between stimulus-processing theories vs “connectionist”
v
 models, exemplified in the 

competitive model of (Rescorla & Wagner, 1972) and the Standard Operating Procedures 

(SOP) theory (Wagner, 1981) respectively; the latter illustrates the distinction between 

elemental models (for instance, both Rescorla and Wagner’s and SOP) and configural 

approaches (e.g., Pearce, 1987). 

 

Rescorla and Wagner’s model rests on a sum error term. The very idea that all stimuli present 

in a trial compete for associative strength is at the heart of the model. It is precisely this 

characterizing feature that differentiates it from earlier models such as (Hull, 1943). This 
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assumption allows the model to explain phenomena such as blocking and conditioned 

inhibition, that is, phenomena that result from the interaction among different stimuli. Other 

assumptions of the model are path-independence (i.e., that the associative strength of a 

stimulus does not depend on its previous learning history), monotonicity (i.e., that learning 

and behaviour are one and the same thing), that acquisition and extinction are opposite 

processes, and that the associability of the CS is fixed.  

 

It has been argued, quite rightly, that Rescorla and Wagner made such assumptions not to 

reflect strong psychological principles but, rather, to express their main discovery 

(competitiveness among stimuli) in a general, abstract model. It should not come as a 

surprise, therefore, that many phenomena cannot be accounted for by their model (latent 

inhibition being, perhaps, the most paradigmatic) and that myriads of extensions and truly 

innovative variants regarding the underlying psychological processes involved have been 

proposed (e.g., attentional approaches like Mackintosh, 1975 and Pearce & Hall, 1980). It 

remains the case however, that Rescorla and Wagner’s model is still the most influential 

theory of associative learning. 

 

SOP, on the other hand, is a broader theoretical framework of stimulus processing and 

memory. Unlike Rescorla and Wagner’s model, SOP is not based on familiar theories of 

conditioning (although stochastic approaches used in SOP can be traced back to Estes, 1950) 

but instead borrows ideas from both information-processing theories and connectionism. It is 

beyond this proposal to give a detailed account of SOP. Suffice it to say that, in SOP, stimuli 

activate memory nodes for which transitional probabilities are dictated by decay functions 

(traces); that learning rules separately account for excitatory and inhibitory links depending 
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on the particular level of activation of the stimulus traces; and that behaviour is explicitly 

dealt with through weighted response-generation rules. Regardless of its merits
vi

, it is 

difficult to assess the explanatory and predictive power of SOP due to its representational and 

algorithmic complexity.  

 

Both Rescorla and Wagner’s model and SOP share the assumption that when two or more 

stimuli are presented at the same time of conditioning, each element may enter into an 

association with the reinforcer that follows (an unconditioned stimulus US). In general, such 

elemental theories further assume that responding in the presence of the compound is 

determined by the sum of the associative strengths of the constituents. As an alternative, 

configural theories are based on the assumption that conditioning with a compound results in 

a unitary representation of the compound entering into a single association with the 

reinforcer. Responding in the presence of the compound is then determined by its own 

associative strength, together with any associative strength that generalizes to it from similar 

compounds that have also taken part in conditioning. Configural models have proved to be 

particularly useful when studying conditional associations where a stimulus comes to control 

responding to a conditioned stimulus (CS) in a manner that is independent of its direct 

association with the US (Honey and Watt, 1998) or forming a configural cue that becomes 

associated with the US (Wilson and Pearce, 1989, 1990). Contrarily, elemental accounts tend 

to focus on the modulatory properties of the conditional cue over the CS-US association 

(Holland, 1983, Bonardi, 1991) or over the US representation (Rescorla, 1985). 

 

Anyhow, it seems that research in associative learning suffers from various problems, 

namely: 
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1. There is no model that satisfactorily accounts for all the phenomena under study; 

 

2. Some models, such as Mackintosh’s and Pearce and Hall’s, predict opposite changes 

in the associability of a stimulus as a consequence of the very same procedure (for 

example, in partial reinforcement). Likewise, elemental models predict that when two 

compounds (AB, CD) are trained their associative strength will be the same that the 

one observed when novel compounds (AC, BD) are tested. Configural theories predict 

that the associative strengths of trained and novel compounds will differ; 

 

3. Some models explain phenomena that alternative models cannot but, in turn, fail to 

explain other phenomena that the second can. For instance, latent inhibition, that the 

Pearce-Hall model predicts, cannot be explained in Rescorla and Wagner’s whereas 

over-expectation, on the other hand, can be explained by the latter but not by the 

former. Similarly, configural theories can account for feature discrimination effects 

but cannot predict summation effects, exactly the opposite of what elemental theories 

account for; 

 

4. There are phenomena that are still waiting for a model to be dealt with. For example, 

it is not obvious (at least not without making use of ad hoc arguments) how to explain 

spontaneous recovery.  
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3. Mathematical Models of Associative Learning 

 

Associative theories of associative learning have been mathematically expressed as 

quantitative models in the form of (sets of) equations. In the traditional syntactic view of 

mathematical models, equations are taken as formal models in which variables and their 

relations explicitly denote the phenomena under study.  

 

In particular, Rescorla and Wagner use a simple difference equation (the well-known delta 

rule) to express the change in associative strength across discrete trials. Moreover, keeping 

the learning rates of the stimuli constant makes the relation between the US and the CSs and 

the relation between the CSs themselves linear (although, of course, the learning rate 

decreases as learning progresses).  

 

Despite it is obviously true that, in so doing, temporal phenomena are left unexplained, we 

should keep in mind that Rescorla and Wagner’s model is an abstraction of change, and that 

models of dynamic systems do not need to be dynamic themselves. Hence, recent attempts to 

express Rescorla and Wagner’s model as a set of differential equations can be considered as 

merely mathematical pastimes (e.g., Yamaguchi, 1999).  

 

On the other hand, continuous (a.k.a. real-time) models like SOP are, at least in theory, useful 

when it comes to making accurate predictions about inter-stimulus intervals effects
vii

; 

however, the introduction of such extra parameters does not seem to necessarily contribute to 

the understanding of the fundamental issues in associative learning.  
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Finally, Pearce’s model just adds a similarity function specified in terms of the proportion of 

elements that the stimuli share. 

 

All in all, mathematical models of associative learning have so far been used as a means to 

make calculations through elementary algebra or differential analysis. The problem with 

adopting this narrow version of mathematical model is that it does not provide us with tools 

to address the above-mentioned limitations. For example, if the meaning of a mathematical 

model is in the linguistic expression it takes (that is, if there is a unique isomorphism between 

phenomena and algorithms) then either (a) we cannot explain how a theory can be expressed 

in different sets of equations or (b) we will not be sure about the effect the addition of a 

simple parameter may have. Paraphrasing (Chakravartty, 2001), theories and models can be 

(are) given linguistic formulations but theories and models should not be identified with such 

formulations. 
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4. Computational Models of Associative Learning 

 

In general, the use of computational models of associative learning has followed the 

connectionist trend and borrowed from computational neuroscience several techniques, 

mainly Artificial Neural Networks (ANNs, see Volge et al., 2004, and Balkenius & Morén, 

1998, for two good surveys). It is claimed that such models are adequate models of 

associative phenomena for four main reasons: 

 

• Firstly, computational models are considered (material and/or formal) analogue 

models of associative learning. The underlying reasoning (expressed in, e.g., Dayan & 

Abbot, 2001, and Enquist & Ghirlanda, 2005) is that (a) ANNs model by analogy 

natural neural networks and that (b) psychological process, including associative 

learning, are ultimately embedded in natural neural networks; hence, indirectly, 

ANNs model associative learning.  

 

However appealing this line of argumentation may be, it shows serious flaws. It is 

widely acknowledged that ANNs do not resemble natural neural networks in any 

fundamental way; besides, there is no strong evidence suggesting that electrical or 

chemical neural activity and associative learning are related. That a version of Dirac’s 

rule can be taken as a model both of neural plasticity and long-term potentiation 

effects (the Hebbian rule, Hebb, 1949) and of association formation (Rescorla and 

Wagner’s rule) cannot be considered as proof of any common underlying structure 

and should not be used to reduce psychological phenomena to their alleged neural 

substratum
viii

.  
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Likewise, that Rescorla and Wagner’s rule is essentially identical to the Widrow-Hoff 

rule (Widrow & Hoff, 1960) for training Adeline units and that, in turn, such a rule 

can be seen as a primitive form of the generalised delta rule for backpropagation only 

tells us that, computationally speaking, associative learning follows an error-

correction algorithm. What a computational model does not tell us, however, is which 

underlying psychological processes (attention, motivation, etc.) intervene in 

associative learning or how the physical characteristics of the units involved (e.g., the 

salience of the stimuli) affect such processes. 

 

It seems, therefore, that neither (a) nor (b) stands and that, consequently, the 

computational models proposed on such premises are not adequate models of 

associative learning.  

 

• A more general argument is that ANNs are connectionist models according to which 

information is not stored explicitly in symbols and rules but rather in the weights 

(strengths) of the connections; learning would consist of changes in such weights. It is 

claimed, rightly, that these are precisely the assumptions associative learning models 

are based upon and, hence, wrongly, that ANNs are a natural candidate to model 

associative learning.  

 

This quite straightforward argument is, in fact, a fallacy: As connectionists (at least 

implementational connectionists) themselves concede the way we represent learning, 

either as continuous changes of weighted connections or as the result of discrete 
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symbolic processing, is a matter of convenience and therefore irrelevant to the study 

of the structures involved.  

 

So, what makes ANNs the preferred computational model of associative learning or, 

more generally, the preferred tool in computational neuroscience (or, for that matter, 

in computational physics or computational biology)? Massive parallelism. Not 

surprisingly, the New Connectionism landmark paper introduced the Parallel 

Distributed Processing paradigm in cognition (Rumelhart et al., 1986). And, in which 

applications the use of massive parallelism is an asset? In applications where 

traditional techniques that can be verified and validated fail, in other words, when we 

have lots of unstructured data and/or when the algorithms are intractable or unknown. 

Now we are in a position to introduce the two remaining reasons for using ANNs as 

computational models of associative learning. 

 

• The third argument is that ANNs are powerful tools in finding patterns and models of 

data. After all, ANNs are just a set of statistical methods (with a misleading name). 

Although they are certainly not the simplest, fastest or most efficient data mining 

techniques (see, e.g., Mitchie et al., 1994), ANNs have proved useful when standard 

methods fail and a bottom-up, data-driven approach is needed. It is, however, 

necessary to point out (a) that associative learning is not so data intensive as other 

areas like genetics where there is an obvious need for statistical tools (see, for 

example, Hastings & Palmer, 2003), and (b) that, in any case, computational models 

may lead to an increase in empirical adequacy but not necessarily to a better 
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understanding of psychological phenomena and of their underlying psychological 

mechanisms.  

 

• This brings us to the fourth argument. ANNs can be used, of course, not as models of 

phenomena and data but simply to solve problems that cannot be solved analytically –

or when in silico experiments are needed. Indeed, it is a common practice to use sheer 

computational power to simulate with state spaces the dynamics of non-linear (chaotic 

or not) systems such as population growth or the weather. The point is, however, that 

associative learning does not seem to be one of such systems unless, of course, we 

view it from a behavioural regulation approach according to which animals adjust 

their long-term behaviour so as to reach an optimal (bliss or equilibrium) point 

(Timberlake, 1980).  

 

 

To sum it up, computational models of associative learning should be taken with caution and, 

indeed, with caution have been taken by most psychologists
ix

. Surely, they may provide us 

with complementary idealized models of psychological phenomena and with powerful 

statistical tools to construct models of psychological data but they are not the appropriate 

instruments to address the issues referred to in section 2.  

 

Our contention is that what we are lacking in the field of associative learning and behaviour 

is the identification of invariant structures that underlie specific (psychological, mathematical 

and computational) models. That is, we need to study psychological symmetries. Crucially, 

symmetries can be formalized mathematically as operations satisfying the conditions for 
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forming various algebraic structures –typically groups. We propose to employ abstract 

algebra to explore models of psychological theories from a non-syntactical view (as Physics 

and Biology have done). 

 

More specifically, our objective is to apply the Erlangen Program to Psychology, that is, to 

carry out a comparative review of recent researches in associative learning according to 

psychological symmetries.  
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5. Symmetries 

 

Generally speaking, symmetries define invariance, that is, impunity to possible alterations. 

They refer to the fact that parts of a whole are equivalent (interchangeable) under a group of 

operations. Interestingly, the fact that the parts that are related by means of an equivalence 

relation corresponds to the fact that the family of operations transforming the parts into each 

other while leaving the whole invariant satisfies the conditions for constituting a group (i.e., 

the existence of the identity and inverse operations, and the closure of the product 

associativity). Consequently, it has traditionally been assumed that group theory is the 

language of symmetries. 

 

What is more important, in group theory the objects do not need to be mathematical objects 

or physical, biological or psychological objects. Objects and their elements can be any 

abstraction (shapes, phrases, laws, mathematical equations and even theories). And the 

transformations or operations under which the whole remains invariant can be any operation 

(from a rotation over an axis to a specific conditioning procedure). This is because groups act 

on operations not on elements or objects. This feature makes groups a powerful tool to study 

symmetries independently of a particular theory or expression
x
. 

 

The study of symmetries flourished in the XIX century, originally as an instrument to solve 

algebraic equations: It was the young E. Galois who first understood that groups opened a 

new general way of finding the (invariant) structures that underlie the number and form of the 

solutions for equations of arbitrary degrees. This had an immediate effect in Physics: C. G. 

Jacobi developed a procedure for transforming step by step the Hamiltonian formulation of 
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the dynamical equations of mechanics into new ones that are simpler but perfectly equivalent. 

In geometry, F. Klein (Klein, 1872) proposed the Erlangen Program to classify various 

geometries (Euclidean, affine, and projective) with respect to geometrical properties that are 

left invariant under rotations and reflections. It was also in Göttingen where E. Noether 

proved the connection between symmetries and conservation laws
xi

 (Noether, 1918).  

 

In fact, we can view the history of the theories of modern Physics in terms of their 

symmetries and groups. Newtonian classical mechanics was based on Galilei’s 

transformations formalized in the Galilei group; Einstein and Poincaré’s special theory of 

relativity unified seemingly contradictory mechanical and electromagnetic phenomena of the 

hand of Lorentz’s transformations and Lorentz’s groups; finally, Einstein and Hilbert’s 

general theory of relativity explained gravity, the most symmetrical of field theories so far, 

under the group of all diffeomorphisms of a space-time.   

  

It has been, however, with quantum mechanics when symmetry groups have become an 

indispensable tool in Physics (see Weyl, 1928, for a starter). Internal symmetries (i.e., those 

which act on fields while at the nuclear level and cannot be reduced to “classical” 

spatiotemporal symmetries), both global and gauge, can only be fully understood when 

studied through the groups their representations form. In particular, the Standard Model 

classifies all elementary particles and their interactions according to their flavor, charge and 

color symmetries (the SU(3) ⊗ SU(2) ⊗ U(1) group), and, in so doing, it unifies 

electromagnetism, QED and QCD and explains electroweak interactions through spontaneous 

symmetry breaking. 
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Indeed, Biology has also benefited from the study of symmetries, particularly in molecular 

biology, physical chemistry and crystallography.  

 

Why is it then that symmetries take such a prominent part in Natural Sciences? As argued in 

(Brading & Castellani, 2003): 

 

(a) First, we attribute symmetry properties to theories and laws (symmetry principles). It 

is natural to derive the laws of nature and to test their validity by means of the laws of 

invariance, rather than to derive the laws of invariance from what we believe to be the 

laws of nature; 

(b) At the same time, we may derive specific consequences with regard to particular 

phenomena on the basis of their symmetry properties (symmetry arguments). Pierre 

Curie (Curie, 1894) postulated a necessary condition for a given phenomenon to 

happen, namely, that it is compatible with the symmetry conditions established by a 

principle.  

 

More specifically, symmetries play several inter-related roles in science: 

 

• Normative role: One the one hand, symmetries furnish a kind of selection rule. Given 

an initial situation with a specified symmetry, only certain phenomena are allowed to 

happen; on the other side, it offers a falsification criterion for (physical) theories: A 

violation of Curie’s principle may indicate that something is wrong with the 

(physical) description. That is, symmetries can be viewed as normative tools, as 

constraints on theories –the requirement of invariance with respect to a transformation 
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group imposes several restrictions on the form the theory may take, limiting the types 

of quantities that may appear in the theory as well as the form of its fundamental 

equations; 

 

• Unification role: Symmetries can be used as a heuristic to compare and unify theories, 

resulting from the possibility of unifying different types of symmetries by means of a 

unification of the corresponding transformation groups. Likewise, we can use 

symmetries to analyse whether or not different theories are, in fact, equivalent; and 

even if theories turn out to be incomparable (it seems, after all, that Rescorla and 

Wagner’s model and SOP correspond to different algebraic structures –Rescorla and 

Wagner’s model to groups, SOP to Lie groups), we will at least have a tool to 

formally show they are so;  

 

• Classificatory role: Classifications can be used (apart from collecting stamps) to 

identify gaps in the theories but also to predict the existence of new phenomena –as 

were quarks, predicted by M. Gell-Mann as a consequence of symmetries in matter 

particles. This applies when new phenomena can be predicted exclusively in terms of 

symmetry and when the predictions so postulated are coherent with those of existing 

models; 

 

• Explanatory role: Symmetries are also explanatory in that phenomena can be 

explained as consequences of symmetry arguments. We know that the symmetry 

elements of the causes must be found in their effects and that the converse is not true. 

That is, the effects can be (and often are) more symmetric than their causes. In group-
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theoretic terms this means that the initial symmetry conditions are lowered into (more 

constrained) sub-groups: The symmetry has been broken.  

 

Of course, organising our knowledge using symmetries does not prove anything. Symmetries 

(and group theory) provide us with very powerful abstract tools to analyse the structure of 

psychological models. But they are just abstract tools after all. In any empirical science, the 

ultimate proof rests on experimental evidence. Nonetheless, perhaps paradoxically, here it is 

precisely where the full strength of symmetries shows: Not from the models of theories built 

on symmetry principles but from the intimate connection (through symmetry arguments) 

between such models and observed phenomena.  

 

If we look back to the problems faced by psychological models of associative learning as 

listed in section 2, we find that they relate to deficiencies that the symmetry roles could be 

use to resolve. The first shortcoming, that no model accounts for all associative learning 

phenomena, refers to a lack of explanatory power in such models; the second one, that 

contradictory rules explain the same phenomena, claims for a normative approach; the third 

one, that models are partial, relates to the need for unifying principles where different 

theories that cover disjoint phenomena find common grounds and are made compatible; and 

the fourth one, that some phenomena remain unaccounted for, identifies a classification 

problem. It seems, therefore, that symmetries may be useful in solving such problems. All is 

left is to do is to find the psychological symmetries. 
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6. In search of Psychological symmetries 

 

Although there is not a universally accepted “law of learning”,  all psychological models 

coincide in assuming that learning takes place when a (relatively permanent) change in 

behaviour happens as a consequence of some experience.  Now, we need to know whether 

such law establishes sufficient symmetry conditions for the occurrence of the observed 

phenomena –or, in other words, we have to investigate whether the observed phenomena 

describe necessary conditions for the law to hold (invariantly) true. Unfortunately, a glimpse 

at the literature suggests it does not:  

 

(a) That the sensory and motivational features of the stimuli as well as their novelty and 

relevance affect learning are well documented facts (Kamin and Schaub, 1963; 

Pavlov, 1927; Jenkins and Moore, 1973; Randich and LoLordo, 1979; Lubow, 1989; 

Garcia and Koelling, 1966);  

 

(b) Procedurally, the idea that learning is context-specific is also gaining ground (Bouton, 

1993; Bouton and Swartzentruber, 1986; Hall and Mondragón, 1998); also, different 

results emerge depending on the order in which stimuli are presented during training 

and on the number (single or compound) and representation (elemental or configural) 

of the cues themselves (see, e.g., Pearce and Bouton, 2001 for a survey). 

 

This first setback may not challenge our search for psychological symmetries though. It could 

we argued that, after all, we should expect that the parameters in (a) affected the pace of the 

learning (accelerating or decelerating the learning process, i.e., strengthening or weakening 
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the links between nodes/stimuli as time goes), defining, in the extreme, explicit symmetry 

breaks
xii

. Unfortunately, the study of complex phenomena in (b) does not only tell us that the 

learning rate changes in different experimental conditions. What these results tell us is that 

the rules of learning themselves fluctuate depending on such factors and, consequently, the 

do not reflect any genuine object of invariance. 

  

Not surprisingly, a mathematical analysis of the above-mentioned issues reveals that each of 

them violates one of the conditions for group formation: Associativity
xiii

. This is rather 

worrying since associativity is the key condition for symmetry. It tells us that the 

concatenation of two different operations gives the same result, and that gives us much more 

information and reflects much more structure than the boring commutativity
xiv

.  

 

Let’s illustrate this point with an example: Both elemental models and configural models of 

stimulus encoding anticipate that after conditioning is given to two compounds (say, AB and 

CD) responding to them will be greater than responding to the constituent elements. 

However, they differ in their expectations for responding to different compounds formed with 

the same elements (for example, AD and BC); elemental theories expect it to be as large as 

that to the trained compounds whereas Pearce’s configural theory expects some 

generalization decrement and, as a consequence, responding should be as small as that to the 

elements. That is, elemental theories assume associative invariance under different 

compounds; Pearce’s theory, on the other hand, assumes invariance under elements per se 

and new configurations. Unfortunately, evidence suggests (see, e.g., Rescorla, 2003) that 

neither interpretation is complete: In agreement to Pearce’s theory, novel compounds perform 
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less than original compounds but, in agreement to elemental theories, novel compounds 

perform better than their separate elements. Symmetries, therefore, seem elusive. 

 

Should we conclude, on this basis, that there are no symmetries in associative learning? 

Perhaps, we can try a different approach and investigate this issue through a representative 

case study, a model that embodies the fundamental laws of associative learning. Few would 

disagree that Rescorla and Wagner’s model is such a model. Now, Rescorla and Wagner’s 

model is based on five basic assumptions (see Miller et al., 1995), namely: 

 

(1) The associative strength of a stimulus depends on the summed associative value of all 

the CSs present on a given trial; 

(2) Excitation and inhibition are represented by opposite signs on a single dimension of 

associative strength and, consequently, are assumed to be mutually exclusive; 

(3) Associability of a given stimulus (α) is constant, that is, associability is not subject to 

changes as function of experience; 

(4) New learning is invariant to any prior associative history (path independence). Past 

associative status of a cue, per se, is assumed to influence neither behaviour nor future 

changes in associative status; 

(5) Differences in behaviour reflect differences in associative strength, that is, there is a 

monotonically positive relationship between associative value and a relevant 

response.  

 

A simple analysis of these five premises tells us that only the first one is asymmetric. It states 

that the associative strength of each CS present on a specific trial does not independently 
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gravitate toward the asymptotic value of the US (λ). If it were so, then the associative 

strength of each CS would be invariant to the presence of other stimuli. This assumption (that 

is at the heart of cue competition) has proven to be the most innovative feature of Rescorla 

and Wagner’s model.  

 

The rest of assumptions are, in fact, symmetry postulates: Symmetry between excitation and 

inhibition (2), invariance of associativity to experience (3) and to learning history (4), and 

symmetry between learning and performance (5). Sadly, countless observations refute in a 

consistent manner such assumptions
xv

.  The important point is that such failures do not come 

from Rescorla and Wagner’s disregard for parametric features. The disproving phenomena do 

not refer to specific values that the context, time/schedule or stimulus characteristics may 

take but rather are the result of fundamental assumptions on the structure of conditioning. 

 

We can attribute this unsuccessful search for symmetries in associative learning to alternative 

causes:  

 

• Is it that the laws of associative learning are simply wrong? This does not seem to be 

the case. Despite the problems referred to in section 2, psychological models of 

associative learning have been confirmed experimentally so as not to doubt their 

general validity. As stated by (Spreat & Spreat, 1982, from Bouton, 2006), “much like 

the law of gravity, the laws of learning are always in effect”; 

 

• Or is it that associative learning phenomena (and the theories in which they are 

modelled) do not show any underlying structure, at least not in the form of 
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symmetries? Again, this is dubious. As we have seen in the previous section, 

symmetry has proved to be just too powerful a principle in the study of Nature as not 

to be found in Psychology; 

 

• Or is it that the formalization of symmetries in the notion of group is too constraining 

and that associative learning shows, to some extend, symmetries that should be 

expressed with a subtler concept? Is there any notion in abstract algebra that provides 

us with the required flexibility to represent associative learning phenomena and 

theories and, at the same time, preserves the properties that have made groups so 

popular in Physics and Biology? Yes, there is: The notion of groupoid.  

 

Indeed, it seems that groups do not provide us with the right ontology to deal with the type of 

symmetries that associative learning may show. Each associative learning theory could 

perhaps be modelled as a unidimensional single-object category, in other words, as a group. 

Yet, the problem is that groups (and the theories so modelled) are not expressive or flexible 

enough and, consequently, are prompt to generate inherently limited classifications and 

contradictory explanations. Besides, as groups are independent from each other and do not 

form more general structures there seems to be no need for a meta-syntax that would regulate 

the relations between different theories and, potentially, unify them. 
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7. Groupoids 

 

We have seen that mathematicians (and physicists) tend to think of the notion of symmetry as 

being virtually synonymous with the theory of groups (symmetry groups). In fact, though 

groups are indeed sufficient to characterize homogeneous structures, there are plenty of 

objects which exhibit what we clearly recognize as symmetry, but which admit few or no 

nontrivial automorphisms. It turns out that the symmetry, and hence much of the structure, of 

such objects can be characterized algebraically (and categorically) if we use groupoids and 

not just groups (see Brown, 1987, and Weinstein, 1996, for two formal introductions to 

groupoids). 

 

Intuitively, a groupoid should be thought of as a group with many objects, or with many 

identities. A groupoid with an object is essentially just a group. So the notion of groupoid is 

an extension of that of group. This apparently innocuous distinction between one-object 

structures (groups) and many-objects structures (groupoids) is actually crucial. The 

homomorphisms defined in groups are always automorphisms (homomorphisms of the object 

to itself). In other words, as groups are one-object categories, all morphisms can be 

composed with all other morphisms. From this, the algebraic conditions for the formation of 

groups (closure, unique identity, unique total inverse and total associativity) follow directly. 

On the other hand, groupoids, can only compose morphisms (isomorphisms in their case) 

with the appropriate domains and co-domains. Algebraically, a groupoid is a set with a 

partially defined binary operation (that is associative where defined) and a total inverse 

function.  
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What is important to get from this mathematical mumbo-jumbo is (a) that, in groupoids, 

associativity is partially defined, allowing us to investigate variable symmetries (symmetry 

groupoids) and (b) that, in groupoids, isomorphisms are defined over sets of base points 

(fundamental groupoids), permitting us to study more symmetries. Indeed, groupoids show 

new structures that do not show at a group level –more specifically, in groupoids, the inverse 

relation, although total, is defined over paths; besides, groupoids lead to higher dimensional 

algebras and help us move between n-categories through natural transformations, limits and 

co-limits.  

 

Summarizing, groupoids present three very useful properties: (1) Partial associativity, (2) 

path reversibility, and (3) hierarchism. How this relates to our study of symmetries in 

associative learning behaviour?  

 

(a) To start with, the very idea of associative learning can be nicely expressed as 

morphisms (associations) defined over objects (stimuli or nodes), that is, as 

categories;  

 

(b) Building iteratively up categories (3 above) may allow us to gain knowledge about 

hierarchical processes –associative processes between associative processes (Bonardi, 

2001; Mondragón, Bonardi and Hall, 2003)–, in particular, about the role of context 

and occasion setters (Bouton, 1994);  

 

(c) Also, the isomorphisms that define groupoids (unlike all or nothing equivalence 

relations that define groups) permit us to introduce partial symmetries (1 above) that 
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may explain results where novel compounds seem to elicit less response than the 

original trained compounds but more than each separate element; 

 

(d) Finally, the ability to look at intermediate processes (2 above) may be very useful in 

determining the causes for non-responding: Failure to express or failure to acquire (or 

to retrieve) information? 

 

More generally, the theory of groupoids does not differ widely in spirit and aims from the 

theory of groups. The recognition of the utility of groupoids gives gains over the 

corresponding groups without any consequent loss. Our contention is that the above-

described characteristics make groupoids an ideal candidate to fill in the symmetry roles that, 

we have argued, would help solve the problems outlined in section 2: Groupoids provide us 

with a multi-object language defined over paths along with rules of variance and rules of 

transformation with which to study both internal and external symmetries. In other words, the 

language of groupoids gives us the required expressiveness and flexibility to attack 

classification and explanation problems; and its syntax would allow us to solve normative 

and unification problems. 

 

Admittedly, the debate over whether groupoids are useful or unmotivated abstractions is still 

going on (Corfield, 2003). Nevertheless, since they were introduced by H. Brandt in 1926, 

groupoids have been used in a wide area of mathematics as well as in theoretical physics
xvi

, 

neurosciences, biodynamics and networks and logic and computer science (e.g., Ramsay & 

Renault, 1999, and the excellent http://math.ucr.edu/home/baez/). 
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i
 After all, behaviour be used to measure learning but it does not constitute learning itself. 

ii
 That learned behaviour is expressed as (learned) reflexes (classical conditioning) or operant 

responses (instrumental conditioning) does not really matter. 

iii
 It is worth noting, however, that this fact is entirely due to methodological issues over 

experimental control: Whereas in classical conditioning stimuli can be precisely manipulated 

by the experimenter, only the animals can control their own responses in instrumental 

conditioning.  

iv
 We are considering only associative models of associative learning. 

v
 Although all associative models are connectionist it has become fashionable to label as 

connectionists only those that recur to the use of complex networks. 

vi
 Significantly, SOP provides us with a mechanism to represent learning about absent 

stimuli. 

vii
 Special mention goes to temporal-difference models (Sutton & Barto, 1987), models that 

have had a huge impact in machine learning. 

viii
 Of course, this is not to say that (computational) neurosciences and their models of 

associative learning constitute a Byzantine exercise. Quite clearly, any psychological 

phenomena can be analysed at a biological level, pretty much like any biological phenomena 

can be analysed at a physical level and like any physical phenomena can be analysed at an 

informational level – it for bit !  It should be clear, however, that different levels of analysis 

of the same reality are fit for different purposes. Psychological models provide us with the 

right level of analysis for the study of psychological phenomena, i.e., when we need to 

explain how complex organisms learn from experience and adapt their behaviour 

accordingly. The relationships between the different levels should not conceal that (a) the 
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levels do not form an explanatory hierarchy where the ones at the bottom (allegedly, the 

neural ones) are more fundamental and, thus, more “real” than the others; and that (b) the 

models (particularly, the formal models) at the different levels may (and indeed more often 

than not do) differ. That is, we should keep in mind that (methodological or ontological) 

reductionism does not apply between the levels.  

ix
 Perhaps the only genuine contribution of (multilayer) ANNs to the theory of associative 

learning is the configural account of occasion setting, as opposed to the more conventional 

modulatory approach (e.g., Schmajuk & DiCarlo, 1992).  

x
 Readers are referred to Icke, 1995, and Lederman & Hill, 2004, for two popular 

introductions to the world of symmetries and groups. 

xi
 Noether’s theorem(s) is unsurpassed in its significance and beauty (and a great illustration 

of Wigner’s “unreasonable” effectiveness of Mathematics in the Natural Sciences). Among 

other things, it tells us that if the Lagrangrian of a system does not change under certain 

transformations then we can assert that there exist quantities that are preserved: Symmetry 

under time translation implies conservation of energy; symmetry under spatial translations 

implies conservation of momentum; and symmetry under rotation implies conservation of 

angular momentum. 

xii
 Unlike spontaneous symmetry breaking that define phase transitions, explicit symmetry 

breaking results from interactions (noise) that introduce corrections to dynamical equations 

that are not manifestly invariant under the symmetry group considered. 

xiii
 It is easy to see that in all four types of complex phenomena described above, that is, those 

that vary with the context, the order and number of the stimuli and the way they are 

represented, identity and inverse conditions do hold. Any conditioning is preserved if nothing 
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is done; besides, to undo the effects of any training procedure all we have to do is to re-train 

the animals in the original condition. The identity element and the inverse element are unique 

and the same. 

xiv
 Incidentally, associative learning has shown to be stubbornly non-Abelian: “Associative 

symmetry” phenomena and the basic distinction between latent inhibition and extinction are 

just two examples of non-commutativity. 

xv
 In defence of Rescorla and Wagner, it must be said that they themselves expressed their 

doubts about these four assumptions. For instance, it is hard to believe that Rescorla and 

Wagner really mistook extinction for unlearning or that they were ignorant of silent learning 

phenomena. It should also be noted that alternative models based on contingencies do not 

seem to improve the landscape. Although it has been proved that the non-pairings of CS and 

US influence behaviour as do pairing of CS and US we know that the four inter-event 

combinations do not contribute equally to the acquired behaviour (i.e., they have equal 

normative weights but not equal psychological weights, Wasserman & Miller, 1997). 

xvi
 It is interesting to note the view of Connes that Heisenberg discovered quantum mechanics 

by considering the groupoid of quantum transitions rather than the group of symmetry. 

 

 

 

 

 

 




